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Abstract: This paper describes a flexible nonparametric quantile regression model

for longitudinal data. The basic elements of the model consist of a time-dependent

power transformation on the longitudinal dependent variable and a varying-

coefficient model for conditional quantiles. A two-step estimation procedure is

proposed to fit the model, and its consistency is established. Tuning parameters

are chosen with generalized cross validation in conjunction with a Schwarz-type

information criterion. The proposed method is illustrated by data on the time

evolution of CD4 cell counts in HIV-1 infected patients under three different treat-

ments. The quantile regression approach for longitudinal data enables construction

of a pointwise prediction band for CD4 cell counts trajectories without requiring

parametric distributional assumptions.
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1. Introduction

The varying-coefficient model proposed by Hastie and Tibshirani (1993) ex-
tends the framework of classical generalized linear models. These models are
particularly appealing in longitudinal studies, where they allow one to explore
the extent to which covariates affect responses changing over time. Such models
have been extensively studied in the literature, see Hoover, Rice, Wu and Yang
(1998), Fan and Zhang (2000), Wu and Chiang (2000), Wu, Yu and Chiang (2000)
and Chiang, Rice and Wu (2001), among others. The varying-coefficient model
assumes that the response is linearly related to its covariates at any time point.
Due to the dynamic nature of many applications, this linear association may not
hold at all time points. To relax the strict global linearity assumption, we extend
the class of varying-coefficient models by incorporating a time-dependent trans-
formation on the longitudinal response to recover possible nonlinear patterns.
On the other hand, virtually all the aforementioned work has focused on the
problem of conditional mean and variance estimation, leaving behind other as-
pects of conditional distributions such as quantiles. When data exhibit skewness
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or heavy-tails, conditional quantile model inference can uncover important fea-
tures that would be overlooked by a mean-based analysis. In fact, quantile-based
inference has been proven to be an effective tool in analyzing many longitudinal
data sets. We refer to Wei, Pere, Koenker and He (2005) and Wei and He (2006)
for quantile regression methods in constructing reference charts in medicine, and
to Lipsitz, Fitzmaurice, Molenberghs and Zhao (1997) for analysis of CD4 cell
counts data. Here we consider a model for longitudinal data under the quantile
regression framework. The approach is through the class of marginal models.

Let Y (t) and X(t) be the positive real-valued outcome of interest and the Rp-
valued column covariate vector, respectively, when observed at time t. We con-
sider an experiment with m subjects and ni observations over time for the ith sub-
ject (i = 1, . . . ,m) for a total of n =

∑m
i=1 ni observations. The jth observation

of (t,X(t), Y (t)) for the ith subject is denoted by (tij , xij , yij) for i = 1, . . . ,m

and j = 1, . . . , ni, where xij is given by the column vector xij = (xij1, . . . , xijp).
Let QY (τ |t, x) denote the τth quantile of the conditional distribution of Y given
X = x at time t. For any function λ(t), let Λ(y, t; λ) = (yλ(t) − 1)/λ(t). We
assume that the full dataset (tij , xij , yij), i = 1, . . . ,m, j = 1, . . . , ni, is observed
and can be modelled as

Λ(Yij , tij ; λτ ) =
p∑

k=1

Xijkβτ,k(tij) + eij , (1.1)

where λτ (t) and βτ,k(t) are arbitrary smooth functions of t, and eij satisfies
the quantile constraint Qeij (τ |tij , xij) = 0. Model (1.1) implies that at any
time t, the τth conditional quantile of the transformed response variable is a
linear function of its covariates and the coefficients vary over time in an arbitrary
form. By letting xij1 = 1, the model allows a time-varying intercept term. We
assume without loss of generality that the tij are all scaled into the interval
[0, 1]. We further assume that the observations, and therefore the eij , from
different subjects are independent. The form of the error distribution and of
the within-subject correlations are not specified. Recently, a simple varying-
coefficient model for conditional quantiles where no transformation is used on
the response variable has been considered by Honda (2004) and Kim (2007) for
independent cross-sectional data, and by Cai and Xu (2008) for time series data.

The proposed model is particularly useful for predicting the longitudinal re-
sponse trajectory under minimal assumptions, since the model has flexibility in
two ways: (1) it generalizes a simple vary-coefficient model by allowing nonlinear-
ity at any time t; (2) it does not assume any parametric, particularly Gaussian,
error distributions. A HIV dataset is used to illustrate potential applications of
the method in Section 3.
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One parametric approach for estimating quantile functions using transfor-
mations on Y (t) is known as the LMS method, originally proposed by Cole and
Green (1992). The LMS method applies time-varying Box-Cox power trans-
formations to transform Y (t) to have the standard normal distribution, i.e.,
Z(t) = ([Y (t)/µ(t) − 1]1/λ(t))/(σ(t)λ(t)) ∼ N(0, 1), where the parameter func-
tions λ(t), µ(t), and σ(t) are estimated via maximizing a penalized likelihood
function. The normality assumption after power transformations may lead to
bias under certain circumstances, as illustrated in Wei and He (2006). In ad-
dition, incorporating additional covariates other than time is computationally
difficult for the LMS method; extensions of the LMS method that allow covari-
ates other than time have been considered in the literature, see Yee and Wild
(1996) and Yee (2004). We compare our method with the method in Yee (2004)
in several respects, using a HIV dataset in Section 3.

This paper is organized as follows. Section 2 describes a two-step estimation
procedure of the model at (1.1), discusses the choice of smoothing parameters,
and presents the main result of this paper that establishes the consistency of
the proposed estimation procedure. In Section 3, we illustrate the usefulness of
the proposed methods using a HIV dataset. A Monte Carlo simulation study is
presented in Section 4. Section 5 concludes.

2. Estimation

A Two-Step Estimation Procedure. In this section, we introduce a two-
step estimation procedure for estimating parameters in the model at (1.1). The
proposed method is straightforward to implement and admits different degrees
of smoothness of λτ (t) and βτ,k(t)’s. Consistency of the two-step procedure is
established at the end of this section.

At the first step, we obtain raw estimates of λτ (t) on a subdivision of the
range of t. At the second step, a smoother is applied to the raw estimates to
produce final estimates of λτ (t), and the βτ,k(t)’s are estimated nonparametri-
cally given the estimated λτ (t). To explicitly define the estimator, let kn be a
positive integer and partition the unit interval into kn subintervals of the form
Il = [(l − 1)/kn, l/kn), l = 1, . . . , kn − 1, and Ikn = [(kn − 1)/kn, 1]. At each
subinterval Il, l = 1, . . . , kn, we approximate the transformation function by a
constant and apply the estimation method proposed by Mu and He (2007) to
obtain a raw estimate of λτ (t), which we denote by λ̃l,n. Then a smoother is
applied to the raw estimates to produce the final estimates, denoted by λ̂n(t).
Finally we estimate the βτ,k(t)’s using regression splines assuming the estimated
transformation function is given. We next introduce notation and detail the
estimation procedure.
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For a fixed λ ∈ R, define a cusum process of residuals on each subinterval
Il, l = 1, . . . , kn, as

Rnl(x, λ, β) =
1
n

m∑
i=1

ni∑
j=1

I{tij ∈ Il}I{xij ≤x}

[
τ − I

{
yλ

ij−1
λ

− xT
ijβ ≤ 0

}]
, (2.1)

where I{·} is the indicator function and I{xij ≤ x} = I{xij1 ≤ x1, . . . , xijp ≤ xp}.
Let β̃l,n(λ) be the solution to the optimization problem

minb∈Rp

m∑
i=1

ni∑
j=1

I{tij ∈ Il}ρτ

(
yλ

ij − 1
λ

− xT
ijb

)
. (2.2)

Associated with each subinterval Il, we set

Vnl(λ) =
1
n

m∑
i=1

ni∑
j=1

I{tij ∈ Il} ·
[
Rnl(xij , λ, β̃l,n(λ))

]2
. (2.3)

Then on each subinterval Il, l = 1, . . . , kn, λτ (t) is estimated by a constant:
λ̃l,n = argminλ∈Ωτ

Vnl(λ). Notice that β̃l,n(λ), Rnl(x, λ, β), and Vnl(λ) all depend
on τ , but we that drop the subscript τ for ease of presentation. A raw estimator
for the unknown function λτ (t) at the first step can be expressed as

λ̃n(t) =
kn∑
l=1

λ̃l,nI{t ∈ Il}. (2.4)

At the second step, we refine the piecewise constant estimates via smoothing
splines. Let t(l) denote the middle value of the interval [tl−1, tl), and let W2[0, 1]
be the class of all functions that are continuously differentiable on the interval
[0, 1] and have a second derivative that is square integrable on [0, 1]. A smoothing
spline estimator of λτ (t) is

λ̂n(t) = argminλ(·)∈W2[0,1]

1
kn

kn∑
l=1

(λ̃l,n − λ(t(l)))
2 + γ

∫ 1

0
[λ′′(t)]2dt, (2.5)

where γ controls the amount of smoothing. Notice that if the transformation
function λτ (t) were known, model (1.1) reduces to a simple varying-coefficient
quantile regression model. Thus, after an estimator for λτ (t) has been obtained,
we can estimate βτ,k(t) using one of the existing techniques for a simple varying-
coefficient quantile regression model, for example the B-spline estimator used in
Kim (2007) or the local polynomials approach adopted by Honda (2004). Here
we adopt the B-spline approach to illustrate the idea. Let {bl : l = 1, 2, . . .}
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denote a basis for smooth functions on [0, 1], and θ a mn-dimensional vector.
Define B(t) = [1, b1(t), . . . , bmn(t)]T . The regression spline estimators of βτ,k(t)
are β̂n,k(t) = B(t)T θ̂n,k, k = 1, . . . , p, where θ̂n,k solves the minimization problem

argminθk∈Rmn ,k=1...,p

m∑
i=1

ni∑
j=1

ρτ (Λ(yij , tij ; λ̂n)−xij1B(tij)T θ1 · · ·−xijpB(tij)T θp).

(2.6)
Having estimated λτ (t) and βτ,k(t), k = 1, . . . , p, an estimate of the conditional
τth quantile of Yij given Xij = xij at time tij is obtained as

Q̂Yij (τ |tij , xij) = S(λ̂n(tij), q̂(tij , xij)), (2.7)

where S(λ, u) = (λ · u + 1)1/λ (= exp(u) if λ = 0) denotes the inverse power
transformation function, and q̂(tij , xij) = β̂n,1(tij)xij1 + · · · + β̂n,p(tij)xijp.

Choice of Tuning Parameters. The empirical performance of the quantile
estimator defined in (3.4) depends on several things: kn, the number of subin-
tervals on which we obtain raw estimates of the transformation function; γ, the
smoothing parameter in (2.5); the order and knots for B-splines used in (2.6). In
practice, under-smoothing or over-smoothing is mainly caused by inappropriate
choices of γ in (2.5), but is rarely influenced by the number of subdivisions, kn.
Our simulation study suggests that the performance of the proposed method is
quite stable over a wide range of values for kn. However the method is designed
for relatively large sample sizes, and we recommend choosing kn between 15 and
50, and allowing at least 50 observations in each subinterval Il, l = 1, . . . , kn.

The method is somewhat sensitive to the degree of smoothing of the trans-
formation function. Common selection methods of γ in the smoothing spline
literature can be used, say GCV, CV, etc. Because the raw estimates may be
correlated, the GML method specially designed for correlated data might be
used, see Wang (1998). A small simulation study shows that the GML method
without correlations works slightly better than the GCV method in several set-
tings. However the GML method tends to be computationally unstable when
a correlation structure is imposed, say AR(1). In this paper we use the GCV
method due to its popularity in routine applications, and its satisfactory per-
formance in our simulation studies. However no automatic selection criterion is
perfect in the real world, and sometimes a subjective choice based on observation
of the data works well. In real data analysis, we recommend that the smoothed
transformation curve be examined to check for artificial patterns, and that the
smoothing parameter be manually adjusted if there is evidence of over-smoothing
or under-smoothing.
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When it comes to the order of B-splines used in constructing the basis func-
tions for estimating βτ,k(t)’s, we suggest using lower order splines such as linear
and quadratic splines. Since the effect of the splines on the model is multiplica-
tive, higher order splines would induce complicated interactions and collinearity
among the variables in the model. In this paper we use quadratic splines but lin-
ear splines can be used if we think that the coefficient functions are less smooth.
Critical to the quality of a B-spline approximation is the selection of knots. We
start with a set of knots equally spaced in percentile ranks by taking sl = t[ln/mn],
the l/mnth quantile of the distinct variables of ti for l = 1, . . . ,mn. We obtain
mn as the minimizer to the Schwarz-type information criterion

IC(m) = log
(∑

i

∑
j

ρτ (rij)
)

+
1
2
n−1 log(n) · pn, (2.8)

where rij = Λ(yij , tij ; λ̂n) − xij1B(tij)T θ̂n,1 · · · − xijpB(tij)T θ̂n,p, and pn = m +
ord + 1, with ord denoting the order of B-spline basis functions. Here we use
a set of knots equally spaced in percentile ranks but a candidate set of knots
provided by the user can also be used. After the number mn has been deter-
mined, a stepwise knot selection method could be used to further select knots. A
Wald statistic or Rao score statistic can be used to add or delete one knot at a
time. Such a procedure is computationally intensive and is not our consideration
here. Stepwise knot selection methods have been used by a number of authors,
including Friedman and Silverman (1989), He and Shi (1996) and others.

Consistency. We list and discuss a set of assumptions that guarantees consis-
tency of the estimated quantile estimator in (3.4). The main result of this paper
is presented in Theorem 1; detailed proofs are provided in an online supplement
available at the following URL http://www.stat.sinica.edu.tw/statistica.

Theorem 1. If Assumptions 1−10 hold, hn → 0 and nhn → ∞, then

sup
t∈[0,1]

|λ̂n(t) − λτ (t)| = op(1), (2.9)

1
n

m∑
i=1

ni∑
j=1

(β̂n,k(tij) − βτ,k(tij))2 = op(1), k = 1, . . . , p. (2.10)

Assume that the measurement times Tij are i.i.d with marginal distribution
DT and marginal density dT . We first introduce smoothness conditions on the
unknown transformation function and the coefficient functions in model (1.1).

Assumption 1. λτ (t) is twice continuously differentiable on [0, 1]. For each
k = 1, . . . , p, βτ,k(t) is rk times continuously differentiable on [0, 1] for some
rk ≥ 1.

http://www.stat.sinica.edu.tw/statistica
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Here we allow different degrees of smoothness for different components of the
time-varying coefficient. The smoothness condition on λτ (t) is suited for the use
of smoothing splines. The number of measurements ni made on the ith subject
is considered random, reflecting sparse and irregular designs, and is required to
satisfy the following assumption

Assumption 2. {ni, i = 1, . . . ,m} are i.i.d. rv’s with finite expected value, and
independent of all other random variables.

We use the following notation. Let β(λ, t) = argminbE{ρτ (Λ(Y (t), t; τ) −
X(t)T b)}, and B be a subset of Rp containing β(λ, t) for all λ ∈ Ωτ and t ∈ [0, 1].
Let β̇t(λ, t) and β̇λ(λ, t) denote the first derivatives of β(λ, t) with respect to t

and λ, respectively. Let F (·|t, x, λ) denote the conditional distribution function
of Λ(Y (t), t; τ) − X(t)T β(λ, t) given X(t) = x, and f(·|t, x, λ) the corresponding
conditional density.

Assumption 3. Ωτ
⊗

B is a compact set of R
⊗

Rp. λτ (t) is an interior point
of Ωτ for each t.

Assumption 4.
(i) There is at least one component of X(T ) whose conditional distribution given

T = t is absolutely continuous with respect to Lebesgue measure for all
t ∈ [0, 1].

(ii) E(X(T )X(T )T |T = t) is positive definite for every t ∈ [0, 1].

Assumption 5. The distribution of T is absolutely continuous with a density
function bounded away from zero on [0, 1].

Assumption 6.
(i) The support of X(t), X , is bounded uniformly in t.
(ii) There exists a constant B such that, for all x1 and x2 in X , |G(x1|t) −

G(x2|t)| ≤ B‖x1 − x2‖, where G(·|t) denotes the distribution function of
X(T ) at a fixed t.

Assumption 7.
(i) There exists an integrable function M(x, t) such that f(u; t, x, λ) ≤ M(x, t),

uniformly in λ ∈ Ωτ for all x ∈ X and all t ∈ [0, 1].

(ii) f(0; t, x, λ) > 0 for all x, all x ∈ X , t ∈ [0, 1], and λ ∈ Ωτ .

(iii)There exists a positive definite matrix Dλ such that n−1
∑

ij E[XijX
T
ijf(0;

Tij , Xij , λ)] converges to Dλ in probability; the smallest eigenvalue of Dλ is
bounded above from zero uniformly in λ ∈ Ωτ .

Assumption 8. The first derivatives of β(λ, t) are bounded for all t ∈ [0, 1] and
all λ ∈ Ωτ .
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Assumption 9. There exists an integrable function L(x, t) such that, for any
λ1, λ2 ∈ Ωλτ

|F (0; t1, x, λ1) − F (0; t2, x, λ2)| ≤ L(x, t)|λ1 − λ2| for all x ∈ X and t ∈ [0, 1].

Assumption 10. Let ζ = (λ, β, t) and ζ1 = (λ1, β1, t1), and take

φ(x, ζ) = E
{

I{Xi(T ) ≤ x}[τ − F (Xi(T )T (β − β(λ, t)); t, Xi(T ), λ)]|T = t
}

.

There exists a constant M(x) such that, for any two points ζ and ζ1 in Ωλτ

⊗
B

⊗
[0, 1], |φ(x, ζ)− φ(x, ζ1)| ≤ M(x)|ζ − ζ1| for all x ∈ X , where | · | denotes the sup
norm.

Assumptions 3 and 4 are sufficient conditions for identifiability of λτ (t) and
βτ (t) at all t ∈ [0, 1]. Assumptions 5-10 are sufficient to derive the uniform
consistency of λ̂n(t) and the consistency of β̂n,k(t) in the sense of (2.10), and
therefore the consistency of the estimated conditional quantiles of Y (t) given X(t)
at a fixed t. This set of assumptions is stronger than needed, but it simplifies
technical details without losing much generality. We also point out that our
arguments are made without reference to homoscedasticity, thus the covariates
Xijk, k = 1, . . . , p, may correlate with the error term eij .

3. Application

We illustrate the proposed method using a HIV dataset collected by the
AIDS Clinical Trials Group. In this study, 517 HIV-1 infected patients were
randomly assigned to three treatments for 120 weeks, and their CD4 cell counts
were monitored at weeks 4, 8, and every 8 weeks thereafter. More details about
the dataset can been found in Park and Wu (2005). Here we explore the clinical
applications of model (1.1) in two aspects: construction of a prediction band for
the longitudinal response variable, and interpretation of covariate effects. Due
to big drop-out rates after 100 weeks, only the data collected during the first 100
weeks are included in the analysis.

Model estimation. A set of conditional quantile functions of a longitudinal
response variable provides a summary of the conditional distribution of the re-
sponse variable conditional on the covariates. By studying a set of quantile
functions, we can learn about the location, skewness and other aspects of the
conditional distribution. Here we study what effects treatments have on the
shape of the response distribution, and how they differ across different locations
of the response distribution from lower percentiles to upper percentiles. For this
purpose, we focused on the median, 10th and 90th quantiles of the response vari-
able, conditional on treatment and initial disease severity. Let Yi(t) be the CD4
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Figure 1. The estimated power function λτ (t). From left to right the quantile
levels are 0.1, 0.5 and 0.9, respectively.

Figure 2. Estimated conditional 10th, 50th and 90th quantile functions.
Left panel: conditional quantiles of CD4 cell counts of severely-ill patients
under three different treatment; Right panel: conditional quantiles of CD4
cell counts of severely-ill and mildly-ill patients under Treatment 1.

cell counts of the i-th patient at time t, and Yi(0) denote the baseline CD4 cell
counts at time t = 0. We modeled Yi(t) by

Λ(Yi(t), t; τ) = βτ,0(t) + βτ,1(t)Yi(0) + βτ,2(t)Z1,i + βτ,3(t)Z2,i + εi(t; τ), (3.1)

where t is the therapy duration in weeks, Z1,i and Z2,i are binary indicators for
the first and the second treatment groups, respectively. The error term εi(t; τ)
has zero conditional τ -th quantile given the covariates.

We partitioned the time interval by the mid-points between the scheduled
follow-up times. The raw estimates of the transformation functions at those mid-
points are displayed in Figure 1 with the solid lines representing the smoothed
estimates. At all the quantile levels, the smoothed transformation curves present
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a quadratic pattern: they decrease after the therapy onset, and then rise after
40−60 weeks. To gain some confidence in the need for power transformations, we
applied the linearity test proposed by Mu and He (2007) which tests the hypo-
thesis H0 : λτ (t) = 1 at a fixed time point. Even though the method does not
strictly apply to correlated data, we applied it to each subinterval partitioned
by the scheduled follow-up times. The p-values during the early stages receiving
treatment were significant.

To demonstrate treatment effects, we display in the left panel of Figure 2 the
estimated median, 10th, and 90th quantile curves of CD4 Cell counts for severely-
ill patients whose baseline CD4 cell counts are as low as 10, but under the three
treatments. The coefficient functions βτ,k(t)’s were estimated by normalized B-
splines with the number of knots chosen by the model selection criterion defined
in (2.8). For illustration purposes only, the estimated quantile curves are plotted
on log 10 scale. As suggested by the left panel of Figure 2, all three treatments
elevate severely-ill patients’ CD4 cell counts, especially during the first 40 weeks
but with non-differential their effects. The right panel displays how the effects of
Treatment 1 change from the 10th percentile to the 90th percentile for patients
on two severity levels: the solid ones represent the conditional quantiles based
on the severely-ill patients; the dotted curves are based on the mildly-ill patients
whose initial CD4 cell counts are 398. The three quantiles of the conditional
distribution of the CD4 cell counts of severely-ill patients increase rapidly at the
beginning, and continue to improve at a gradually slower rate. Moreover, the
conditional distribution of CD4 cell counts of this group is skewed to the lower
end by comparing the spacings between the 10th and 90th quantile from the
median. Had we used the Gaussian approach to construct the prediction band,
the quantiles may have been estimated with bias. As compared to the severely-ill
patients, the mildly-ill patients respond to the treatment less actively. Their CD4
cell counts are more stable over the treatment duration, and the distribution is
more symmetric around the median.

Comparison to alternative methods. We consider two alternative methods
as follows.

1. The simple varying-coefficient quantile regression model (Kim (2007)), which
assumes

Yi(t) = βτ,0(t) + βτ,1(t)Yi(0) + βτ,2(t)Z1,i + βτ,3(t)Z2,i + ξi(t; τ), (3.2)

where the error term ξi(t; τ) has zero conditional τ -th quantile given the co-
variates. One may approximate the coefficient functions using normalized
quadratic B-splines with knots selected by (2.8). We refer to Kim (2007) for
technical details.
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2. The extended LMS model, which assumes the response Y (t) can be trans-
formed to a Gamma distribution by

W (t) =
[Y (t)

µ

]λ
∼ Gamma(mean = 1, variance = λ2σ2), (3.3)

where λ, µ, and σ are power, location, and scale parameters all belonging to
a family of semi-parametric functions of the form

g = s(t) + β1Yi(0) + β2Z1,i + β3Z2,i, βi ∈ R,

where s(t) is a smooth function of time t.

The parameter functions λ, µ, and σ can be estimated via maximizing a penalized
likelihood. The τth quantile of Y (t) at time t can then be constructed from
estimated parameter functions and the τth quantile of the Gamma distribution.
Model (3.3) was proposed by Yee (2004) as an extension of the LMS method
proposed by Cole and Green (1992).

The simple varying-coefficient quantile model becomes a special case of
Model (1.1) by taking λ(t) = 1. A comparison between the two models demon-
strates what a time-dependent transformation adds to the understanding of the
data. The extended LMS model estimates the conditional quantile functions
based on time-dependent power transformation, but relies on a parametric dis-
tribution assumption, and uses the same transformation at all the quantiles. The
left panel of Figure 3 displays the three sets of quantile curves for severely-ill pa-
tients based on Models (1.1) and (3.2), respectively. The solid lines denote the
quantile estimates from Model (1.1), the dashed lines from the untransformed
counterpart, and the dotted line from the extended LMS model. The three mod-
els agree with each other during late stages of the treatment, however they differ
in the early stages of therapy (0−30 weeks). The quantile estimates from the sim-
ple, varying-coefficient quantile model are higher than those from its transformed
counterpart at all the three quantile levels.

To evaluate model fits and investigate the discrepancies among the models
that surface in Figure 3, we performed a five-fold cross-validation based on a
score function defined as the standardized difference between the proportion of
negative residuals and the quantile level τ . That is,

d̂ =

∑
i

∑
j I{yij − Q̂yij≤0(τ |ti,j , xi,j)}√

nτ(1 − τ)
− τ.

We expect the difference, d̂, to be close to 0 for a good model fit for any sub-
group. To check the model fit during the early stage of treatment for severely-ill
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Figure 3. Comparison of the simple varying-coefficient quantile regression
model and the extended LMS model. Left panel: the solid lines are estimated
quantiles of the CD4 cell counts of severely ill patients at τ = 0.1, 0.5 and
0.9, respectively; the dashed lines are estimated quantiles from the simple
varying-coefficient quantile regression model, and the dotted lines are those
from the extended LMS method. Right panel: the light bars are 5-fold
cross-validation scores d̂cv from Model (1.1), the gray ones are those from
the simple varying-coefficient quantile regression model, and the dark gray
ones are those from the extended LMS model. T is the treatment duration
in weeks, and N is the number of measurements in each time intervals.

patients, we selected subjects whose baseline CD4 cell counts were 10 ± 5. Let
Γ1 denote the set of measurements taken in weeks 1−12 and Γ2 denote the set of
measurements taken in weeks 13−28 on those severely-ill patients. We calculated
cross-validation scores based on Γ1 and Γ2, respectively:

d̂cv(Γm) =

∑5
k=1

∑
i∈Sk

∑
j I{(i, j)∈Γm}I{Yij ≤Q̂−Sk

yij
(τ |tij , xij)}√

#(Γm)τ(1 − τ)
− τ, m = 1, 2,

where #(Γm) is the number of measurements contained in Γm, Sk, k = 1, . . . , 5,
are sets of indices for the randomly partitioned cross-validation sets, and Q̂−Sk

denote the quantile estimates using the full data excluding measurements in Sk.
The cross-validation scores based on Γ1 and Γ2 for the three competing models
are displayed in Figure 3. The light bars represent the cross-validation scores
based on the fit of Model (1.1), the gray ones are scores based on the fit of the
simple varying-coefficient quantile regression model, and the dark gray ones are
those based on the extended LMS model. As seen in Figure 3, the cross-validation
scores from Model (1.1) are uniformly better than those of the other two models.
Both the untransformed quantile regression model and the extended LMS model
apparently over-estimated the CD4 cell counts of the severely ill patients during
the early stage of treatment; still, the untransformed model provides a reasonable
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fit. We also evaluated the cross-validation scores over other time intervals, and
the latter two models were comparable with each other.

Interpretation of covariate effects. Unlike the simple varying-coefficient
quantile regression model, the linear coefficients βτ,k in Model (1.1) do not pro-
vide direct interpretation on covariate effects. However one can examine marginal
covariate effects defined as the first derivative of the quantile function with re-
spect to the covariate. Marginal covariate effect measures the change of the τth
conditional quantile of the response variable due to a unit increase in the co-
variate. Because of the use of transformations, the marginal covariate effect is
not only a function of time t, but also a function of the covariate itself. This
feature yields interesting findings of the association between the covariate and
the response variable. Here the quantile function is

Q̂Yij (τ |tij , xij) = S(λ̂n(tij), q̂(tij , xij)), (3.4)

where S(λ, u) = (λ ·u+1)1/λ (= exp(u) if λ = 0) denotes the inverse power trans-
formation function, and q̂(tij , xij) = β̂n,1(tij)xij1 + · · · + β̂n,p(tij)xijp. Based on
(3.4), the τth conditional quantile of CD4 cell counts at time t under Treatment 1
can be estimated by S(λ̂n(t), q(t, x(1)), where q̂(t, x(1)) = β̂n,0(t)+ β̂n,1(t)Y (0)+
β̂n,2(t). As a result, the estimated marginal effect of the baseline CD4 cell counts
under Model (3.1) at time t is

β̂n,1(t) ·

{
λ̂n(t) ·

(
β̂n,0(t) + β̂n,1(t)Y (0) + β̂n,2(t)

)
+ 1

}[1−λ̂n(t)]/[λ̂n(t)]

.

Note that the marginal effect of a covariate changes with the covariate. Figure 4
displays the estimated marginal effects of baseline CD4 cell counts (black lines) at
weeks 4 and 12 at the three quantile levels. We also superimpose the correspond-
ing covariate effects (gray horizontal lines) from the simple varying-coefficient
quantile regression model. As suggested by Figure 4, at week 4, the marginal
baseline CD4 effect on all the three quantiles starts high at small baseline CD4
cell counts (corresponding to those severely-ill patients) and decreases quickly as
the baseline CD4 cell counts increase. The marginal baseline CD4 effect at week
12 follows a similar pattern but decreases at a much slower rate. The simple
varying-coefficient quantile regression model however does not capture this non-
linear pattern, and underestimates the baseline CD4 effects at low baseline CD4
cell counts. This partly explains the lack-of-fit for the severely-ill patients when
a simple varying-coefficient model is used.

In this example, Model (1.1) demonstrates its flexibility to capture the non-
linearity and reduce the bias from that of more parametric models.
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Figure 4. Comparison of baseline CD4 effects between Model (1.1) and the
simple varying-coefficient quantile regression model at week 4 (left panel)
and week 12 (right panel), respectively. The black curves denote the baseline
CD4 effects from Model (1.1), and the grey horizontal lines from the simple
varying-coefficient quantile regression model. Solid, dotted, and dashed lines
represent the median, the 10th, and the 90th quantiles, respectively.

4. Monte Carlo Simulation

The aim of this section is to investigate the finite sample performance of the
two-step procedure, and study the sensitivity of the performance to the choice
of kn. In the simulation, the R function smooth.spline was called repeatedly
where the GCV option is applied in selecting the smoothing parameter for the
transformation function. The BIC type criterion introduced in (2.8) was used to
select knots for a quadratic spline estimator of the coefficient functions.

Throughout the simulation, we generated data from the model designed as
follows.

Λ(Yij , tij ;λτ )=β0(tij)+β1(tij)Xij1 +β2(tij)Xij2 +εij , i=1, . . . ,m; j =1, . . . , ni.
(4.1)

We let the time interval be [0, 1] and chose 40 time points equidistant over [0, 1].
We considered m = 200, 300 and 400, respectively. We drew a random sample
of size m from the distribution Unif(0, 30), and took the ceilings of this random
sample to be {ni}m

i=1, so that each ni was at least 1. The transformation function
was taken to be λτ (t) = (t − 1)2 + 1/2. Three coefficient functions were chosen
as β0(t) = 4 + (t − 1/2)2, β1(t) = 3 + t, and β2(t) = exp(t). Three covariates
were chosen: X0(t) = 1; X1(t) = t2 + |Z|, where Z is a standard normal random
variable; X2(t) with a time-invariant uniform distribution on the interval [0,4].
The errors were sampled from a stationary Gaussian process with a decaying
exponential covariance function

Cov(εi1(t1), εi2(t2)) = exp(−2 · |t1 − t2|)) if i1 = i2; 0, otherwise.
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For each choice of m, we sampled 100 data sets from model (4.1) and fit
them by the two-step procedure. We fixed τ = 0.5, and considered kn = 10, 15,
and 20. We evaluated the relative efficiency of a fit using the two-step procedure
compared to using a simple varying-coefficient quantile regression model. For
that purpose, we computed a MSE ratio at each replication. Let Q̂yij (τ |tij , xij)
denote the fitted quantiles based on estimation of model (1.1) and Q̃yij (τ |tij , xij)
denote the fitted quantiles based on estimation of model (1.1) setting λτ (t) = 1.
At the rth replication, we computed the mean squared error of Q̂yij (τ |tij , xij)
from the true quantile function as

MSE1
r =

1
n

∑
i,j

(
Qyij (τ |tij , xij) − Q̂yij (τ |tij , xij)

)2

. (4.2)

Similarly we denote the mean squared error of Q̃yij (τ |tij , xij) by MSE0
r . The

mean of the ratios MSE1
r/MSE0

r , r = 1, . . . , 100, measures the relative efficiency of
model (1.1) versus a simple, varying-coefficient quantile regression model. Some
summary statistics of the simulation results are presented in Table 1.

First we examine the simulation results when m = 200. Notice that the mean
ratios are larger than one if kn = 10 or 15, which suggests the sensitivity of the
two-step procedure to the choice of kn. We investigated this issue and it turned
out that the mean ratios are inflated by less than 10% of the runs where there is
undersmoothing of the raw estimates of the transformation function. When we
increase m to 300 or 400, the mean ratios fall below 1 regardless of the choice of
kn. Looking at other summary statistics of the ratios confirms that the two-step
procedure can effectively uncover the true underlying feature of a data set, and
thus improve efficiency compared to using a simple, varying-coefficient quantile
regression model.

Our simulation studies suggest that GCV is a reasonable criterion under
our setting though it is not perfect (it undersmoothes 10% of the time in our
simulation ). The small sample size of raw estimates, the heteroscedasticity in
the raw estimates, as well as the correlation among the raw estimates, all could
lead to a failure of GCV.

5. Concluding Remarks

We propose a flexible transformed varying-coefficient model for longitudi-
nal data based on modelling conditional quantiles of the longitudinal response
variable. Time-dependent power transformations are used to achieve linearity,
while the use of quantile regression relaxes the parametric distributional assump-
tions. We have shown through a data example and simulation studies that the
proposed method can help estimate the quantiles when the sample size is suf-
ficiently large. In this case, the transformation offers an opportunity to reduce
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Table 1. Summary statistics of ratios of mean squared errors of the fitted
quantiles from the proposed model to those from a simple, varying-coefficient
quantile regression model. TM 1 is calculated as the mean of the remainder
after eliminating 10% of the values at the right end of the ordered sample.
TM 2 is calculated as the mean of the remainder after eliminating 5% of the
values at the right end of the ordered sample.

kn Mean TM 1 TM 2 Median 75% Percentile 90% Percentile

10 5.106 0.252 0.307 0.217 0.413 0.954

m=200 15 0.719 0.194 0.237 0.187 0.260 0.638

20 1.623 0.246 0.524 0.195 0.316 1.766

10 0.524 0.199 0.261 0.141 0.262 1.09

m=300 15 0.241 0.119 0.140 0.117 0.171 0.354

20 0.969 0.277 0.480 0.122 0.213 2.85

10 0.974 0.190 0.354 0.125 0.276 1.445

m=400 15 0.568 0.119 0.154 0.096 0.183 0.410

20 0.446 0.108 0.133 0.097 0.167 0.301

bias from more parametric models. Model checking and diagnostic tools help one
decide whether it is worth the efforts in specific applications. We also notice that
GCV may sometimes undersmooth. We therefore recommend, in practice, doing
model diagnostics to validate the use of a statistical model, such as the use of
cross-validation in Section 3. A more stable method for choosing the smoothing
parameter in the current setting is desired, but is delayed to future work.
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