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Abstract: We consider parametric regression where the outcome is subject to miss-

ingness. To achieve the semiparametric efficiency bound, most existing estimation

methods require the correct modeling of certain second moments of the data, which

can be very challenging in practice. We propose an estimation procedure based on

the conditional empirical likelihood (CEL) method. Our method does not require

us to model any second moments. We study the CEL-based inverse probability

weighted (CEL-IPW) and augmented inverse probability weighted (CEL-AIPW)

estimators in detail. Under some regularity conditions and the missing at ran-

dom (MAR) mechanism, the CEL-IPW estimator is consistent if the missingness

mechanism is correctly modeled, and the CEL-AIPW estimator is consistent if

either the missingness mechanism or the conditional mean of the outcome is cor-

rectly modeled. When both quantities are correctly modeled, the CEL-AIPW es-

timator attains the semiparametric efficiency bound without modeling any second

moments. The asymptotic distributions are derived. Numerical implementation

through nested optimization routines using the Newton-Raphson algorithm is dis-

cussed.

Key words and phrases: Augmented inverse probability weighting (AIPW), auxil-

iary variables, conditional empirical likelihood, mean regression, missing at random

(MAR), surrogate outcome.

1. Introduction

We study the problem of parametric regression when the outcome is subject

to missingness. The central interest is the estimation and inference of the re-

gression coefficients. In practice there are many reasons that can lead to missing

outcomes: budget or technique restrictions, subjects’ failure to comply with the

protocol, or simply the study design. Missing data usually bring big challenges

to estimation and inference, as the application of statistical methods developed

for data without missing values can lead to biased estimation and misleading

conclusions.

In addition to the outcome and covariates, we assume that some auxiliary

variables are available for all subjects. Although the auxiliary variables are not

of direct statistical interest, they may help to explain the missingness mecha-

nism, and thus reduce the impact of missing data on estimation and inference.
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Data with auxiliary variables arise in many observational studies (e.g., Wang,
Rotnitzky, and Lin (2010)) as well as two-stage design studies (e.g., Pepe (1992);
Pepe, Reilly, and Fleming (1994)), where the second-stage outcome is not ob-
served for all subjects, and the probability of observing this outcome depends on
the first-stage outcome (the auxiliary variable) and covariates.

To fix notation, let Y denote the outcome, X the vector of covariates, β
the p-dimensional vector of regression coefficients, and S the vector of auxiliary
variables. Here β is the parameter of interest. Pepe (1992) proposed maximum
likelihood estimation, which assumes the correct specification of the densities
f(Y |X) and f(S|Y,X). To reduce model assumptions, Pepe, Reilly, and Fleming
(1994) proposed mean score estimation, which assumes the correct specification
of density f(Y |X). This latter assumption is still more than necessary, and is
likely subject to model misspecification. In this paper, we only specify the mean
regression model as

E(Y |X) = µ(XTβ) for some β = β0 ∈ Rp, (1.1)

where µ(·) is some known link function, and the expectation is taken under the
true density f(Y |X). Let R = 1 if Y is observed and R = 0 if Y is missing. The
observed data are (Ri, RiYi,Si,Xi), i = 1, · · · , N , which are independent and
identically distributed. We assume that the missingness of Y does not depend on
Y itself given X and S, the missing at random (MAR) mechanism (Little and
Rubin (2002)):

P (R = 1|Y,S,X) = P (R = 1|S,X)
def
= π(S,X) > τ > 0, (1.2)

where τ is a positive constant.
The model defined by (1.1) and (1.2) is embedded in a more general missing

data setting that has been studied extensively by Robins, Rotnitzky, and their
colleagues using semiparametric efficiency theory as in Bickel et al. (1993). Ap-
plying the theory developed by Robins, Rotnitzky, and Zhao (1994) and Robins
and Rotnitzky (1995), Yu and Nan (2006) derived the semiparametric efficiency
bound under this model. Estimators whose asymptotic variance attains such
bound are efficient. Chen and Breslow (2004) independently derived the bound
using the theory of estimating functions (Godambe (1960, 1991); Heyde (1988,
1997); Newey and McFadden (1994)).

Most existing estimation methods for missing outcome data rely on a set of
estimating functions U(β;Y,X) constructed from (1.1) satisfying the unbiased-
ness property E {U(β0;Y,X)} = 0. While any function D(β;X) depending
only on X and β may be used to construct some unbiased estimating functions
in the form D(β;X){Y − µ(XTβ)}, the most typically used one is

∂µ(XTβ)

∂β
Var(Y |X)−1{Y − µ(XTβ)}.
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Under the MARmechanism (1.2), the augmented inverse probability weighted

(AIPW) estimator (Robins, Rotnitzky, and Zhao (1994, 1995)); Robins and Rot-

nitzky (1995); Tsiatis (2006)) is the solution to the equation

N∑
i=1

{
Ri

π̂(Si,Xi)
U(β;Yi,Xi)−

Ri − π̂(Si,Xi)

π̂(Si,Xi)
σ(β;Si,Xi)

}
= 0, (1.3)

where π̂(S,X) is the estimated value of π(S,X), and σ(β;S,X) is an arbitrary

function of β, S, and X. When σ(β;S,X) = 0, the AIPW estimator reduces

to the inverse probability weighted (IPW) estimator (Horvitz and Thompson

(1952)). The AIPW estimator possesses a double robustness property in the

sense that it is consistent if either π(S,X) is correctly modeled, or σ(β;S,X) is

a correct model for E {U(β;Y,X)|S,X}. For a fixed U(β;Y,X), the smallest

asymptotic variance of the AIPW estimator is achieved when both π(S,X) and

E {U(β;Y,X)|S,X} are correctly modeled, and σ(β;S,X) is taken to be the

correct model for the latter. However, this U(β;Y,X)-dependent variance is

usually larger than the semiparametric efficiency bound.

In recent literature, many alternative doubly robust estimators have been

proposed. These include Tan (2006, 2008, 2010), Kang and Schafer (2007),

Robins et al. (2007), Rubin and van der Laan (2008), Cao, Tsiatis, and Da-

vidian (2009), Tsiatis, Davidian, and Cao (2011), Han (2012) and Rotnitzky et

al. (2012). Most of them were proposed under the setting of estimating the pop-

ulation mean of a response variable. Han (2012) and Rotnitzky et al. (2012)

considered the regression setting, and their estimators are referred to here as the

HAN and RLSR estimators, respectively. Along the lines of Tan (2006, 2010),

who considered estimating the population mean and tried to improve the ef-

ficiency of the AIPW estimator when the model in the augmentation term is

incorrectly specified, the HAN estimator solves an estimating equation that em-

ploys a particular linear combination of the two terms in (1.3). When π(S,X)

is correctly modeled, this linear combination yields the residual of the projection

of the first term on the second, which endows the HAN estimator with improved

efficiency over both the IPW and the corresponding AIPW estimators, with the

exception of when σ(β;S,X) is also a correct model for E {U(β;Y,X)|S,X},
in which case the HAN and the AIPW estimators have the same efficiency. The

RLSR estimator, in addition to the efficiency improvement over both the IPW

and the AIPW estimators, has the property that, for a given finite set of user-

specified functions, each function evaluated at the RLSR estimator has asymp-

totic variance no larger than that of the same function evaluated at any AIPW

estimator using the same model structure for E {U(β;Y,X)|S,X}. The RLSR

estimator solves an outcome regression estimating equation that, unlike equation
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(1.3), always has a solution if the estimated value of E(Y |S,X) falls into the

sample space of Y .

Empirical likelihood (EL) (Owen (1988, 1990, 2001); Qin and Lawless (1994);

Kitamura (2007)) has become a popular tool in analyzing data with missing out-

come. Under the MAR mechanism (1.2), Chen, Leung, and Qin (2008) proposed

an estimator, referred to here as the CLQ estimator, by solving the estimating

equation
N∑
i=1

p̂i
Ri

π̂(Si,Xi)
U(β;Yi,Xi) = 0,

where p̂i is the EL probability mass assigned to the data point (Ri = 1, Yi,Si,Xi)

after incorporating the information carried by subjects with missing values. Qin,

Zhang, and Leung (2009) proposed an estimator, referred to as the QZL estima-

tor, by solving the over-identified estimating equation

N∑
i=1

{
Ri

π̂(Si,Xi)
U(β;Yi,Xi)

T ,
Ri − π̂(Si,Xi)

π̂(Si,Xi)
σ(β;Si,Xi)

T

}T

= 0,

where the EL is used to account for the over-identification. It has been shown

that, when π(S,X) is correctly modeled, the CLQ and the QZL estimators are

both more efficient than the IPW estimator. In addition, when σ(β;S,X) is a

correct model for E {U(β;Y,X)|S,X}, both estimators asymptotically coincide

with the corresponding AIPW estimator using the same σ(β;S,X). However,

when π(S,X) is incorrectly modeled, neither the CLQ nor the QZL estimator

is consistent. Qin and Zhang (2007) and Qin, Shao, and Zhang (2008) proposed

estimators that possess the double robustness property, but they only considered

estimating the population mean. Other works that apply the EL method to

missing data problems include Chen, Leung, and Qin (2003), Wang and Chen

(2009), Tan (2006, 2010, 2011), Han and Wang (2013) and Han (2014a,b).

For all these methods, the estimating functions U(β;Y,X) are essential and

need to be explicitly specified priori. Different estimating functions yield different

estimators with varying levels of efficiency, and their numerical performance can

also dramatically differ from each other. The efficient influence function for β in

our setting is given by (e.g., Chen and Breslow (2004); Yu and Nan (2006))(
Var

[
∂g(β)

∂β
Var{g(β)|X}−1g(β)

])−1 ∂g(β)

∂β
Var{g(β)|X}−1g(β), (1.4)

where

g(β) =
R

π(S,X)

{
Y − µ(XTβ)

}
− R− π(S,X)

π(S,X)
E
{
Y − µ(XTβ)|S,X

}
.

To achieve semiparametric efficiency, these methods need to correctly model the

second moment Var{g(β)|X}, which has a very complicated structure and is
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difficult to model in practice. Hence, an estimator achieving the semiparamet-

ric efficiency without modeling Var{g(β)|X} or any other second moments is

desirable. For many EL-based estimators, including the CLQ and the QZL esti-

mators, another drawback is that they are not robust against incorrect modeling

of the missingness mechanism. Since model misspecification commonly occurs in

practice, the double robustness property is important. We propose a conditional

empirical likelihood (CEL) (Zhang and Gijbels (2003); Kitamura, Tripathi, and

Ahn (2004)) based method. We study two CEL-based estimators, the CEL-IPW

and the CEL-AIPW estimators. The CEL-IPW estimator is consistent if π(S,X)

is correctly modeled; CEL-AIPW estimator enjoys the double robustness prop-

erty, in the sense that it is consistent if either π(S,X) or E(Y |S,X) is correctly

modeled. When both models are correct, the CEL-AIPW estimator attains the

semiparametric efficiency bound without modeling any second moments of the

data.

This paper is organized as follows. Section 2 describes the CEL estimation

procedure and its numerical implementation. Section 3 concerns the large sam-

ple properties. Section 4 contains the results of simulation studies. Section 5

illustrates the data application. Section 6 consists of some further discussion.

Technical assumptions and proofs are provided in the Appendix.

2. CEL Estimation

2.1. CEL-based estimators

Define the IPW residual and the AIPW residual as, respectively,

f(β) =
R
{
Y − µ(XTβ)

}
π(S,X)

,

g(β) =
R

π(S,X)

{
Y − µ(XTβ)

}
− R− π(S,X)

π(S,X)
E
{
Y − µ(XTβ)|S,X

}
.

Clearly we have that E {f(β0)|X} = 0 and E {g(β0)|X} = 0. This conditional

mean zero property of both residuals serves as the foundation of the proposed

estimation procedure. In this section we focus on describing the procedure based

on the AIPW residual g(β) that yields the CEL-AIPW estimator. Estimation

based on the IPW residual f(β) that yields the CEL-IPW estimator follows a

similar procedure, with no need of modeling E(Y |S,X).

We first construct the empirical version of E {g(β0)|X} = 0 based on the

observed data (Ri, RiYi,Xi,Si), i = 1, . . . , N . To do this, conditional on each

Xi, let pij denote the empirical probabilities defined by a discrete distribution

that has support on {gj(β) : j = 1, . . . , N}, where gj(β) is g(β) evaluated

at (Rj , RjYj ,Xj ,Sj). Thus, for each i, pij = dF{gj(β)|Xi} is the jump of

the distribution F{g(β)|Xi} at the observed gj(β), j = 1, . . . , N . We require
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that pij ≥ 0 and
∑N

j=1 pij = 1. The empirical version of E {g(β0)|X} = 0 is∑N
j=1 pijgj(β) = 0 for some β. Second, we construct the log-likelihood localized

at each subject i, i = 1, . . . , N . With the conditional empirical probabilities

pij available, j = 1, . . . , N , a natural candidate for the localized log-likelihood

takes the form of a weighted sum
∑N

j=1wij log pij , where wij are certain non-

negative weights. Intuitively,
∑N

j=1wij log pij serves as an empirical analogue

of log dF{gi(β)|Xi}, and wij represents how “likely” it is to observe the value

gj(β) conditional onXi. Third, from the log-likelihood localized at each subject,

the overall log-likelihood is given by
∑N

i=1

∑N
j=1wij log pij . Finally, applying the

idea of maximum likelihood estimation, our CEL-AIPW estimator is defined by

a constrained optimization:

β̂AIPW = argmax
β

max
pij

N∑
i=1

N∑
j=1

wij log pij subject to

pij ≥ 0,

N∑
j=1

pij = 1,

N∑
j=1

pijgj(β) = 0 (i, j = 1, . . . , N). (2.1)

A technique to carry out the localization in the second step is the nonpara-

metric kernel method. Let Xc and Xd denote the continuous and categorical

components of X, respectively. Then one can calculate wij as

wij =
K
{
(Xc

i −Xc
j )/bN

}
I(Xd

i =Xd
j )∑N

j=1K
{
(Xc

i −Xc
j )/bN

}
I(Xd

i =Xd
j )

,

where K(·) is a multivariate kernel function, bN is the bandwidth parameter, and

I(·) is the indicator function. Here
∑N

j=1wij = 1 for each i.

The AIPW residual g(β) involves two possibly unknown quantities, π(S,X)

and E(Y |S,X), which need to be estimated. When the missingness of Y is due to

study design (e.g. two-stage design), π(S,X) is known. Otherwise, we postulate

a parametric model π(α;S,X), with α being an unknown finite-dimensional

parameter whose true value is denoted by α0. One example is the logistic model,

logit {π(α;S,X)} = ZTα, where ZT = (ST ,XT ). An estimator α̂ is given by

α̂ = argmax
α

N∏
i=1

{π(α;Si,Xi)}Ri {1− π(α;Si,Xi)}1−Ri . (2.2)

To estimate E(Y |S,X), we postulate a parametric model h(γ;S,X), where h(·)
is a known link function and γ is an unknown finite-dimensional parameter with

true value γ0. Choices for this parametric model include the generalized linear
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model (McCullagh and Nelder (1989)) and the quasi-likelihood model (Wedder-

burn (1974)). The MAR mechanism (1.2) is equivalent to R ⊥ Y |(S,X), which

implies that E(Y |S,X) = E(Y |S,X, R = 1). Therefore, an estimator γ̂ is

obtained based on complete-case analysis by solving

N∑
i=1

RiZiḣ(Z
T
i γ)

{
Yi − h(ZT

i γ)
}
= 0, (2.3)

where ḣ(·) is the first order derivative function of h(·).
Given the estimators α̂ and γ̂, the estimated AIPW residual is

g(β, α̂, γ̂) =
R

π(α̂;S,X)

{
Y − µ(XTβ)

}
−R− π(α̂;S,X)

π(α̂;S,X)

{
h(γ̂;S,X)− µ(XTβ)

}
.

The proposed CEL-AIPW estimator β̂AIPW is still defined by (2.1), but with

gj(β) in the third constraint substituted by gj(β, α̂, γ̂).

2.2. Numerical implementation

The calculation of β̂AIPW pertains to a constrained optimization problem.

Using the Lagrange multipliers method, the Lagrangian is given by

L =
N∑
i=1

( N∑
j=1

wij log pij

)
−

N∑
i=1

ϖi

( N∑
j=1

pij − 1
)
−

N∑
i=1

λi

{ N∑
j=1

pijgj(β, α̂, γ̂)
}
,

where scalars ϖi and λi are the Lagrange multipliers associated with the second

and the third constraints in (2.1), respectively. With ∂L/∂pij = 0 and (2.1), it

can be easily shown that, for a fixed β,

pij(β, α̂, γ̂) =
wij

1 + λ̂i(β, α̂, γ̂)gj(β, α̂, γ̂)
, i, j = 1, · · · , N, (2.4)

where λ̂i(β, α̂, γ̂) satisfies

N∑
j=1

wijgj(β, α̂, γ̂)

1 + λ̂i(β, α̂, γ̂)gj(β, α̂, γ̂)
= 0.

It is easy to see that

λ̂i(β, α̂, γ̂) = argmin
λi

[
−

N∑
j=1

wij log {1 + λigj(β, α̂, γ̂)}
]
. (2.5)
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If L denotes the objective function
∑N

i=1

∑N
j=1wij log pij in (2.1) and

Λi(λi,β, α̂, γ̂) = −
N∑
j=1

wij log {1 + λigj(β, α̂, γ̂)} ,

then L can be rewritten as a function of β only:

L(β, α̂, γ̂) =

N∑
i=1

Λi

{
λ̂i(β, α̂, γ̂),β, α̂, γ̂

}
+

N∑
i=1

N∑
j=1

wij logwij .

Therefore, the CEL-AIPW estimator can be equivalently defined through a nested

optimization:

β̂AIPW = argmax
β

N∑
i=1

{
min
λi

Λi(λi,β, α̂, γ̂)

}
.

This definition of β̂AIPW essentially suggests a way of numerical implementa-

tion. The Newton-Raphson algorithm can be employed for the two optimizations.

For convenience, we suppress α̂ and γ̂ in the following. For a fixed β, given λold
i ,

the inner optimization updates λi by

λnew
i = λold

i − Λ−1
i,λλ

(
λold
i ,β

)
Λi,λ

(
λold
i ,β

)
, i = 1, · · · , N,

where

Λi,λ (λi,β) = −
N∑
j=1

wij
gj(β)

1 + λigj(β)
and Λi,λλ (λi,β) =

N∑
j=1

wij
gj(β)

2

{1 + λigj(β)}2
.

For each i, an initial value can be taken as λi = 0, and the converged value gives

an estimate of λ̂i(β). To guarantee the positivity of pij , the update should be

restricted on the legitimate region {λi : 1 + λigj(β) ≥ wij}. Given βold and the

estimated λ̂i(β
old) from the inner optimization, the outer optimization updates

β by

βnew = βold −

{
N∑
i=1

Li,ββ(β
old)

}−1{ N∑
i=1

Li,β(β
old)

}
,

where

Li,β(β) = −λ̂i(β)
N∑
j=1

wij
Gj(β)

T

1 + λ̂i(β)gj(β)
,

Li,ββ(β) = −
ΛT

i,λβ

{
λ̂i(β),β

}
Λi,λβ

{
λ̂i(β),β

}
Λi,λλ

{
λ̂i(β),β

} ,
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Λi,λβ

{
λ̂i(β),β

}
=

N∑
j=1

wij

[
λ̂i(β)gj(β)Gj(β){
1 + λ̂i(β)gj(β)

}2 − Gj(β)

1 + λ̂i(β)gj(β)

]
,

and Gj(β) = ∂gj(β)/∂β. Iterate the inner and outer optimizations until a
certain convergence criterion is satisfied. At convergence, the algorithm produces
β̂AIPW .

It is easy to see that (2.5) is a convex minimization problem. Therefore,
for a fixed β, the estimate from the inner optimization almost always converges
to the global minimizer. A proof of this convergence can be given by following
Chen, Sitter, and Wu (2002). The outer maximization is more complicated,
and the convergence of the Newton-Raphson algorithm may not be guaranteed.
See Owen (2001) for some detailed discussion on related issues in the setting
of unconditional moment restrictions. Nonetheless, the nested optimization is
widely used by many researchers to implement the EL (CEL) method. See,
for example, Owen (2001), Kitamura (2007) and Hansen (2014). According to
Kitamura (2007), the nested optimization appears to be “the most stable way
to compute the EL estimator”. In practice, a numerical complication may exist
when 0 is not in the convex hull spanned by {gj(β) : j = 1, . . . , N}, although
this problem disappears when N → ∞ and β is in a neighborhood of β0 because
E {g(β0)|X} = 0. This numerical complication exists for both the EL and
the CEL methods, and more caution may be needed for the latter due to its
subject-wise nature. To overcome this numerical issue, we follow the approach
suggested by Kitamura (2007) and Hansen (2014). Specifically, in the inner
loop of the numerical implementation, we restrict each updated value of λi to
be in the legitimate region {λi : 1 + λigj(β) ≥ wij , j = 1, . . . , N} and to make
Λi(λi,β, α̂, γ̂) decrease.

For the CEL method proposed by Kitamura, Tripathi, and Ahn (2004),
the bandwidth parameter bN was selected using the cross-validation criterion
suggested by Newey (1993); these papers studied the same problem, namely
estimation under conditional moment restrictions. Numerical studies in both
papers demonstrated good performance of this criterion. We employ a similar
criterion to select bN . Specifically, take

CV (bN ) =
N∑
i=1

{
gi(β̂, α̂, γ̂)

2 − σ̂−i(β̂, α̂, γ̂)
2
}2

σ̂−i(β̂, α̂, γ̂)6
, (2.6)

where σ̂−i(β̂, α̂, γ̂)
2 =

∑N
j=1 ŵijgj(β̂, α̂, γ̂)

2, β̂ = β̂(bN ) is the CEL-AIPW esti-
mator obtained with a given bN , and

ŵii = 0, ŵij =
K
{
(Xc

i −Xc
j )/bN

}
I(Xd

i =Xd
j )∑N

j=1,j ̸=iK
{
(Xc

i −Xc
j )/bN

}
I(Xd

i =Xd
j )

for j ̸= i.
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The optimal bandwidth bN is chosen as the minimizer of CV (bN ). The intuition

behind (2.6) is to minimize the variance of (σ̂−2 − σ−2)g(β0) with the sampled

data, where σ2 = Var{g(β0) |X} and σ̂2 is an estimator of σ2. The linearization

of (σ̂−2 − σ−2)g(β0) by ignoring the higher-order terms is σ−4(σ̂2 − σ2)g(β0)

(Newey (1993)). So the resulting variance may be approximated by σ−6(σ̂2−σ2)2.

A leave-one-out estimation of this quantity with the sampled data then leads to

(2.6). More discussion on bandwidth selection can be found in Newey (1993).

3. Large Sample Properties

For the large sample properties presented in this section, primary consider-

ation is given to the CEL-AIPW estimator, and the corresponding results are

summarized in a series of theorems. Regularity conditions and proofs are pro-

vided in the Appendix. Properties regarding the CEL-IPW estimator are listed

as corollaries. The corresponding regularity conditions and proofs are omitted

because they are trivially modified versions of those of the theorems.

Based on the results of White (1982), we can assume that α̂
p−→ α∗, γ̂

p−→ γ∗,√
N(α̂ − α∗) = Op(1), and

√
N(γ̂ − γ∗) = Op(1). Here α∗ and γ∗ are not

necessarily equal to α0 and γ0, and the corresponding equality is true only when

the model for π(S,X) or E(Y |S,X) is correctly specified. Since α̂ maximizes

the binomial likelihood in (2.2), the asymptotic linear expansion for α̂ is given

by

√
N(α̂−α∗) = −

[
E

{
∂ψ(α∗)

∂α

}]−1 1√
N

N∑
i=1

ψi(α∗) + op(1), (3.1)

where ψ(α) = ψ(α;S,X, R) is the score function. When a logistic regression

model is assumed for π(S,X), we have

ψ(α) =

{
R− exp(ZTα)

1 + exp(ZTα)

}
Z.

Similarly, the asymptotic linear expansion for γ̂ is given by

√
N(γ̂ − γ∗) =

1√
N

N∑
i=1

ϕi(γ∗) + op(1), (3.2)

where ϕ(γ) = ϕ(γ;Y,S,X, R) denotes the influence function. When γ̂ is the

solution to equation (2.3), we have

ϕ(γ) = −
[
E

{
∂ζ(γ)

∂γ

}]−1

ζ(γ) with ζ(γ) = RZḣ(ZTγ)
{
Y − h(ZTγ)

}
.

Let us denote the CEL-IPW estimator by β̂IPW .
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Theorem 1. For the model defined by (1.1) and (1.2), under the assumptions in

the Appendix, if either α∗ = α0 or γ∗ = γ0, we have β̂AIPW
p−→ β0 as N → ∞.

Corollary 1. For the model defined by (1.1) and (1.2), under assumptions sim-

ilar to those in the Appendix, if α∗ = α0, we have β̂IPW
p−→ β0 as N → ∞.

From Theorem 1, β̂AIPW is doubly robust, in the sense that as long as one of

π(S,X) and E(Y |S,X) is correctly modeled, β̂AIPW is a consistent estimator

of β0.

To describe the asymptotic distribution of β̂AIPW , let

VAIPW (β,α,γ) = E
{
g(β,α,γ)2|X

}
,

Gγ(β,α,γ) = E

{
∂g(β,α,γ)

∂γ

∣∣∣∣X} ,

QAIPW (β,α,γ) =
∂µ(XTβ)

∂βT
VAIPW (β,α,γ)−1g(β,α,γ),

IAIPW (β,α,γ) = E
{
QAIPW (β,α,γ)QAIPW (β,α,γ)T

}
,

Vα,AIPW (β,α,γ) = Var [Resid {QAIPW (β,α,γ),ψ(α)}] ,

Vγ(β,α,γ) = Var

[
QAIPW (β,α,γ)

+E

{
∂µ(XTβ)

∂βT
VAIPW (β,α,γ)−1Gγ(β,α,γ)

}
ϕ(γ)

]
,

where for any matrices A and B,

Resid(A,B) = A− E(ABT ){E(BBT )}−1B.

Theorem 2. For the model defined by (1.1) and (1.2), under the assumptions

in the Appendix, we have
√
N(β̂AIPW − β0)

d−→ N{0,J(β0,α∗,γ∗)
−1}, where

J(β,α,γ)=


IAIPW (β,α,γ)Vα,AIPW (β,α,γ)−1IAIPW (β,α,γ) if α∗ = α0,

IAIPW (β,α,γ)Vγ(β,α,γ)
−1IAIPW (β,α,γ) if γ∗ = γ0,

IAIPW (β,α,γ) if α∗ = α0 and γ∗ = γ0.

In the case that the data are collected based on a two-stage design, α0 is

known. When the known α0 is used instead of α̂, following the same argu-

ments as that in the proof of Theorem 2, the asymptotic variance of β̂AIPW

has the same structure as J(β0,α0,γ∗), but with Vα,AIPW (β0,α0,γ∗) in the

middle replaced by Var {QAIPW (β0,α0,γ∗)} = IAIPW (β0,α0,γ∗). This new

asymptotic variance is no smaller than the old one, in the sense that the corre-

sponding difference between the two asymptotic variance matrices is nonnegative-

definite: Vα,AIPW (β0,α0,γ∗) is the variance of the residual of the regression of
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QAIPW (β0,α0,γ∗) on ψ(α0). Therefore, even if α0 is known in practice, using

the estimator α̂ based on a correctly specified model for π(S,X) has the advan-

tage of potential efficiency gain for the CEL-AIPW estimator. This counterin-

tuitive phenomenon is well known in the literature of parametric regression with

missing data (e.g., Robins, Rotnitzky, and Zhao (1995); Rotnitzky and Robins

(1995)). For nonparametric regression with missing data, this does not hold any

more (Wang, Rotnitzky, and Lin (2010)). When E(Y |S,X) is correctly modeled

in addition to the known α0, using α̂ or α0 will make no difference asymptoti-

cally, as in both cases the asymptotic variance of β̂AIPW is IAIPW (β0,α0,γ0)
−1.

From Chen and Breslow (2004) and Yu and Nan (2006), IAIPW (β0,α0,γ0)
−1 is

the semiparametric efficiency bound under the model defined by (1.1) and (1.2).

Therefore, the CEL-AIPW estimator attains the semiparametric efficiency bound

when both π(S,X) and E(Y |S,X) are correctly modeled, and thus is locally

efficient.

To describe the asymptotic distribution of β̂IPW , let

VIPW (β,α) = E
{
f(β,α)2|X

}
,

QIPW (β,α) =
∂µ(XTβ)

∂βT
VIPW (β,α)−1f(β,α),

IIPW (β,α) = E
{
QIPW (β,α)QIPW (β,α)T

}
,

Vα,IPW (β,α) = Var [Resid{QIPW (β,α),ψ(α)}] .

Corollary 2. For the model defined by (1.1) and (1.2), under assumptions sim-

ilar to those in the Appendix, if α∗ = α0, we have

√
N(β̂IPW − β0)

d−→ N
{
0, IIPW (β0,α0)

−1Vα,IPW (β0,α0)IIPW (β0,α0)
−1
}
.

If α0 is known by design and is used instead of α̂, the asymptotic variance

of β̂IPW has the same structure as above, but with Vα,IPW (β0,α0) replaced

by Var {QIPW (β0,α0)} = IIPW (β0,α0). The new asymptotic variance is no

smaller than that above. So using the estimator α̂ is preferred for the CEL-IPW

estimator as well even if α0 is known.

Our Theorem 3 provides a consistent estimator of the asymptotic variance

of the CEL-AIPW estimator of Theorem 2. Let

V̂i,AIPW (β) =

N∑
j=1

pij(β, α̂, γ̂)gj(β, α̂, γ̂)
2,

Ĝi,α(β) =
N∑
j=1

pij(β, α̂, γ̂)
∂gj(β, α̂, γ̂)

∂α
, Ĝi,γ(β) =

N∑
j=1

pij(β, α̂, γ̂)
∂gj(β, α̂, γ̂)

∂γ
,

Q̂i,AIPW (β) =
∂µ(XT

i β)

∂βT
V̂i,AIPW (β)−1gi(β, α̂, γ̂),
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ÎAIPW (β) =
1

N

N∑
i=1

Q̂i,AIPW (β)Q̂i,AIPW (β)T ,

m̂i(β) = Q̂i,AIPW (β)−
{

1

N

N∑
i=1

∂µ(XT
i β)

∂βT
V̂i,AIPW (β)−1Ĝi,α(β)

}

×
{

1

N

N∑
i=1

∂ψi(α̂)

∂α

}−1

ψi(α̂)

+

{
1

N

N∑
i=1

∂µ(XT
i β)

∂βT
V̂i,AIPW (β)−1Ĝi,γ(β)

}
ϕi(γ̂).

Theorem 3. Under the assumptions in the Appendix, we have that[
ÎAIPW (β)

{
1

N

N∑
i=1

m̂i(β)m̂i(β)
T

}−1

ÎAIPW (β)

]∣∣∣∣∣
β=β̂AIPW

p−→ J(β0,α∗,γ∗).

To consistently estimate the asymptotic variance of the CEL-IPW estimator

given in Corollary 2, take

V̂i,IPW (β) =

N∑
j=1

pij(β, α̂)fj(β, α̂)
2,

Q̂i,IPW (β) =
∂µ(XT

i β)

∂βT
V̂i,IPW (β)−1fi(β, α̂),

ÎIPW (β) =
1

N

N∑
i=1

Q̂i,IPW (β)Q̂i,IPW (β)T ,

t̂i(β) = Q̂i,IPW (β) −
{ 1

N

N∑
i=1

Q̂i,IPW (β)ψi(α̂)
T
}{ 1

N

N∑
i=1

ψi(α̂)ψi(α̂)
T
}−1
ψi(α̂).

Here pij(β,α) is defined similarly to that in (2.4), but is based on the IPW

residual f(β).

Corollary 3. Under assumptions similar to those in the Appendix, if α∗ = α0,[
ÎIPW (β)−1

{
1

N

N∑
i=1

t̂i(β)t̂i(β)
T

}
ÎIPW (β)−1

]∣∣∣∣∣
β=β̂IPW

p−→ IIPW (β0,α0)
−1Vα,IPW (β0,α0)IIPW (β0,α0)

−1.

4. Simulation Experiments

We evaluated the finite sample performance of the proposed CEL estimators

using simulation experiments. The simulation model contained two covariates,
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X1 ∼ N (0, 22) andX2 ∼ Bernoulli(0.5), as well as an auxiliary variable generated

by S = 1 + X1 + X2 + ϵS with ϵS ∼ N (0, 22). The outcome of interest Y was

generated as Y = 1+S+0.6X1+2X2+ ϵY , where ϵY ∼ N (0, σ2
Y ) with covariate-

dependent variance σ2
Y = exp(0.2+0.4S+0.4X1). A straightforward calculation

shows that the conditional distribution of Y |X is Normal, with mean E(Y |X) =

2 + 1.6X1 + 3X2 and variance Var(Y |X) = 4 + exp(0.92 + 0.8X1 + 0.4X2). The

missingness mechanism was set to be logit {π(S,X)} = 0.5−0.2S+0.6X1−0.2X2,

under which approximately 50% of subjects had missing Y in our generated

data. Therefore, the true parameter values used in our simulation were β0 =

(β1, β2, β3)
T = (2, 1.6, 3)T , α0 = (0.5,−0.2, 0.6,−0.2)T , and γ0 = (1, 1, 0.6, 2)T .

We compared the proposed CEL estimators with the IPW, AIPW, HAN,

RLSR, CLQ, and QZL estimators under three scenarios: (i) only π(S,X) is

correctly modeled; (ii) only E(Y |S,X) is correctly modeled; and (iii) both are

correctly modeled. For the first scenario, E(Y |S,X) is incorrectly modeled as

E(Y |S,X) = γ1 + γ2X1, and for the second scenario, π(S,X) is incorrectly

modeled as logit {π(S,X)} = α1 + α2S + α3X2.

In each scenario, the six competitors were derived based on the estimating

functionU(β;Y,X) =XVar(Y |X)−1(Y −XTβ), where Var(Y |X) is modeled in

two ways. The first assumes that Var(Y |X) is a constant V1, and the second uses

the true model V2 = θ1+exp(θ2+θ3X1+θ4X2), where θ = (θ1, θ2, θ3, θ4)
T is the

vector of unknown nuisance parameters. To estimate θ, we first calculated the

residual ϵ̃ = Y −XT β̃ for subjects whose outcome was observed, where β̃ is the

IPW estimator based on Ũ(β;Y,X) =X(Y −XTβ) with weight R/π(α0;S,X).

The true value π(S,X) was used here to ensure that β̃ be a consistent estima-

tor of β0. Generally, however, the six competitors cannot take this advantage,

as π(S,X) is usually unknown. We then minimized the least square objective

function
[
log ϵ̃2 − log {θ1 + exp(θ2 + θ3X1 + θ4X2)}

]2
with respect to θ over all

subjects whose residual had been calculated. Here the log transformation was

used to ensure that the estimated value of Var(Y |X) be always positive.

To establish the benchmark for comparisons, we also include an estima-

tor based on the full data. This estimator, IDEAL, is based on U(β;Y,X) =

XV −1
2 (Y −XTβ), where V2 is estimated following a procedure similar to before.

We took sample sizes N = 200 and N = 800. The results are summarized in

Tables 1 and 2, respectively, using 500 replications. For the proposed CEL esti-

mators, the bandwidth was selected by minimizing the cross validation criterion

(2.6).

When only π(S,X) was correctly modeled, we have the following summary

points. (i) All estimators under our comparison had ignorable bias. (ii) The

CEL-IPW estimator had smaller total mean square error (TMSE) than the IPW

estimator, even when the latter was based on the true model for Var(Y |X). (iii)
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Table 1. Comparison of estimators (N = 200). For each estimator, we
report the bias, the empirical standard error (the number in ( )), and the
mean square error (the number in [ ]). For the CEL-AIPW and the CEL-
IPW estimators, the number in { } is the mean of estimated standard error
based on Theorem 3 and Corollary 3, respectively.

correct π(S,X) correct E(Y |S,X) both models correct
estimator β1 β2 β3 β1 β2 β3 β1 β2 β3

IDEAL
-0.01 -0.02 -0.04 -0.01 -0.02 -0.04 -0.01 -0.02 -0.04
(0.29) (0.13) (0.41) (0.29) (0.13) (0.41) (0.29) (0.13) (0.41)
[0.09] [0.02] [0.17] [0.09] [0.02] [0.17] [0.09] [0.02] [0.17]

CEL-IPW

-0.01 0.00 -0.04 -0.49 0.07 -0.12 -0.01 0.00 -0.04
(0.40) (0.22) (0.68) (0.39) (0.21) (0.63) (0.40) (0.22) (0.68)
[0.16] [0.05] [0.47] [0.39] [0.05] [0.41] [0.16] [0.05] [0.47]
{0.40} {0.19} {0.63} {0.38} {0.17} {0.56} {0.40} {0.19} {0.63}

IPW-V1

-0.01 0.00 -0.05 -0.49 0.06 -0.12 -0.01 0.00 -0.05
(0.44) (0.28) (0.76) (0.44) (0.32) (0.76) (0.44) (0.28) (0.76)
[0.19] [0.08] [0.57] [0.43] [0.11] [0.60] [0.19] [0.08] [0.57]

IPW-V2

-0.01 0.00 -0.05 -0.49 0.05 -0.13 -0.01 0.00 -0.05
(0.42) (0.23) (0.70) (0.39) (0.21) (0.60) (0.42) (0.23) (0.70)
[0.17] [0.05] [0.50] [0.39] [0.05] [0.38] [0.17] [0.05] [0.50]

CEL-AIPW

0.01 0.01 -0.07 -0.01 -0.01 -0.02 0.00 -0.02 -0.03
(0.39) (0.23) (0.71) (0.37) (0.18) (0.53) (0.36) (0.18) (0.57)
[0.15] [0.05] [0.51] [0.14] [0.03] [0.29] [0.13] [0.03] [0.33]
{0.41} {0.22} {0.71} {0.36} {0.15} {0.49} {0.36} {0.16} {0.53}

AIPW-V1

0.00 0.00 -0.07 -0.01 -0.01 -0.03 0.00 -0.02 -0.04
(0.44) (0.30) (0.81) (0.42) (0.31) (0.72) (0.41) (0.26) (0.67)
[0.19] [0.09] [0.66] [0.18] [0.10] [0.52] [0.17] [0.07] [0.45]

AIPW-V2

-0.02 -0.02 -0.01 -0.04 -0.02 0.03 -0.05 -0.02 0.03
(1.10) (0.82) (2.25) (0.54) (0.27) (0.96) (0.59) (0.33) (1.17)
[1.20] [0.67] [5.07] [0.29] [0.07] [0.92] [0.35] [0.11] [1.38]

HAN-V1

-0.01 0.00 -0.05 -0.01 -0.02 -0.04 0.00 -0.02 -0.03
(0.44) (0.28) (0.74) (0.44) (0.34) (0.82) (0.41) (0.27) (0.68)
[0.19] [0.08] [0.55] [0.19] [0.12] [0.67] [0.16] [0.07] [0.46]

HAN-V2

0.01 0.02 -0.09 -0.05 -0.02 0.02 -0.04 -0.01 0.03
(0.44) (0.30) (0.77) (0.54) (0.24) (0.97) (0.56) (0.33) (1.13)
[0.20] [0.09] [0.60] [0.29] [0.06] [0.94] [0.32] [0.11] [1.27]

RLSR-V1

- - - 0.00 -0.02 -0.03 0.00 -0.02 -0.02
- - - (0.45) (0.31) (0.75) (0.42) (0.25) (0.63)
- - - [0.20] [0.10] [0.56] [0.18] [0.06] [0.40]

RLSR-V2

- - - -0.05 -0.02 0.05 -0.05 -0.02 0.05
- - - (0.58) (0.25) (1.12) (0.57) (0.24) (1.11)
- - - [0.34] [0.06] [1.26] [0.33] [0.06] [1.23]

CLQ-V1

-0.08 0.04 -0.07 -0.03 -0.02 0.01 0.01 -0.01 -0.04
(1.04) (0.52) (1.47) (1.28) (0.44) (1.82) (0.43) (0.28) (0.72)
[1.09] [0.27] [2.15] [1.63] [0.19] [3.31] [0.19] [0.08] [0.53]

CLQ-V2

-0.02 0.02 -0.11 -0.11 -0.04 0.03 -0.05 -0.01 0.02
(0.64) (0.35) (1.22) (1.49) (0.38) (2.11) (0.73) (0.84) (1.63)
[0.41] [0.12] [1.49] [2.22] [0.15] [4.44] [0.54] [0.70] [2.65]

QZL-V1

0.01 0.04 -0.08 -0.31 -0.45 -0.23 -0.03 -0.03 -0.04
(0.45) (0.32) (0.77) (0.46) (0.31) (0.83) (0.42) (0.30) (0.72)
[0.20] [0.11] [0.60] [0.31] [0.30] [0.74] [0.18] [0.09] [0.51]

QZL-V2

-0.01 0.04 -0.06 -0.20 -0.21 -0.05 -0.03 -0.02 -0.04
(0.43) (0.26) (0.70) (0.59) (0.32) (0.89) (0.36) (0.20) (0.58)
[0.18] [0.07] [0.50] [0.38] [0.15] [0.79] [0.13] [0.04] [0.33]
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Table 2. Comparison of estimators (N=800). For each estimator, we report
the bias, the empirical standard error (the number in ( )), and the mean
square error (the number in [ ]). For the CEL-AIPW and the CEL-IPW
estimators, the number in { } is the mean of estimated standard error based
on Theorem 3 and Corollary 3, respectively.

correct π(S,X) correct E(Y |S,X) both models correct
estimator β1 β2 β3 β1 β2 β3 β1 β2 β3

IDEAL
0.01 0.00 -0.01 0.01 0.00 -0.01 0.01 0.00 -0.01
(0.15) (0.06) (0.19) (0.15) (0.06) (0.19) (0.15) (0.06) (0.19)
[0.02] [0.00] [0.03] [0.02] [0.00] [0.03] [0.02] [0.00] [0.03]

CEL-IPW

0.03 0.00 -0.03 -0.46 0.07 -0.12 0.03 0.00 -0.03
(0.21) (0.11) (0.32) (0.19) (0.10) (0.29) (0.21) (0.11) (0.32)
[0.04] [0.01] [0.10] [0.24] [0.02] [0.10] [0.04] [0.01] [0.10]
{0.20} {0.10} {0.33} {0.19} {0.09} {0.28} {0.20} {0.10} {0.33}

IPW-V1

0.03 0.01 -0.04 -0.46 0.08 -0.12 0.03 0.01 -0.04
(0.23) (0.14) (0.37) (0.22) (0.16) (0.37) (0.23) (0.14) (0.37)
[0.05] [0.02] [0.14] [0.26] [0.03] [0.15] [0.05] [0.02] [0.14]

IPW-V2

0.03 0.00 -0.03 -0.46 0.07 -0.12 0.03 0.00 -0.03
(0.22) (0.12) (0.35) (0.19) (0.10) (0.29) (0.22) (0.12) (0.35)
[0.05] [0.01] [0.12] [0.25] [0.01] [0.10] [0.05] [0.01] [0.12]

CEL-AIPW

0.03 0.01 -0.04 0.02 0.00 -0.02 0.03 0.00 -0.03
(0.20) (0.11) (0.33) (0.18) (0.09) (0.24) (0.18) (0.09) (0.26)
[0.04] [0.01] [0.11] [0.03] [0.01] [0.06] [0.03] [0.01] [0.07]
{0.20} {0.11} {0.35} {0.18} {0.07} {0.23} {0.18} {0.08} {0.25}

AIPW-V1

0.03 0.01 -0.04 0.03 0.01 -0.03 0.03 0.01 -0.03
(0.22) (0.15) (0.38) (0.21) (0.16) (0.35) (0.21) (0.13) (0.33)
[0.05] [0.02] [0.15] [0.05] [0.02] [0.12] [0.04] [0.02] [0.11]

AIPW-V2

0.00 -0.01 -0.01 0.02 0.00 -0.01 0.02 -0.01 -0.03
(0.45) (0.33) (0.45) (0.19) (0.10) (0.28) (0.22) (0.13) (0.43)
[0.21] [0.11] [0.20] [0.04] [0.01] [0.08] [0.05] [0.02] [0.19]

HAN-V1

0.03 0.01 -0.04 0.03 0.01 -0.03 0.03 0.01 -0.03
(0.22) (0.14) (0.36) (0.22) (0.18) (0.40) (0.21) (0.13) (0.33)
[0.05] [0.02] [0.13] [0.05] [0.03] [0.16] [0.04] [0.02] [0.11]

HAN-V2

0.03 0.01 -0.04 0.01 0.00 -0.01 0.01 0.00 -0.01
(0.23) (0.12) (0.37) (0.20) (0.11) (0.30) (0.19) (0.09) (0.27)
[0.05] [0.01] [0.14] [0.04] [0.01] [0.09] [0.04] [0.01] [0.08]

RLSR-V1

- - - 0.03 0.01 -0.03 0.03 0.01 -0.02
- - - (0.22) (0.16) (0.36) (0.21) (0.13) (0.30)
- - - [0.05] [0.03] [0.13] [0.05] [0.02] [0.09]

RLSR-V2

- - - 0.01 0.00 0.00 0.00 0.00 0.01
- - - (0.20) (0.08) (0.28) (0.30) (0.08) (0.29)
- - - [0.04] [0.01] [0.08] [0.09] [0.01] [0.09]

CLQ-V1

0.03 0.00 -0.01 0.02 0.01 -0.02 0.03 0.01 -0.03
(0.31) (0.34) (0.78) (0.27) (0.18) (0.46) (0.21) (0.13) (0.35)
[0.09] [0.11] [0.62] [0.07] [0.03] [0.21] [0.05] [0.02] [0.12]

CLQ-V2

0.02 0.00 -0.04 -0.06 -0.03 0.04 0.00 0.01 0.01
(0.24) (0.18) (0.38) (0.39) (0.21) (0.51) (0.33) (0.18) (0.64)
[0.06] [0.03] [0.15] [0.15] [0.05] [0.26] [0.11] [0.03] [0.41]

QZL-V1

0.03 0.02 -0.04 -0.31 -0.50 -0.26 0.02 0.00 -0.03
(0.22) (0.14) (0.36) (0.25) (0.17) (0.44) (0.21) (0.14) (0.33)
[0.05] [0.02] [0.13] [0.16] [0.28] [0.26] [0.04] [0.02] [0.11]

QZL-V2

0.03 0.02 -0.03 -0.12 -0.13 -0.01 0.01 0.00 -0.02
(0.23) (0.11) (0.35) (0.27) (0.19) (0.34) (0.18) (0.09) (0.25)
[0.05] [0.01] [0.12] [0.08] [0.05] [0.12] [0.03] [0.01] [0.06]
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The CEL-AIPW estimator clearly had smaller TMSE than the AIPW and the

CLQ estimators, and had smaller or similar TMSE compared to the HAN and

the QZL estimators. Since the implementation of the RLSR estimator requires

that the dimension of γ be no smaller than that of β, not satisfied in the current

scenario, the results are not reported.

When only E(Y |S,X) was correctly modeled, we summarize the following

points. (i) The IPW, CEL-IPW, and QZL estimators were clearly biased. In

contrast, the AIPW, CEL-AIPW, HAN and RLSR estimators had ignorable bi-

ases; they are still consistent due to the double robustness property. The CLQ

estimator seemed unbiased, although its double robustness property was not es-

tablished in Chen, Leung, and Qin (2008). (ii) Compared to the other three

doubly robust estimators, the CEL-AIPW estimator had apparent superior per-

formance, judging from its smaller TMSE. When N = 800 and the true model for

Var(Y |X) was used by the AIPW, HAN and RLSR estimators, the CEL-AIPW

estimator still had smaller or similar TMSE.

When both π(S,X) and E(Y |S,X) were correctly modeled, the CEL-AIPW

estimator was the only one that attained the semiparametric efficiency bound

among the estimators under our comparison; from the efficient influence func-

tion (1.4), an estimation procedure needs to explicitly or implicitly estimate

Var{g(β)|X} to achieve the efficiency bound, but the estimators under our com-

parison modeled Var(Y |X) instead. Based on the numerical results, we have the

following summary points. (i) In most cases, the TMSE of the CEL-AIPW esti-

mator was significantly smaller compared to the other estimators. (ii) The HAN

and QZL estimators based on the true model for Var(Y |X) had TMSE similar

to that of the CEL-AIPW estimator when N = 800, although the former two do

not attain the semiparametric efficiency bound. However, such an outstanding

performance may not be achieved in practice, as the true model for Var(Y |X) is

usually unknown. (iii) The CEL-AIPW estimator had smaller TMSE than the

CEL-IPW estimator, since correctly modeling E(Y |S,X) improves efficiency.

The superior performance of the CEL-AIPW estimator does not require one

to model any second moments of the data. For some existing estimators, not only

the efficiency, but also the numerical performance could be affected by model-

ing the second moments and estimating the unknown nuisance parameters. In

the above simulation, with N = 200, the numerical performance of the AIPW,

RLSR and CLQ estimators were worse when the correct model for Var(Y |X)

was used. This observation does not contradict the fact that using the correct

model for Var(Y |X) improves efficiency (when N goes to infinity), but rather

reveals the numerical sensitivity of these three estimators to the estimation of

nuisance parameters. For the special nonlinear structure of Var(Y |X) in our

setting, obtaining an accurate estimate of the nuisance parameters under a small
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sample size with missing data is not easy. This explains why using a constant to

model Var(Y |X) leads to smaller TMSE. When N = 800 so that the nuisance

parameters are better estimated, using the correct model for Var(Y |X) starts to

yield similar or smaller TMSE compared to using the incorrect model.

It is also of interest to observe the numerical evidence on the convergence of

the asymptotic variance estimators given in Theorem 3 and Corollary 3. Con-

vergence is well demonstrated by the comparison across different sample sizes.

WhenN = 200, both estimators had slight underestimation, but this disappeared

when N increaseed to 800.

Since the proposed CEL procedure involves nonparametric calculation of

the weight wij , one important question is whether increasing the number of co-

variates substantially affects the numerical performance. To assess this impact,

we conducted the following simulation experiment. The simulation model in-

volved four covariates, X1 ∼ N (0, 22), X2 ∼ Bernoulli(0.5), X3 ∼ N (0, 12),

and X4 ∼ N (0, 12). The auxiliary variable was generated by S = 1 + X1 +

X2 + X3 + X4 + ϵS with ϵS ∼ N (0, 22), and the outcome Y was generated as

Y = 1 + S + 0.6X1 + 2X2 + 0.5X3 + 0.5X4 + ϵY , where ϵY ∼ N (0, σ2
Y ) with

σ2
Y = exp(0.92 + 0.8X1 + 0.4X2). For this model, Y |X had a Normal distri-

bution with mean E(Y |X) = 2 + 1.6X1 + 3X2 + 1.5X3 + 1.5X4 and variance

Var(Y |X) = 4 + exp(0.92 + 0.8X1 + 0.4X2). The missingness mechanism was

set to be logit {π(S,X)} = 0.5 − 0.2S + 0.6X1 − 0.2X2 + 0.2X3 + 0.2X4, un-

der which approximately 48% of subjects had missing Y in the generated data.

Compared to the previous simulation model, this new model had two extra con-

tinuous covariates X3 and X4, and had β0 = (β1, · · · , β5)T = (2, 1.6, 3, 1.5, 1.5)T ,

α0 = (0.5,−0.2, 0.6,−0.2, 0.2, 0.2)T , and γ0 = (1, 1, 0.6, 2, 0.5, 0.5)T . When

π(S,X) or E(Y |S,X) was incorrectly modeled, they were incorrectly mod-

eled as before. The numerical performance of β̂AIPW is summarized in Ta-

ble 3 using 500 replications. The bandwidth was again selected by minimizing

the cross validation criterion (2.6). The infeasible AIPW estimator based on

U(β;Y,X) =XVar(Y |X)−1(Y −XTβ), where Var(Y |X) was given by its true

value 4 + exp(0.92 + 0.8X1 + 0.4X2), is included for comparison and is denoted

by AIPWinf . From Table 3, an increase in the number of covariates does not

seem to have a dramatic impact on the numerical performance of β̂AIPW .

5. Data Application

We applied the proposed method to an intervention study for adolescent chil-

dren of parents with HIV (Rotheram-Borus et al. (2004)). In this study, a total of

307 parents having HIV, with adolescent children, were recruited from the Divi-

sion of AIDS Services in New York City, and 423 adolescents from these families

were eligible for study participation. After recruitment, each parent and each
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Table 3. Numerical results for the model containing four covariates. For
each estimator, we report the bias, the empirical standard error (the num-
ber in ( )), and the mean square error (the number in [ ]).

N = 200 N = 800
estimator β1 β2 β3 β4 β5 β1 β2 β3 β4 β5

correct π(S,X)

AIPWinf

0.02 -0.01 -0.08 0.00 -0.04 0.00 0.01 -0.02 -0.01 0.00
(0.54) (0.40) (1.01) (0.55) (0.55) (0.25) (0.17) (0.45) (0.25) (0.26)
[0.29] [0.16] [1.02] [0.30] [0.30] [0.06] [0.03] [0.20] [0.06] [0.07]

CEL-AIPW
0.02 0.01 -0.06 -0.03 -0.01 0.00 0.01 -0.02 -0.01 0.00
(0.43) (0.26) (0.76) (0.40) (0.39) (0.21) (0.12) (0.36) (0.19) (0.20)
[0.19] [0.07] [0.58] [0.16] [0.15] [0.05] [0.02] [0.13] [0.04] [0.04]

correct E(Y |S,X)

AIPWinf

-0.01 0.00 0.01 0.01 0.01 -0.01 0.00 0.00 0.00 0.00
(0.37) (0.21) (0.57) (0.28) (0.28) (0.18) (0.10) (0.25) (0.12) (0.12)
[0.14] [0.05] [0.32] [0.08] [0.08] [0.03] [0.01] [0.06] [0.01] [0.02]

CEL-AIPW
-0.01 -0.01 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.01
(0.37) (0.23) (0.62) (0.33) (0.31) (0.19) (0.10) (0.27) (0.15) (0.15)
[0.14] [0.05] [0.39] [0.11] [0.10] [0.04] [0.01] [0.07] [0.02] [0.02]

both models correct

AIPWinf

-0.01 0.00 0.01 0.03 0.02 0.00 0.00 0.00 0.00 0.00
(0.38) (0.22) (0.59) (0.28) (0.29) (0.17) (0.07) (0.24) (0.11) (0.11)
[0.14] [0.05] [0.35] [0.08] [0.09] [0.03] [0.01] [0.06] [0.01] [0.01]

CEL-AIPW
-0.01 0.00 0.00 0.02 0.02 0.00 0.00 0.00 0.01 0.01
(0.37) (0.21) (0.60) (0.30) (0.30) (0.18) (0.09) (0.25) (0.13) (0.13)
[0.14] [0.04] [0.36] [0.09] [0.09] [0.03] [0.01] [0.06] [0.02] [0.02]

adolescent received a baseline interview, which collected information on back-

ground characteristics as well as the measurements for adolescent assessment,

such as emotional distress and somatic symptoms. At the end of the baseline

interview, participant families were randomly assigned either to the intervention

arm or to the control arm. The intervention in this study was designed using

social learning theory and cognitive-behavioral principles (Bandura (1994)). De-

pending on the parents’ phase of illness, families received the intervention in 3

different modules, which covered different aspects of information on the tasks for

either parents or adolescents. The researchers followed up on the participants

every 3 months for the first 2 years and every 6 months thereafter, until the

end of 6 years. At each follow-up, measurements for adolescent assessment were

collected.

In our analysis we used a subset of the data that contains the assessments

on adolescents’ emotional distress, which were collected using the Brief Symp-

tom Inventory (BSI). BSI is a commonly used psychological survey consisting

of 53 items that belong to 9 sub-groups. Each item is associated with a psy-

chiatric symptom and has a 0-to-4 rate scale. Subjects report values to each

item according to the level that they have been troubled by the correspond-

ing symptom in the past week, with 0 meaning “having not been troubled

at all” and 4 meaning “having been troubled a lot”. One scientifically in-
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teresting question is whether having parents with HIV has disparate impacts

on the emotional distress between boys and girls during the delivery of inter-

vention. Such a gender disparity, if it exists, may suggest the need for the

development of gender-specific interventions that could result in more benefi-

cial achievement. We try to answer this question using data collected at the

end of the first year of intervention. The data are downloaded from “http:

//rem.ph.ucla.edu/rob/mld/data/tabdelimiteddata/bsitotal.txt”, and a

detailed description about the data can be found in Weiss (2005).

The outcome variable is the global severity index, which is the average rating

score over all 53 items. Due to the skewed distribution of the global severity index

and the possibility of occurrence of value 0, following the analysis instruction in

Weiss (2005), we created a new outcome gsi by adding a small constant 1/53

to the global severity index and then taking the log-transformation with base 2.

We assumed

gsi = β1 + β2age+ β3girl + β4int+ ϵ,

where age is the age of adolescent at the end of the first year of intervention,

girl is gender indicator with girl = 0 for boys and girl = 1 for girls, int is the

intervention indicator with int = 0 for the control arm and int = 1 for the in-

tervention arm, and ϵ is the error term that has mean 0 conditional on all three

covariates. However, scores on gsi are only available for about half of the adoles-

cents at the end of the first year. On the other hand, almost all adolescents have

their baseline gsi score observed. Therefore, we treated the baseline gsi, denoted

by bgsi, as an auxiliary variable. To better model the missingness mechanism, we

created two dummy variables, namely winter and summer, as indicators for the

season (winter indicates November through February, summer indicates July

through October, and the rest time of the calendar year is treated as the refer-

ence) when the measurements at the end of the first year were taken. These two

dummy variables were considered as extra auxiliary variables. After removing

adolescents who did not have scores on bgsi, we ended up with N = 420 subjects,

204 of whom did not have a score on gsi (the missing data proportion was 49%).

There were in total 221 girls and 199 boys, and 211 were in the intervention

arm and 209 were in the control arm. The average age was 16 years old, with a

standard deviation 2 years.

To model the missingness mechanism, we fit a logistic regression model, and

the results are presented in Table 4. It is seen there that having higher score on

bgsi significantly increases the probability of missing the interview conducted at

the end of the first year. The season when the interview was conducted also plays

a significant role, in the sense that subjects are more likely to take the interview

during winter and summer seasons compared to the rest time of the year. A

linear regression was employed to model E(Y |S,X).

http://rem.ph.ucla.edu/rob/mld/data/tabdelimiteddata/bsitotal.txt
http://rem.ph.ucla.edu/rob/mld/data/tabdelimiteddata/bsitotal.txt
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Table 4. Results of modeling the missingness mechanism for the intervention
study data (N = 420).

est se z-value p-value
constant 0.473 0.819 0.578 0.564

bgsi -0.148 0.064 -2.316 0.021
winter 0.830 0.244 3.396 0.001
summer 0.513 0.245 2.089 0.037

age -0.067 0.049 -1.353 0.176
girl 0.042 0.204 0.206 0.837
int 0.165 0.201 0.818 0.413

est: estimated value; se: standard error.

Table 5. Analysis results for the intervention study data (N = 420).

CEL-AIPW complete-case analysis IPW AIPW

est se p-value est se p-value est se p-value est se p-value

constant -5.531 1.098 < 0.000 -5.231 1.195 < 0.000 -5.476 1.220 < 0.000 -5.538 1.103 < 0.000

age 0.164 0.066 0.013 0.139 0.071 0.053 0.169 0.073 0.021 0.165 0.067 0.014

girl 0.745 0.265 0.005 0.634 0.294 0.032 0.627 0.295 0.034 0.734 0.266 0.006

int 0.277 0.266 0.297 0.200 0.296 0.500 0.175 0.297 0.556 0.267 0.267 0.317

est: estimated value; se: standard error.

Table 5 contains the final results of our analysis. The bandwidth was selected

by minimizing the cross validation criterion (2.6). To make comparisons, we also

include the results based on the complete-case analysis, the IPW and the AIPW

estimators, for which a constant variance was used in the estimating functions.

All methods conclude that gender had a significant effect on the global severity

index, whereas the intervention did not. The age effect was significant based

on the CEL-AIPW, the IPW and the AIPW methods, but was only marginally

significant based on the complete-case analysis. The CEL-AIPW and the AIPW

estimators produced very similar estimate for each covariate effect. On average,

one year increase in age led to a 20.164 − 1 = 12% increase in the global severity

index, and girls had their global severity index 20.745−1 = 68% higher than boys,

where each effect was interpreted by holding all the others fixed. Having parents

with HIV has different impacts on the emotional distress between boys and girls

during the delivery of intervention, at least after one year of the delivery.

6. Discussion

We have investigated the CEL method for mean regression analysis when

the outcome is missing at random, and studied the asymptotic properties of the

CEL-IPW and the CEL-AIPW estimators. Our method does not model any

second moments of the data distribution. As a result, achieving semiparametric
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efficiency only requires the correct modeling of the missingness mechanism and
the mean of the outcome.

Many researchers have focused on improving the efficiency of the AIPW
estimator when only the missingness mechanism is correctly modeled. Most
recent developments are under the setting of estimating the population mean of
a variable that is missing at random. One idea is that (e.g., Tan (2006, 2008,
2010); Wang, Rotnitzky, and Lin (2010); Han (2012)), instead of simply taking
the difference of the two terms in (1.3), one could use the residual of the projection
of the first term on the second. Intuitively, the resulting estimator should be more
efficient than the one based on the difference, the AIPW estimator. However,
directly using the residual of the projection leads to an estimator without the
double robustness property. For estimation of the population mean, Tan (2006,
2008, 2010) proposed a modification to the projection coefficient so that the
resulting estimator is also doubly robust. Wang, Rotnitzky, and Lin (2010) and
Han (2012) applied Tan’s idea to the settings of nonparametric regression and
estimating equations, respectively. The same idea can be applied to the CEL
based estimation. Let

gκ̂(β, α̂, γ̂)=
R

π(α̂;S,X)

{
Y − µ(XTβ)

}
−κ̂(β, α̂, γ̂)

R− π(α̂;S,X)

π(α̂;S,X)

{
h(γ̂;S,X)− µ(XTβ)

}
,

where

κ̂(β, α̂, γ̂)=
Ê
[

R
π(α̂;S,X)

R−π(α̂;S,X)
π(α̂;S,X)

{
Y −µ(XTβ)

}{
h(γ̂;S,X)−µ(XTβ)

}
|X
]

Ê
[

R
π(α̂;S,X)

1−π(α̂;S,X)
π(α̂;S,X) {h(γ̂;S,X)− µ(XTβ)}2 |X

]
and Ê(·|X) is a consistent estimator of E(·|X). A new CEL-based estimator,
CEL-AIPW-N, can be defined by using gκ̂(β, α̂, γ̂) instead of g(β, α̂, γ̂). When
α∗ = α0, it is easy to show that E{gκ(β0,α0,γ∗)|X} = 0, where gκ is gκ̂

by replacing κ̂(β, α̂, γ̂) with κ(β,α0,γ∗), and κ is κ̂ by replacing Ê(·|X) with
E(·|X). When γ∗ = γ0, it is easy to show that the numerator and denominator
of κ(β,α∗,γ0) are equal, and thus κ(β,α∗,γ0) = 1. Therefore, when γ∗ = γ0,
we have E{gκ(β0,α∗,γ0)|X} = 0. These facts guarantee the double robustness
and local efficiency of the CEL-AIPW-N estimator. When α∗ = α0, it is easy to
show that the denominator of κ(β,α0,γ∗) is

E

([
R− π(α0;S,X)

π(α0;S,X)

{
h(γ∗;S,X)− µ(XTβ)

}]2
|X

)
,

and thus gκ̂(β, α̂, γ̂) is the sample version of

gκ(β,α0,γ∗) =
R

π
{Y − µ(β)}
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−
E
[
R
π

R−π
π {Y −µ(β)}{h(γ∗)−µ(β)} |X

]
E
([

R−π
π {h(γ∗)− µ(β)}

]2 |X) R−π

π
{h(γ∗)−µ(β)} ,

the residual of the projection of the first term in g(β,α0,γ∗) on the second

term conditional on X. The asymptotic distribution of the CEL-AIPW-N esti-

mator follows from Theorem 2 with α∗ = α0 and g(β0,α0,γ∗) substituted by

gκ(β0,α0,γ∗). Due to the projection structure of gκ(β0,α0,γ∗), the asymptotic

variance of the CEL-AIPW-N estimator is no larger than that of the CEL-AIPW

estimator when α∗ = α0. When γ∗ = γ0 as well, since κ(β,α∗,γ0) = 1, both

estimators achieve the semiparametric efficiency bound. Despite its efficiency

gain, the implementation of the CEL-AIPW-N estimator is difficult due to the

extra term κ̂(β, α̂, γ̂), which involves not only conditional expectations, but also

the unknown parameter β.

Another idea to improve the efficiency of the AIPW estimator when only the

missingness mechanism is correctly modeled is that (e.g., Rubin and van der Laan

(2008); Tan (2008); Cao, Tsiatis, and Davidian (2009)), instead of using γ̂ that

solves (2.3) based on complete-case analysis, one treats the asymptotic variance

of the AIPW estimator as a function of γ and use the value γ̂ that minimizes this

function. The minimization is straightforwardly defined only when the parameter

of interest is a scalar, such as in the setting of estimating the population mean,

since only in this case is the asymptotic variance a scalar. In our setting, the

asymptotic variance is a complicated matrix of functions of γ, and the application

and implementation of this idea is difficult, if not infeasible.

The proposed CEL method enjoys high estimation efficiency when moderate

to high level of heteroscedasticity exists, especially when the heteroscedasticity

is hard to model. When homoscedasticity is a more reasonable assumption, the

proposed estimators may not outperform existing ones, such as the IPW or the

AIPW estimators, due to the nonparametric nature. In many practical studies

the main interest is to estimate the effect of one particular covariate adjusting

for a few others. In this case the number of covariates is not very large, and

the proposed method provides a useful alternative for efficiency improvement,

especially if there exists unknown and hard-to-model heteroscedasticity. Our

simulation results showed that the numerical performance of the proposed esti-

mators is reasonable with several covariates. The cross-validation criterion for

bandwidth selection is easy to implement, and numerical results in both Kita-

mura, Tripathi, and Ahn (2004) and our paper demonstrated the insensitivity of

the proposed estimators to bandwidth selection. When the number of covariates

is large, the proposed method will suffer from the curse of dimensionality, which

exists for most nonparametric estimation procedures. The current theory of CEL

was established based on weights calculated from the Kernel method. Whether
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some other forms of weights, such as weights calculated based on splines, can

lead to the same theoretical results is a challenging research topic, and deserves

future investigation.
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Appendix

Let B, A, G, and X denote the domain of β, α, γ, and X respec-

tively. Let B0 ⊆ B be some closed ball around β0, and take Gα(β,α,γ) =

E {∂g(β,α,γ)/∂α|X}.

Assumption.

(i) (i) B, A, G, and X are compact.

(ii) µ(·), π(α), and h(γ) are continuously differentiable.

(iii)For any β ̸= β0, there exists Xβ,α∗,γ∗ ⊆ X such that P (x ∈ Xβ,α∗,γ∗) > 0

and E {g(β,α∗,γ∗)|X = x} ̸= 0 for every x ∈ Xβ,α∗,γ∗ .

(iv)E
{
supβ,α,γ |g(β,α,γ)|m

}
< ∞ for some m ≥ 8.

(v) 0 < infX,β∈B0,α,γ V (β,α,γ) ≤ supX,β∈B0,α,γ V (β,α,γ) < ∞, where

V (β,α,γ) = E
{
g(β,α,γ)2|X

}
.

(vi) bN → 0, N1−2ν−2/mb2qN → ∞, and N1−2νb
5q/2
N → ∞ as N → ∞, where

ν ∈ (0, 1/2), m ≥ 8, and q is the dimension of Xc.

(vii)| λ̂i |≤ cN−1/m for some c > 0.

Compactness of the parameter space in (i) is commonly imposed in large

sample theory (e.g., Newey and McFadden (1994)). Differentiability in (ii) usu-

ally holds for the models used in practice. Assumption (iii) pertains to the

identifiability of β0. Assumption (iv) is to ensure the uniform weak law of large

numbers (e.g., Newey and McFadden (1994)). Assumption (v) guarantees that

the variance-covariance matrix of the AIPW residual is invertible in a neighbor-

hood of β0. The restrictions on bN in (vi) follow those in Smith (2007); here the

parameter v ∈ (0, 1/2) appears due to the uniform convergence rate for kernel

estimator (Kitamura, Tripathi, and Ahn (2004)). Assumption (vii) is similar to
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Assumption 3.6 in Kitamura, Tripathi, and Ahn (2004), and can be established

under some more elementary conditions (Lemma B.1 in Kitamura, Tripathi, and

Ahn (2004)).

In the following proofs, we suppress the subscript “AIPW”. Some technical

details can be filled in by following the proofs in Kitamura, Tripathi, and Ahn

(2004).

Proof of Theorem 1. With

H(β, α̂, γ̂) = − 1

N

N∑
i=1

N∑
j=1

wij log
{
1 + λ̂i(β, α̂, γ̂)gj(β, α̂, γ̂)

}
,

β̂AIPW is the maximizer of H(β, α̂, γ̂). It can be shown that N1/mH(β, α̂, γ̂) ≤
F (β, α̂, γ̂) + op(1) for any β ∈ B, where

F (β,α,γ) = −E

[
| E {g(β,α,γ)|X} |2

1+ | E {g(β,α,γ)|X} |

]
is continuous with respect to β, α and γ. Therefore,

N1/mH(β, α̂, γ̂) ≤ F (β,α∗,γ∗) + op(1) for any β ∈ B. (A.1)

On the other hand, from Assumption (iii), for any β ̸= β0, we have

F (β,α∗,γ∗) ≤ −E

[
I(X ∈ Xβ,α∗,γ∗)

| E {g(β,α,γ)|X} |2

1+ | E {g(β,α,γ)|X} |

]
< 0.

Hence, from (A.1), the continuity of F (β,α∗,γ∗) and the compactness of B, for
any δ > 0, there exists C(δ) > 0, such that

sup
β∈B/B(β0,δ)

N1/mH(β, α̂, γ̂) ≤ sup
β∈B/B(β0,δ)

F (β,α∗,γ∗) + op(1) ≤ −C(δ) + op(1),

(A.2)

where B(β0, δ) is the ball centering at β0 with radius δ.

Assumption (vi) and (B.4) in Kitamura, Tripathi, and Ahn (2004) lead to

max1≤i≤N λ̂i(β0, α̂, γ̂) = op(N
−1/m) if either α∗ = α0 or γ∗ = γ0. Therefore,

since

H(β0, α̂, γ̂) ≥ − 1

N

N∑
i=1

{
λ̂i(β0, α̂, γ̂)

N∑
j=1

wijgj(β0, α̂, γ̂)

}
,

we have N1/mJ(β0, α̂, γ̂) ≥ op(1). This, together with (A.2), gives the consis-

tency of β̂AIPW .

Proof of Theorem 2. Taking the Taylor expansion of ∂L(β̂AIPW , α̂, γ̂)/∂βT =

0 around β0 gives
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√
N(β̂AIPW − β0) =

{
− 1

N

∂2L(β̃, α̂, γ̂)

∂β∂βT

}−1{ 1√
N

∂L(β0, α̂, γ̂)

∂βT

}
,

where β̃ is some point between β̂AIPW and β0. Following the proofs of Lemma

C.1, (A.14), and (B.7) in Kitamura, Tripathi, and Ahn (2004) we have

− 1

N

∂2L(β̃, α̂, γ̂)

∂β∂βT

p−→ I(β0,α∗,γ∗),

1√
N

∂L(β0, α̂, γ̂)

∂βT

=
1√
N

N∑
i=1

Qi(β0,α∗,γ∗)

+E

{
∂µ(XTβ0)

∂βT
V (β0,α∗,γ∗)

−1Gα(β0,α∗,γ∗)

}√
N(α̂−α∗)

+E

{
∂µ(XTβ0)

∂βT
V (β0,α∗,γ∗)

−1Gγ(β0,α∗,γ∗)

}√
N(γ̂ − γ∗) + op(1).

When α∗ = α0,

Gγ(β0,α0,γ∗) = E

[
E

{
−R− π(α0)

π(α0)

∂h(γ∗)

∂γ
|X,S

}
|X
]
= 0,

and when γ∗ = γ0,

Gα(β0,α∗,γ0) = E

{
E

[
− R

π(α∗)2
∂π(α∗)

∂α
{Y − h(γ0)} |X,S

]
|X
}

= 0.

Combining all these facts together with the linear expansion (3.1) and (3.2) and

the information equalities Gα(β0,α0,γ∗) = −E{g(β0,α0,γ∗)ψ(α0)
T | X} and

E{∂ψ(α0)/∂α} = −E{ψ(α0)ψ(α0)
T }, the Central Limit Theorem gives the

desired results.

Proof of Theorem 3. Following the proof of Lemma D.2 in Kitamura, Tripathi,

and Ahn (2004), we have max1≤i≤N supβ∈B0
|gi(β, α̂, γ̂)| = op(N

1/m). Then

Assumption (vii) leads to max1≤i,j≤N supβ∈B0
|λ̂igj(β, α̂, γ̂)| = op(1). Therefore

pij(β, α̂, γ̂) = wij {1 + op(1)}, and the op(1) term is independent of i, j and β.

This fact, together with the Weak Law of Large Numbers, gives the results.
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