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Abstract: The aim of this study is to develop a set of functional finite mixture

regression models with functional predictors in the framework of the reproducing

kernel Hilbert space. First, we show the consistency of a penalized likelihood model

order estimator for the true model order, denoted as q∗. We further show that

the penalty of order q2r/(2r+1)n1/(2r+1) log(n) yields a strong consistent estimator

of q∗, where n and q are the sample size and the model order, respectively, and r

is the eigenvalue decay rate of an operator determined jointly by the reproducing

and covariance kernels. Second, we establish the minimax rate of convergence for

the estimation risk. We show that the optimal rate is determined by the alignment

of the reproducing kernel and the covariance kernel and the true model order q∗.

An efficient algorithm is also developed to estimate all unknown components of

the functional finite mixture model. Simulation studies and a real-data analysis

illustrate the merits of the proposed method.

1. Introduction

With the rapid growth of technology, many large-scale biomedical studies

(e.g., UK Biobank) have collected massive data sets with large volumes of multi-

modality imaging, genetic, neurocognitive, and clinical information from increas-

ingly large cohorts. Simultaneously extracting and integrating rich and diverse

heterogeneous information in neuroimaging and/or other variables from these big

data sets could transform our understanding of how diseases impact the struc-

ture and function of the brain and cognitive functions across the human lifespan.

Therefore, it is imperative to develop new learning methods (Liu and Zhu (2021);

Feng et al. (2020); Wang et al. (2021); Ombao et al. (2016)) that are applicable

to neuroimaging studies for neuropsychiatric disorders, major neurodegenerative

diseases, and normal brain development.

Mixture models are powerful probabilistic models that use mixture distribu-

tions to represent the presence of subpopulations within an overall population;

for a comprehensive review of the theory and applications of mixture models, see

McLachlan and Peel (2000). The most well-known mixture model is the Gaussian
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mixture model (Richard and Green (1997)), in which the density of a random

vector Y is represented by p(y) =
∑q

i=1 φiN(µi,Σi), where the ith vector com-

ponent is characterized by a normal distribution with weight φi, mean µi, and

covariance Σi. This framework can be extended naturally to a regression set-

ting. The Gaussian mixture regression model (Ghahramani and Jordan (1994);

Calinon, F. and Billard (2007); Stulp and Sigaud (2015)) assumes that the con-

ditional distribution of multiple responses given one or more predictors follows

a Gaussian mixture distribution, and that the conditional mean is a function of

the predictors. In this study, we investigate major mathematical challenges in

the conditional analysis of clinical response variables given ultrahigh-dimensional

imaging predictors under the framework of functional finite mixture regression

models.

Functional data analysis has been an active area of research, and well-known

monographs in this area include those of Ramsay and Sloverman (2005), Bowman

(2010), and Ferraty and Vieu (2006). Functional regression, and particularly the

functional linear regression model, has been studied extensively. For example, the

scalar-on-function regression (a continuous response variable regressed on func-

tional covariates), which corresponds to our proposed mixture model (1.1) with a

single component, has been studied by Cai and Hall (2006), Crambes, Kneip and

Sarda (2009), Wang, Chiou and Muller (2016), Yuan and Cai (2010), Hall and

Horowitz (2007), Du and Wang (2014) and Wang, Zhu and ADNI (2017). When

the true model is a finite mixture model with at least two different components,

the standard functional linear regression provides poor results. Few studies have

examined numerical algorithms for functional finite mixture regression models.

Yao, Fu and Lee (2011) proposed a class of functional regression models that

allow the regression structure to vary for different subpopulations. By project-

ing the functional predictor process onto its eigenspace, the new functional finite

mixture regression model is simplified to a framework that is similar to classical

mixture regression models. However, no studies have considered the reproducing

kernel Hilbert space (RKHS) or investigated the theoretical properties of RKHS

estimates, particularly the minimax rate.

Consider a functional finite mixture regression model such that the condi-

tional distribution of a scalar response Y given a functional predictor {X(t) : t ∈
I} belongs to the class of convex combinations of q∗ densities given by

Mq∗ =

{
f∗(y|x) =

q∗∑
k=1

π∗kf0

(
y − 〈x, β∗k〉

)
:
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π∗k ≥ 0,

q∗∑
k=1

π∗k = 1, β∗k ∈ F

}
, (1.1)

where f0 is a fixed probability density (e.g., Gaussian) on R and 〈x, β〉 =∫
I x(t)β(t)dt. The intercept terms can be incorporated into the model by writing

each component as f0(y − β∗0k − 〈x, β∗k〉), where β∗0k are intercepts. We ignore

them in the following analysis only for ease of presentation. Here, F is assumed

to be an RKHS with the reproducing kernel K. The RKHS F is a linear func-

tional space endowed with an inner product 〈·, ·〉K such that for any t ∈ I,

K(t, ·) ∈ F , and f(t) = 〈K(t, ·), f〉K holds for any f ∈ F . For more details on

the RKHS, please see Wahba (1990), Steinwart and Christmann (2008), Schölkopf

(2001) and the references therein. Here, Mq∗ is parametrized by the parameters

Π∗q∗ = (π∗1, . . . , π
∗
q∗) ∈ ∆q∗−1 and Θ∗q∗ = (β∗1 , . . . , β

∗
q∗) ∈ Fq∗ , where ∆q∗−1 is the

q∗-simplex. We call q∗ the number of mixture components or the model order,

Π∗q∗ the mixing probabilities, and Θ∗q∗ the coefficient functions.

Suppose that we observe n independent and identically distributed (i.i.d.)

copies of (Y,X), denoted as {(Yi, Xi) : i = 1, . . . , n}. Let M = ∪qMq. Let

f∗(y|x) ∈ Mq∗ be the true conditional distribution and f̂(y|x) ∈ M be the

estimated conditional density. We are interested in investigating three important

questions for model (1.1):

(a) how to construct an estimator f̂(y|x) that can achieve the optimal minimax

rate of convergence;

(b) how to consistently estimate the number of mixture components q∗; and

(c) how to numerically compute all unknown parameters and functions in f̂(y|x).

These questions are known to present major challenges, even for parametric mix-

ture regression models (Chernoff (1954); Dacunha-Castelle and Gassiat (1999);

Zhu and Zhang (2004); Ho and Nguyen (2016); Heinrich and Kahn (2018)). The

accuracy of an estimation can be measured naturally using

Rn(f̂ , f∗) = EX

{∫ (√
f̂(y|X)−

√
f∗(y|X)

)2

dy

}
, (1.2)

which is the squared Hellinger distance between ĥ(y, x) = f̂(y|x)fX(x) and

h∗(y, x) = f∗(y|x)fX(x). As the sample size n increases, the convergence rate of

Rn reflects the difficulty of the estimation problem.

We carry out a systematic investigation of model (1.1). We make four major

contributions to the literature:
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(i) We construct an optimal estimate of f∗(y|x) using the following steps. We

show that a minimax lower bound ofRn in (1.2) depends on the reproducing

kernel K, covariance function C of the random predictor X, and model order

q∗. In particular, it depends on the decay order of the eigenvalues of the

operator K1/2CK1/2. A similar phenomenon has been found in works on

functional regressions (Cai and Yuan (2012); Du and Wang (2014); Wang

and Ruppert (2015)). Then, we establish a minimax upper bound of Rn
based on a penalized likelihood estimator when the true coefficient functions

reside in Mq, with q ≥ q∗. We also propose a minimal penalty that yields

a consistent order estimation.

(ii) We propose a general class of penalized likelihood order estimators in order

to select and estimate the model order q∗. Theoretically, we establish the

strong consistency of the order estimators for model (1.1). In contrast,

most existing consistency results assume a prior upper bound on the order

(Csiszár and Shields (2000); Nishii (1988)). The only exception that we are

aware of is the work of (Gassiat and van Handel (2012)), which explores

the consistency properties of the penalized likelihood model order estimator

and provides the minimal strong consistency penalty.

(iii) We develop an expectation-maximization (EM) algorithm to estimate all

unknown parameters and functions.

(iv) We examine the finite-sample performance of our methods by using simula-

tions and a real-data set collected by the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) study.

The remainder of this paper is structured as follows. Section 2 establishes

the minimax rate of convergence of Rn(f̂ , f∗) in (1.2). Section 3 presents the

estimation of q∗ and the estimation of the coefficient functions Θ∗q∗ . Section

4 summarizes the results of our numerical experiments and real-data analysis.

Section 5 concludes the paper.

2. Methodology

In this section, we first establish the minimax rate of convergence ofRn(f̂ , f∗)

in (1.2), and then introduce an estimation algorithm for f̂ .

2.1. Optimal rate of convergence

The optimal rate of convergence of Rn(f̂ , f∗) is established in several steps.

We first derive a minimax lower bound, and then show that the convergence rate
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of the lower bound is optimal by constructing an estimator that can attain this

rate of convergence.

Minimax lower bound

We first establish the minimax lower bound of Rn, based on the following

assumption.

A1. Let C(t, s) = cov(X(t), X(s)) be the covariance function of X, and {ρk :

k ∈ N} be the nonincreasing ordered eigenvalues of the operatorK1/2CK1/2.

Assume that ρk � k−2r, with r > 0.

Assumption A1 specifies that the decay rate of the eigenvalues of the opera-

tor K1/2CK1/2 is of order k−2r. As a concrete example, consider the univariate

Sobolev spaceWm
2 . It is known that its reproducing kernel is (m!)−2Bm(s)Bm(t)+

(−1)m−1{(2m)!}−1B2m(|s−t|), whereBm is themth Bernoulli polynomial (Wahba

(1990)). It is also known that the decay rate of the eigenvalues of this kernel is

of order k−2m (Micchelli and Wahba (1981)).

The minimax lower bound is given in the following theorem.

Theorem 1. Assuming A1 holds, we have

lim
a→0

lim
n→∞

inf
f̂

sup
f∗∈Mq∗

P
(
Rn(f̂ , f∗) ≥ a

(
q∗

n

)2r/(2r+1))
= 1. (2.1)

The result in Theorem 1 is an asymptotic result. It shows that there exists

a function V1(a) such that limn→∞ inf
f̂

supf∗ P(Rn(f̂ , f∗) ≥ a(q∗/n)2r/(2r+1)) ≥
V1(a) and V1(a) → 1 as a → 0. The proof of Theorem 1 is provided in the

appendix. The main tool is adopted from Tsybakov (2009) by realizing that any

lower bound for a specific case immediately yields a lower bound for the general

case. Theorem 1 shows that the minimax lower bound depends on the model

order q∗ and how the reproducing kernel K and the covariance function C are

aligned. In general, the eigenvalues of K and C alone cannot determine the decay

rate of the eigenvalues of K1/2CK1/2. For functional linear regression models,

Cai and Yuan (2012) used the same tool to establish the minimax lower bound

for prediction.

Minimax upper bound with q ≥ q∗

Let f∗(y|x) ∈ Mq∗ be the true conditional distribution and M = ∪∞q=1Mq.

The log-likelihood function can be written as

`n(f) =

n∑
i=1

log f(Yi|Xi)
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=

n∑
i=1

log

q∑
k=1

πkf0(Yi − η(Xi, βk)), f ∈M, (2.2)

where η(X,β) =
∫
I X(t)β(t)dt. We consider a general class of penalized likeli-

hood estimations given by

f̂ = argmin
f∈Mq

{
− `n(f) + λ‖β‖2K

}
, (2.3)

for q ≥ q∗, where λ is a smoothing parameter that balances the trade-off between

the goodness of fit to the data and the smoothness of the estimator, and ‖ · ‖K is

the RKHS norm.

The following notation is used throughout:

H0(y|x) = sup
η∈R

f0(y − η)

f∗(y|x)
, H1(y|x) = sup

η∈R

|ḟ0(y − η)|
f∗(y|x)

,

H2(y|x) = sup
η∈R

|f̈0(y − η)|
f∗(y|x)

, H3(y|x) = sup
η∈R

|f (3)0 (y − η)|
f∗(y|x)

,

where ḟ0, f̈0, and f
(3)
0 are the first-, second-, and third-order derivatives of f0(·),

respectively. We need two additional assumptions.

B1. f0 ∈ C3 and f0(x) and ḟ0(x) vanish as x → ∞. We assume Hk(·|·) ∈
L4(h∗dµ) for k = 0, 1, 2 and H3(·|·) ∈ L2(h∗dµ).

B2. Given the functional predictor X, there exists a disjoint partition of R =

A0 ∪ {∪q
∗

k=1Ak} such that A1, . . . , Aq∗ are bounded intervals, where each

bounded interval Aj contains precisely one component η∗k = 〈X,β∗k〉, for

k = 1, . . . , q∗, and the unbounded set A0 contains no component.

Condition B1 is similar to the condition adopted in Gassiat and van Handel

(2014). This condition is satisfied in particular when f0 is chosen as the standard

normal density. Condition B2 characterizes the identifiability issue. In general,

given x, the mean components 〈x, β∗k〉 should be well separated to guarantee

identifiability.

Theorem 2. Assume that B1–B2 hold. Let {ρk : k ∈ N} be the nonincreasing

ordered eigenvalues of the operator K1/2CK1/2. Assume that ρk � k−2r, with

r > 1/2. For any q ≥ q∗, we have

lim
A→∞

lim
n→∞

sup
f∗∈Mq∗

P
(
Rn(f̂ , f∗) ≤ A

(
q

n

)2r/(2r+1))
= 1 (2.4)
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and ‖β̂‖2K = Op(1)‖β∗‖2K , provided that λ is of order q2r/(2r+1)n1/(2r+1).

The result in Theorem 2 is also an asymptotic result. It shows that there ex-

ists a function V2(a) such that limn→∞ inf
f̂

supf∗ P(Rn(f̂ , f∗) ≤ A(q∗/n)2r/(2r+1))

≥ V2(A) and V2(A)→ 1 hold as A→∞. The proof of Theorem 2 is provided in

the appendix. It combines two main tools. The first one characterizes the local

geometry of finite mixtures (Gassiat and van Handel (2014)), and the second uses

the empirical process theory with covering numbers to establish the convergence

rate (van de Geer (2000)). The penalized estimator has an explicit solution for

the function linear regression models in Cai and Yuan (2012), and establishing the

upper bound is more straightforward. Theorem 2 establishes the upper bound on

the rate of convergence of Rn based on the penalized likelihood estimator when

q ≥ q∗. However, we still cannot claim the minimax optimal rate of convergence,

because the model order q∗ is unknown. Therefore, a consistent estimation of q∗

is critical to achieving the minimax optimality on the rate of convergence of Rn.

Consistent order estimation

The number of components q∗ of the true mixture f∗ ∈M can be estimated

by using a general class of penalized likelihood order estimators:

q̂n = argmax
q≥1

{
sup
f∈Mq

(
`n(f)− λ‖β‖2K

)
− penn(q)

}
, (2.5)

where penn(q) is a penalty function and `n(f) is the likelihood function. Our

goal is to understand which penn(q) yields the strong consistency of the order

estimator, that is, q̂n → q∗ as n→∞ a.s. Achieving this goal requires a precise

understanding of the difference of the penalized log-likelihood functions given by

sup
f∈Mq

(
`n(f)− λq,n‖β‖2K

)
− sup
f∈Mq∗

(
`n(f)− λq∗,n‖β‖2K

)
as n → ∞, uniformly in the model order q > q∗. In this section, we discuss the

selection of penn(q) that yields the strong consistency of q̂n.

Theorem 3. Assume B1–B2 hold. Let {ρk : k ∈ N} be the nonincreasing ordered

eigenvalues of the operator K1/2CK1/2. Assume that ρk � k−2r, with r > 1/2.

Let c > 0 be a constant and

penn(q) = cq2r/(2r+1)n1/(2r+1) log(n). (2.6)

Then, we have

(a) q̂n → q∗ as n→∞ a.s.;
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(b) limA→∞ limn→∞ supf∗∈Mq∗
P(Rn(f̂ , f∗) ≥ A(q∗/n)2r/(2r+1)) = 0.

The proof of Theorem 3 is provided in the appendix, and is obtained by

precisely characterizing the difference of the penalized log-likelihood functions.

Intuitively, because we are dealing with infinite-dimensional parameters such as

βk, this order requires that the intrinsic dimension of each component is about

(n/q)1/(2r+1), and the total dimension for q components is q2r/(2r+1)n1/(2r+1).

Theorem 3 shows that the penalty term with order q2r/(2r+1)n1/(2r+1) log(n) yields

a strong consistent order estimator. This term depends on the decay rate of the

eigenvalues of the operator K1/2CK1/2. We can compare this with the popular

BIC penalty

BICn(q) =
dq + q − 1

2
log(n),

where d is the dimension of the parameter space. However, owing to the existence

of the infinite-dimensional parameters, choosing the BIC penalty in our setting

is not straightforward. Theorems 1–3 together show that the minimax rate of

convergence for Rn is (q∗/n)2r/(2r+1), which is determined by the rate of decay

of the eigenvalues of the operator K1/2CK1/2 and the model order q∗.

2.2. The estimation algorithm

The estimation procedure for model (1.1) consists of two parts: (i) the esti-

mation of q∗, and (ii) the estimation of the coefficient functions Θ∗q∗ . We propose

the following two-step estimation procedure. First, for different values of q, we

obtain the estimation of Θq for each given q. Second, based on the estimation of

Θq, we compute the term inside the maximum in (2.5), and then determine the

estimate of q∗ accordingly. In this section, we fix f0 to be a Gaussian density.

With an abuse of notation, we use f0(Yi|Xi, βk, σ
2) to denote f0(Yi − 〈Xi, βk〉).

EM algorithm

For a given q, the estimate of Θq can be obtained using an EM algorithm.

Define uik as an indicator of whether Xi is from component k, that is, uik = 1

if Xi comes from the kth component, and uik = 0 otherwise. If the missing data

uik can be observed, then the penalized log-likelihood for the complete data is

given by

logLc(Θq, σ
2) =

n∑
i=1

q∑
k=1

uik
{

log πk + log f0(Yi|Xi, βk, σ
2)
}
−

q∑
k=1

nλ||βk||2K
2σ2

,

where λ controls the level of the penalty.

The corresponding EM algorithm is given in the following E-step and M-step:
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E-step:

Denote the estimates of the parameters in the mth iteration as Θ
(m)
q =

{β(m)
1 , . . . , β

(m)
q }, Π

(m)
q = {π(m)

1 , . . . , π
(m)
q }, and σ2(m). We estimate τik = P (uik =

1) as follows:

τ
(m+1)
ik =

π
(m)
k f0

(
Yi|Xi, β

(m)
k , σ2(m)

)
∑q

k=1 π
(m)
k f0

(
Yi|Xi, β

(m)
k , σ2(m)

) . (2.7)

The mixing probabilities Π(m+1) are estimated accordingly by

π
(m+1)
k =

1

n

n∑
i=1

τ
(m)
ik . (2.8)

M-step:

We maximize the following Q function with respect to Θq and σ2:

Q
(
Θq, σ

2
)

=

n∑
i=1

q∑
k=1

τ
(m)
ik

(
log πk + log f0

(
Yi;Xi, βk, σ

2
))
−

q∑
k=1

nλ||βk||2K
2σ2

. (2.9)

By the representer theorem (Wahba (1990)), for each βk, there exists a vector

Ck = (c1k, . . . , cnk)
T ∈ Rn such that the quantity that maximizes the Q function

(2.9) can be expressed as

βk(t)
(m+1) =

n∑
i=1

cik

∫
I
K(t, s)Xi(s)ds (2.10)

and ||βk||2K = CTkWCk, where W = (Wij) is an n-by-n Gram matrix with

Wij =

∫∫
I×I

Xi(s)K(s, t)Xj(t)dsdt for i, j ∈ {1, . . . , n}. (2.11)

Therefore, the maximization of theQ function (2.9) can be solved in a component-

wise manner by solving the optimization with respect to Ck.

We consider the case when f is a normal distribution. Then the conditional

distribution of Yi is given by

Yi|Xi ∼ N
(∫
I
Xi(t)βk(t)dt, σ

2

)
= N

(
CTkW.,i, σ

2
)
,

where W.,i is the ith column of the Gram matrix (2.11).



2096 WANG, LIU AND ZHU

The Q function (2.9) then reduces to (up to a constant)

Q
(
Θq, σ

2
)

=

n∑
i=1

q∑
k=1

τ
(m)
ik

(
log πk −

1

2
log σ2 −

(
Yi − CTkW.,i

)2
2σ2

)
−

q∑
k=1

nλCTkWCk
2σ2

. (2.12)

The estimate of Ck in the above equation can be expressed as a Tikhonov regu-

larized weighted least squares problem. The solution is given by

C
(m+1)
k =

(
W TT

(m)
k W + nλW

)−1
W TT

(m)
k Y, (2.13)

where T
(m)
k = diag{τ (m)

1k , . . . , τ
(m)
nk } and Y = (Y1, . . . , Yn)T .

We then construct the coefficient functions βk by plugging c
(m+1)
ik into (2.10);

that is,

βk(t)
(m+1) =

n∑
i=1

c
(m+1)
ik

∫
I
K(t, s)Xi(s)ds. (2.14)

The estimation of σ2 is achieved by solving the penalized MLE in (2.12), leading

to

σ2(m+1) =

∑n
i=1

∑q
k=1 τ

(m)
ik

(
Yi − CT (m+1)

k W.,i

)2
∑n

i=1

∑q
k=1 τ

(m)
ik

+
nλ
∑q

k=1C
T
kWCk∑n

i=1

∑q
k=1 τ

(m)
ik

. (2.15)

We iteratively update (2.7) and (2.8) in the E-step and (2.13), (2.14), and

(2.15) in the M-step until the convergence is reached.

We use the Gaussian kernel throughout this paper. The bandwidth, denoted

by %, of the reproducing kernel K(·, ·) and the ridge penalty λ are treated as

hyperparameters. They are tuned using cross-validation. Other kernels can be

easily incorporated into our algorithm. Learning the optimal kernels is a non-

trivial matter, and deserves further investigation. A good method of doing so is

to combine multiple candidate kernels.

Order estimation

The optimal order of the mixture model can be estimated using the optimiza-

tion in (2.5). This is a mixed integer programming (MIP) problem, the solution

of which may not be obtained in practice. We denote the negative of Equation

(2.5) inside the maximum as the order objective function, that is,

Order(q) =
(
− `n(f (q)) + λ‖β(q)‖2K

)
+ penn(q), (2.16)
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Figure 1. The first row of images includes the true coefficients β1 and β2 in the first
scenario, and the bottom row includes the true coefficients β1, β2, and β3 in the second
scenario.

where f (q) and β(q) are the estimates calculated from the EM algorithm with the

model order being q. The first part of Order(q) is essentially the penalized loss,

and the second part is the penalty (2.6) on q. Thus, we conduct a sequential

search for the optimal order q∗. Specifically, we start from q = 1 and increase its

value by one each time, and then compute Order(q) using (2.16). As the model

order increases, the penalized loss part in Order(q) decrease, and the penalty on

the model order increases. Once Order(q) no longer decreases, we select the q

value that minimizes Order(q) as the optimal estimate.

3. Numerical Results

We conduct simulations to evaluate the accuracy, and efficiency of our meth-

ods and then apply them to an analysis of a real-data set obtained from the ADNI

study.

3.1. Synthetic experiments

We perform simulations in two different scenarios, including one with two

mixing components (q∗ = 2) and another with three (q∗ = 3). The true coeffi-

cient images are generated from a Gaussian function with different centers. The

covariate images Xi(t) are simulated from a Gaussian random field. Figure 1

displays the true coefficients for these two scenarios.
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Figure 2. The top row of images includes estimates of β1 and β2 in scenario 1 from one
replication, and the bottom row contains estimates of β1, β2, and β3 in scenario 2.

The responses Yi follow a mixture of functional linear models given by

Yi =

q∑
k=1

δik

(
βk0 +

∫
t∈T

Xi(t)βk(t)dt

)
+ εi, (3.1)

where δik = 1 if subject i comes from the kth component, and zero otherwise.

The noise term εi follows a standard normal distribution and is independent of

Xi(t). In each scenario, we set the sample size of each component to be 80, that

is,
∑n

i=1 δik = 80, and the total number of samples is n = 160 and 240 in scenarios

1 and 2, respectively.

The initial tuning range for the bandwidth % of the kernel K and the ridge

penalty level λ is from a two-dimensional grid, that is, σ⊗λ =
{

2−5, 2−4, . . . , 25
}⊗2

.

We start with the functional linear model with one component and increase the

value q by one each time. For each q, the stopping criterion of the EM algorithm

is either determined by
∑q

k=1 ‖C
(m+1)
k − C(m)

k ‖2/{
∑q

k=1 ‖C
(m)
k ‖2} ≤ 10−5 or is

a total number of iterations over 500. To evaluate the estimation performance,

we first check the estimation of q∗. If q∗ is correctly estimated, we further com-

pute the relative mean squared error (RMSE) for each βk, that is, RMSE =

‖β̂k − βk‖2/‖βk‖2. For each sample, we denote ûik = 1 if k = arg maxj {τ̂ij}, and

compute the assignment accuracy as ACC = n−1
∑n

i=1

∑q∗

k=1 δ(ûik, uik), where

δ(·, ·) is the indicator function. The empirical prediction risk is quantified as the

root mean square prediction error, that is, RMSPE =
√

(1/n)
∑n

i=1(yi − ŷi)2. We

also conduct a regression analysis using just the functional linear model (FLM)



FUNCTIONAL FINITE MIXTURE REGRESSION MODELS 2099

Table 1. The empirical mean and standard error (in parenthesis) of the relative mean
squared error (RMSE), assignment accuracy (ACC), and root mean square prediction
error (RMSPE) in scenarios 1 and 2, labeled as S1 and S2, respectively. FFMRM denotes
the functional finite mixture regression model; FLM denotes the functional linear model.
For each case, 100 simulated data sets were used.

RMSE ACC RMSPE
β1 β2 β3 FFMRM FLM

S1 1.80(0.38) 1.84(0.39) N/A 0.86(0.06) 1.01(0.47) 3.65(0.35)
S2 1.99(0.39) 2.04(0.37) 2.10(0.28) 0.65(0.23) 1.02(0.34) 3.53(0.32)

Table 2. The demographic information of all participants in the ADNI study. The means
are reported, with the standard deviations included in parentheses.

Diagnosis Gender(F/M) Age MMSE
(years)

CN 164/167 74.46 (5.58) 28.99 (1.23)
SMC 61/42 72.01 (5.46) 29.01 (1.96)
EMCI 127/161 71.26 (7.51) 28.35 (1.55)
LMCI 152/245 73.66 (7.41) 26.97 (2.70)
AD 99/142 74.96 (7.88) 23.25 (2.10)

(without identifying the mixing components) as a baseline for the RMSPE com-

parison. Note that the basic FLM only has one component, so the RMSE and

ACC comparisons are not applicable.

We present the estimation results in each scenario in Table 1. In both sce-

narios, we can correctly estimate the order of the mixing components q∗ in all 100

repetitions. In scenario 1, the assignment accuracy is 86.5%, whereas in scenario

2, it is 65.1%. This decrease of accuracy is mainly due to the increase of the

number of components.

We achieve desirable RMSEs in both scenarios, with slightly better perfor-

mance in scenario 1. To graphically demonstrate the estimated coefficient, we

randomly pick up one iteration for each scenario and plot the estimated coef-

ficients in Figure 2. The estimated coefficients correctly capture the nonzero

regions and recover the patterns in the true coefficients.

3.2. Mini-mental state examination score prediction in the ADNI study

To further demonstrate the usefulness of model (1.1), we apply our meth-

ods to a real-data set obtained from ADNI study. The ADNI study is a large

scale multi-site study and has collected magnetic resonance imaging (MRI) im-

ages, positron emission tomography (PET) images, cerebrospinal fluid (CSF),

and blood biomarkers, among many others. More information about this study
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Figure 3. The five rows of images are the PET images of different types of participants.
We randomly pick one image from each group for illustration. The types of participants
are AD, CN, EMCI, LMCI, and SMC, from top to bottom, respectively. Eight transverse
slices located at Z = 8 to 78 with equal increments of 10 are displayed from left to right.

can be found at the ADNI website (http://adni.loni.usc.edu/).

We study the PET data, and use them as imaging predictors to predict the

mini-mental state examination (MMSE) scores. The PET images measure the

metabolic processes of the patients, such as flows of blood to different parts of the

brain, by detecting the radioactivity of the injected tracer. We analyze the PET

images collected at the baseline of the ADNI study. Among the 1,360 participants,

there are five diagnostic groups: normal control (CN), significant memory concern

(SMC), early mild cognitive impairment (EMCI), late mild cognitive impairment

(LMCI) and those diagnosed with Alzheimer’s disease (AD). The demographic

information of the participants is summarized in Table 2, and a sample image

from each type of participant is provided in Figure 3.

We remove the age and gender factors by fitting a linear model in each

voxel, and use the residual maps as the covariate images of model (1.1). The

same configuration of the EM algorithm in the simulation studies is used to train

the model, and the adaptive tuning procedure is used to tune the parameters.

Finally, three mixing components are determined by the EM algorithm, with their

http://adni.loni.usc.edu/
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Figure 4. The three rows of images are the estimated coefficients β̂1, β̂2, and β̂3, from
top to bottom, respectively. Eight transverse slices located at Z = 8 to 78 with equal
increments of 10, are displayed from left to right.

corresponding coefficient images displayed in Figure 4. The overall proportional

probabilities πk are estimated as 19.8%, 41.0%, and 39.2%, respectively. We

conduct a hierarchical clustering on the patients according to their estimated

proportional probabilities to each component τik, and illustrate the corresponding

similarity matrix in Figure 5. These clusters indicate potential heterogeneous

disease patterns of AD among the population, which has been proved in previous

studies (Latta, Brothers and Wilcock (2015); Dong et al. (2016)). We overlay

the coefficient images on the MNI-152 ROI template (Fonov et al. (2011)), and

identify several regions of interest: β̂1 mainly represents impairment in the sup

frontal and parietal lobe; β̂2 highlights the corpus callosum and occipital lobe; and

β̂3 mostly covers the middle frontal gyrus. Many prior studies have shown that

reduced glucose metabolic activities and structural impairment in the frontal lobe,

parietal lobe, and occipital lobe of the cerebrum are associated with a degradation

in cognition and a progression to AD (Lin et al. (2017); Heneka et al. (2015)).
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Figure 5. The similarity matrix of the estimation of τk. The value indicates the pairwise
Euclidean distance of the proportional probabilities.

4. Conclusion

We have developed a functional finite mixture regression model with func-

tional predictors in the RKHS. This is a challenging problem because of the

unknown model order and the existence of infinite-dimensional unknown param-

eters. Our theoretical developments provide a strong consistent estimator of the

model order using a penalized likelihood estimation and establish the minimax

rate of convergence for the estimation risk. We have shown that the optimal rate

is jointly determined by the alignment of the reproducing kernel, covariance ker-

nel, and model order. An efficient EM algorithm is also proposed, and empirical

experimental results demonstrate the merits of our method.

Appedix: Technical Lemmas and Proofs of Theorems

A1. Technical Lemmas

Lemma 1. Assume B1 and B2 hold. Define Hq(ε) = {
√
f/f∗ : f ∈Mq,H(h, h∗)

≤ ε}. Then

N[ ]

(
Hq(ε), δ

)
≤
(
C1 ε

δ

)10
(
C2δ−1/r+1

)
q+1

(A.1)

for all q ≥ q∗ and δ/ε ≤ 1.
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Proof. We prove the lemma by extending the arguments in Gassiat and van

Handel (2014). Note that f/f∗ = h/h∗. We denote by ‖ · ‖p the Lp(h∗dµ)-norm,

that is, ‖g‖0p =
∫
|g|ph∗dµ. Denote η∗i = 〈x, β∗i 〉 and ηj = 〈x, βj〉, i = 1, . . . , q∗,

j = 1, . . . , q. It follows from B2 that we can find a partition of R, A0, A1, . . . , Aq∗ ,

such that each bounded set Ai, i = 1, . . . , q∗, contains precisely one component

η∗i = 〈X,β∗i 〉 and the unbounded set A0 = RM \ (A1 ∪ . . . ∪ Aq∗) contains no

component. Let f ∈Mq, so that we can write f =
∑q

i=1 πif0(y − ηi). Then,

f − f∗

f∗
=

∑
j:ηj∈A0

πj
f0(y − ηj)

f∗

+

q∗∑
i=1

{( ∑
j:ηj∈Ai

πj − π∗i

)
f0(y − η∗i )

f∗
+

∑
j:ηj∈Ai

f0(y − ηj)− f0(y − η∗i )
f∗

}
.

Taylor expansion gives

f0(y − ηj)− f0(y − η∗i ) = ḟ0(y − η∗i )(ηj − η∗i ) +
1

2
f̈0(y − η̃)(ηj − η∗i )2.

Using Assumption B2, we find that

∣∣∣f − f∗
f∗

∣∣∣ ≤
 ∑
j:ηj∈A0

πj +

q∗∑
i=1

∣∣∣ ∑
j:ηj∈Ai

πj − π∗i
∣∣∣+
∣∣∣ ∑
j:ηj∈Ai

πj(ηj − η∗i )
∣∣∣

+
1

2

∑
j:ηj∈Ai

πj(ηj − η∗i )2

 (H0 +H1 +H2).

On the other hand, it follows from Theorem 3.10 of Gassiat and van Handel

(2014) that there exists a constant c∗ such that

∥∥∥f − f∗
f∗

∥∥∥
1
≥ c∗

 ∑
j:ηj∈A0

πj +

q∗∑
i=1

∣∣∣ ∑
j:ηj∈Ai

πj − π∗i
∣∣∣+
∣∣∣ ∑
j:ηj∈Ai

πj(ηj − η∗i )
∣∣∣

+
1

2

∑
j:ηj∈Ai

πj(ηj − η∗i )2

 .

Hence, for all f ∈M,

|f/f∗ − 1|
‖f/f∗ − 1‖1

≤ S :=
1

c∗
(H0 +H1 +H2).
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In addition, using |
√
x− 1| ≤ |x− 1|, we find

|
√
h/h∗ − 1|
H(h, h∗)

≤ |h/h∗ − 1|
(1/2)‖h/h∗ − 1‖1

=
|f/f∗ − 1|

(1/2)‖f/f∗ − 1‖1
≤ 2S.

Similar to Lemma 3.15 of [1], for and f ∈M, we have

|
√
h/h∗ − 1|
H(h, h∗)

− h/h∗ − 1√
χ2(h‖h∗)

≤ (4‖S‖24S + 2S2)H(h, h∗),

where the chi-square divergence is defined as χ2(h‖h∗) =
∫

(h/h∗−1)2h∗dµ. This

allows us to make further approximation based on Lemma 3.16 of [1]. Let α > 0,

and for every f ∈Mq such that H(h, h∗) ≤ α. Define

˜̀=

q∗∑
i=1

{
ai
f0(y − η∗i )

f∗
+ bi

ḟ0(y − η∗i )
f∗

+ e2i
f̈0(y − η∗i )

f∗

}
+

q∑
j=1

γj
f0(y − ηj)

f∗
,

where

q∗∑
i=1

|ai| ≤
1

c∗
+

1√
c∗α

,

q∗∑
i=1

|bi| ≤
1

c∗
+ 2

c√
c∗α

,

q∗∑
i=1

e2i ≤
1

c∗
,

q∑
j=1

γj ≤
1√

c∗α ∧ c∗
. (A.2)

We have ∣∣∣ h/h∗ − 1√
χ2(h‖h∗)

− ˜̀
∣∣∣ ≤ √

2

2(c∗)5/4
(‖H3‖2S +H3)α

1/4.

Define

df =

√
f/f∗ − 1

‖
√
f/f∗ − 1‖2

,

and

Dq = {df : f ∈Mq, f 6= f∗}, Dq,α = {df : f ∈Mq, f 6= f∗,H(h, h∗) ≤ α}.

Then,

N[ ](Dq, δ) ≤ N[ ](Dq,α, δ) +N[ ](Dq \ Dq,α, δ).

We estimate both bracketing numbers separately. Define a family of functions
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L̃q,α =

{
q∗∑
i=1

{
ai
f0(y − η∗i )

f∗
+ bi

ḟ0(y − η∗i )
f∗

+e2i
f̈0(y − η∗i )

f∗

}
+

q∑
j=1

γj
f0(y − ηj)

f∗

}
,

where (a, b, e, γ) ∈ Rq∗ × Rq
∗ × Rq

∗ × Rq satisfies the constraint (A.2). For

l̃, l̃′ ∈ L̃q,α,

|l̃ − l̃′| ≤ H0

q∗∑
i=1

|ai − a′i|+H1

q∗∑
i=1

|bi − b′i|+H0

q∑
i=1

|γi − γ′i|

+
1√

c∗α ∧ c∗
H1

q∑
i=1

|〈x, βi − β′i〉|+
2H2√
c∗

q∗∑
i=1

|ei − e′i|.

Note that

EX

(
q∑
i=1

|〈x, βi − β′i〉|

)2

≤ q
q∑
i=1

EX |〈x, βi − β′i〉|2 = q

q∑
i=1

∞∑
k=1

ρk(gik − g′ik)2

≤ q
q∑
i=1

M∑
k=1

ρk(gik − g′ik)2 +M−2roM (1).

We may choose M = c1δ
−1/r, so that

|l̃ − l̃′| ≤ V ‖(a, b, γ, g, e)− (a′, b′, γ′, g′, e′)‖norm + o(δ),

where V = 3(H0+H1+H2) and ‖·‖norm is the norm on R3q∗+c2q(δ−1/r+1) defined

by

‖(a, b, γ, g, e)‖norm =

q∗∑
i=1

|ai|+
q∗∑
i=1

|bi|+
q∑
i=1

|γi|

+
q√

c∗α ∧ c∗

q∑
i=1

M∑
k=1

ρkg
2
ik +

2√
c∗

q∗∑
i=1

|ei|.

Using the standard fact of the covering number for the Euclidean ball we obtain

N[ ]

(
L̃q,α, δ

)
=
(c3 + δ

δ

)3q∗+c2q(δ−1/r+1)
.

Since q ≥ q∗ and δ ≤ 1, we therefore obtain

N[ ]

(
Dq,α, δ

)
≤
(
c4
δ

)c5q(δ−1/r+1)

.



2106 WANG, LIU AND ZHU

Lemma 2. Assume B1 and B2 hold.

(a).

P

[
sup
f∈Mq

n∑
i=1

log
f(Yi|Xi)

f∗(Yi|Xi)
≥ α

]
≤ C3e

−α/C3

for all α ≥ C4q
2r/(2r+1)n1/(2r+1).

(b).

lim
n→∞

sup
f∈Mq

1

n

n∑
i=1

log
f(Yi|Xi)

f∗(Yi|Xi)
< 0, a.s.

Proof. Let h(y, x) = f(y|x)fX(x) and h∗(y, x) = f∗(y|x)fX(x) for f ∈ Mq

and f∗ ∈ Mq∗ . Denote by h̄ = (h + h∗)/2. We first have the inequalities

K(h, h∗) ≥ H2(h, h∗), and

n∑
i=1

log
h

h∗
≤ 2
√
nνn

(
log

h̄

h∗

)
− 2nK(h̄, h∗). (A.3)

Therefore,

P

[
sup
h

n∑
i=1

log
h

h∗
≥ α

]
≤ P

[
sup
h

√
nνn

(
log

h̄

h∗

)
− nH2(h̄, h∗) ≥ α

2

]

≤
S∑
s=0

P
[

sup
h∈Gs

νn

(
log

h̄

h∗

)
≥ α2s−1√

n

]

=

S∑
s=0

P
[

sup
h∈Gs

νn

(
log

√
h̄

h∗

)
≥ α2s−2√

n

]
,

where G0 = {h̄ : nH2(h̄, h∗) ≤ α}, Gs = {h̄ : α2s−1 < nH2(h̄, h∗) ≤ α2s},
1 ≤ s ≤ S, S = min{s : α2s > 2n}. We need to find the bracketing number for

H̄q(ε) = {
√
h̄/h∗ : H(h̄, h∗) ≤ ε}. This can be easily deduced from Lemma 1

such that

N[ ]

(
H̄q(ε), δ

)
≤
(

2
√

2C1 ε

δ

)10
(
C2δ−1/r+1

)
q+1

. (A.4)

Note that
∫ ε
0

√
logN[ ](H̄q(ε), δ)dδ ≤ c

√
qε1−1/(2r). It requires that c

√
qε1−1/(2r) ≤

√
nε2 such as ε ≥ c1(q/n)r/(2r+1). Next, apply Theorem 7.4 of van de Geer (2000),

together with
√
α2s/2+2/

√
n ≥ c1(q/n)r/(2r+1), that is, α ≥ c2q2r/(2r+1)n1/(2r+1).
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We obtain

S∑
s=0

P
[

sup
h∈Gs

νn

(
log

√
h̄

h∗

)
≥ α2s−2√

n

]
≤

S∑
s=0

c3e
−α2s/(c328) ≤ C3e

−α/C3 .

This finishes the proof of Part (a).

To prove Part (b), it follows from (A.3) that it is enough to show that

lim
n→∞

sup
f∈Mq

n−1/2νn

(
log

√
h̄

h∗

)
= 0, a.s.

As in the proof of Part (a), we have

P
[

sup
f∈Mq

n−1/2νn

(
log

√
h̄

h∗

)
≥ α

]
≤ c4e−nα

2/c4

for every α > 0 such that c2q
2r/(2r+1)n1/(2r+1) ≤ α

√
n ≤ 32

√
n. Hence,

∞∑
n=1

P
[

sup
f∈Mq

n−1/2νn

(
log

√
h̄

h∗

)
≥ α

]
≤ ∞

for 0 < α ≤ 32. Part b follows from Borel-Cantelli.

Lemma 3. Assume B1 and B2 hold. Define

∆n(q, q∗) = sup
f∈Mq

(
`n(f)− λq,n‖β‖2K

)
− sup
f∈Mq∗

(
`n(f)− λq∗,n‖β‖2K

)
,

where λq,n = C5q
2r/(2r+1)n1/(2r+1) and λq∗,n = C̃5(q

∗)2r/(2r+1)n1/(2r+1). Then,

lim
n→∞

sup
q>q∗

∆n(q, q∗)

q2r/(2r+1)n1/(2r+1)
≤ C6, a.s. (A.5)

Proof. Using the fact that

sup
f∈Mq∗

(
`n(f)− λq∗,n‖β‖2K

)
≥ `n(f∗)− λq∗,n‖β∗‖2K

yield

∆n(q, q∗) ≤ sup
f∈Mq

n∑
i=1

log
f(Yi|Xi)

f∗(Yi|Xi)
+ λq∗,n‖β∗‖2K .

Furthermore, from Part (a) of Lemma 2, for α ≥ C4,
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P

[
sup
q≥q∗

1

q2r/(2r+1)n1/(2r+1)
sup
f∈Mq

n∑
i=1

log
f(Yi|Xi)

f∗(Yi|Xi)
≥ α

]

≤
∞∑
q=q∗

C3e
−αq2r/(2r+1)n1/(2r+1)/C3 ≤ c1

n2
.

The lemma follows easily using the Borel-Cantelli.

A2. Proof of Theorem 1

The constants ci used in the proof are all generic positive constants. First

realize that any lower bound for a specific case yields immediately a lower bound

for the general case. In the following, consider a special case where q∗ and

(π∗1, . . . , π
∗
q∗) are known. f0 is a fixed known density function.

Direct calculation of the Kullback-Leibler divergence between h∗ = f∗(y|x)

fX(x) and h = f(y|x)fX(x) where f∗(y|x), f(y|x) ∈Mq∗ yields

K(h, h∗) = Eh∗

{
log

h∗

h

}
= Eh∗

{
log

∑q∗

k=1 π
∗
kh
∗
k∑q∗

k=1 π
∗
khk

}
= Eh∗

{
log

q∗∑
k=1

τk
h∗k
hk

}

≥ Eh∗

{
q∗∑
k=1

τk log
h∗k
hk

}
=

q∗∑
k=1

π∗kEh∗
k

{
hk/h

h∗k/h
∗ log

h∗k
hk

}
, (A.1)

where τk = π∗khk/h for k = 1, . . . , q∗ and the inequality is due to the Jensen’s

Inequality. Note that π∗khk/h = π∗kf0(y−ηk)/
∑q∗

i=1 π
∗
i f0(y−ηi) is the probability

of a data point coming from the kth component. We assume this probability

bound below away from zero. Therefore, hk/h is bounded below away from zero

and above by a positive constant. Hence,

K(h, h∗) =

q∗∑
k=1

π∗kEh∗
k

{
hk/h

h∗k/h
∗ log

h∗k
hk

}

=

q∗∑
k=1

π∗k

∫
h∗
k>hk

hk/h

h∗k/h
∗h
∗
k log

h∗k
hk
dµ+

q∗∑
k=1

π∗k

∫
h∗
k≤hk

hk/h

h∗k/h
∗h
∗
k log

h∗k
hk
dµ,

≥ c3
q∗∑
k=1

π∗k

∫
h∗
k>hk

h∗k log
h∗k
hk
dµ+ c4

q∗∑
k=1

π∗k

∫
h∗
k≤hk

h∗k log
h∗k
hk
dµ

≥ c5
q∗∑
k=1

π∗kK(hk, h
∗
k).
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Using the fact log y − log x − (1/x)(y − x) + (1/(2c6))(y − x)2 ≤ 0 for 0 ≤
y ≤ √c6,

K(hk, h
∗
k) = Eh∗

k

{
log

h∗k
hk

}
≥ 1

2c6
Eh∗

k

{
f0(Y − η(X,βk))− f0(Y − η(X,β∗k))

}2

=
1

2c6
Eh∗

k

{
ḟ0

2
(Y − η̃k)(η(X,βk − β∗k))2

}
=

1

2c6
EX
{
Ef0k(y|x)(ḟ0

2
(Y − η̃k)|X)(η(X,βk − β∗k))2

}
≥ c7EX

{
(η(X,βk − β∗k))2

}
= c7‖βk − β∗k‖2C ,

where η̃k is a point between η(X,β∗k) and η(X,βk). Therefore, K(h, h∗) is bounded

below by ‖β − β∗‖2C up to a constant, where ‖β − β∗‖2C =
∑q∗

k=1 ‖βk − β
∗
k‖2C . A

similar calculation also yields that K(h, h∗) is bounded above by ‖β − β∗‖2C up

to a constant.

In the following, we adopt the results from Tsybakov (2009) to establish the

lower bound, which is based upon testing multiple hypotheses. In particular, we

can find a subset {β(0), . . . , β(N)} ⊂ Fq∗ with N increasing with n, such that for

some positive constant c and all 0 ≤ i < j ≤ N ,

‖β(i) − β(j)‖2C ≥ 2cγ2r/(2r+1)

(
n

q∗

)−2r/(2r+1)

, (A.2)

and

1

N

N∑
j=1

K(h(j), h(0)) ≤ γ logN, (A.3)

then we can conclude according to Theorem 2.5 of Tsybakov (2009) that,

inf
β̂

sup
β∗∈Fq∗

P
(
‖β(i) − β(j)‖2C ≥ cγ2r/(2r+1)

(
n

q∗

)−2r/(2r+1))
(A.4)

≥
√
N

1 +
√
N

(
1− 2γ −

√
2γ

logN

)
, (A.5)

which yields
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lim
a→0

lim
n→∞

inf
β̂

sup
β∗∈Fq∗

P
(
‖β̂ − β∗‖C ≥ a

(
n

q∗

)−r/(2r+1))
≥ 1.

Hence Theorem 1 will be proved.

Next, we construct the subset {β(0), . . . , β(N)} ⊂ Fq∗ , k = 1, . . . , q∗. Let

β(j) = (β
(j)
1 , β

(j)
2 , . . . , β

(j)
q∗ ), j = 1, . . . , N . We show that both (A.2) and (A.3)

are satisfied. Let M̃ = bM/q∗c for some large number M to be decided later.

Consider the function space

H∗ =

β =

2M̃∑
k=M̃+1

bkM
−1/2LK1/2ϕk : (bM+1, . . . b2M ) ∈ {0, 1}M

 , (A.6)

where {ϕk : k ≥ 1} are the orthonomal eigenfunctions of K1/2CK1/2. For any

β ∈ H∗, observe that

||β||2K = ||
2M̃∑

k=M̃+1

bkM
−1/2LK1/2ϕk||2K

=

2M̃∑
k=M̃+1

b2kM
−1||LK1/2ϕk||2K

≤
2M̃∑

k=M̃+1

M−1||LK1/2ϕk||2K ≤ 1,

which shows that H∗ ⊂ F . The Varshamov-Gilbert bound shows that for any

M ≥ 8, there exists a set B = {b(0), b(1), . . . , b(N)} ⊂ {0, 1}M such that

1. b(0) = (0, . . . , 0)′;

2. H(b, b′) > M/8 for any b 6= b′ ∈ B, where H(·, ·) = (1/4)
∑M

i=1(bi − b′i)2 is

the Hamming distance;

3. N ≥ 2M/8.

The subset {β(0), . . . , β(N)} ⊂ Fq∗ is chosen as β
(i)
j =

∑2M̃
k=M̃+1

b
(i)

j,k−M̃
M−1/2

LK1/2ϕk, i = 0, . . . N , j = 1, . . . , q∗. For any 0 ≤ i < j ≤ N , observe that

‖β(i) − β(j)‖2C =

q∗∑
l=1

EX
(
〈β(i)l − β

(i)
l , X〉

)2
=

q∗∑
l=1

2M̃∑
k=M̃+1

(b
(i)

l,k−M̃
− b(j)

l,k−M̃
)2M−1ρk.
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Therefore,

‖β(i) − β(j)‖2C ≥ s2M̃M
−1

q∗∑
l=1

M̃∑
k=1

(b
(i)
l,k − b

(j)
l,k )2 ≥

ρ
2M̃

2
�
(
M

q∗

)−2r
,

and

‖β(i) − β(j)‖2C ≤ sM̃M
−1

q∗∑
l=1

M̃∑
k=1

(b
(i)
l,k − b

(j)
l,k )2 ≤ ρ

M̃
�
(
M

q∗

)−2r
.

By taking M to be the smallest integer greater than c2γ
−1/(2r+1)(q∗)2r/(2r+1)

n1/(2r+1) with c2 = (c1 · 8 log 2)1/(1+2r), the theorem is proved.

A3. Proof of Theorem 2

For any q ≥ q∗, since f̂ is the maximum, we have

−`(f̂) + λ‖β̂‖2K ≤ −`(f∗) + λ‖β∗‖2K ,

which gives

− (`(f̂)− `(f∗)) + λ‖β̂‖2K ≤ λ‖β∗‖2K . (A.1)

Define

dh =

√
h/h∗ − 1

H(h, h∗)
.

Using log(1 + x) ≤ x,

`(f)− `(f∗) =

n∑
i=1

2 log(1 +H(h, h∗)dh(Y,Xi))

≤
n∑
i=1

2H(h, h∗)dh(Y,Xi)

= 2
√
n νn(dh)H(h, h∗)− n H2(h, h∗),

where νn(g) = n−1/2
∑n

i=1(g(Yi, Xi)− Eg(Yi, Xi)). So,

−(`(f)− `(f∗)) ≥ n H2(h, h∗)− 2
√
n νn(dh)H(h, h∗).

Combining this with (A.1),

n H2(ĥ, h∗) + λ‖β̂‖2K ≤ λ‖β∗‖2K + 2
√
n νn(dĥ)H(ĥ, h∗)

= λ‖β∗‖2K + 2
√
n (νn(gĥ)− νn(gh∗)), (A.2)
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where gh =
√
h/h∗ =

√
f/f∗. It is critical to investigate the behavior of |νn(gh)−

νn(gh∗)| as a function of H(h, h∗).

It follows from Lemma 1 that the bracketing entropy of Hq(ε) is

H[ ](δ) = logN[ ]

(
Hq(ε), δ

)
≤ (10

(
C2δ

−1/r + 1
)
q + 1) log

(C1 ε

δ

)
.

Then, ∫ ε

0
H

1/2
[ ] (δ)dδ ≤ c √q ε1−1/(2r).

The reminder of proof is identical to that in Section 5.6 of van de Geer (2001).

We obtain

sup
f∈Mq

∣∣νn(gh)− νn(gh∗)
∣∣

√
q H(h, h∗)1−1/(2r) ∨ n−(r−1/2)/(2r+1)

= Op(1). (A.3)

This allows us to conclude that

√
n
∣∣νn(gĥ)− νn(gh∗)

∣∣ =
√
n

∣∣νn(gĥ)− νn(gh∗)
∣∣

√
q H(ĥ, h∗)1−1/2r

√
qH(ĥ, h∗)1−1/2r

= Op(
√
n)
√
q H(ĥ, h∗)1−1/2r.

Combining this with (A.2) yields that H(ĥ, h∗) = Op(n
−r/(2r+1)) provided that

λ is of order n1/(2r+1). This finishes the proof of Theorem.

A4. Proof of Theorem 3

First note that

lim
n→∞

sup
q>q∗

∆n(q, q∗)

penn(q)− penn(q∗)

≤ lim
n→∞

sup
q>q∗

q2r/(2r+1)n1/(2r+1)

penn(q)− penn(q∗)
lim
n→∞

sup
q>q∗

∆n(q, q∗)

q2r/(2r+1)n1/(2r+1)
= 0.

Therefore, for all q > q∗.

sup
f∈Mq

(
`n(f)− λq,n‖β‖2K

)
− penn(q) < sup

f∈Mq∗

(
`n(f)− λq∗,n‖β‖2K

)
− penn(q∗).

This shows that limn→∞q̂n ≤ q∗ a.s., which means that we do not asymptotically

overestimate the order.
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On the other hand, for any q < q∗,

lim
n→∞

1

n
∆n(q, q∗) ≤ lim

n→∞
sup
f∈Mq

1

n

n∑
j=1

log
f(Yi|Xi)

f∗(Yi|Xi)
+ lim
n→∞

λq∗,n
n
‖β∗‖2K

which is strictly negative based on Part (b) of Lemma 2. Since penn(q)/n → 0

as n→∞ for q < q∗, we have

lim
n→∞

1

n

{
∆n(q, q∗)− penn(q) + penn(q∗)

}
< 0, a.s.

We obtain, for all q < q∗,

sup
f∈Mq

(
`n(f)− λq,n‖β‖2K

)
− penn(q) < sup

f∈Mq∗

(
`n(f)− λq∗,n‖β‖2K

)
− penn(q∗).

This shows that limn→∞q̂n ≥ q∗ a.s., which means that we do not asymptotically

underestimate the order.
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