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Abstract: We propose a functional threshold autoregressive model for flexible

functional time series modeling. In particular, the behavior of a function at a given

time point can be described by different autoregressive mechanisms, depending

on the values of a threshold variable at a past time point. Sufficient conditions

for the strict stationarity and ergodicity of the functional threshold autoregressive

process are investigated. We develop a novel criterion-based method simultaneously

conducting dimension reduction and estimating the thresholds, autoregressive

orders, and model parameters. We also establish the consistency and asymptotic

distributions of the estimators of both thresholds and the underlying autoregressive

models. Simulation studies and an application to U.S. Treasury zero-coupon yield

rates are provided to illustrate the effectiveness and usefulness of the proposed

methodology.
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principle, multiple thresholds.

1. Introduction

High-frequency data are becoming increasingly prevalent. A popular method

of studying such data is to convert the raw data into a sequence of curves

Yk = {Yk(t), t ∈ K}, for some measurable set K ⊂ Rn, and then to use

the functional data analysis (FDA) approach. A brief introduction to FDA is

available in Ramsay and Silvermann (2005). Numerous studies have contributed

to theoretical and practical developments in functional time series, in which some

auto-dependence exists among the observed curves Yk. Hörmann and Kokoszka

(2010, 2012) developed covariance estimators to study the auto-dependence in

functional time series. Similarly to classic real-valued time series analysis,

the linear model most commonly used to describe this auto-dependency is the

functional autoregressive (FAR) process. Bosq (2000) investigated the causality

and stationarity of FAR(1) processes and constructed one-step-ahead predictors.

Aue, Norinho, and Hörmann (2015) proposed a prediction algorithm for FAR(p)

models that is accurate and easily implementable. Moreover, Liu, Xiao and Chen

(2016) proposed the convolutional autoregressive model, which is a special type of
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FAR(p) model, and Kokoszka and Reimherr (2013) developed a multiple testing

procedure for selecting the order of FAR(p) models. In addition, Hörmann,

Horváth and Reeder (2013), Aue, Horváth and Pellatt (2017), and Cerovecki

et al. (2019) have developed functional ARCH and GARCH models that describe

the nonconstant volatility function.

In scientific studies, a regime-switching structure is often suitable for

modeling phenomena. For example, in macroeconomics, the behaviour of

quantities such as GDP, exchange rate, inflation, interest rate, equity returns,

and volatility varies depending on the regime of the underlying financial and

economic mechanism, which may depend on regular business cycle movements,

monetary policy, or the health of the financial market; see Lange and Rahbek

(2009). In particular, it is well known that the yield curve of bonds has three

main shapes, namely, normal, inverted, and flat, and that these shapes are related

to periods of the economic cycle. In classical time series analysis, the threshold

autoregressive (TAR) model, originally proposed by Tong (1978), is often used to

model the feature of regime switching. As a simple and intuitive approximation

of a complicated dynamic function, the TAR model captures many nonlinear

phenomena, such as asymmetric limit cycles and time irreversibility, that cannot

be explained by linear time series models. Owing to these advantages, the

TAR model is widely used in areas such as biological sciences, econometrics,

and environmental sciences (see Tong (1990), Hansen (2011), and Chen, So and

Liu (2011)). However, despite their popularity and importance in read- and

vector-valued time series, no studies have examined threshold-type models in the

context of functional time series. Hence, for example, existing methods cannot

describe the mechanism through which a functional observation exhibits different

autoregressive structures depending on whether the maximum of a previous

observation is above a certain threshold.

In this paper, we propose two models, namely, the functional threshold

autoregressive (fTAR) model and the functional threshold autoregressive with

exogenous variables (fTARX) model for flexible modeling of functional time series.

These models allow a functional time series to follow different autoregressive

models based on the range to which a threshold variable belongs. The threshold

variable can be a real-valued functional, such as the maximum or average, of

the observed function, or an exogenous scalar variable, at a past time point.

We establish the conditions necessary for the stationarity and ergodicity of the

fTAR/fTARX process. Moreover, the proposed model requires new statistical

estimation and inference theory. In particular, in real-valued time series,

threshold-type models are commonly estimated using achieved by a likelihood-

based approach. However, it is well known that the likelihood is undefined in

functional data. Therefore, we develop a quasi-likelihood estimation method,

based on a dimension reduction step, that approximates the fTAR or fTARX

model using a vector threshold autoregressive model. We also provide a model
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selection procedure that simultaneously reduces the dimension and estimates the

thresholds, autoregressive orders, and model parameters.

The rest of the paper is organized as follows. Section 2 introduces the fTAR

and fTARX models. Section 3 establishes sufficient conditions for the strict

stationarity and ergodicity of the models. Section 4 proposes estimation and

model selection procedures for statistical inference on the models. Section 5

establishes the consistency and weak convergence of the estimators of both the

thresholds and the underlying model parameters in each regime. In Section 6, we

apply the proposed method to data on U.S. Treasury zero-coupon yield rates.

2. The fTAR Model

First we introduce some notation. Denote H = L2([0, 1]) as the Hilbert

space of square integrable functions on [0, 1], equipped with the inner product

⟨x, y⟩ =
∫ 1

0
x(t)y(t) dt and the norm ∥x∥ = (

∫ 1

0
x(t)2 dt)1/2. The interval [0, 1] is

chosen for convenience, and does not restrict the generality of our results. If x

and y are both functions of H, then xy denotes their point-wise or component-

wise product. Furthermore, denote L(H) as the Banach space of bounded linear

operators on H, equipped with the operator norm ∥A∥L ≡ sup∥x∥≤1 ∥A(x)∥. This
norm is sub-multiplicative, that is, ∥AB∥L ≤ ∥A∥L∥B∥L. We use the standard

convention for combining operators, that is, AB ≡ A ◦ B and A2 ≡ A ◦ A, for

A, B ∈ L(H). Moreover, let K(H) be the class of integral or kernel operators in

H; that is, if A ∈ K(H), then there is a kernel a : [0, 1] × [0, 1] → R such that

A(x)(t) =
∫ 1

0
a(t, s)x(s) ds. The operator A ∈ K(H) is Hilbert–Schmidt if and

only if
∫∫ 1

0
a2(t, s) dtds < ∞.

Let {Yk}k=1,...,n be a sequence of functional time series with a sample size

n. Assume that Yk is a random function in H defined on a common probability

space (Ω,B, P ). That is, for each ω ∈ Ω, Yk(·, ω) ∈ H. For notational simplicity,

we suppress the dependence of ω in Yk. Finally, denote Y ∈ Lδ
H = Lδ

H(Ω,B, P ) if

E[∥Y ∥δ] < ∞, for some δ > 0.

As an extension of the functional AR and classic TAR models, the r-regime

functional TAR model is specified as

Yk =
r∑

i=1

[
ai +Ψi,1(Yk−1) + Ψi,2(Yk−2) + · · ·+Ψi,pY,i

(Yk−pY,i
) + σiϵk

]

I(zk−d ∈ (θi−1, θi]) , (2.1)

where Ψi,j ∈ L(H) ∩ K(H), with Ψi,j(x)(t) =
∫ 1

0
ψi,j(t, s)x(s) ds, for a kernel

function ψi,j(s, t) satisfying
∫∫ 1

0
ψ2

i,j(s, t) dsdt < ∞, {ϵk} are independent and

identically distributed (i.i.d.) innovations in L4
H , and σi is a positive constant.

Assume that ϵk is independent of past information {Yk−j : j ≥ 1}, has

an almost everywhere continuous and positive density function, and satisfies
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E(ϵk(t)) = 0 and E(ϵ2k(t)) = 1, for all t ∈ [0, 1]. The thresholds are denoted

as θ = (θ1, . . . , θr−1), where −∞ = θ0 < θ1 < · · · < θr−1 < θr = ∞. The

thresholds divide the range of the threshold variable zk−d into r regimes, where

d is the delay parameter. For simplicity, assume that zk−d is either a real-valued

functional of a lagged observation, say zk−d = g(Yk−d), or a scalar exogenous

variable. This setting includes many classical threshold models in univariate time

series, including the self-excited threshold autoregressive model, the open-loop

threshold models (Tong (1990)), where the threshold variable is an exogenous

scalar variable, and the models in Wu and Chen (2007) and Lee and Huang

(2002), where zk−d is the square or weighted average, respectively, of several

exogenous scalar and lagged observations. Moreover, the current setting allows

us to model how the behavior of a function Yt changes based on that of the lagged

function Yt−d, measured in terms of its average zk−d =
 1

0
Yk−d(t) dt, supremum

zk−d = supt(Yk−d(t)), infimum zk−d = inft(Yk−d(t)), or other functionals of

Yk−d. The autoregressive model order is denoted as pY = (pY,1, . . . , pY,r), where

pY,i ∈ Z+ is the model order in the ith regime.

Remark 1. Because our primary goal is to model the regime-switching structure

of functional time series, the variance of the noise σ2
j in each regime is assumed

to be a constant, for simplicity. For the general case in which σ2
j is a function, we

first apply the same estimation method in Section 4, and then use the residuals

to estimate σ2
j using the method of Aue, Horváth and Pellatt (2017).

Next, we introduce a stochastic recursive equation (SRE) representation of

the fTAR process (2.1), which we use to examine the stationarity and ergodicity

of the process. Denote

Y ∗
k =




Yk

Yk−1

Yk−2

...

Yk−p+1




, Ψ∗
i =




Ψi,1 Ψi,2 · · · Ψi,p−1 Ψi,p

Id 0 · · · 0 0

0 Id · · · 0 0
...

...
. . .

...
...

0 0 · · · Id 0




,

ϵ∗k =




ϵk
0

0
...

0




, a∗
i =




ai

0

0
...

0




, (2.2)

where p = maxi pY,i, and Ψi,j = 0, for j > pY,i. The p-vector Y ∗
k is a vector of

functions taking values in the product space Hp = H × · · · × H = (L2[0, 1])p.

The p-dimensional matrix Ψ∗
i is a matrix of operators, and the components Id

and 0 denote the identity operator and the zero operator on H, respectively. For

x = (x1, . . . , xp)
T, y = (y1, . . . , yp)

T ∈ Hp, we define the inner product ⟨x, y⟩p =
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∑p
l=1⟨xl, yl⟩, and the norm ∥x∥p =

√
⟨x, x⟩p. Equipped with ⟨·, ·⟩p, the space

Hp defines a separable Hilbert space. Here, L(Hp), ∥ · ∥Lp
, and Lδ

Hp
are defined

analogously to L(H), ∥ · ∥L, and Lδ
H , respectively. Note that Y ∗

k ∈ L2
Hp

and

ϵ∗k ∈ L4
Hp

, for k = 1, . . . , n. In addition, Ψ∗
i ∈ L(Hp), for i = 1, . . . , r.

For simplicity, assume that mini pY,i ≥ d; otherwise, we may replace pY,i in

each regime with pY,i ∨ d. Using (2.2), we can express the fTAR model (2.1) in a

state-space form

Y ∗
k =

r∑
i=1

[a∗
i +Ψ∗

i (Y
∗
k−1) + σiϵ

∗
k]I(zk−d ∈ (θi−1, θi]) , (2.3)

which is called the SRE representation of Yk.

To enjoy greater modeling flexibility by incorporating exogenous covariate

effects, we extend the fTAR model to the fTARX model, as follows:

Yk =
r∑

i=1

[
ai +

pY,i∑
j=1

Ψi,j(Yk−j) +
pX∑
m=1

Φi,m(Xk,m) + σiϵk

]
I(zk−d ∈ (θi−1, θi]) ,

(2.4)

where Xk,m is an exogenous variable that may be scalar, vector, or functional.

Correspondingly, the operator Φi,m may represent scalar or matrix multiplication.

In particular, if Xk,m ∈ L2
H , then we assume Φi,m ∈ L(H).

3. Stationarity and Ergodicity

When studying the asymptotic properties of estimators of threshold-type

models, the assumptions of strict stationarity and ergodicity of the process are

often essential; see Li and Ling (2012) and Yau, Tang and Lee (2015). In this

section, we develop some mild conditions on the functional process Yk, exogenous

variablesXk,m, and the coefficients of the fTAR/fTARXmodels. These conditions

are easy to verify and sufficient to ensure stationarity and ergodicity.

The following theorem provides a general sufficient criterion for the strict

stationarity and ergodicity of the fTAR process.

Theorem 1. For any positive integer u ≤ r,

max
i1,...,iu

∥∥∥Ψ∗
iu
◦Ψ∗

iu−1
◦ · · · ◦Ψ∗

i1

∥∥∥
Lp

< 1 , (3.1)

where Ψ∗
i is defined in (2.2) and the maximum is taken over 1 ≤ i1 < i2 · · · <

iu ≤ r. Then {Yk} in (2.1) is strictly stationary and ergodic.

To enhance the practicality of Theorem 1, in the following corollaries, we

develop easily verifiable sufficient conditions for (3.1) to hold.

Corollary 1. If maxi

∑pY,i

j=1 ∥Ψi,j∥L < 1, then (3.1) holds.
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Corollary 2. Assume that the operator Ψi,j ∈ L(H) is Hilbert–Schmidt with

norm ∥Ψi,j∥S =
∫∫ 1

0
ψi,j(t, s)

2 dtds < ∞. If maxi

∑pY,i

j=1 ∥Ψi,j∥S < 1, then maxi∑pY,i

j=1 ∥Ψi,j∥L < 1, and hence (3.1) holds.

We also discuss the β-mixing property of the functional process {Yk} and

the stationary and ergodicity of the fTARX models in Section A.1 of the

Supplementary Material.

4. Estimation and Model Selection

In FDA, a major approach to statistical inference is to reduce the infinite-

dimensional problem to a multivariate problem by approximating functionals

using a finite number, say q, of basis functions or principle components. However,

the choice of q is difficult, and often requires a pre-processing step (e.g., Aue,

Norinho, and Hörmann (2015), Aue, Horváth and Pellatt (2017)). In this

paper, we propose a novel criterion-based method that simultaneously reduces

the dimension, selects the thresholds and model orders, and estimates model

parameters.

4.1. Estimation procedure

In this section, we show how to estimate the model parameters for the

fTAR/fTARX model, given a set of thresholds θ. We discuss estimating the

thresholds in Section 4.2.

First, consider the fTAR model (2.1). The functional parameters of interest

are the functional intercepts ai and the operators Ψi,j , and the volatility functions

σi are treated as nuisance parameters. First, we choose an orthonormal basis

Uqtotal = {ul}qtotall=1 , where qtotal can be finite or infinite, and project ai and Ψi,j , for

i = 1, . . . , r and j = 1, . . . , pY,i, onto Uqtotal . See Remark 2 for the choice of basis.

From Parseval’s identity, any operator Ψ ∈ L(H) can be expressed as

Ψ(x) =
qtotal∑
l′,l=1

⟨x, ul⟩⟨Ψ(ul), ul′⟩ul′ . (4.1)

Thus, estimating ai and Ψi,j is equivalent to estimating the innerproducts ⟨ai, ul′⟩
and ⟨Ψi,j(ul), ul′⟩, respectively. Because qtotal can be finite, but large or even

infinite, in practice, we set a prespecified upper bound qmax for the number of

basis functions in order to conduct a feasible estimation of the inner products.

Theoretically, qmax can increase with n with an appropriate order to provide an

accurate approximation to Ψ; see Assumption 3 of Section 5.1.

Specifically, in view of (4.1), applying ⟨·, ul⟩ to (2.1) for l = 1, . . . , qmax yields

the following qmax-dimensional threshold vector autoregressive (TVAR) model:
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Y k,qmax
=

r∑
i=1

[
aqmax

i +

pY,i∑
j=1

Ψqmax

i,j Y k−j,qmax
+W qmax

k,i

]
I(zk−d ∈ (θi−1, θi]) , (4.2)

where aqmax

i = (a
(i)
1 , . . . , a(i)

qmax
)T with a

(i)
l = ⟨ai, ul⟩, Y k,qmax

= (yk,1, . . . , yk,qmax
)T

with yk,l = ⟨Yk, ul⟩, W qmax

k,i = (w
(i)
k,1, . . . , w

(i)
k,qmax

)T with w
(i)
k,l = ⟨σiϵk, ul⟩, and

Ψqmax

i,j = (a
(i,j)
l,l′ )1≤l,l′≤qmax

, with a
(i,j)
l,l′ = ⟨Ψi,j(ul), ul′⟩. It can be shown that W qmax

k,i

is an error term with mean 0 and covariance matrix Σqmax

W,i , with off-diagonal

entries equal to zero.

The TVAR model (4.2) captures most necessary information in the fTAR

model (2.1) if the parameters ai and Ψi,j are well represented by the qmax basis

functions. With this multivariate formulation, estimating the fTAR model is

reduced to estimating the vectors aqmax

i and matrices Ψqmax

i,j .

Choosing qmax is a difficult task, because different qmax result in TVARmodels

with different dimensions, and the corresponding likelihood functions are not

directly comparable. To tackle this problem, instead of choosing qmax, we set a

large qmax to capture most information of the functional data, and assume that

the true number of basis functions that generate ai and Ψi,j is finite q(≪ qmax).

Under this assumption, all entries of aqmax

i and Ψqmax

i,j are zero, except aq
i , that

is, the first q entries of aqmax

i , and Ψq
i,j , that is, the q × q submatrix at the

top-left corner of Ψqmax

i,j . This allows a trade-off between a lack of fit and model

complexity in the choice of q, and the qmax-dimensional TVAR model in (4.2)

provides a benchmark for comparing different q. Consequently, the number of

basis functions q can be regarded as a model order, and can be chosen using an

information criterion; see Section 4.2.

For a fixed q, the log-likelihood of {Y k,qmax
} is

Ln(Ψ
q, r, d,θ, q,pY ) =

r∑
i=1

n∑
k=1

l(Ψq
i ;Y k,qmax

, . . . ,Y k−pY,i,qmax
)I(zk−d ∈ (θi−1, θi]) ,

(4.3)

where Ψq
i = (Ψq

i,1, . . . ,Ψ
q
i,pY,i

),

l(Ψq
i ;Y k,qmax

, . . . ,Y k−pY,i,qmax
) = −1

2

[
qmax log 2π + log |Σqmax

W,i |+ ỸT

k,qΣ
q
W,i

−1
Ỹk,q.

+
qmax∑

m=q+1

y2
k,m

σ2
m,i

]
,

Y k,q are the first q components of Yk,qmax
, Ỹk,q = Yk,q − aq

i −
∑pY,i

j=1 Ψ
q
i,jYk−j,q,

Σq
W,i is a q×q submatrix of Σqmax

W,i , and σ2
m,i is themth diagonal entry of Σqmax

W,i . The

estimators âq
i , Ψ̂

q
i,j , and Σ̂q

W,i of the TVAR model can be obtained by maximizing

(4.3). Then, the estimator of the operator Ψi,j of the fTAR model (2.1) can be

computed using (4.1) for Ψ̂i,j(x) = (Ψ̂q
i,jc)

Tu, where c = (⟨x, u1⟩, . . . , ⟨x, uq⟩)T
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and u = (u1, . . . , uq)
T.

The likelihood function (4.3) corresponds to the TVAR model (4.2), which

serves as an approximation to the fTAR model. Although the likelihood function

of functional data is not well defined, in general, this approximation is justified

by Delaigle and Hall (2010). Specifically, they show that, for a set of functional

data {Yk} and y ∈ H, the logarithm of a small ball probability, p(y|h) = pr(∥Yk−
y∥ ≤ h), can be approximated by the logarithms of the densities of its functional

principle component scores, that is,

log p(y|h) = C1 +
qmax∑
l=1

log fl(yl,qmax
) + o(qmax) , (4.4)

where C1 is a constant independent of y, yl,qmax
= ⟨y, ν̂l⟩, h > 0 is a small

constant, and fl(·) is the probability density function of ⟨Y1, ν̂l⟩. The term∑qmax

l=1 log fl(yl,qmax
) in (4.4) diverges as qmax → ∞, implying that the log-

density l(y|qmax) =
∑qmax

l=1 log fl(yl,qmax
) captures the main variation of log p(y|h).

Therefore, the proposed estimation procedure can be regarded as an approximate

likelihood-based method, and is expected to achieve high efficiency.

For the fTARX model, we adjust the estimation procedure to incorporate

covariates. Specify an orthonormal basis UqX,m
= {uXm,1, . . . , uXm,qX,m

} for the

mth exogenous variable. Define the qX,m-dimensional vector Xk,m = (xk,m,1, . . . ,

xk,m,qX,m
)T, where xk,m,l = ⟨Xk,m, uXm,l⟩. In practice, we may choose {uXm,l} as a

standard basis or the empirical eigenfunctions of Xk,m derived using a functional

principle component analysis (FPCA). For each m, since the dimension qX,m is

exactly the number of variables included in the TVAR model, choosing qX,m

is a classical variable selection task, which can be done easily using the model

selection criterion proposed in the next section. Extending (4.2) by incorporating

Xk,m, we have

Y k,qmax
=

r∑
i=1

[
aqmax

i +

pY,i∑
j=1

Ψqmax

i,j Y k−j,qmax
+

pX∑
m=1

Φ
qmax,qX,m

i,m Xk,m +W qmax

k,i

]

×I(zk−d ∈ (θi−1, θi]) , (4.5)

where Φ
qmax,qX,m

i,m is a qmax×qX,m-dimensional matrix, the (l, l′)th element of which

is ⟨ul,Φi,m(uXm,l′)⟩. Similarly to the estimation of the fTAR model, estimating

the functional parameters ai, Ψi,j , and Φi,m of the fTARX model (2.4) reduces to

estimating the parameter matrices, aqmax

i ,Ψqmax

i,j , and Φ
qmax,qX,m

i,m , respectively, for

all i, j and m, of model (4.5). Here, we can use the same method as that used

to estimate (4.2).

Remark 2. The aforementioned estimation procedure requires the specification

of a basis. Typical choices include the Fourier, B-spline, wavelet, or Hermite

polynomial bases. Alternatively, the basis functions can be obtained using a
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data-driven method, such as the FPCA (Aue, Norinho, and Hörmann (2015),

Aue, Horváth and Pellatt (2017) and Liu, Xiao and Chen (2016)).

4.2. Threshold and model-order estimation

A threshold model with more regimes clearly provides a finer approximation

to the data, and thus achieves a better fit, at the expense of greater model

complexity. Therefore, in traditional threshold models, it is common to estimate

the threshold using an information criterion, that consists of a likelihood function

and a penalty for model complexity. The optimizer of the information criterion

then provides an estimate for the number and locations of the thresholds and

the model orders; see, for example, Li and Ling (2012). In this section, using

the vectorization idea in Section 4.1, we derive a functional minimum description

length (fMDL) criterion for threshold estimation for the fTAR model.

The fMDL proposed in this paper is motivated by the minimum description

length (MDL). The MDL is the minimum length of computer code required to

record the observed data Y = {Y1, . . . , Yk}. In general, given a parametric model,

say M, Lee (2000) defines the MDL as a sum of two parts, given by MDL(M) =

CL(M) + log2(e)CL(Y | M), where CL(M) and CL(Y | M) are the lengths

of code lengths required to record the model M and the observations given M,

respectively.

First, we derive CL(M) for the fTAR model. To record an fTAR model

M, we need to record the number of thresholds r − 1, delay parameter d, values

of the thresholds θ = (θ1, . . . , θr−1)
T, dimension q, autoregressive order pY =

(pY,1, . . . , pY,r)
T, and values of the model parameters Ψq

i = (aq
i ,Ψ

q
i,1, . . . ,Ψ

q
i,pY,i

)

in each of the r regimes. Because the model parameters can be estimated as in

Section 5.1, given the aforementioned quantities, M can be represented by the

vector (r, d,θ, q,pY ). From Rissanen (1989, 2007), recording an integer m and a

parameter estimator computed from a sample of size n requires code lengths of

approximately log2 m and (log2 n)/2 digits, respectively. To avoid the problem of

log 0 = −∞, log2 m is understood as max(log2 m, 0). Furthermore, the thresholds

can be located by the ranks of the values of the threshold variable zt, and thus can

be encoded using integers. Hence, we use log2(r) digits to record the number of

regimes, log2 d digits to record the delay parameter,
∑r−1

i=1 (log2 ni) digits to record

the threshold estimators,
∑r

i=1 log2(pY,iq + 1)q digits to record the total number

of parameters in a regime, and
∑r

i=1((pY,iq + 1)q log2 ni)/2 digits to record the

estimators of Ψq = (Ψq
1, . . . ,Ψ

q
r), where ni is the number of observations in the

ith regime. Therefore, the code length for encoding M is expressed as

CL(M) = log2(r) + log2 d+
r−1∑
i=1

log2 ni +
r∑

i=1

log2(pY,iq + 1)q
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+
r∑

i=1

(pY,iq + 1)q

2
log2 ni . (4.6)

Next, we derive CL(Y | M) for the fTAR model. From Rissanen (1989,

2007), this term can be approximated using the likelihood function specified by

M. Therefore, we can use the approximate likelihood in (4.3) to define

CL(Y | M) = −Ln(Ψ̂
q
, r, d,θ, q,pY ) log2 e , (4.7)

where the estimator Ψ̂
q
is the maximizer of Ln(Ψ

q, r, d,θ, q,pY ), given a set of

{r, d,θ, q,pY }. Combining (4.6) and (4.7), the MDL for a fTAR model is defined

as

fMDL(r, d,θ, q,pY ) = CL(M) + CL(Y | M) (4.8)

= log2(rd) +
r−1∑
i=1

log2 ni +
r∑

i=1

log2(pY,iq + 1)q +
r∑

i=1

(pY,iq + 1)q

2
log2 ni

−Ln(Ψ̂
q
, r, d,θ, q,pY ) log2 e .

The optimal fTAR model is obtained from {r̂n, d̂n, θ̂n, q̂n, p̂Y }, which minimizes

(4.8). The fMDL criterion for the fTARX model can be defined similarly; see

Section C of the Supplementary Material. Note that the optimization of the

fMDL in (4.8) is nonstandard, because the objective function fMDL is not

differentiable with respective to the parameters {r, d,θ, q, qX ,pX}. To tackle

this, we develop a genetic algorithm to efficiently optimize the fMDL in Section

D of the Supplementary Material.

Remark 3. As an alternative to the fMDL approach in this paper, the Bayesian

approach is widely used for estimating threshold time series models; see Chen

(1995), Chen and Lee (1995), Wu and Chen (2007), and Pan, Xia and Liu (2017).

Compared with the Bayesian approach, the fMDL procedure avoids having to

choose prior distributions and the corresponding hyperparameters. On the other

hand, the Bayesian approach allows a simpler inference procedure, because it

avoids having to estimate the asymptotic distribution of the estimators, and is

worth considering for future research.

5. Asymptotic Theory

In this section, we develop asymptotic theory for inferences on the fTARX

model, which includes the fTAR model as a special case. Let (a0
1, . . . , a

0
r0 ,

Ψ0
1,1, . . . ,Ψ

0
r0,p0

Y,r0
,Φ0

1,1, . . . ,Φr0,p0
X
, θ01, . . . , θ

0
r0−1, d

0) be the true parameter values

of model (2.4). For the delay, number of thresholds, thresholds, dimension, au-

toregressive orders, and covariate indicators, the estimators are denoted as d̂n, r̂n,

θ̂n = {θ̂1, . . . , θ̂r̂−1}, q̂n, q̂X,m, p̂Y , and p̂X , respectively. In addition, for the vector
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autoregressive model in each regime, denote the true values as Ψ0
i = {a0

i ,Ψ
0
i,1, . . . ,

Ψ0
i,p0

Y,i
}, Φ0

i = {Φ0
i,1, . . . ,Φ

0
i,p0

X
}, Ψ0 = {Ψ0

1, . . . ,Ψ
0
r0}, and Φ0 = {Φ0

1, . . . ,Φ
0
r0}.

To simplify the notation, we suppress the superscript 0 for the true values in the

following, unless specified otherwise. First, we impose the following assumptions.

5.1. Assumptions

We assume the conditions in Theorem 1 or Corollaries 1–2 hold, such that

the fTARX series {Yk} is stationary and ergodic. In addition, the following

assumption ensures that {Yk} is in L4
H .

Assumption 1. Denote Ψ̃∗
k =

∑r
i=1 Ψ

∗
i I(zk−d ∈ (θi−1, θi]). Assume that there

exists some positive integer u > 0 such that maxi E(∥Ψ̃∗
k+u−1◦· · ·◦Ψ̃∗

k∥4Lp
| zk−d−1 ∈

(θi−1, θi]) < 1.

Next, Assumptions 2–6 are imposed in order to establish the consistency of

the estimates.

Assumption 2. Let Ω × {1, . . . , D0} be the parameter space, where Ω = ΩΨ ×
ΩΦ×Ωθ is a compact subset of Rqr+

∑r
i=1(pY,iq+

∑pX
m=1 pX,i,mqX,m)q ×Rr−1, D0 is the

maximum delay, and Rr−1 = {(θ1, . . . , θr−1) : −∞ < θ1 < · · · < θr−1 < ∞}.
Moreover, the true parameters (Ψ,Φ) are in the interior of ΩΨ × ΩΦ.

Assumption 3. There exists a smallest positive integer q such that, for any q∗ >

q, a
(q∗)
i , ⟨Ψi,j(ul), uq∗⟩, and ⟨Ψi,j(uq∗), um⟩ are equal to zero, for all 1 ≤ l,m ≤ q∗

and i = 1, . . . , r. In addition, assume that qmax = O(
√
n/log n).

Assumption 4. The autoregressive function varies across regimes. That is, there

exists some (Y0, . . . , Yp−1, Xp,1, . . . , Xp,pX
) such that

ai+

pY,i∑
j=1

Ψi,j(Yp−j)+
pX∑
m=1

Φi,m(Xp,m) ̸=ai+1+

pY,i+1∑
j=1

Ψi+1,j(Yp−j)+
pX∑
m=1

Φi+1,m(Xp,m) ,

for i = 1, . . . , r − 1.

Assumption 5. For each i = 1, . . . , r, the joint conditional distribution function

of {Y k−1,q, . . ., Y k−pY,i,q, Xk,1, . . . ,Xk,pX
} given zk−d = θi is continuous.

Assumption 6. The threshold variable zk has a marginal probability density πz(·)
that is continuous and positive at θ1, . . . , θr−1. Furthermore, the joint density

of {zk−d1
, zk−d2

}, denoted as πz,|d1−d2|(·, ·) for d1, d2 ∈ {1, . . . , D0}, is uniformly

bounded and positive everywhere. In addition, for any X∗
k = (Xk,1, . . . , Xk,pX

)T

and Φ∗ = (Φ1, . . . ,ΦpX
)T such that

∑pX

j=1 ∥Φj∥L = 1, there exists an ϵ > 0 such

that pr(∥Φ∗TX∗
k∥ > ϵ|zt−d1

, zt−d2
) > 0, almost surely, with respect to the joint

distribution of (zt−d1
, zt−d2

).

Assumption 2 is a standard regularity condition for asymptotic properties of

parameter estimators. Assumption 3 requires that we can express the coefficients
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in the fTAR model using a finite number of bases, which essentially restricts the

number of unknown parameters in the associated TVAR model (4.2). A similar

requirement is adopted in Aue, Horváth and Pellatt (2017). The rate of qmax is

used in the proof for Theorem 2. Assumption 4 assumes that consecutive regimes

behave such that the thresholds are identifiable. Assumption 5 is a mild regularity

condition. Assumption 6 removes linear dependence and, hence, redundancy from

the exogenous covariates.

Assumption 7. For each i = 1, . . . , r− 1, there exists some ∆ > 0 such that the

process

{YkI(zk−d ∈ [θi −∆, θi +∆]), zk−dI(zk−d ∈ [θi −∆, θi +∆])}k=1,2,...

is ρ-mixing, with summable mixing coefficients {ρ(m)}m=1,2,....

Assumption 7 is required in order to prove the convergence rates and the

asymptotic distributions of the estimators of the thresholds and the parameters.

Note that if W q
k,i follows a joint normal distribution, then the ρ-mixing property

can be deduced from the α-mixing of Gaussian processes (Kolmogorov and

Rozanov (1960)). Let A and A∗ be the σ-algebras generated by the stochastic

processes {wt}t≤j and {wt}t≥j+k, respectively, for any integer j. For any ρ-mixing

process {wt}, there exists a sequence {ρ(m)}m=1,2,... with limm→∞ ρ(m) → 0

such that, for all square-integrable random variables g and h that are A and A∗

measurable, respectively, we have |corr(g, h)| ≤ ρ(m); see Doukhan (1994).

5.2. Main results

Theorem 2. If Assumptions 1–6 hold, then

{Ψ̂
q̂n

n , Φ̂
q̂n

n , r̂n, d̂n, θ̂n, p̂Y , p̂X , q̂n, q̂X,m}
a.s.−→ {Ψ,Φ, r, d,θ,pY ,pX , q, qX,m}.

From Theorem 2, the model orders rn, dn, pY , pX , qn, and qX,m can be

estimated consistently. Hence, without loss of generality, we can assume that they

are known, and thus suppress the superscripts q and q̂n for notational simplicity.

Next, we derive the convergence rate of θ̂n.

Theorem 3. If Assumptions 1–7 hold and E∥ϵk∥4+δ < ∞, for some δ > 0, then

∥θ̂n − θ∥2 = Op(n
−1).

Next, we discuss the asymptotic distribution of θ̂n. Let the difference between

the log-likelihood under the parameters {Ψi,Φi} and {Ψj,Φj} be

ξ
(i,j)
k (Y k, . . . ,Y k−pY,i

,Xk,1, . . . ,Xk,pX
)

= l(Ψi,Φi;Y k, . . . ,Y k−pY,i
,Xk,1, . . . ,Xk,pX

)

−l(Ψj,Φj;Y k, . . . ,Y k−pY,j
,Xk,1, . . . ,Xk,pX

) .
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Let F(i,j)(·|θ) be the conditional distribution function of ξ
(i,j)
d+1 , given z1 = θ.

Then, we can define the (r−1) independent one-dimensional two-sided compound

Poisson process {Pi(κ), κ ∈ R} as

Pi(κ) = Pi,1(κ)I(κ < 0) + Pi,2(κ)I(κ > 0) , (5.1)

for i = 1, . . . , r− 1, where Pi,1(κ) =
∑Ni,1(−κ)

k=1 ξ
(i+1,i)
k (Ỹ

(1)

k , . . . , Ỹ
(1)

k−pY,i
, X̃

(1)

k,1, . . . ,

X̃
(1)

k,pX
) and Pi,2(κ) =

∑Ni,2(κ)
k=1 ξ

(i,i+1)
k (Ỹ

(2)

k , . . . , Ỹ
(2)

k−pY,i
, X̃

(2)

k,1, . . . , X̃
(2)

k,pX
), where

(Ỹ
(j)

k , . . ., Ỹ
(j)

k−pY,i
, X̃

(j)

k,1, . . . , X̃
(j)

k,pX
), for j = 1, 2, are independent copies of

(Y k, . . . ,Y k−pY,i
, Xk,1 . . . ,Xk,pX

). The processes {Ni,1(κ), κ ≥ 0} and {Ni,2(κ),

κ ≥ 0} are two independent Poisson processes with Ni,1(0) = Ni,2(0) = 0 almost

surely, and with the same jump rate πz(θi). In addition, {ξ(i,i+1)
k : k ≥ 1} are

i.i.d. random variables with the distribution F(i,i+1)(·|θi), and {ξ(i+1,i)
k : k ≥ 1} are

i.i.d. random variables with the distribution F(i+1,i)(·|θi). Furthermore, {ξ(i,i+1)
k :

k ≥ 1} and {ξ(i+1,i)
k : k ≥ 1} are mutually independent. Combining Pi,1 and Pi,2,

we can define a double-sided compound Poisson process Pi(κ) = Pi,1(κ)+Pi,2(κ),

and further define a spatial compound Poisson process

P(κ) =
r−1∑
i=1

Pi(κi), κ = (κ1, . . . , κr−1)
T ∈ Rr−1 .

By Assumption 4, for i = 1, . . . , r − 1, P(κ) → ∞ as ∥κ∥2 → ∞. Hence, there

exists a unique random (r−1)-dimensional cube [M−,M+) = [M
(1)
− ,M

(1)
+ )×· · ·×

[M
(r−1)
− ,M

(r−1)
+ ) on which the process P(κ) attains its global minimum almost

surely; that is, [M−,M+) = argminκ∈Rr−1P(κ). This immediately implies that

[M
(i)
− ,M

(i)
+ ) = argminκi∈RPi(κi). In addition, note that the processes {Pi(κi) :

i = 1, . . . , r − 1}, and thus {M (i)
− : i = 1, . . . , r − 1}, are mutually independent.

The following theorem gives the asymptotic distribution of θ̂n.

Theorem 4. If Assumptions 1–7 hold, then n(θ̂n − θ) weakly converges to M−

as n → ∞, and its components are asymptotically independent.

Finally, the following theorem gives the asymptotic distribution of
√
n(Ψ̂i −

Ψi) and
√
n(Φ̂i −Φi). For matrices A1, . . . , Ak, let vec(A1, . . . , Ak) = (vec(A1)

T,

. . . , vec(Ak)
T)T, where vec(Ai) is the vectorization of the matrix Ai, for example,

vec

(
a b

c d

)
= (a, c, b, d)T . In addition, denote A⊗B as the Kronecker product for

matrices A and B.

Theorem 5. For i = 1, . . . , r, define βi = βi(θ) = vec(ai,Ψi,1, . . . ,Ψi,pY,i
,

Φi,1, . . . ,Φi,pX
). Let the estimator be β̂i ≡ β̂i(θ̂n). If Assumptions 1–7 hold,

then √
n(β̂i − βi)

d.−→ N(0,Γ−1
i ⊗ ΣW,i) ,
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where 0 is a zero vector of dimension (pY,iq + qT

XpX + 1)q and

Γi = E[vec(1,Y k−1, . . . ,Y k−pY,i
,Xk,1, . . . ,Xk,pX

)

(vec(1,Y k−1, . . . ,Y k−pY,i
,Xk,1, . . . ,Xk,pX

))T] .

Hence, ∥Ψ̂i,j − Ψi,j∥2 = Op(n
−1/2) and ∥Φ̂i,m − Φi,m∥2 = Op(n

−1/2), for all

j = 1, . . . , pY,i, m = 1, . . . , pX , and i = 1, . . . , r. In addition,
√
n(β̂i − βi) and

n(θ̂i − θi), for i = 1, . . . , r − 1, are asymptotically independent. Finally, for the

functional operators, we have ∥Ψ̂i,j − Ψi,j∥L = Op(n
−1/2) and ∥Φ̂i,m − Φi,m∥L =

Op(n
−1/2), for all j = 1, . . . , pY,i, m = 1, . . . , pX , and i = 1, . . . , r.

6. Real Application

In this section, we use the fTARX model to fit a yield curve, which is a plot

of the yields (interest rates) of bonds with equal credit quality against maturity

dates. In finance, the modeling of yield rates plays a critical role in the pricing

and risk management of fixed-income products. A qualified model for the yield

curve should consider the cross-sectional and serial dependence of interest rates

for all maturities at any give time. Here, we model the entire yield curve as

a functional time series, and study the dynamics of the yield curve over time.

In particular, we consider the fTAR model, for two reasons. First, the classical

TAR model is often used to model interest rates; see Tsay (1998). Second, and

more importantly, it is well known that the yield curve has three main shapes:

normal (upward-sloping curve), inverted (downward-sloping curve), and flat. The

normal yield curve refers to periods of economic expansion, and the inverted yield

curve corresponds to periods of economic recession. Thus, the economic cycle is

related to the regime classification of the yield curve. Therefore, the proposed

fTARX model is particularly suitable for analyzing the serial dependence and

regime classifications of yield curves.

The data set consists of daily off-the-run zero-coupon treasury yield rates

from September 4, 2007, to January 3, 2011, with values shown on a percentage

scale with bond maturity from 1 to 30 years. The raw data are collected

from the U.S. Federal Reserve Data Release (downloaded from https://

www.federalreserve.gov/data/nominal-yield-curve.htm). We transform 30

daily observations with different maturities into a functional observation by using

a B-spline basis with order five and dimension nine. In addition, we extract the

yield rate of the U.S. Generic Government 10-year treasury note on the previous

trading day, as a proxy for the risk-free rate for long-term U.S. investment. Our

goal is to model the excess yield curves, denoted as {Yk(·)}k=1,.... The curves

{Yk(·)}k=1,... are depicted in Figure 1, where the mean curve and ±0.5 times

various eigenfunctions are plotted to demonstrate the mean effect and the effect

of major principal components (PCs), respectively. The first PC represents the
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Table 1. Estimation results of fTARX and functional ARX models for the treasury yield
rates from September 4, 2007, to January 3, 2011.

Model Regime q̂n p̂Y,i Exogenous covariates

fTARX

(−∞, 5.174] 3 2 Xcsfb, Xgsli

(5.174, 10.026] 3 1 Xcsfb, Xvix

(10.026,∞) 3 1 Xcsfb

functional ARX - 3 3 Xcsfb, Xip, Xgsli

overall level, the second PC represents the slope, and the third PC represents the

curvature of the yield curves.

From Ang and Piazzesi (2003) and Diebold, Rudebusch and Aruoba (2006),

macroeconomic factors such as inflation and real economic activities are consid-

ered when modeling yield rates. Analogously, we include the percentage change

in the monthly U.S. consumer pricing index (CPI) and industrial production

index (IPI) as candidate exogenous covariates for macroeconomic conditions,

denoted as Xcpi, and Xipi, respectively. In addition, we include the Credit

Suisse Fear Barometer level (Xcsfb), CBOE/CBOT 10-year U.S. Treasury Note

Volatility Index (Xvix), and U.S. government securities liquidity index (Xgsli)

on the previous trading day as potential exogenous covariates. These three

indices measure market conditions, namely, the fear level in the stock market, and

the volatility and the liquidity level in the treasury bond market, respectively.

Increases in Xcsfb and Xvix represent increases in market fear and the volatility

level, respectively, whereas an increase inXgsli represents a decrease in the market

liquidity level. Furthermore, we adopt the historical value ofXgsli as the threshold

variable, with the delay parameter d tested from 1 to 10. All exogenous variable

data are obtained from the Bloomberg Terminal.

The optimal model is selected with d̂ = 1; that is, the U.S. government

securities liquidity index on the previous trading day is selected as the threshold

variable. To demonstrate the significance of the threshold effect, we compare the

fittings of the optimal fTARX model with those of a functional ARX model; see

Table 1.

From Table 1, the fTARX model suggests a three-regime classification with

respect to high, medium, and low market liquidity, which are specified as normal,

intermediate, and financial crisis periods, respectively. Compared with the single-

regime functional ARX model, the functional ARX model corresponding to each

regime of the fTARX model is simpler. For the model diagnostics, we plot the

residuals of the intermediate-step vector TARX model and the vector ARX model

in Figures 3 and 4, respectively, in the Supplementary Material. Significant

heteroskedasticity and frequent outliers are observed in Figure 4, which indicating

a poor fit from the functional ARX model. On the other hand, Figure 3 suggests

that the fTARX model provides an adequate fit. Therefore, we conclude that
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Figure 1. Plot of excess yield curve data, with the sample mean curve shown in bold
(top-left). Plot of the mean curve, after adding and subtracting 0.5 times the first (top-
right), second (bottom-left), and third (bottom-right) eigenfunctions, shown as dashed
and dotted curve, respectively.

the fTARX model is more suitable for estimating the yield curve than is the

functional ARX model. The estimates of the intercept vectors and coefficient

matrices of the fTARX model are listed in (S.45) in the Supplementary Material.

To quantify the performance of the models, we define the squared fitting error at

time k as

SEk =

∫ 1

0

[Yk(t)− Ŷk(t)]
2 dt, (6.1)

where Ŷk denotes for the fitted value of Yk. The mean squared fitting error (MSE)

is computed as the average of the squared fitting errors from September 4, 2007,

to January 3, 2011. The ratio of the MSEs of the fTARX and functional ARX

models is 0.923, indicating that the fitting errors of the functional TARX model

are smaller than those of the functional ARX model.

The selection of exogenous variables from the fTARX model fitting is

interpreted as follows. First, the macroeconomic factors (i.e., the CPI and the

IPI) are not selected in the fTARX model. This is in line with the findings of

Ang and Piazzesi (2003) and Diebold, Rudebusch and Aruoba (2006) that
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although one-month lagged macroeconomic factors can contribute to error

reduction and an improved R2 statistic, the coefficients are not statistically

significant and may cause an over-fitting problem.

Second, we observe that Xcsfb is incorporated in all three regimes, which

implies that the market fear factor plays an important role in modeling of a yield

curve. In regime 1, the negative estimate Φ̂1,Xcsfb
suggests that an increase in

the fear of stock investment will lead to a decrease in the yield. Note that bond

yields are inversely related to the price changes of bonds. Thus, the bond price

will decrease in regime 1. However, as the market deteriorates from regime 1 to 2

and to 3, the coefficients of Xcsfb increase and eventually become positive, which

implies a reverse of the effect of stock market fear. Thus, the bond price decreases

in regime 2 and increases in regime 3 as the stock market fear increases. These

phenomena coincide with observations in the real financial market. In regime

1 of normal periods, investors transfer their risky stock investments to safer

investments, such as treasury bonds, when the stock market fear rises, which

increases the demand, and hence the price of treasury bonds. This transfer

effect is called “flight to safety” in financial terminology. However, in regime

3 of financial crisis periods, the cross-asset contagion effect between the bond

and the stock markets means that the fear in the bond market increases with

that in the stock market. Owing to the possible panic, investors may leave

the bond market, and bond prices decrease. Furthermore, in regime 2 of an

intermediate state, stock market fear exhibits both the transfer effect and the

contagion effect. The negative estimate Φ̂2,Xcsfb
seems to indicate that the

transfer effect dominates in this period. The sign of the coefficients of Xcsfb

under certain market conditions can indicate which of the two effects dominates

at that time, and the corresponding absolute values of the coefficients measure

the magnitude of this effect.

Furthermore, market volatility and liquidity are selected in some regimes. In

particular, the larger the values of Xgsli, the less liquid the market becomes. In

regime 1, the positive estimate Φ̂1,Xgsli
suggests a liquidity premium for a bond

yield during the normal period. In addition, this liquidity premium is higher for

bonds with medium or long maturity than it is for those with short maturity.

However, Xgsli is excluded from regimes 2 and 3. This phenomenon can be

explained as follows. When the market becomes less liquid in the intermediate

period, financial traders are more likely to sell risky investments and buy treasury

bonds to ensure safety. Thus, the bond price increases and the yields decrease,

offsetting the effect of the liquidity premium.

Finally, Xvix is included in regime 2. According to Kalimipalli and Warga

(2002), bond market volatility is positively related to the bid-ask spread, and

negatively related to trading volume. Hence, the volatility reveals the degree

of traders’ participation and confidence in the treasury market, and implies an

upcoming recession or expansion during the intermediate period. The negative
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estimate of Φ̂2,Xvix
in regime 2 shows that the market volatility is negatively

correlated with bond yields, because an increase in volatility changes the shape

of the yield curve, and thus reduces the yields.

Lastly, we compute rolling real-time forecasts for each day from January 4,

2011, to October 19, 2011. The squared fitting error is modified to quantify the

performance of the forecasting, as follows. The data until time T − 1 are used

to estimate the unknown parameters and model orders, as well as to predict the

curve at time T . Then, we compute the forecast error at time T similarly to the

computation of SET in (6.1), but replacing the fitted value Ŷk with the prediction.

Next, we obtain the mean squared prediction error (MSPE) by averaging the

forecast errors of these 200 days. The ratio of the MSPEs of the fTARX and

functional ARX models is 0.922, showing that the fTARX model exhibits better

forecasting performance than that of the functional ARX model.

Supplementary Material

The supplementary materials contains proofs of the theorems, further

probabilistic properties of the fMDL of fTARX models, and the optimization

algorithms, simulation studies, and additional estimation and diagnostic results.

It also describes how to construct confidence intervals for the parameters, and

we extend the proposed method in Section 4 to the case where the functional

parameters are parametrized by infinite-dimensional parameters.
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