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Abstract: Statistical inference for high-dimensional regression models is a challeng-

ing problem. Existing methods focus on inference for finite-dimensional components

of the model parameters. Constructing the parameter estimators and establishing

the asymptotic inference are specific to each model. In this study, we treat a

high-dimensional model as a special case of a semiparametric model. We propose a

general framework for constructing one-step regularized estimators for any smooth

functional of high-dimensional parameters, which can be viewed as an extension

of the one-step efficient estimator for semiparametric models to an M-estimation

in the high-dimensional model setting. We show that the proposed estimator is

asymptotically normal under some general regularity conditions. We apply the

proposed method to an inference for the coefficients in a high-dimensional lasso

regression, and to determine the l2-norm of the functional coefficients in a high-

dimensional additive model, allowing the number of covariates to grow exponentially

with the sample size. A simulation study and a microarray data example are

presented to demonstrate the performance of the proposed method.

Key words and phrases: Confidence intervals, high-dimension regression, M-

estimation, one-step regularized estimators, semiparametric model.

1. Introduction

In high-dimensional regression models, the logarithm of the number of

covariates can grow at a polynomial rate as the sample size increases, and

many statistical methods have been developed for both model prediction and

variable selection. For linear models, a regularized or penalized least-square

estimation is widely used to handle high-dimensional covariates. Examples

include the least absolute shrinkage and selection operator (lasso) (Tibshirani

(1996)), smoothly clipped absolute deviation (SCAD) (Fan and Li (2001)),

and minimax concave penalty (MCP) (Zhang (2010)). Theoretical properties

on the oracle properties of variable selection are given for lasso estimators in

Meinshausen and Bühlmann (2006), Zhao and Yu (2006), and Wainwright (2009),

and later established in Fan and Lv (2011) and Bradic, Fan and Wang (2011)
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for a general concave penalty. The oracle properties of variable selection are also

obtained by van de Geer (2008) for high-dimensional generalized linear models,

and by Huang, Horowitz and Wei (2010) for nonparametric additive models

(NAMs) in a high-dimensional setting. However, statistical inference for high-

dimensional regression models remains a challenging problem, and traditional

inference results may not hold for high-dimensional estimators. For example, it

has been shown that the lasso estimator is not root-n consistent (Candes and

Tao (2007); Zhang and Huang (2008); Bühlmann and van de Geer (2011)). It is

also well known that no post-selection estimators are locally regular estimators.

Knight and Fu (2000) point out that, even in a low-dimensional case, the

asymptotic distribution of the lasso estimator is not normal, and Chatterjee and

Lahiri (2010) show that an inference based on bootstrap methods may fail.

A growing number of studies are trying to determine how to obtain a correct

inference in high-dimensional regression models. Some methods propos modified

bootstrap procedures for inference (Chatterjee and Lahiri (2011); Dezeure,

Bühlmann and Zhang (2017)) or focus on conditional inference post-selection

(Lockhart et al. (2014); Taylor et al. (2014); Lee et al. (2016); Yang et al.

(2016)). Belloni, Chernozhukov and Hansen (2014) introduce post-selection to

structural and treatment effects, which they refer to as “double selection”, and

Kozbur (2020) extend this to an additive model. As an alternative, some methods

propose improving existing estimators to yield a regular inference asymptotically.

For example, Zhang and Zhang (2014) propose a low-dimensional projection

approach to obtain the confidence intervals for finite-dimensional parameters in a

high-dimensional linear model. The key idea is to project model-based residuals

onto the linear space of the covariates with coefficients that were not of interest

for inference, and then to remove this projection from the initial estimators.

This procedure, called “debiasing”, obtains a new estimator that is locally

regular and asymptotically normal. Since then, this idea has been used in many

high-dimensional settings to obtain valid confidence intervals for prespecified

parameters of interest, with different ways of constructing the projections. van de

Geer et al. (2014) study a debiased estimator for high-dimensional generalized

linear models with a convex loss function. Ren et al. (2015) extend this idea to

a Gaussian graphical model, and Ning and Liu (2017) propose a de-correlated

score function, in the same spirit as debiasing, with a Dantzig-type estimator

to handle more general likelihood functions with high-dimensional parameters.

Other extensions include significance tests for a finite-dimensional subset of the

model parameters, under constraints (Yu, Gupta and Kolar (2019)), statistical

inference based on post-selection for partial linear models (Fei et al. (2019)),

debiased estimators for high-dimensional graph-based linear models (Wang and

Loh (2020)), and combining a bootstrap with debiased lasso estimators (Zhang

and Cheng (2017)), thus improving the estimation of single component in high-

dimensional additive models with a debiased modification (Gregory, Mammen
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and Wahl (2016)). Chernozhukov, Hansen and Spindler (2015) introduce an

orthogonal estimating equation for inference on a single component of high-

dimensional parameters. Chernozhukov et al. (2016) give a general construction

of moment functions for the generalized method of moments (GMM). More

recently, Chernozhukov et al. (2018) considered a debiased estimation based on

a Neyman orthogonal score function for treatment effect estimation. Bach et al.

(2020) use an orthogonal score function to obtain confidence bands for a single

component in additive models. Lu, Kolar and Liu (2020) combine this idea with

kernel estimation, and propose a kernel-sieve hybrid regression estimator. These

methods all focus on inference for one or a finite number of coefficients in high-

dimensional regression models. Furthermore, the construction of the debiasing

methods is specific to each model. However, there is no general guidance on how

to obtain asymptotically regular estimators for a finite-dimensional functional

of the parameters (finite-dimensional components are special finite-dimensional

functionals) in general high-dimensional regression models.

In this study, we fill this gap by providing a general theory and framework for

performing an inference for any smooth functionals of the parameters in a high-

dimensional regression setting. Specifically, we cast high-dimensional regression

models as a special case of general semiparametric models, which allow the

parameters to be of infinite dimension. An estimation for a high-dimensional

model based on, for instance, a penalized least-squares or likelihood, is essentially

a special type of constrained or sieve M-estimation in the semiparametric context,

which has been studied extensively (e.g., Geman and Hwang (1982); Newey and

Powell (2003); Chen (2007); Chen and Shen (1998); Shen and Wong (1994)).

Furthermore, an inference for one particular coefficient in high-dimensional

models is equivalent to inference for some smooth functional of the parameters in

semiparametric models. From this point of view, we propose a general one-step

regularized estimator (OSRE) based on semiparametric efficiency theory, with an

extension from likelihood-based estimation to more general M-estimation. The

proposed estimator reduces to commonly used debiased estimators under high-

dimensional linear models and a decorrelated score function. It is also equivalent

to a linear approximation of the Neyman orthogonal score function proposed by

Chernozhukov et al. (2018).

The main contribution of this work is that we provide general regularity

conditions to show that the proposed estimators have an asymptotically linear

expansion, so that the distributions are locally regular and asymptotically normal.

This leads to a unified approach for testing a high-dimensional regression model

using a one-step regularization. As an additional contribution, using a high-

dimensional linear model and a NAM as examples, we show that our proposed

estimators lead to correct inference for some functionals of the parameters, for

example, the total sum of the squared coefficients in the linear model, and the

l2-norm of one functional component in the additive model, even if the dimension
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of the covariates is power-exponential of the sample size. To the best of our

knowledge, our study is the first to obtain such results for these models. Similarly,

this kind of extension can be extended to other cases, making traditional debiased

methods more general.

2. Method

2.1. General M-estimation setup

We assume that the data consist of n independent and identically distributed

(i.i.d.) observations, Z
(n)
i = (X

(n)
i , Yi), for i = 1, . . . , n, where X(n) denotes pn-

dimensional covariates, Y denotes the outcome of interest, and Z(n) follows a

probability measure P n in Rpn+1. We let Z(n) be the support of Z
(n)
i . Here, P n,

X(n) and Z(n) may vary with the sample size n, but to simplify the notation,

we write P for P n, X for X(n), and Z for Z(n) in the remainder of this

work. For all high-dimensional regression problems, the main goal is to find

a prediction function, f(X), for the outcome Y . The true optimal prediction

function, denoted by fn0, maximizes the expectation of some objective function

indexed by f , denoted as m(Z, f), and is assumed to be unique. That is,

P {m(Z, fn0)} > P {m(Z, f)}, for all f(X) ̸= fn0(X), with nonzero probability.

For our method, we assume that fn0 belongs to a known space Fn that is a Hilbert

space consisting of measurable functions of Z equipped with the inner product

⟨·, ·⟩n and the norm ∥ · ∥(n).
In high-dimensional regression settings, when pn is larger than n, estimating

fn0 is usually performed by maximizing a regularized empirical version of the

objective function, which is Pn {m(Z, f)} minus a penalty function of f . Here,

Pn denotes the empirical measure based on n observations. Such an estimation

is equivalent to maximizing Pn {m(Z, f)} in a constrained set for f . Hence, we

consider the estimation problem in high-dimensional regression problems as a

constrained M-estimation, that is,

f̂n ≡ max
f∈Fns

Pnm(Z, f),

where Fns is the constrained set in Fn. The resulting estimator, f̂n, is called the

sieve estimator of the M-estimation in the semiparametric context.

As an example, in a linear model, f is a linear combination of X (including

a constant) and m(Z, f) = −(Y − f(X))2/2. Moreover, Fn consists of all linear

functions of X in L2(P ) with the same inner product inherited from the L2(P )

space. When the lasso is used for estimation, the constrained set Fns contains

all functions in Fn with coefficients that have an l1-norm bounded by a constant.

In a generalized linear model, everything is the same, except that m(·, f) is from
the log-likelihood function given by the model. In another example of a high-

dimensional NAM studied in Huang, Horowitz and Wei (2010), f is a summation
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of univariate functions for each variable in X, and Fn is the subspace of such

functions in L2(P ). When constructing their estimator, they restrict f to the

constrained set Fns, which is a linear space of univariate spline bases in which

the coefficients of these bases have a bounded l1-norm.

2.2. The OSRE

Our goal is to make an inference for a finite-dimensional functional of fn0
based on f̂n, defined as θn0 ≡ Fn(fn0). To introduce our proposed one-step

regularized approach, we first assume the following conditions:

A.1 Assume that Fn has a continuous Hadamard derivative at fn0, which

is assumed to be in the interior of Fn, denoted as ∇Fn(fn0), and its

Hadamard derivative in the direction v ∈ Fn is defined as

∇Fn(fn0)[v] =
∂Fn(fn0 + τv)

∂τ

∣∣∣
τ=0

.

A.2 Assume thatm(Z, f) has a second-order Hadamard derivative at fn0 ∈ Fn,

denoted by ∇2m(Z, fn0), which is a bounded bilinear operator, defined as

P
{
∇2m(Z, fn0)[h1, h2]

}
= P

{
∂ [∇m(Z, fn0 + τh2)[h1]]

∂τ

∣∣∣∣∣
τ=0

}
,

for h1, h2 ∈ Fn.

A.3 Define

Nfn,ϵ = {g ∈ Fn : d(n)(g, fn) ≤ ϵ}, for fn ∈ Fn,

which is the neighborhood of fn. Let V(n) be the closed linear span of

{f − fn0 : f ∈ Nfn,ϵ}. We assume that there exists h∗
n ∈ Fn such that

P
{
∇2m(Z, fn0)[h

∗
n, v]

}
= ⟨v∗n, v⟩(n) , for all v ∈ V(n), (2.1)

where v∗n ∈ V(n) is the Riesz representor satisfying∇Fn(fn0)[v] = ⟨v∗n, v⟩(n) ,
for all v ∈ V(n), and it exists and is unique , from Condition A.1. Note

that h∗
n and v∗n have the same number of components as the dimension

of θn. The inner product is the summed inner product between each

component pair.

Remark 1. Conditions A.1 and A.2 both require smoothness of the objective

functional and functional parameter of interest. Condition A.3 is the key as-

sumption for developing our proposed estimators. From the Riesz representation

theorem, P {∇2m(Z, fn0)[h
∗
n, v]} can be written as ⟨Mn[h

∗
n], v⟩n, for some linear

operator Mn. Thus, Condition A.3 is equivalent to the invertibility of Mn, and

h∗
n is given as M−1

n ∇F(fn0). The direction h
∗
n is an analogue to the least favorable
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direction in a semiparametric likelihood inference, where the m-function is the

log-likelihood function andMn corresponds to the negative information operator.

For additional details about the connection between our proposed method and

semiparametric models, see Section S1 in the Supplementary Material.

We now introduce the OSRE. Supposing d(n)(f̂n, fn0) converges to zero in

probability, we have

Fn(f̂n)− Fn(fn0) =
〈
v∗n, f̂n − fn0

〉
(n)

+Op

(
d2(n)(f̂n, fn0)

)
. (2.2)

Because fn0 maximizes P{m(Z, f)}, we have P{∇m(Z, fn0)[h]} = 0 and

Condition A.2,

P
{
∇m(Z, f̂n)[h]

}
= P

{
∇m(Z, f̂n)[h]

}
− P {∇m(Z, fn0)[h]}

= P
{
∇2m(Z, fn0)[h, f̂n − fn0]

}
+Op

(
d2(n)(f̂n, fn0)

)
for any h ∈ Fn. In particular, we choose h = h∗

n satisfying (2.1), as given in

Condition A.3. Thus, from (2.2), we conclude

Fn(fn0) = Fn(f̂n)− P
{
∇m(Z, f̂n)[h

∗
n]
}
+Op

(
d2(n)(f̂n, fn0)

)
.

The last term on the right-hand side of the equation is of order d2(n)(f̂n, fn0).

Therefore, the second term on the right-hand side, P{∇m(Z, f̂n)[h
∗
n]}, can be

considered as the bias from using Fn(f̂n) to estimate Fn(fn0), which may not be

negligible in high-dimensional settings. This motivates the construction of the

OSRE, as follows: given that ĥn is a consistent estimator for h∗
n, our proposed

estimator for θn0 is defined as

θ̃n = θ̂n − Pn

{
∇m(Z, f̂n)[ĥn]

}
, (2.3)

where θ̂n = Fn(f̂n) is the plug-in estimator based on f̂n. Because (2.3) is a one-

step update for the initial estimator θ̂n, we call the proposed estimator OSRE for

θn0.

Remark 2. The Neyman orthogonal score function in Chernozhukov et al. (2018)

requires that the score function ψ satisfies

∇ηP [ψ(Z; θ0, η0)[η − η0] = 0,

where η is the nuisance parameter, and θ0 and η0 are true parameters. Because

h∗
n satisfies

∇2P [m(Z; θ0, η0)[h
∗
n, (θ − θ0, η − η0)] = θ − θ0 +Op(n

−1/2),
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when ∥(θ − θ0, η − η0)∥22 = Op(n
−1/2), we have

∇η∇P [m(Z; θ0, η0)[h
∗
n, η − η0] = 0 +Op(n

−1/2),

when ∥(θ − θ0, η − η0)∥22 = Op(n
−1/2). Thus, our proposed method can be

viewed as a linear approximation of the Neyman orthogonal score function in

the neighborhood of (θ0, η0).

2.3. General asymptotic properties for the OSRE

Here, we provide regularity conditions and establish asymptotic results for

the proposed OSRE. In addition to Conditions A.1-A.3, we further assume the

following:

A.4 The initial estimator, f̂n, satisfies d(n)(f̂n, fn0) = op(n
−1/4).

A.5 There exists an estimator, ĥn, for h
∗
n such that d(n)(ĥn, h

∗
n) = op(n

−1/4).

A.6 For every ϵ, η > 0, there exist δ1, δ2 > 0 such that

lim
n
P

 sup
f1,f2∈Nfn0,δ1

,

h1,h2∈Nh∗
n,δ2

∥Gn{∇m(Z, f1)[h1]} −Gn{∇m(Z, f2)[h2]}∥∞ > ϵ

 < η,

where ∥A∥∞ = maxi,j |aij| for any matrix A = (aij), Gn = n1/2(Pn − P )

denotes the empirical process, and Nf,δ is the δ-neighborhood of f , as

defined in Condition A.3.

A.7 When n goes to infinity, Var(∇m(Z, fn0)[h
∗
n]) converges to a positive-

definite matrix Σ.

Remark 3. Conditions A.4 and A.5 related to the convergence rates for the

initial estimator f̂n and the estimator ĥn, respectively. As shown later, these

conditions are possible even under high-dimensional settings when pn is much

larger than n. Condition A.6 implies the asymptotically uniform equicontinuity

of the empirical process in some neighborhoods of fn0 and h∗
n, and holds if some

additional function complexity can be established in these neighborhoods.

Theorem 1. Under Conditions A.1–A.7, θ̃n has an asymptotically linear

expansion as

√
n(θ̃n − θn0) = −Gn{∇m(Z, fn0)[h

∗
n]}+ op(1).

As a result, θ̃n is asymptotically regular, and its asymptotic distribution is a

multivariate normal distribution with mean zero and covariance matrix Σ.
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Theorem 1 states that the OSRE is asymptotically normal and the variance

is

lim
n→∞

Var (∇m(Z, fn0)[h
∗
n]) .

A proof of Theorem 1 is provided in Section S2 of the Supplementary Material.

To estimate Σ, it is natural to construct the estimator of the variance as

Σ̂n = n−1
n∑

i=1

(
∇m(Zi, f̂n)[ĥn]− n−1

n∑
i=1

∇m(Zi, f̂n)[ĥn]

)⊗2

, (2.4)

where u⊗2 = uuT . Our next theorem states that Σ̂n in (2.4) is a consistent

estimator of the variance of the OSRF under the following condition:

A.8 For every ϵ, η > 0, there exist δ1, δ2 > 0 such that

lim
n
P

 sup
f1,f2∈Nfn0,δ1

,

h1,h2∈Nh∗
n,δ2

∥∥∥Gn (∇m(Z, f1)[h1])
⊗2 −Gn (∇m(Z, f2)[h2])

⊗2
∥∥∥
∞
>

ϵ√
n


< η.

Theorem 2. Under Conditions A.1–A.8, Σ̂ converges to Σ in probability.

The proof is straightforward, because under Condition A.8,

(Pn − P )
(
∇m(Z, f̂n)[ĥn]

)⊗2

= (Pn − P ) (∇m(Z, fn0)[h
∗
n])

⊗2
+ op(1).

3. Examples

3.1. Example 1: OSRE for a high-dimensional linear model

The first example is from a high-dimensional linear model. Specifically,

consider n i.i.d. samples (Xi, Yi) with Xi = (Xi1, . . . , Xipn
)T ∈ Rpn , where one

X is one, and the other Xij have mean zero for j > 1. Moreover, it holds that

Yi =
pn∑
j=1

Xijβ
∗
nj + εi, P [εi|Xi] = 0, (3.1)

where β∗
n = (β∗

n1, . . . , β
∗
npn

)T is the vector of parameters, and εi is a random

variable representing the noise in the ith response variable.

A single component of the parameters, say the first coordinate β∗
n1 is

widely used as a “debiased” lasso estimator. Thus, we consider this case in

the Supplementary Material. It may also be interesting to consider the total

contribution of the covariates, in practice. This is particularly useful when the

covariates are obtained from one particular feature domain. Thus, we consider

the inference for the sum of the squared β∗
n, denoted by θ0n =

∑pn

j=1 β
∗2
nj. We aim
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to construct the OSRE of θ0n.

Obviously, Fn = {f(x) =
∑pn

j=1 xjβj} is the functional space. We assume X

has mean zero. Because θ0n =
∑pn

j=1 β
∗2
nj, a simple calculation yields

θn0 = Fn(fn0) = P
[
f2
n0(Σ

−1/2X)
]
.

Then, for all hn(x) =
∑pn

j=1 xjγj, we have

∇Fn(fn0)[hn] = 2
pn∑
j=1

β∗
njγj,

which is a continuous linear functional. This verifies Condition A.1. Clearly,

Condition A.2 is true. Let gnj(x) be a function such that

gnj(X) = Xj − π(Xj|X−j),

where X−j = (X1, . . . , Xj−1, Xj+1, . . . , Xpn
)T , and π(Xj|X−j) is the L2(P )

projection of Xj onto the linear space of X−j. We show that h∗
n in Condition A.3

is

h∗
n(x) = −2

pn∑
j=1

(Pg2nj(X))−1gnj(x)β
∗
nj. (3.2)

To see that h∗
n satisfies (2.1), because π(Xj|X−j) is the L2(P ) projection of Xj

onto the linear span of X−j , we obtain

P [(Xj − π(Xj|X−j))π(Xj|X−j)] = 0,

and

P [(Xk − π(Xk|X−k))Xj] = 0 for all k ̸= j.

For any Xjγj,

P
{
∇2m(Z, fn0)[h

∗
n, Xjγj]

}
= 2(Pg2nj(X))−1P [(Xj − π[Xj|X−j])Xj]β

∗
njγj

= 2(Pg2nj(X))−1P [(Xj − π[Xj|X−j])
2]β∗

njγj

= 2β∗
njγj.

Thus, for any hn(x) =
∑pn

j=1 xjγj,

P
{
∇2m(Z, fn0)[h

∗
n, hn]

}
= 2

pn∑
j=1

γjβ
∗
nj = ∇Fn(fn0)[hn].

Thus, h∗
n is a function satisfying (2.1).
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Therefore, suppose β̂n is an initial estimator of β∗
n, and we can find a proper

estimator for h∗
n, denoted by ĥn. The OSRE for β∗

n1 is then given as

θ̃n =
pn∑
j=1

β̂2
nj −

1

n

n∑
i=1

ĥn(Xi)
(
Yi −XT

i β̂n

)
, (3.3)

where β̂nj is the jth coordinate of β̂n.

Suppose the linear regression model is defined as (3.1). The vector parameter

β∗
n is sparse, which means we can estimate the initial estimator β̂n in (3.3) using

the lasso method:

β̂n = argmin
β∈Rpn

{
1

n
∥Y −Xβ∥22 + 2λ∥β∥1

}
, (3.4)

where ∥Y −Xβ∥22 =
∑n

i=1(Yi −XT
i β)

2, ∥β∥1 =
∑pn

j=1 |βj| is the l1-norm on Rpn ,

and λ ≥ 0 is a penalty parameter.

Next, we estimate h∗
n defined by (3.2). Recalling the definition of h∗

n, we first

estimate π(Xj|Xj, . . . , Xj−1, Xj+1, . . . , Xpn
), the projection of X1 onto the linear

space spanned by X1, . . . , Xpn
. The sparsity of the regression parameters implies

a finite number of covariates. Note that such sparsity, equivalent to the maximal

sparsity level of Σ−1, also appears in other works (van de Geer et al. (2014);

Javanmard and Montanari (2014, 2018)). This estimation can be treated as a

high-dimensional linear regression problem. Thus, we adopt the lasso to estimate

the coefficients.

We estimate the coefficients of X−j for Xj using

η̂j = argmin
η∈Rpn−1

{
1

2n
∥Xj −XT

−jη∥22 + λ̃j∥η∥1
}
,

where Xj = (X1j, . . . , Xnj)
T , X−j is the sub-matrix of X obtained by removing

the jth column. With η̂j, we obtain

ĝnj(X) = Xj − π̂(Xj|X−j) = Xj −XT
−jη̂j.

On the other hand, Pg2nj(X) is estimated by

τ̂ 2j =
∥Xj −XT

−jη̂j∥22
n

+ λ∥η̂j∥1.

Finally, the estimator for h∗
n is given as

ĥn(X) = 2
pn∑
j=1

ĝnj(X)β̂nj

τ̂ 2j
= 2β̂T

n T̂
−2Γ̂X, (3.5)
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where T̂ 2 = diag(τ̂ 21 , . . . , τ̂
2
pn
) and

Γ̂ =


1 −η̂1,2 . . . −η̂1,pn

−η̂2,1 1 . . . −η̂2,pn

...
...

. . .
...

−η̂pn,1 −η̂pn,2 . . . 1

 .

From (3.3) to (3.5), the OSRE for θn0 is

θ̃n =
pn∑
j=1

β̂2
nj +

2

n

n∑
i=1

β̂T
n T̂

−2Γ̂Xi

(
Yi −XT

i β̂n

)
,

where β̂nj is the jth element of β̂n, and β̂n is the lasso estimator of βn0.

To state the asymptotic properties for the OSRE, we need some technical

assumptions, Conditions B.1-B.8 which are provided in the Supplementary

Material.

Theorem 3. Suppose that Conditions B.1-B.8 hold, and that λ ≍
√
log pn/n and

λ̃j ≍
√
log pn/n uniformly in j. Then, θ̃n satisfies

√
n(θ̃n − θn0)

p−→ N(0, c2),

where c2 is defined in Condition B.8 in the Supplementary Material.

A proof of Theorem 3 is given in Section S3 of the Supplementary Material.

3.2. Example 2: OSRE for high-dimensional additive model

Whereas the previous example was a parametric problem, we now examine

a high-dimensional NAM. Suppose

Yi = µ+
pn∑
j=1

f∗
nj(Xij) + εi, (3.6)

where µ is a constant and εi is the error term, with mean zero and finite variance

σ2. In this model, the true regression function f∗
n(x) =

∑pn

j=1 f
∗
nj(xj) belongs

to the functional class Fn = {f ∈ L2(P ) : f(x) =
∑pn

j=1 fj(xj), Pfj(Xij) = 0},
equipped with an inner product

⟨f1, f2⟩(n) =
pn∑
j=1

∫
f1j(x)f2j(x)dx.

For a NAM, we can estimate fn0 by maximizing P {m(X, Y, f)}, withm(X, Y, f)

= −(Y − f(X))2/2. We are interested in the contribution of one specific com-

ponent of X, say, X1. For this purpose, we define the parameter of interest as



2100 WANG ET AL.

Fn(f
∗
n) =

∫
f∗2
n1(x)dx to quantify the contribution of X1 in terms of predicting Y .

To find h∗
n satisfying ConditionA.3, we first use a sequence of basis functions,

ϕjk(x), for k = 1, 2, . . . , in the support of Xj (splines, Fourier bases, for instance),

so that fj(x) can be treated as a linear combination of basis functions ϕjk(x),

for k = 1, 2, . . . Let V1k = ϕ1k(X1) and V1,−k = (V11, . . . , V1,k−1, V1,k+1, . . . ). We

show that the solution to the above equation is

h∗
n(X) = −

∞∑
k=1

uk [V1k − π (V1k|V1,−k, X2, X3, . . . , Xpn
)] ,

where

uk = 2
{
P [V1k − π (V1k|V1,−k, X2, X3, . . . , Xpn

)]
2
}−1

∫
f∗
n1(t)ϕ1k(t)dt.

Suppose that f̂n is an initial estimator of f∗
n, and that h∗

n is estimated by ĥn.

Then, the OSRE for θn0 is defined as

θ̃n =

∫
f̂2
n(x)dx− 1

n

n∑
i=1

ĥn(Xi)
(
Yi − Ȳ − f̂n(Xi)

)
, (3.7)

where Ȳ is the average of Yi.

In case when many additive components f∗
nj(·) are zeros, Huang, Horowitz

and Wei (2010) propose using an adaptive group lasso to estimate f∗
n. Consider

a normalized B-spline basis {ψk, 1 ≤ k ≤ mn} for Bn, where mn = Kn + l,

in which Kn = nν with 0 < ν < 0.5 is a positive integer. Under suitable

smoothness assumptions, f∗
nj can be well approximated by functions in Bn. Let

∥a∥2 = (
∑mn

j=1 |aj|2)1/2 , βnj = (βj1, . . . , βjmn
)T , βn = (βT

n1, . . . ,β
T
npn

)T , and

wn = (wn1, . . . , wnpn
)T be a given vector of weights. Then, the penalized least

squares estimation with a group lasso minimizes

Ln(µ,βn) =
n∑

i=1

[
Yi − µ−

pn∑
j=1

mn∑
k=1

βjkψk(Xij)

]2
+ λn2

pn∑
j=1

wnj∥βnj∥2,

where λn2 is a penalty parameter. In order to make the computation identifiable,

we impose the additional constraints that

n∑
i=1

mn∑
k=1

βjkψk(Xij) = 0.

The constrained optimization problem is converted to an unconstrained problem

by centering the response and the basis functions. Let

ϕjk(x) = ψk(x)− n−1
n∑

i=1

ψk(Xij).
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For simplicity, we write ϕk(x) = ϕjk(x), and assume the mean of Y is zero.

Huang, Horowitz and Wei (2010) propose a two-step approach for the estimation

and the component selection. First, they define

β̃n = argmin
βn

n∑
i=1

[
Yi −

pn∑
j=1

mn∑
k=1

βjkϕk(Xij)

]2
+ λn1

pn∑
j=1

∥βnj∥2.

Then they use β̃n to obtain the weights by setting

wnj =

{
∥β̃nj∥−1

2 , if ∥β̃nj∥2 > 0

∞, if ∥β̃nj∥2 = 0.

Finally, the adaptive group lasso estimator is β̂n = argminβn
Ln(βn). Therefore,

the group lasso estimators for fj are

f̂nj(x) =
mn∑
k=1

β̂jkϕk(x).

To estimate h∗
n in Condition A.3, we first need to estimate the projection

π (V1k|V1,−k, X2, X3, . . . , Xpn
), which can also be viewed as a high-dimensional

NAM. Thus, suppose there exists η∗
1k = (η∗1,k,1, . . . , η

∗
1,k,k−1, η

∗
1,k,k+1, . . . )

T , and

s
∗(n)
k (X−1) =

∑pn

j=2 s
∗(n)
kj (Xj) satisfies

V1,k =
∑
l ̸=k

V1,lη
∗
1kl + s

∗(n)
k (X−1) + εk, P [εk|X−1] = 0.

The assumption implies a sparse structure of the projection

π[V1k|V1,−k, X2, . . . , Xpn
],

which means that only a few of the covariates are correlated with X1. The

sparsity of ηk implies that each function component in the additive model can

be represented by a finite number of basis functions, although the number can

diverge with the sample size. Thus, with greater sample sizes, we can allow h∗
n to

be closer to some arbitrary additive function. This is a common assumption in

many high-dimensional lasso settings (van de Geer et al. (2014); Javanmard and

Montanari (2014, 2018)).

We then follow Huang, Horowitz and Wei (2010) to apply the group Lasso to

estimate π (V1k|V1,−k, X2, X3, . . . , Xpn
). For simplicity of notation, we omit n in

the subscript of η in the following. More specifically, the penalized least squares

estimators are given as
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η̃k =argmin
ηk

n∑
i=1

[
Vi1k − V T

i1,−kηk1 −
pn∑
j=2

mn∑
l=1

ηkjlϕl(Xij))

]2

+ λ̃k1

(∑
l ̸=k

|ηk1l|+
pn∑
j=2

∥ηkj∥2

)
,

where ηkn = (ηT
k1, . . . ,η

T
kj)

T , ηk1 = (ηk11, . . . , ηk,1,k−1, ηk,1,k+1, . . . , ηk,1,mn
)T ,

ηkj = (ηkj1, . . . , ηkjmn
)T , for j = 2, . . . , pn, and λ̃k1 is a penalty parameter. The

estimates for η̃k give the weights by setting

w̃k1l =

{
|η̃k1l|−1, if |η̃k1l| > 0

∞, if |η̃k1l| = 0,

for l ̸= k, and

w̃kj =

{
∥η̃kj∥−1

2 , if ∥η̃kj∥2 > 0

∞, if ∥η̃kj∥2 = 0,

for j = 2, . . . , pn. Finally, we minimize

L̃k(ηk) =
n∑

i=1

[
Vi1k − V T

i1,−kηk1 −
pn∑
j=2

mn∑
l=1

ηkjlϕl(Xij)

]2

+ λ̃kn2

(∑
l ̸=k

w̃k1l|ηk1l|+
pn∑
j=2

w̃kj∥ηkj∥2

)
.

The resulting coefficients of the projection are

η̂k = argmin
ηk

L̃k(ηk).

Now, define

Ĉ =
1 −η̂1,1,2 · · · −η̂1,1,mn

−η̂1,2,1 . . . −η̂1,2,mn
−η̂1,3,1 . . . −η̂1,pn,mn

−η̂2,1,1 1 · · · −η̂2,1,mn
−η̂2,2,1 . . . −η̂2,2,mn

−η̂2,3,1 . . . −η̂2,pn,mn

...
...

. . .
...

...
. . .

...
...

. . .
...

−η̂mn,1,1 −η̂mn,1,2 · · · 1 −η̂mn,2,1 . . . −η̂mn,2,mn
−η̂mn,3,1 . . . −η̂mn,pn,mn

.
Let

T̂ 2 = diag(τ̂ 21 , . . . , τ̂
2
mn

),

where

τ̂ 2k =
1

n

n∑
i=1

(
Vi1k −

∑
l ̸=k

Vi1lη̂k1l −
pn∑
j=2

mn∑
l=1

Vijlη̂kjl

)
Vi1k,
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and let

V = (V11, . . . , V1mn
, . . . , Vpn1, . . . , Vpnmn

)T .

We obtain the estimator for h∗
n as

ĥn(X) = −κ̂T T̂−2ĈV,

where κ̂ = (κ̂1, . . . , κ̂mn
)T , and κ̂k = 2

∫
f̂n1(x)ϕk(x)dx. Therefore, from (3.7),

the OSRE of θn0 is

θ̃n =

∫
f̂2
n1(x)dx+

1

n

n∑
i=1

pn∑
j=1

ĥnj(Xij)

(
Yi −

pn∑
j=1

f̂nj(Xij)

)
. (3.8)

Under some conditions, we can also prove that the OSRE θ̃n defined in (3.8)

follows an asymptotic normal distribution. In order to obtain the asymptotic

properties of θ̂n, we require the Conditions C.1–C.10 which are given in the

Supplementary Material.

Theorem 4. If Conditions C.1–C.10 hold, then θ̃n, defined by (3.8) satisfies

√
n(θ̃n − θn0)

p−→ N(0, σ2
εc

2).

Theorem 4 ensures that the asymptotic distribution of the OSRE θ̃n defined

in (3.8) is normal. A proof for Theorem 4 is given in Section S4 of the

Supplementary Material.

To illustrate the universality of our proposed method, we provide additional

examples in the Supplementary Material. The OSRE for the coefficient inferences

of high-dimensional linear model and high-dimensional logistic regression models

are given in Sections S5 and S6, respectively, of the Supplementary Material.

4. Simulation Study

4.1. Simulation with high-dimensional linear models

Our first simulation considers a high-dimensional linear model. In this

setting, we generate p = 500 covariates consisting of K ≡ p/q groups, each group

with q variables. For q variables in the kth group, denoted by Xk1, . . . , Xkq, are

generated as

Xkj =
(wkj + tuk)

1 + t
, wkj ∼ U(0, 1), uk ∈ U(0, 1).

In this way, we generate a sequence of blocked covariates. We set t = 2, so

the correlation between any two X in the same block is ρ = 0.8, but they are

independent if from different blocks. GivenX, Y is generated from a linear model

with an error term from a standard normal distribution. We vary the block size, q,
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from two to four, and choose the coefficients according to the following scenarios:

(a) q = 2 and β0 = (1, 1, 1, 0, . . . , 0)T .

(b) q = 4 and β0 = (1, 1, 1, 0, . . . , 0)T .

(c) q = 4 and β0 = (1, 1, 1, 1, 0, . . . , 0)T .

(d) q = 4 and β0 = (1, 1, 1, 1, 1, 0, . . . , 0)T .

To illustrate our proposed method, we focus on inferences for three param-

eters, that is, the total effect, given by θ0 =
∑p

j=1 β
∗2
j , the coefficient of one

important covariate, given by β∗
1 , and the coefficient of an unimportant covariate,

which is specified as the coefficient of the first zero-coefficient covariate in each

scenario. The OSRE for a single coordinate can be found in Section S3 of the

Supplementary Material. We consider sample sizes n = 100 and 200, and replicate

each scenario 500 times in the simulation study.

To calculate the OSRE, the initial estimate for β is based on the lasso

regression. The tuning parameter is selected as the largest penalty parameter for

which the corresponding cross-validation error is within one standard deviation

of the minimal error. The estimate for h∗
n is also obtained from a lasso regression

with cross-validation, but the tuning parameter is set to be a factor of the cross-

validation optimal parameter. The usual variable selection procedures, such

as the lasso, tend to balance the bias and variance trade-off, and their goal

is to minimize prediction errors. However, to obtain a proper inference, it is

necessary to remove the bias so that the asymptotic normality with mean zero

is a good approximation. Empirically, we find a factor of 2−6 yields the best

performance. To examine the inference performance of the proposed method,

we calculate confidence intervals for the OSRE, which are constructed using the

asymptotic normal distribution in our theorem. For comparison purposes, we also

report the coverages from two other methods: the first constructs the confidence

intervals using a residual bootstrap (RBS), and the second performs an ad-hoc

post-selection inference (PSI) by treating selected variables in the lasso method as

the only variable in the regression model. It takes less than a second to compute

the OSRE of one single regression coefficient in Scenario (a) with sample size 100

on a laptop computer with an Intel Core i5 processor.

Figure 1 plots a histogram of the OSRE and the plug-in estimators for case

(a) with sample size n = 100. The dashed curve in the left figure is a normal

density function, with the true parameter value θ0 as the mean (dotted line) and

the variance given as the average of the estimated σ̂n. Therefore, this curve serves

as a theoretical distribution from our theorem. Figure 1 indicates that the OSRE

is close to a normal distribution, and its distribution matches the theoretical one

very well. In contrast, the plug-in estimator is severely biased. (The standard

error of the dashed line in the right figure is the standard error of the plug-in

estimator.)
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Figure 1. Histograms of the OSRE and plug-in estimators of the total effect for Scenario
(a).

In Table 1, we report the simulation results for the bias (Bias), standard error

(SE), estimated standard error (ESE), with the coverage probabilities based on

(1−α)-confidence intervals, where α = 0.1 and 0.05; CP95 represents the coverage

rates of 95% confidence interval, and CP90 represents those of the 90% confidence

interval. As shown in the table, both the RBS and PSI perform poorly in some

cases. In contrast, the coverage probabilities of the confidence intervals based

on the OSRE are reasonably close to the nominal levels, and the performance is

even better when n increases to 200. In addition, the SEs and ESEs are close in

our proposed method.

From Table 1, we notice that the post-selection produces similar coverage

to that of the OSRE for β1, but with much shorter confidence intervals. This

is because, for this model, the variable selection does not introduce much bias

into the estimation of β1, so debiasing is not necessary for β1. On the other

hand, the extra bias correction based on the empirical data in the OSRE can

bring extra variability into the estimation. In the Supplementary Material (S5.1),

we demonstrate that if the extra bias correction is known, then the confidence

intervals in the ORSE are similar in width to those in the post-selection approach.

4.2. Simulation study with high-dimensional NAM

In this simulation, we generate X in the same way as in the linear model

with q = 5, except that the correlation ρ with the same block is either 0 (setting

t = 0) or 0.2 (setting t = 0.5). The outcome, Y , is generated from

Y =
p∑

j=1

fj(Xj) + ε,
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Table 1. Results based on 500 replicates for high-dimensional linear models.

n Method Parameter Bias SE ESE CP95 CP90 Bias SE ESE CP95 CP90

(a) (b)

100 RBS θ -1.253 0.297 0.204 0.336 0.292 -0.831 0.293 0.249 0.696 0.638

β1 -0.215 0.179 0.179 0.902 0.876 -0.176 0.191 0.201 0.936 0.900

βk 0.013 0.043 0.042 0.970 0.944 0.037 0.082 0.094 0.974 0.946

PSI θ 0.021 0.319 0.292 0.916 0.868 0.023 0.318 0.273 0.912 0.850

β1 -0.026 0.180 0.158 0.904 0.838 -0.023 0.195 0.183 0.938 0.872

βk 0.035 0.092 0.023 0.966 0.942 0.069 0.125 0.054 0.960 0.932

OSRE θ -0.020 0.461 0.456 0.934 0.880 0.299 0.530 0.576 0.956 0.890

β1 0.016 0.219 0.208 0.930 0.874 0.055 0.257 0.254 0.950 0.894

βk 0.082 0.203 0.207 0.930 0.870 0.103 0.236 0.255 0.948 0.888

(c) (d)

RBS θ -0.777 0.286 0.289 0.864 0.794 -1.193 0.372 0.338 0.550 0.476

β1 -0.108 0.205 0.210 0.946 0.906 -0.095 0.222 0.215 0.918 0.884

βk -0.000 0.008 0.000 0.998 0.998 0.016 0.052 0.040 0.952 0.934

PSI θ 0.169 0.277 0.271 0.934 0.868 0.081 0.383 0.333 0.896 0.832

β1 0.011 0.205 0.191 0.934 0.880 -0.001 0.209 0.186 0.916 0.844

βk -0.001 0.014 0.000 0.998 0.998 0.031 0.090 0.023 0.970 0.944

OSRE θ 0.583 0.547 0.603 0.892 0.800 0.438 0.694 0.721 0.914 0.852

β1 0.078 0.284 0.253 0.918 0.862 0.077 0.273 0.257 0.918 0.864

βk 0.003 0.243 0.250 0.958 0.906 0.068 0.250 0.254 0.938 0.890

(a) (b)

200 RBS θ -1.004 0.227 0.149 0.494 0.434 -0.701 0.179 0.164 0.824 0.734

β1 -0.157 0.133 0.126 0.930 0.884 -0.136 0.132 0.141 0.944 0.912

βk 0.010 0.033 0.030 0.964 0.938 0.020 0.050 0.059 0.978 0.958

PSI θ 0.013 0.239 0.210 0.924 0.864 -0.011 0.205 0.189 0.928 0.884

β1 -0.010 0.129 0.116 0.910 0.858 -0.013 0.134 0.133 0.940 0.898

βk 0.025 0.071 0.014 0.956 0.930 0.045 0.085 0.036 0.978 0.952

OSRE θ -0.035 0.414 0.383 0.922 0.866 0.101 0.429 0.465 0.950 0.914

β1 0.011 0.176 0.180 0.958 0.912 0.013 0.216 0.215 0.952 0.912

βk 0.030 0.175 0.179 0.938 0.902 0.040 0.195 0.215 0.976 0.928

(c) (d)

RBS θ -0.654 0.192 0.176 0.888 0.810 -1.005 0.239 0.199 0.646 0.568

β1 -0.098 0.146 0.146 0.940 0.882 -0.081 0.150 0.147 0.956 0.922

βk 0.000 0.000 0.000 1.000 1.000 0.004 0.020 0.027 0.982 0.966

PSI θ 0.095 0.170 0.176 0.930 0.872 0.026 0.252 0.226 0.924 0.862

β1 -0.000 0.146 0.137 0.922 0.866 -0.004 0.142 0.136 0.946 0.892

βk 0.000 0.000 0.000 1.000 1.000 0.014 0.052 0.010 0.992 0.972

OSRE θ 0.266 0.389 0.431 0.938 0.872 0.152 0.503 0.540 0.964 0.910

β1 0.048 0.210 0.214 0.958 0.906 0.006 0.215 0.215 0.950 0.886

βk -0.010 0.204 0.215 0.958 0.918 0.020 0.213 0.215 0.950 0.898

where we choose f1(x) = 8x, f2(x) = 3(2x−1)2, f3(x) = 4 sin(2πt)/(2−sin(2πt)),

f4(x) = 6(0.1 sin(2πt)+0.2 cos(2πt)+0.3 sin(2πt)2+0.4 cos(2πt)3+0.5 sin(2πt)3),

f5(x) = · · · = fp = 0, and ε ∼ N(0, σ2). These functions cover both linear and

nonlinear patterns. Furthermore, we subtract each fj from its average value

to make the model identifiable when including an intercept. For illustration

purposes, we focus on an inference for the total effect of the linear part as
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f1(x)

2dx, and the total effect of the nonlinear covariate X4 as
∫
f4(x)

2dx. The

signal-to-noise ratio is defined as sd(f)/sd(ε). Because the standard derivation

of the error term is chosen as σ = 2, the signal-to-noise ratios for f1 and f4 are

0.86 and 1.54, respectively. We consider the cases where p = 500 and sample size

n = 200 and 400.

In the simulation, to calculate the OSRE in our method, we first use the

third-degree B-spline with six evenly distributed knots to approximate all fj. We

also investigate the choice of three knots and using the sixth degree of splines

for the simulation setting with zero within-block correlation and n = 200. The

results show that the method is fairly robust for these different choices. We obtain

the initial estimates for fj based on these splines and using the adaptive group

lasso method proposed by Huang, Horowitz and Wei (2010). In particular, the

adaptive group lasso is calculated using the algorithm proposed by Yuan and Lin

(2006). Because p is larger than n, we use the BIC (Schwarz (1978)) to select

the penalty parameter, as suggested by Huang, Horowitz and Wei (2010). We

use the adaptive group lasso with BIC for each basis function of X1 to estimate

the coefficient ηkn, for k = 1, . . . ,mn, and construct the OSRE based on (3.8).

It takes an average of 3.12 seconds to run one data set with a sample size of

100. We compare our method with the ad-hoc post-selection method, because

the residual bootstrapping method is computationally intensive. The latter treats

a spline approximation as a standard linear regression model after the important

components are identified.

Table 2 shows the relative bias (Bias), standard errors (SEs), estimated

standard errors (ESEs), and coverage rates of the OSRE and ad-hoc (PSI)

methods based on 500 replicates. The OSRE and PSI do not perform well when

the sample size is 100, so we omit the results in the table. The SEs and ESEs

are close to each other in our proposed method, whereaas the ESEs are smaller

than the SEs for the ad-hoc method. The simulation shows similar results for

the case with and without correlations between the covariates. For the linear and

nonlinear components, the coverage probabilities of the OSREs are reasonably

close to the nominal levels when the sample size n = 200. In contrast, the ad-hoc

method gives all cases a coverage probability lower than (1− α). Both methods

seem to work well when the sample size n = 400. We also test the performance

of the two methods on the zero-influence function. Both methods show a slight

overestimation of the coverage probabilities.

We also conduct a simulation study for a high-dimensional generalized linear

model and a partial linear model to compare our proposed method with the

ad-hoc method (PSI). These simulation results can be found in Section S6 and

S7, respectively, of the Supplementary Material.
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Table 2. Results based on 500 replications for high-dimensional nonparametric additive
models.

Parameter n ρ Method Bias SE ESE CP90 CP95∫
f21 (x)dx 200 0 PSI -0.002 0.905 0.643 0.772 0.858

OSRE 0.087 1.051 1.081 0.922 0.984

0.2 PSI -0.027 0.644 0.474 0.734 0.796

OSRE 0.007 0.656 0.63 0.846 0.888

400 0 PSI 0.012 0.523 0.474 0.894 0.954

OSRE 0.053 0.669 0.744 0.922 0.968

0.2 PSI 0.013 0.448 0.371 0.886 0.936

OSRE 0.010 0.540 0.533 0.912 0.962∫
f24 (x)dx 200 0 PSI -0.009 1.243 0.854 0.770 0.830

OSRE 0.059 1.335 1.413 0.946 0.974

0.2 PSI -0.028 1.322 0.831 0.742 0.810

OSRE 0.034 1.344 1.371 0.934 0.976

400 0 PSI -0.001 0.664 0.627 0.900 0.956

OSRE 0.027 0.809 0.936 0.944 0.982

0.2 PSI 0.016 0.773 0.642 0.868 0.934

OSRE 0.032 0.978 1.025 0.918 0.964

5. Data Example

In this section, we apply the proposed method to study the association

between genes and a particular gene called TRIM32, which has been found to

cause Bardet-Biedl syndrome (Chiang et al. (2006)). We use the expression data

for an eQTL experiment on rat’s eyes reported by Scheetz et al. (2006). In this

study, the eye tissue of 120 120-week-old male rats were selected for an Affymetrix

expression microarray analysis. Over 31,000 different probe sets were recorded in

the Affymetrix Rat Genome 230 2.0 Array. The intensity values are normalized

using the robust multi-chip averaging (RMA) method (Irizarry et al. (2003)).

The gene expression levels are analyzed on a logarithmic scale. Because many

of the probes in the Affymetrix Rat Genome 230 2.0 Array are not expressed in

the eye tissue, and initial screening using correlation shows that most probe sets

have very low correlation with TRIM32, we select the 500 probe sets that have

the highest correlation with TRIM32 in this analysis. We further exclude one

sample (GSM130600), because its expression values are extreme. Our final data

set has sample size n = 119 and 500 covariates.

We fit both a linear model and an additive model to this data to test

whether any significant linear or nonlinear association exists between any gene

and TRIM32. All covariates are standardized by their ranges, so the values

are between zero and one. Linear model fitting is the same as in the first

simulation study, where the penalty parameter for the lasso estimation is based

on cross-validation. The OSRE for each regression coefficient in the linear model
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Table 3. Parameter inference in the microarray data analysis.

Probe OSRE Standard Error p-value

1384035 at 8.34e-06 6.29e-05 0.148

1368136 at 5.52e-06 1.66e-05 <0.001

1398370 at 4.04e-05 8.09e-05 <0.001

1376261 at 4.89e-06 1.23e-04 0.665

1379982 at 9.28e-06 7.24e-05 0.162

1367777 at 8.45e-05 4.68e-04 0.049

1368228 at 9.13e-06 3.61e-05 0.006

1380137 at 1.18e-06 1.18e-05 0.274

1384139 at 8.95e-06 7.60e-05 0.199

1379971 at 1.65e-05 4.29e-05 <0.001

1388491 at 1.18e-05 2.85e-05 <0.001

1375642 at 8.62e-06 3.96e-05 0.018

1369414 at 1.88e-05 1.54e-04 0.183

is then calculated as in the simulation study, and its variance is estimated using

the proposed method. To fit the NAM, we use cubic splines with six evenly

distributed knots in [0, 1] to estimate each of the additive components. To test

the importance of each covariate, we calculate the OSRE for the summary of

each functional component as
∫
f2
k (x)dx, for k = 1, . . . , p. In the estimation, the

tuning parameter is chosen using the BIC.

To conserve space, in Table 3, we show only the estimated parameters of the

NAM and their associated p-values computed based on normal distributions. The

results for the linear model are given in Supplementary Material. Table 3 shows

that 13 important genes are selected by the additive model. Only gene 1367777 at

is shown to be significantly associated with TRIM32 in both the linear model and

the additive model.

To gain further insight into how these selected genes are associated with

TRIM32 in the two models, we plot locally weighted scatterplot smoothing esti-

mates for the significant variables from the additive model (in the Supplementary

Material). The plot indicates that both 1368228 at and 1379971 at have nonlinear

associations with TRIM32. We also observe a clear linear relationship between

TRIM32 and 1367777 at, the only gene that is significant in both models.

6. Conclusion

We have proposed an OSRE for rigorous inference for low-dimensional

functionals of high-dimensional parameters. A key component of the OSRE is to

solve for h∗
n by inverting the Hessian operator given by the objective function,

which is closely related to the information operator when the objective function is

a log-likelihood function. For the latter situation, our OSRE reduces to a one-step
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efficient estimator in semiparametric models. When the initial estimators f̂n and

ĥn satisfy n−1/4 consistency, we have shown that the OSRE is root-n consistent

and asymptotically normal. We have applied our method to study the inferences

for the parameters in both high-dimensional linear models and high-dimensional

additive models. This is the first time such a result has been established for the

additive model. Our numerical results suggest that the proposed method works

well, even when the sample size is relatively small.

For high-dimensional inference, sample splitting (or cross-fitting) is widely

used to construct a estimator. This technique is particularly useful to de-correlate

the estimators between the parameter of interest and the nuisance parameters.

We can extend the cross-fitting techniques to facilitate the proof of asymptotic

equicontinuity conditions in the regularity conditions. Sample splitting can lose

efficiency, because it is based on partial data. In such cases, salvage methods

include cross-validation-type sample splitting and the estimator average. We will

further examine the performance of such techniques in the OSRE methods.

As stated earlier, a key point for the OSRE is the need to estimate h∗
n.

Although we can obtain its expression in the models considered here, h∗
n often

does not have an explicit expression. Thus, it is difficult to generalize the OSRE

to more complicated models. However, in semiparametric inference, the profile

likelihood function can be used to approximate the least favorable submodel. For

example, the tangent vector of the profile likelihood function is the efficient score

function. Hence, one potential direction for future research is to devise a similar

profile m-function, without explicitly estimating h∗
n.

We have only considered the dimensionality of variables to be pn, and

assumed the coefficients are nonzero for a much smaller list of variables. However,

if we embed pn-dimensional functions into an infinite-dimensional function space,

we can allow assumptions that are even more flexible. For example, nocoefficients

are zeros, but they decay at a certain rate. This may lead to an even more general

framework for OSREs.

Supplementary Material

The online Supplementary Material provides some technical conditions for

the theorems, details of proofs, the connection between OSRE the semiparametric

model and additional data examples.
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Bühlmann, P. and van de Geer, S. (2011). Statistics for High-Dimensional Data: Methods,

Theory and Applications. Springer Science & Business Media.

Candes, E. and Tao, T. (2007). The Dantzig selector: Statistical estimation when p is much

larger than n. The Annals of Statistics 35, 2313–2351.

Chatterjee, A. and Lahiri, S. N. (2010). Asymptotic properties of the residual bootstrap for

Lasso estimators. Proceedings of the American Mathematical Society 138, 4497–4509.

Chatterjee, A. and Lahiri, S. N. (2011). Bootstrapping Lasso estimators. Journal of the American

Statistical Association 106, 608–625.

Chen, X. (2007). Large sample sieve estimation of semi-nonparametric models. Handbook of

Econometrics 6, 5549–5632.

Chen, X. and Shen, X. (1998). Sieve extremum estimates for weakly dependent data.

Econometrica 66, 289–314.

Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey, W. et al.

(2018). Double/debiased machine learning for treatment and structural parameters. The

Econometrics Journal 21, C1–C68.

Chernozhukov, V., Escanciano, J. C., Ichimura, H., Newey, W. K. and Robins, J. M. (2016).

Locally robust semiparametric estimation. arXiv:1608.00033.

Chernozhukov, V., Hansen, C. and Spindler, M. (2015). Valid post-selection and

post-regularization inference: An elementary, general approach. Annual Review of

Economics 7, 649–688.

Chiang, A. P., Beck, J. S., Yen, H.-J., Tayeh, M. K., Scheetz, T. E., Swiderski, R. E. et al.

(2006). Homozygosity mapping with SNP arrays identifies TRIM32, an E3 ubiquitin

ligase, as a Bardet–Biedl syndrome gene (BBS11). Proceedings of the National Academy of

Sciences 103, 6287–6292.
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