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Abstract: Statistical inference for high-dimensional regression models is a challeng-
ing problem. Existing methods focus on inference for finite-dimensional components
of the model parameters. Constructing the parameter estimators and establishing
the asymptotic inference are specific to each model. In this study, we treat a
high-dimensional model as a special case of a semiparametric model. We propose a
general framework for constructing one-step regularized estimators for any smooth
functional of high-dimensional parameters, which can be viewed as an extension
of the one-step efficient estimator for semiparametric models to an M-estimation
in the high-dimensional model setting. We show that the proposed estimator is
asymptotically normal under some general regularity conditions. We apply the
proposed method to an inference for the coefficients in a high-dimensional lasso
regression, and to determine the I>-norm of the functional coefficients in a high-
dimensional additive model, allowing the number of covariates to grow exponentially
with the sample size. A simulation study and a microarray data example are
presented to demonstrate the performance of the proposed method.

Key words and phrases: Confidence intervals, high-dimension regression, M-
estimation, one-step regularized estimators, semiparametric model.

1. Introduction

In high-dimensional regression models, the logarithm of the number of
covariates can grow at a polynomial rate as the sample size increases, and
many statistical methods have been developed for both model prediction and
variable selection. For linear models, a regularized or penalized least-square
estimation is widely used to handle high-dimensional covariates. Examples
include the least absolute shrinkage and selection operator (lasso) (Tibshirani
(1996)), smoothly clipped absolute deviation (SCAD) (Fan and Li (2001))),
and minimax concave penalty (MCP) (Zhang| (2010)). Theoretical properties
on the oracle properties of variable selection are given for lasso estimators in
Meinshausen and Biithlmann! (2006), Zhao and Yu (2006), and Wainwright| (2009),
and later established in [Fan and Lv| (2011) and Bradic, Fan and Wang (2011)
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for a general concave penalty. The oracle properties of variable selection are also
obtained by [van de Geer (2008) for high-dimensional generalized linear models,
and by Huang, Horowitz and Wei (2010) for nonparametric additive models

(NAMs) in a high-dimensional setting. However, statistical inference for high-
dimensional regression models remains a challenging problem, and traditional
inference results may not hold for high-dimensional estimators. For example, it
has been shown that the lasso estimator is not root-n consistent
'Tao| (2007)); |Zhang and Huang) (2008)); Buhlmann and van de Geer| (2011))). It is
also well known that no post-selection estimators are locally regular estimators.

Knight and Fu| (2000) point out that, even in a low-dimensional case, the
asymptotic distribution of the lasso estimator is not normal, and [Chatterjee and|
show that an inference based on bootstrap methods may fail.

A growing number of studies are trying to determine how to obtain a correct

inference in high-dimensional regression models. Some methods propos modified

bootstrap procedures for inference (Chatterjee and Lahiri (2011); |Dezeure,|

Biuhlmann and Zhang| (2017)) or focus on conditional inference post-selection
(Lockhart et al| (2014)); [Taylor et al| (2014)); Lee et al| (2016); Yang et al.,
(2016))). Belloni, Chernozhukov and Hansen| (2014)) introduce post-selection to
structural and treatment effects, which they refer to as “double selection”, and

(2020) extend this to an additive model. As an alternative, some methods
propose improving existing estimators to yield a regular inference asymptotically.

For example, [Zhang and Zhang| (2014) propose a low-dimensional projection
approach to obtain the confidence intervals for finite-dimensional parameters in a
high-dimensional linear model. The key idea is to project model-based residuals
onto the linear space of the covariates with coefficients that were not of interest

for inference, and then to remove this projection from the initial estimators.
This procedure, called “debiasing”, obtains a new estimator that is locally
regular and asymptotically normal. Since then, this idea has been used in many
high-dimensional settings to obtain valid confidence intervals for prespecified
parameters of interest, with different ways of constructing the projections.
Geer et al| (2014) study a debiased estimator for high-dimensional generalized

linear models with a convex loss function. Ren et al.|(2015) extend this idea to
a Gaussian graphical model, and |[Ning and Liu (2017)) propose a de-correlated
score function, in the same spirit as debiasing, with a Dantzig-type estimator
to handle more general likelihood functions with high-dimensional parameters.

Other extensions include significance tests for a finite-dimensional subset of the

model parameters, under constraints (Yu, Gupta and Kolar| (2019)), statistical

inference based on post-selection for partial linear models (Fei et al. (2019)),
debiased estimators for high-dimensional graph-based linear models (Wang and

(2020)), and combining a bootstrap with debiased lasso estimators (Zhang

and Cheng (2017)), thus improving the estimation of single component in high-
dimensional additive models with a debiased modification (Gregory, Mammen|
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and Wahl (2016))). |Chernozhukov, Hansen and Spindler (2015) introduce an
orthogonal estimating equation for inference on a single component of high-
dimensional parameters. (Chernozhukov et al.| (2016]) give a general construction
of moment functions for the generalized method of moments (GMM). More
recently, |Chernozhukov et al.| (2018) considered a debiased estimation based on
a Neyman orthogonal score function for treatment effect estimation. [Bach et al.
(2020) use an orthogonal score function to obtain confidence bands for a single
component in additive models. |Lu, Kolar and Liu (2020) combine this idea with
kernel estimation, and propose a kernel-sieve hybrid regression estimator. These
methods all focus on inference for one or a finite number of coefficients in high-
dimensional regression models. Furthermore, the construction of the debiasing
methods is specific to each model. However, there is no general guidance on how
to obtain asymptotically regular estimators for a finite-dimensional functional
of the parameters (finite-dimensional components are special finite-dimensional
functionals) in general high-dimensional regression models.

In this study, we fill this gap by providing a general theory and framework for
performing an inference for any smooth functionals of the parameters in a high-
dimensional regression setting. Specifically, we cast high-dimensional regression
models as a special case of general semiparametric models, which allow the
parameters to be of infinite dimension. An estimation for a high-dimensional
model based on, for instance, a penalized least-squares or likelihood, is essentially
a special type of constrained or sieve M-estimation in the semiparametric context,
which has been studied extensively (e.g., Geman and Hwang] (1982)); Newey and
Powell (2003); |Chen| (2007); |Chen and Shen (1998)); Shen and Wong (1994)).
Furthermore, an inference for one particular coefficient in high-dimensional
models is equivalent to inference for some smooth functional of the parameters in
semiparametric models. From this point of view, we propose a general one-step
regularized estimator (OSRE) based on semiparametric efficiency theory, with an
extension from likelihood-based estimation to more general M-estimation. The
proposed estimator reduces to commonly used debiased estimators under high-
dimensional linear models and a decorrelated score function. It is also equivalent
to a linear approximation of the Neyman orthogonal score function proposed by
Chernozhukov et al.| (2018).

The main contribution of this work is that we provide general regularity
conditions to show that the proposed estimators have an asymptotically linear
expansion, so that the distributions are locally regular and asymptotically normal.
This leads to a unified approach for testing a high-dimensional regression model
using a one-step regularization. As an additional contribution, using a high-
dimensional linear model and a NAM as examples, we show that our proposed
estimators lead to correct inference for some functionals of the parameters, for
example, the total sum of the squared coeflicients in the linear model, and the
[2-norm of one functional component in the additive model, even if the dimension
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of the covariates is power-exponential of the sample size. To the best of our
knowledge, our study is the first to obtain such results for these models. Similarly,
this kind of extension can be extended to other cases, making traditional debiased
methods more general.

2. Method
2.1. General M-estimation setup

We assume that the data consist of n independent and identically distributed
(iid.) observations, Z\" = (X™,Y;), for i = 1,...,n, where X denotes p,-
dimensional covariates, Y denotes the outcome of interest, and Z( follows a
probability measure P" in RP»**. We let Z(™ be the support of Zi(”). Here, P",
X®™ and Z™ may vary with the sample size n, but to simplify the notation,
we write P for P*, X for X" and Z for Z™ in the remainder of this
work. For all high-dimensional regression problems, the main goal is to find
a prediction function, f(X), for the outcome Y. The true optimal prediction
function, denoted by f,o, maximizes the expectation of some objective function
indexed by f, denoted as m(Z, f), and is assumed to be unique. That is,
P{m(Z, f.0)} > P{m(Z, f)}, for all f(X) # fno(X), with nonzero probability.
For our method, we assume that f,,o belongs to a known space F,, that is a Hilbert
space consisting of measurable functions of Z equipped with the inner product
(-,-),, and the norm || - ||(n)-

In high-dimensional regression settings, when p, is larger than n, estimating
fno is usually performed by maximizing a regularized empirical version of the
objective function, which is P, {m(Z, f)} minus a penalty function of f. Here,
P,, denotes the empirical measure based on n observations. Such an estimation
is equivalent to maximizing P, {m(Z, f)} in a constrained set for f. Hence, we
consider the estimation problem in high-dimensional regression problems as a
constrained M-estimation, that is,

fn = J{g%}i an(Za f)a
where F,,, is the constrained set in F,,. The resulting estimator, fn, is called the
sieve estimator of the M-estimation in the semiparametric context.

As an example, in a linear model, f is a linear combination of X (including
a constant) and m(Z, f) = —(Y — f(X))?/2. Moreover, F, consists of all linear
functions of X in L?(P) with the same inner product inherited from the L?(P)
space. When the lasso is used for estimation, the constrained set F,, contains
all functions in F,, with coefficients that have an [;-norm bounded by a constant.
In a generalized linear model, everything is the same, except that m(-, f) is from
the log-likelihood function given by the model. In another example of a high-
dimensional NAM studied in Huang, Horowitz and Wei (2010), f is a summation



OSRE FOR HIGH-DIMENSIONAL REGRESSION MODELS 2093

of univariate functions for each variable in X, and F,, is the subspace of such
functions in L?(P). When constructing their estimator, they restrict f to the
constrained set JF,,, which is a linear space of univariate spline bases in which
the coefficients of these bases have a bounded [;-norm.

2.2. The OSRE

Our goal is to make an inference for a finite-dimensional functional of f,
based on f,, defined as 0,0 = §.(fno). To introduce our proposed one-step
regularized approach, we first assume the following conditions:

A.1 Assume that §, has a continuous Hadamard derivative at f,o, which
is assumed to be in the interior of F,, denoted as VF,(fno), and its
Hadamard derivative in the direction v € F,, is defined as

_ 8Sn(fn0 + T’l})

or r=0

Vn(fro)[v]

A.2 Assume that m(Z, f) has a second-order Hadamard derivative at f,o € F,
denoted by V?m(Z, f,o), which is a bounded bilinear operator, defined as

} )
7=0

OVm(Z, fno + Thy)[hi]]
or

P{NV’m(Z, fuo)lh1, ha]} = P{

for hl,hg € .7:”

A .3 Define
Ni =19 € F.:dmlg, fn) <€}, for f, € F,,

which is the neighborhood of f,. Let V) be the closed linear span of
{f = fuo: [ €Ny, }. We assume that there exists h¥ € F, such that

P{NV’m(Z, fuo)lhi,v]} = (Vns V) » for all v € Vi, (2.1)

where v}, € V) is the Riesz representor satisfying V,.(f,0)[v] = (v;,v) (),

for all v € V(,,), and it exists and is unique , from Condition A.1. Note
that A} and v’ have the same number of components as the dimension
of 6,. The inner product is the summed inner product between each
component pair.

Remark 1. Conditions A.1 and A.2 both require smoothness of the objective
functional and functional parameter of interest. Condition A.3 is the key as-
sumption for developing our proposed estimators. From the Riesz representation
theorem, P {V?m(Z, f,0)[h},v]} can be written as (M, [h%],v), , for some linear
operator M,,. Thus, Condition A.3 is equivalent to the invertibility of M,,, and
h? is given as M 'VF(f,0). The direction h} is an analogue to the least favorable
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direction in a semiparametric likelihood inference, where the m-function is the
log-likelihood function and M,, corresponds to the negative information operator.
For additional details about the connection between our proposed method and
semiparametric models, see Section S1 in the Supplementary Material.

We now introduce the OSRE. Supposing d(n)(fn, frno) converges to zero in
probability, we have

§u(F) = Falhu) = (i Fu = fuo) |+ 0y (@B i) (22)

Because f,0 maximizes P{m(Z, f)}, we have P{Vm(Z, f,0)[h]} = 0 and
Condition A.2,

P{Vm(Z, f,)lh]} = P{Vm(Z, F,)lh]} = PAVm(Z. fu0) ]}
= P{n(Z, fu0)[s fo = fuol } + Oy (€, (Fas fro))

for any h € F,. In particular, we choose h = h} satisfying (2.1, as given in
Condition A.3. Thus, from (2.2)), we conclude

Fulfao) = §ulfa) = P{Vm(Z, F)Ri)} + Oy (d2,)(Fas fuo) ) -

The last term on the right-hand side of the equation is of order d%n)(fn, fno)-
Therefore, the second term on the right-hand side, P{Vm(Z, f,)[h:]}, can be
considered as the bias from using Sn(ﬁl) to estimate §,(f.0), which may not be
negligible in high-dimensional settings. This motivates the construction of the
OSRE, as follows: given that iALn is a consistent estimator for h
estimator for 6,y is defined as

*
n?’

our proposed

4, =0, P, {vm(z, fn)[ﬁn]} : (2.3)

where 8, = Sn(ﬁ) is the plug-in estimator based on j?n Because ([2.3)) is a one-
step update for the initial estimator 6,,, we call the proposed estimator OSRE for
GnO-

Remark 2. The Neyman orthogonal score function in Chernozhukov et al.| (2018)
requires that the score function v satisfies

Vo P(Z;00,m0)[n — mo] = 0,

where 7 is the nuisance parameter, and 6, and 7, are true parameters. Because
h} satisfies

V2P[m(Z; 00, m0) [k, (0 — 60,n —m0)] = 6 — 6 + O, (n~'/?),
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when ||(0 — 09,1 — 10|12 = O,(n"'/?), we have
V,VP[m(Z;00,m0) [R5, n —m0] = 0+ O, (n~"?),

when [|(6 — 09,m — 1m0)||2 = O,(n"'/?). Thus, our proposed method can be
viewed as a linear approximation of the Neyman orthogonal score function in
the neighborhood of (6, 70).

2.3. General asymptotic properties for the OSRE

Here, we provide regularity conditions and establish asymptotic results for
the proposed OSRE. In addition to Conditions A.1-A.3, we further assume the
following:

A .4 The initial estimator, fn, satisfies d(n)(fn, fno) = 0p(n~Y%).
A.5 There exists an estimator, h,, for h* such that dn) (hy h2) = 0, (n=1/4).

A.6 For every €, n > 0, there exist d;,d, > 0 such that

lim P sup  ||Gu{Vm(Z, f)[m]} — Cu{Vm(Z, fo)[ha]}l > € | <n,

f1:2€NF,0,61°
hl.hQENh;kw(;Z

where || Al = max; j|a;;| for any matrix A = (ay;), G, = n'/?(P, — P)
denotes the empirical process, and N;;s is the d-neighborhood of f, as
defined in Condition A.3.

A.7 When n goes to infinity, Var(Vm(Z, f.o)[h%]) converges to a positive-
definite matrix X.

Remark 3. Conditions A.4 and A.5 related to the convergence rates for the
initial estimator J?n and the estimator /ﬁn, respectively. As shown later, these
conditions are possible even under high-dimensional settings when p, is much
larger than n. Condition A.6 implies the asymptotically uniform equicontinuity
of the empirical process in some neighborhoods of f,o and A}, and holds if some
additional function complexity can be established in these neighborhoods.

Theorem 1. Under Conditions A.1-A.7, 0, has an asymptotically linear
expansion as

V(O = o) = =G {Vm(Z, fuo) R3]} + 0,(1).

As a result, 0, is asymptotically regular, and its asymptotic distribution is a
multivariate normal distribution with mean zero and covariance matriz 3.
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Theorem 1 states that the OSRE is asymptotically normal and the variance
is

nll—{go Var (Vm(zv fn()) [h;]) .

A proof of Theorem 1 is provided in Section S2 of the Supplementary Material.
To estimate 3, it is natural to construct the estimator of the variance as

n

S, =n"" <Vm(Zi,]?n)[?Ln]—n1iVm(Zi,ﬁL)[ﬁn]> . (24)

i=1 i=1

where u®2 = wu”. Our next theorem states that 3, in (2.4) is a consistent
estimator of the variance of the OSRF under the following condition:

A.8 For every e, n > 0, there exist d;,d, > 0 such that

€

lim P sup HG" (Vm(Z, fl)[hl])®2 -G, (Vm(Z, f2)[h2])®2HOO > ﬁ

n f1 f2€NF (510
hl,hQEN’L:’,sz

<.
Theorem 2. Under Conditions A.1-A.8, 5 converges to % in probability.

The proof is straightforward, because under Condition A.8,

N\ ®2 *1\®2
(B, = P) (VI(Z, ) n]) = (B = P) (VIn(Z, fuo) 13))** + 0,(1).
3. Examples
3.1. Example 1: OSRE for a high-dimensional linear model

The first example is from a high-dimensional linear model. Specifically,
consider n i.i.d. samples (X;,Y;) with X; = (X;1,...,X;,, )" € RP», where one
X is one, and the other X;; have mean zero for j > 1. Moreover, it holds that

p’ll
Y, =Y Xy +ei, Plei| Xi] =0, (3.1)
j=1
where 3% = (8%,...,8;,,)" is the vector of parameters, and ¢; is a random

variable representing the noise in the ith response variable.

A single component of the parameters, say the first coordinate [}, is
widely used as a “debiased” lasso estimator. Thus, we consider this case in
the Supplementary Material. It may also be interesting to consider the total
contribution of the covariates, in practice. This is particularly useful when the
covariates are obtained from one particular feature domain. Thus, we consider

the inference for the sum of the squared 3, denoted by 6y, = ?il [5’,*3. We aim
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to construct the OSRE of 6,,.
Obviously, F,, = {f(xz) = fil x;f;} is the functional space. We assume X

Pn

has mean zero. Because 0y, = >_;", Bm, a simple calculation yields

B0 = Bulfro) = P [£3(S72X)] .

Then, for all h,(x) = >'", x;7;, we have

vgn an — 225n]7j7

which is a continuous linear functional. This verifies Condition A.1. Clearly,
Condition A.2 is true. Let g,;(z) be a function such that

9ni(X) = X; — (XX ),

where X_j = (Xl, e ,Xj_l, Xj+1, e ,Xpn)T, and TF(X]‘|X_]') is the LQ(P)
projection of X; onto the linear space of X_;. We show that A} in Condition A.3
is

2) = ~2 (Pg2, (X)) " gns (@) 3.2

To see that h’ satisfies (2.1]), because 7(X;|X_;) is the L*(P) projection of X;
onto the linear span of X_; , we obtain

Pl(X; — m(X;| X)) m(X;[X-5)] =0,

and
P{(X) — m(X,|X_x))X,;] =0 for all k # j.
For any X,v;,
P{V*m(Z, fuo)lhy;, X;75]}
=2(Pg;;(X))'PU(X; — n[X;1X 1) X167
= 2(Pgn; (X)) P[(X; — w[XG1X_])%187,7
= 25:]'%"

Thus, for any h,(x) = 511 %5,

P{VR(Z, fo) B ]} = 237,85, = VEa(fo) o).

Jj=1

Thus, A is a function satisfying ([2.1)).
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Therefore, suppose Bn is an initial estimator of 3}, and we can find a proper
estimator for A}, denoted by h,. The OSRE for 3}, is then given as

0=~ > (X)) (Y- XTB,). (3.3)
j=1 i=1

where an is the jth coordinate of ,@n
Suppose the linear regression model is defined as . The vector parameter
" is sparse, which means we can estimate the initial estimator ,@n in using
the lasso method:

B, = augmin { LY — X3+ 27181 }. (3.4)
BERPR n

where ||Y — X85 = >0, (Y — X[ 8)% |18l = 228, |85] is the I;-norm on R?~,

and A > 0 is a penalty parameter.

Next, we estimate h} defined by . Recalling the definition of hj, we first
estimate 7(X;|X;,..., X1, X;4+1,...,X,,), the projection of X; onto the linear
space spanned by Xi,..., X, . The sparsity of the regression parameters implies
a finite number of covariates. Note that such sparsity, equivalent to the maximal
sparsity level of X! also appears in other works (van de Geer et al. (2014));
Javanmard and Montanari| (2014, [2018)). This estimation can be treated as a
high-dimensional linear regression problem. Thus, we adopt the lasso to estimate
the coefficients.

We estimate the coefficients of X_; for X; using

. . 1 ~

Ay = argunin { 51, — XT3l |
neRen—1 (210

where X; = (Xy,,...,X,;)", X_; is the sub-matrix of X obtained by removing

the jth column. With 7;, we obtain

0nj(X) = X; —7(X;|X_;) = X; — X7,

On the other hand, Pg;(X) is estimated by

1X; — X155

T = - + Al -

Finally, the estimator for h} is given as

i on An’ X An‘ AT -2
ha(X) =23 gﬂ(?z)ﬁj = 287 TTX, (3.5)
=1 J
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where T2 = diag(72, ... , 7. ) and
1 = oo =iy,
e
Mot —Mpp2 - 1

From (3.3) to ( . the OSRE for 6, is
§)3+ })ﬁT%X(K—&%ﬁ,

where an is the jth element of Bn, and Bn is the lasso estimator of 3,,.

To state the asymptotic properties for the OSRE, we need some technical
assumptions, Conditions B.1-B.8 which are provided in the Supplementary
Material.

Theorem 3. Suppose that Conditions B.1-B.8 hold, and that \ < /log p,,/n and
/\ = +/logp, /n uniformly in j. Then, 0, satisfies

V0, — 0,0) B N(0,¢?),
where ¢? is defined in Condition B.8 in the Supplementary Material.
A proof of Theorem 3 is given in Section S3 of the Supplementary Material.

3.2. Example 2: OSRE for high-dimensional additive model

Whereas the previous example was a parametric problem, we now examine
a high-dimensional NAM. Suppose

M+anj +€Z7 (36)
where p is a constant and ¢; is the error term, with mean zero and finite variance
o®. In this model, the true regression function fr(x) = >_"", fr.(z;) belongs

to the functional class F,, = {f € L*(P) : f(=) = 37", f;(z;), Pf;(Xi;) = 0},
equipped with an inner product

Pn

AﬁW—Z/h 2) fosa

For a NAM, we can estimate f,q by maximizing P {m(X,Y, f)}, with m(X,Y, f)
—(Y — f(X))?/2. We are interested in the contribution of one specific com-
ponent of X, say, X;. For this purpose, we define the parameter of interest as
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= [ f3(z)dz to quantify the contribution of X; in terms of predicting Y.
To find h;‘L satlsfymg Condition A.3, we first use a sequence of basis functions,
¢ju(z), for k =1,2,..., in the support of X; (splines, Fourier bases, for instance),

so that f;(z) can be treated as a linear combination of basis functions ¢;;(x),
for k =1,2,... Let Vi = ¢1p(Xq) and Vi = (Vir, ..o, Vi1, Vigsr,-..). We
show that the solution to the above equation is

ho(X) == e [Vir — 7 (Vie| Vi oo X2, X, .., X))

k=1

where
Uk:Q{P[‘/lk*W(Vvlk|‘/1,fk7X27X3”" pn) /fnl Jou(t)

Suppose that fn is an initial estimator of f¥, and that A} is estimated by En
Then, the OSRE for 0,y is defined as

= [ DR (v - Rx). 6)

where Y is the average of Y;.

In case when many additive components f,(-) are zeros, Huang, Horowitz
and Wei| (2010) propose using an adaptive group lasso to estimate f*. Consider
a normalized B-spline basis {¢x,1 < k < m,} for B,, where m,, = K, + [,
in which K,, = n” with 0 < v < 0.5 is a positive integer. Under suitable
smoothness assumptions, f;; can be well approximated by functions in B,,. Let
lall> = (Z;nsl ‘a.j’2)1/2 , Bnj = (6j17 s 7/8.7'mn)T7 Bn = ( nls e 7Bnpn) and
w,, = (Wn1,..., Wy, )" be a given vector of weights. Then, the penalized least
squares estimation with a group lasso minimizes

2

Pn mn Pn
Ln(ﬂ,,@n) = Z Y M= ZZB]IC¢I€ 1] +)\n22wnj||6nj”27
=1 =1 k=1 Jj=1

where \,5 is a penalty parameter. In order to make the computation identifiable,
we impose the additional constraints that

n mMn

DO Bistw(Xiy) =0

i=1 k=1

The constrained optimization problem is converted to an unconstrained problem
by centering the response and the basis functions. Let

¢]k( ) —TL 121/% z]
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For simplicity, we write ¢x(z) = ¢;x(z), and assume the mean of Y is zero.
Huang, Horowitz and Wei (2010]) propose a two-step approach for the estimation
and the component selection. First, they define

B, = argmin ) _ le - Z Zﬂ Birdr(Xi;)

Bn i1 j=1 k=1

2 DPn
+ A Z [1Bnjll2-
j=1

Then they use Bn to obtain the weights by setting

w 1Busllz ", 3 1| Bnsll2 > 0
G if || Bn;ll2 = 0.

Finally, the adaptive group lasso estimator is Bn = argming L, (B8,). Therefore,
the group lasso estimators for f; are

Fui@) =S Bou(a).

To estimate h} in Condition A.3, we first need to estimate the projection
T (VigIlVi,—k, X2, X3, ..., X,,), which can also be viewed as a high-dimensional
NAM. Thus, suppose there exists 7j, = (0] j1-- Mk o1s Mphgrs---) > and
st(X_) = g szgn) (X;) satisfies

Vip = Z Vi + SZ(")(X_l) + &, Plex|X-1] = 0.
I#k

The assumption implies a sparse structure of the projection

ﬂ-[‘/lk"/l,fkyX%"' X }7

)< Pn

which means that only a few of the covariates are correlated with X;. The
sparsity of 7, implies that each function component in the additive model can
be represented by a finite number of basis functions, although the number can
diverge with the sample size. Thus, with greater sample sizes, we can allow h} to
be closer to some arbitrary additive function. This is a common assumption in
many high-dimensional lasso settings (van de Geer et al.| (2014)); Javanmard and
Montanari (2014} 2018))).

We then follow Huang, Horowitz and Wei| (2010)) to apply the group Lasso to
estimate 7 (Vi |V _x, X2, X3,...,X,,). For simplicity of notation, we omit n in
the subscript of 1 in the following. More specifically, the penalized least squares
estimators are given as
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Pn 2
nk _argmlnz l ilk — ‘/11 kM1 — Zznkﬂgbl ij ]

Mk i=1 Jj=21=1
Pn
+ Mt (Z k1| + Z |77kj||2>
I#k
where n, = (77;@1, cee 777]gj)T7 M = (Me11s- s M1, k—15 T, 1, k415 -+ - 5 nk,l,mn)Ta

M = (Mrjis-- s Mjm,, )Ty for j = 2,...,p,, and Ay is a penalty parameter. The
estimates for 7, give the weights by setting

I {’ﬁkll’17 if [kw| >0

Wr1 = e
0, lf ‘nkll‘ = 07
for | # k, and
gl (|72 > 0
Wkj = .
o0, if ||77kj”2 = 07
for j =2,...,p,. Finally, we minimize
n Pn Mn 2
Eung) =3 [v VI =308 (X, ]
i=1 j=2 i=1
- DPn
+ Akn2 ( Z{Ekll’nkll‘ + Z @ij??ijz) :
1k j=2

The resulting coefficients of the projection are

ﬁk = argmin Zk(nk)

Nk
Now, define
C =
—771,1,2 T Mam, TMe2a oo TMh2m, —Th31 .- —Mp,m,
—M2,1,1 T M2am, TM221 --- T22m, 231 -0 TN2p,my
1,8 12 L =21 oo T 2mn T30 - -+ Tl poma,
T ~2 ~92
= diag(7},..., 7, ),
where

n Pn mp
7A'k2 = Tllz ( ilk — ZVumku - ZZ%JZ"?W) ilks

i=1 Ik j=2 1=1
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and let
V — (‘/117‘ . 'a‘/lmnw . "‘/;7n17 v 7‘/pnmn)T'

We obtain the estimator for b} as
ha(X) = —RTT2CV,

where K = (Ri,...,Rm,)?, and Ry = 2fﬁ1(x)¢k(x)d$. Therefore, from (3.7)),
the OSRE of 6, is

0, = /f%(f)dl’ + % z”: zn:/]%nj(Xij) <Yz - i: ﬁtj(Xij)> - (3.8)

Under some conditions, we can also prove that the OSRE 0,, defined in
follows an asymptotic normal distribution. In order to obtain the asymptotic
properties of §m we require the Conditions C.1-C.10 which are given in the
Supplementary Material.

Theorem 4. If Conditions C.1-C.10 hold, then gn, defined by (3.8)) satisfies
V(B — 0,0) & N(0,026).

Theorem 4 ensures that the asymptotic distribution of the OSRE 0,, defined
in is normal. A proof for Theorem 4 is given in Section S4 of the
Supplementary Material.

To illustrate the universality of our proposed method, we provide additional
examples in the Supplementary Material. The OSRE for the coefficient inferences
of high-dimensional linear model and high-dimensional logistic regression models
are given in Sections S5 and S6, respectively, of the Supplementary Material.

4. Simulation Study
4.1. Simulation with high-dimensional linear models

Our first simulation considers a high-dimensional linear model. In this
setting, we generate p = 500 covariates consisting of K = p/q groups, each group
with ¢ variables. For ¢ variables in the kth group, denoted by Xj.,..., Xy,, are
generated as

(U}kj + tuk)

Xni =

y Wy ~ U(O, 1), Uk € U(O, 1)

In this way, we generate a sequence of blocked covariates. We set t = 2, so
the correlation between any two X in the same block is p = 0.8, but they are
independent if from different blocks. Given X, Y is generated from a linear model
with an error term from a standard normal distribution. We vary the block size, q,
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from two to four, and choose the coefficients according to the following scenarios:
(a) ¢g=2and By = (1,1,1,0,...,0)T.
(b) ¢ =4 and By = (1,1,1,0,...,0)T.
(c) g=4and By = (
(d) g=4 and By = (1,1,1,1,1,0,...,0)T.

1,1,1,1,0,...,0)7.

To illustrate our proposed method, we focus on inferences for three param-
eters, that is, the total effect, given by 6y = >-"_, 8;%, the coefficient of one
important covariate, given by 87, and the coefficient of an unimportant covariate,
which is specified as the coefficient of the first zero-coefficient covariate in each
scenario. The OSRE for a single coordinate can be found in Section S3 of the
Supplementary Material. We consider sample sizes n = 100 and 200, and replicate
each scenario 500 times in the simulation study.

To calculate the OSRE, the initial estimate for B is based on the lasso
regression. The tuning parameter is selected as the largest penalty parameter for
which the corresponding cross-validation error is within one standard deviation
of the minimal error. The estimate for h} is also obtained from a lasso regression
with cross-validation, but the tuning parameter is set to be a factor of the cross-
validation optimal parameter. The usual variable selection procedures, such
as the lasso, tend to balance the bias and variance trade-off, and their goal
is to minimize prediction errors. However, to obtain a proper inference, it is
necessary to remove the bias so that the asymptotic normality with mean zero
is a good approximation. Empirically, we find a factor of 276 yields the best
performance. To examine the inference performance of the proposed method,
we calculate confidence intervals for the OSRE, which are constructed using the
asymptotic normal distribution in our theorem. For comparison purposes, we also
report the coverages from two other methods: the first constructs the confidence
intervals using a residual bootstrap (RBS), and the second performs an ad-hoc
post-selection inference (PSI) by treating selected variables in the lasso method as
the only variable in the regression model. It takes less than a second to compute
the OSRE of one single regression coefficient in Scenario (a) with sample size 100
on a laptop computer with an Intel Core i5 processor.

Figure 1 plots a histogram of the OSRE and the plug-in estimators for case
(a) with sample size n = 100. The dashed curve in the left figure is a normal
density function, with the true parameter value 6, as the mean (dotted line) and
the variance given as the average of the estimated &,. Therefore, this curve serves
as a theoretical distribution from our theorem. Figure 1 indicates that the OSRE
is close to a normal distribution, and its distribution matches the theoretical one
very well. In contrast, the plug-in estimator is severely biased. (The standard
error of the dashed line in the right figure is the standard error of the plug-in
estimator.)
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Figure 1. Histograms of the OSRE and plug-in estimators of the total effect for Scenario

(a).

In Table 1, we report the simulation results for the bias (Bias), standard error
(SE), estimated standard error (ESE), with the coverage probabilities based on
(1—a)-confidence intervals, where av = 0.1 and 0.05; CP95 represents the coverage
rates of 95% confidence interval, and CP90 represents those of the 90% confidence
interval. As shown in the table, both the RBS and PSI perform poorly in some
cases. In contrast, the coverage probabilities of the confidence intervals based
on the OSRE are reasonably close to the nominal levels, and the performance is
even better when n increases to 200. In addition, the SEs and ESEs are close in
our proposed method.

From Table 1, we notice that the post-selection produces similar coverage
to that of the OSRE for £;, but with much shorter confidence intervals. This
is because, for this model, the variable selection does not introduce much bias
into the estimation of 5;, so debiasing is not necessary for S;. On the other
hand, the extra bias correction based on the empirical data in the OSRE can
bring extra variability into the estimation. In the Supplementary Material (S5.1),
we demonstrate that if the extra bias correction is known, then the confidence
intervals in the ORSE are similar in width to those in the post-selection approach.

4.2. Simulation study with high-dimensional NAM

In this simulation, we generate X in the same way as in the linear model
with ¢ = 5, except that the correlation p with the same block is either 0 (setting
t =0) or 0.2 (setting t = 0.5). The outcome, Y, is generated from

Y :ifj(Xj) +¢,
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Table 1. Results based on 500 replicates for high-dimensional linear models.

n  Method Parameter Bias SE ESE CP95 CP90 Bias SE ESE CP95 CP90
(a) (b)
100 RBS 0 -1.253 0.297 0.204 0.336 0.292 -0.831 0.293 0.249 0.696 0.638
51 -0.215 0.179 0.179 0.902 0.876 -0.176 0.191 0.201 0.936 0.900
B 0.013 0.043 0.042 0.970 0.944 0.037 0.082 0.094 0.974 0.946
PSI 0 0.021 0.319 0.292 0.916 0.868 0.023 0.318 0.273 0.912 0.850
51 -0.026 0.180 0.158 0.904 0.838 -0.023 0.195 0.183 0.938 0.872
B 0.035 0.092 0.023 0.966 0.942 0.069 0.125 0.054 0.960 0.932
OSRE 0 -0.020 0.461 0.456 0.934 0.880 0.299 0.530 0.576 0.956 0.890
B1 0.016 0.219 0.208 0.930 0.874 0.055 0.257 0.254 0.950 0.894
B 0.082 0.203 0.207 0.930 0.870 0.103 0.236 0.255 0.948 0.888
(c) (d)
RBS 0 -0.777 0.286 0.289 0.864 0.794 -1.193 0.372 0.338 0.550 0.476
51 -0.108 0.205 0.210 0.946 0.906 -0.095 0.222 0.215 0.918 0.884
B -0.000 0.008 0.000 0.998 0.998 0.016 0.052 0.040 0.952 0.934
PSI 0 0.169 0.277 0.271 0.934 0.868 0.081 0.383 0.333 0.896 0.832
B1 0.011 0.205 0.191 0.934 0.880 -0.001 0.209 0.186 0.916 0.844
B -0.001 0.014 0.000 0.998 0.998 0.031 0.090 0.023 0.970 0.944
OSRE 4 0.583 0.547 0.603 0.892 0.800 0.438 0.694 0.721 0.914 0.852
51 0.078 0.284 0.253 0.918 0.862 0.077 0.273 0.257 0.918 0.864
B 0.003 0.243 0.250 0.958 0.906 0.068 0.250 0.254 0.938 0.890
(a) (b)
200 RBS 0 -1.004 0.227 0.149 0.494 0.434 -0.701 0.179 0.164 0.824 0.734
51 -0.157 0.133 0.126 0.930 0.884 -0.136 0.132 0.141 0.944 0.912
B 0.010 0.033 0.030 0.964 0.938 0.020 0.050 0.059 0.978 0.958
PSI 0 0.013 0.239 0.210 0.924 0.864 -0.011 0.205 0.189 0.928 0.884
51 -0.010 0.129 0.116 0.910 0.858 -0.013 0.134 0.133 0.940 0.898
B 0.025 0.071 0.014 0.956 0.930 0.045 0.085 0.036 0.978 0.952
OSRE 0 -0.035 0.414 0.383 0.922 0.866 0.101 0.429 0.465 0.950 0.914
51 0.011 0.176 0.180 0.958 0.912 0.013 0.216 0.215 0.952 0.912
B 0.030 0.175 0.179 0.938 0.902 0.040 0.195 0.215 0.976 0.928
(c) (d)
RBS 0 -0.654 0.192 0.176 0.888 0.810 -1.005 0.239 0.199 0.646 0.568
51 -0.098 0.146 0.146 0.940 0.882 -0.081 0.150 0.147 0.956 0.922
Bk 0.000 0.000 0.000 1.000 1.000 0.004 0.020 0.027 0.982 0.966
PSI 0 0.095 0.170 0.176 0.930 0.872 0.026 0.252 0.226 0.924 0.862
51 -0.000 0.146 0.137 0.922 0.866 -0.004 0.142 0.136 0.946 0.892
B 0.000 0.000 0.000 1.000 1.000 0.014 0.052 0.010 0.992 0.972
OSRE 0 0.266 0.389 0.431 0.938 0.872 0.152 0.503 0.540 0.964 0.910
B1 0.048 0.210 0.214 0.958 0.906 0.006 0.215 0.215 0.950 0.886
B -0.010 0.204 0.215 0.958 0.918 0.020 0.213 0.215 0.950 0.898

where we choose fi(z) = 8z, fo(z) = 3(22—1)%, f3(x) = 4sin(27t)/(2—sin(27t)),
fa(x) = 6(0.1sin(27t) +0.2 cos(27t) + 0.3 sin(27t)? + 0.4 cos(27t)* 4 0.5 sin(27t)?),
fs(x) =---=f, =0, and € ~ N(0,0?). These functions cover both linear and
nonlinear patterns. Furthermore, we subtract each f; from its average value
to make the model identifiable when including an intercept. For illustration
purposes, we focus on an inference for the total effect of the linear part as
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[ fi(z)*dz, and the total effect of the nonlinear covariate X, as [ fi(x)?dx. The
signal-to-noise ratio is defined as sd(f)/sd(¢). Because the standard derivation
of the error term is chosen as o = 2, the signal-to-noise ratios for f; and f, are
0.86 and 1.54, respectively. We consider the cases where p = 500 and sample size
n = 200 and 400.

In the simulation, to calculate the OSRE in our method, we first use the
third-degree B-spline with six evenly distributed knots to approximate all f;. We
also investigate the choice of three knots and using the sixth degree of splines
for the simulation setting with zero within-block correlation and n = 200. The
results show that the method is fairly robust for these different choices. We obtain
the initial estimates for f; based on these splines and using the adaptive group
lasso method proposed by Huang, Horowitz and Wei (2010). In particular, the
adaptive group lasso is calculated using the algorithm proposed by [Yuan and Lin
(2006). Because p is larger than n, we use the BIC (Schwarz| (1978)) to select
the penalty parameter, as suggested by Huang, Horowitz and Wei| (2010). We
use the adaptive group lasso with BIC for each basis function of X; to estimate
the coefficient ny,, for Kk = 1,...,m,, and construct the OSRE based on .
It takes an average of 3.12 seconds to run one data set with a sample size of
100. We compare our method with the ad-hoc post-selection method, because
the residual bootstrapping method is computationally intensive. The latter treats
a spline approximation as a standard linear regression model after the important
components are identified.

Table 2 shows the relative bias (Bias), standard errors (SEs), estimated
standard errors (ESEs), and coverage rates of the OSRE and ad-hoc (PSI)
methods based on 500 replicates. The OSRE and PSI do not perform well when
the sample size is 100, so we omit the results in the table. The SEs and ESEs
are close to each other in our proposed method, whereaas the ESEs are smaller
than the SEs for the ad-hoc method. The simulation shows similar results for
the case with and without correlations between the covariates. For the linear and
nonlinear components, the coverage probabilities of the OSREs are reasonably
close to the nominal levels when the sample size n = 200. In contrast, the ad-hoc
method gives all cases a coverage probability lower than (1 — «). Both methods
seem to work well when the sample size n = 400. We also test the performance
of the two methods on the zero-influence function. Both methods show a slight
overestimation of the coverage probabilities.

We also conduct a simulation study for a high-dimensional generalized linear
model and a partial linear model to compare our proposed method with the
ad-hoc method (PSI). These simulation results can be found in Section S6 and
S7, respectively, of the Supplementary Material.
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Table 2. Results based on 500 replications for high-dimensional nonparametric additive
models.

Parameter n p  Method Bias SE ESE CP90 CP95

J fi(x)dz 200 0O PSI -0.002 0.905 0.643 0.772 0.858
OSRE 0.087 1.051 1.081 0.922 0.984

0.2 PSI -0.027 0.644 0474 0.734 0.796

OSRE 0.007 0.656 0.63 0.846 0.888

400 0 PSI 0.012 0.523 0.474 0.894 0.954

OSRE 0.053 0.669 0.744 0.922 0.968

0.2 PSI 0.013 0.448 0.371 0.886 0.936

OSRE 0.010 0.540 0.533 0.912 0.962

[ fi(z)dz 200 0O PSI -0.009 1.243 0.854 0.770 0.830
OSRE 0.059 1.335 1413 0.946 0.974

0.2 PSI -0.028 1.322 0.831 0.742 0.810

OSRE 0.034 1344 1371 0.934 0.976

400 0 PSI -0.001 0.664 0.627 0.900 0.956

OSRE 0.027 0.809 0.936 0.944 0.982

0.2 PSI 0.016 0.773 0.642 0.868 0.934

OSRE 0.032 0.978 1.025 0.918 0.964

5. Data Example

In this section, we apply the proposed method to study the association
between genes and a particular gene called TRIM32, which has been found to
cause Bardet-Biedl syndrome (Chiang et al. (2006)). We use the expression data
for an eQTL experiment on rat’s eyes reported by [Scheetz et al. (2006). In this
study, the eye tissue of 120 120-week-old male rats were selected for an Affymetrix
expression microarray analysis. Over 31,000 different probe sets were recorded in
the Affymetrix Rat Genome 230 2.0 Array. The intensity values are normalized
using the robust multi-chip averaging (RMA) method (Irizarry et al. (2003))).
The gene expression levels are analyzed on a logarithmic scale. Because many
of the probes in the Affymetrix Rat Genome 230 2.0 Array are not expressed in
the eye tissue, and initial screening using correlation shows that most probe sets
have very low correlation with TRIM32, we select the 500 probe sets that have
the highest correlation with TRIM32 in this analysis. We further exclude one
sample (GSM130600), because its expression values are extreme. Our final data
set has sample size n = 119 and 500 covariates.

We fit both a linear model and an additive model to this data to test
whether any significant linear or nonlinear association exists between any gene
and TRIM32. All covariates are standardized by their ranges, so the values
are between zero and one. Linear model fitting is the same as in the first
simulation study, where the penalty parameter for the lasso estimation is based
on cross-validation. The OSRE for each regression coefficient in the linear model
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Table 3. Parameter inference in the microarray data analysis.

Probe OSRE  Standard Error p-value
1384035_at  8.34e-06 6.29¢e-05 0.148
1368136-at  5.52e-06 1.66e-05 <0.001
1398370_at  4.04e-05 8.09e-05 <0.001
1376261 at  4.89e-06 1.23e-04 0.665
1379982_at  9.28e-06 7.24e-05 0.162
1367777_at  8.45e-05 4.68e-04 0.049
1368228_at  9.13e-06 3.61e-05 0.006
1380137.at  1.18e-06 1.18e-05 0.274
1384139_at  8.95e-06 7.60e-05 0.199
1379971_at  1.65e-05 4.29e-05 <0.001
1388491 _at  1.18e-05 2.85e-05 <0.001
1375642_at  8.62e-06 3.96e-05 0.018
1369414_at  1.88e-05 1.54e-04 0.183

is then calculated as in the simulation study, and its variance is estimated using
the proposed method. To fit the NAM, we use cubic splines with six evenly
distributed knots in [0, 1] to estimate each of the additive components. To test
the importance of each covariate, we calculate the OSRE for the summary of
each functional component as [ fZ(z)dx, for k =1,...,p. In the estimation, the
tuning parameter is chosen using the BIC.

To conserve space, in Table 3, we show only the estimated parameters of the
NAM and their associated p-values computed based on normal distributions. The
results for the linear model are given in Supplementary Material. Table 3 shows
that 13 important genes are selected by the additive model. Only gene 1367777 _at
is shown to be significantly associated with TRIM32 in both the linear model and
the additive model.

To gain further insight into how these selected genes are associated with
TRIM32 in the two models, we plot locally weighted scatterplot smoothing esti-
mates for the significant variables from the additive model (in the Supplementary
Material). The plot indicates that both 1368228_at and 1379971 _at have nonlinear
associations with TRIM32. We also observe a clear linear relationship between
TRIM32 and 1367777_at, the only gene that is significant in both models.

6. Conclusion

We have proposed an OSRE for rigorous inference for low-dimensional
functionals of high-dimensional parameters. A key component of the OSRE is to
solve for h} by inverting the Hessian operator given by the objective function,
which is closely related to the information operator when the objective function is
a log-likelihood function. For the latter situation, our OSRE reduces to a one-step
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efficient estimator in semiparametric models. When the initial estimators fn and
N, satisfy n~1/4 consistency, we have shown that the OSRE is root-n consistent
and asymptotically normal. We have applied our method to study the inferences
for the parameters in both high-dimensional linear models and high-dimensional
additive models. This is the first time such a result has been established for the
additive model. Our numerical results suggest that the proposed method works
well, even when the sample size is relatively small.

For high-dimensional inference, sample splitting (or cross-fitting) is widely
used to construct a estimator. This technique is particularly useful to de-correlate
the estimators between the parameter of interest and the nuisance parameters.
We can extend the cross-fitting techniques to facilitate the proof of asymptotic
equicontinuity conditions in the regularity conditions. Sample splitting can lose
efficiency, because it is based on partial data. In such cases, salvage methods
include cross-validation-type sample splitting and the estimator average. We will
further examine the performance of such techniques in the OSRE methods.

As stated earlier, a key point for the OSRE is the need to estimate h}.
Although we can obtain its expression in the models considered here, h} often
does not have an explicit expression. Thus, it is difficult to generalize the OSRE
to more complicated models. However, in semiparametric inference, the profile
likelihood function can be used to approximate the least favorable submodel. For
example, the tangent vector of the profile likelihood function is the efficient score
function. Hence, one potential direction for future research is to devise a similar
profile m-function, without explicitly estimating h’.

We have only considered the dimensionality of variables to be p,, and
assumed the coefficients are nonzero for a much smaller list of variables. However,
if we embed p,-dimensional functions into an infinite-dimensional function space,
we can allow assumptions that are even more flexible. For example, nocoefficients
are zeros, but they decay at a certain rate. This may lead to an even more general
framework for OSREs.

Supplementary Material

The online Supplementary Material provides some technical conditions for
the theorems, details of proofs, the connection between OSRE the semiparametric
model and additional data examples.
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