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Abstract: Quantile regression is a powerful data analysis tool that accommodates

heterogeneous covariate-response relationships. We find that by coupling the

asymmetric Laplace working likelihood with appropriate shrinkage priors, we can

deliver pseudo-Bayesian inference that adapts automatically to possible sparsity

in quantile regression analysis. After a suitable adjustment on the posterior

variance, the proposed method provides asymptotically valid inference under

heterogeneity. Furthermore, the proposed approach leads to oracle asymptotic

efficiency for the active (nonzero) quantile regression coefficients, and super-

efficiency for the non-active ones. By avoiding dichotomous variable selection, the

Bayesian computational framework demonstrates desirable inference stability with

respect to tuning parameter selection. Our work helps to uncloak the value of

Bayesian computational methods in frequentist inference for quantile regression.

Key words and phrases: Asymmetric Laplace distribution, increasing dimension,

optimal weighting, posterior asymptotics. shrinkage prior, working likelihood.

1. Introduction

Quantile regression, formally introduced by Koenker and Bassett Jr (1978),

has become a powerful tool for data analysis in a wide range of applications,

ranging from economics (Fitzenberger, Koenker and Machado (2013)) to public

health (Wei et al. (2019)). Quantile regression enables researchers to go beyond

the modeling of conditional means: By modeling the effects of covariates at

different conditional quantile levels of a response variable, we obtain more

comprehensive information on the relationships between the response and the

covariates. In particular, quantile regression reveals the differential effects of a

covariate on the low and high ends of the response distribution.

Because the sampling distributions of the quantile regression estimators

involve the conditional density functions as nonparametric nuisance parameters,

inferential methods have to approximate those quantities, either directly or indire-

ctly. Existing methods include using plugged-in density estimates (Powell (1991);

Hendricks and Koenker (1992)), rank-score tests (Gutenbrunner et al. (1993);

Koenker and Machado (1999)), resampling methods (Feng, He and Hu (2011);
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Pan and Zhou (2020)), and Bayesian computational approaches (Chernozhukov

and Hong (2003); Yang, Wang and He (2016)).

The present paper employs the Bayesian computational framework to provide

frequentist inference for quantile regression. We show that the pseudo-Bayesian

approach based on a working likelihood and a shrinkage prior achieves automatic

adaptation to sparsity, and it can provide asymptotically valid inference for

quantile regression under heterogeneity. We investigate the asymptotic properties

of the posterior distribution in a possibly sparse model, and then demonstrate the

desirable efficiency and stability of the proposed method with empirical results.

We use the term “posterior inference” loosely to refer to statistical inference

based on the Bayesian computational framework, even though we pursue inference

validity in the frequentist sense.

More specifically, we consider the asymmetric Laplace working likelihood (Yu

and Moyeed (2001); Yang, Wang and He (2016)), with appropriate continuous

shrinkage priors in the spirit of common frequentist penalty functions (Wu and

Liu (2009)). With a random sample of size n from a linear quantile regression

model with p ≤ n covariates but only s ≤ p active (nonzero) coefficients, our

results offer the following insights into the posterior inference.

1. The posterior distribution concentrates around the true quantile regression

parameters at an adaptive rate: it achieves the n−1/2 rate for active

coefficients and a super-efficient rate of o(n−1/2) for inactive (zero-valued)

coefficients.

2. The posterior mean for the active coefficients is asymptotically normal and

oracle efficient: it achieves the same asymptotic variance as that of the

quantile regression estimator where we know which coefficients are active,

yet without relying on explicit variable selection.

3. With an appropriate adjustment of the posterior variance, we construct

automatically adaptive confidence intervals in the frequentist sense: they

are asymptotically oracle for the active coefficients, while super-efficient for

the inactive coefficients with coverage probabilities tending to one.

4. Even if we identify the active covariates correctly, we cannot obtain

optimally weighted quantile regression estimators by focusing on these

covariates only. Our proposed pseudo-Bayesian approach with continuous

shrinkage priors does not rely on a binary selection of active/inactive

covariates; thus, it can offer performance advantages over variable selection

approaches.

It is important that unadjusted Bayesian inference is not automatically valid,

because the posterior is constructed operationally from a misspecified asymmetric

Laplace working likelihood. Even for finite-dimensional models without the
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use of shrinkage priors, the posterior distribution does not approximate the

sampling distribution of the classical quantile regression estimator (Sriram (2015);

Yang, Wang and He (2016)). From the frequentist perspective, however, we

find a relatively simple adjustment to the posterior variance that facilitates

asymptotically valid and adaptive inference in possibly sparse quantile regression

models, generalizing the work of Yang, Wang and He (2016). The Bayesian

computational framework allows us to circumvent the nonparametric estimation

of the conditional density functions as nuisance parameters (Chernozhukov and

Hong (2003)), thus serving as a valuable tool for frequentist inference.

Bayesian modeling with shrinkage priors has been quite well studied in terms

of estimation accuracy (error rates) of the parameters and variable selection in

high-dimensional problems; see, e.g., Narisetty and He (2014), Song and Liang

(2017), Jiang and Sun (2019), and Gao, van der Vaart and Zhou (2020). The

focus of the present paper is not the posterior contraction rate or variable selection

consistency, but the understanding of what can be accomplished in inference for

possibly sparse quantile regression models, about which relatively little has been

available in the literature even when the number of predictors p is fixed. To

the best of our knowledge, our work is also the first to provide an asymptotic

analysis for the posterior mean and variance in the Bayesian quantile regression

framework with a shrinkage prior. The main challenge in our setting is adjusting

for the misspecification of the likelihood function under heterogeneity and model

sparsity. To simplify the technicalities and focus on the main points, we begin by

working with an asymptotic framework where the sample size n goes to infinity

yet the covariate dimension p is kept fixed. We extend to the regime where p can

diverge to infinity later in the paper.

The rest of the paper is organized as follows. In Section 2, we discuss

the quantile regression problem and our pseudo-Bayesian framework. Then,

we present the corrected posterior inference approach in Section 3, supported

by the asymptotic properties of the posterior distribution. In Section 4, we

extend our theoretical analysis to the asymptotic regime with an increasing

covariate dimension. Section 5 shows some simulation results to demonstrate

the effectiveness and stability of the proposed approach. Section 6 concludes the

paper.

2. Problem Setup

2.1. The quantile regression model

Let Qτ (Y | X = x) be the τth conditional quantile of the response variable

Y given covariates X = x, where x = (x0, . . . , xp)
T includes an intercept term

x0 = 1 and p covariates, and τ ∈ (0, 1) is a pre-specified quantile level of interest.

We consider the linear quantile regression model
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Qτ (Y | X = x) = xTβ0(τ), (2.1)

where β0(τ) = (β0
0(τ), . . . , β

0
p(τ))

T is the true quantile regression coefficient

vector. The conditional median of τ = 0.5 is a special case, and high or low

quantile levels of τ are often of interest in, e.g., financial risk quantification

(Taylor (2019)) and public health assessment (Wei et al. (2019)). Because we

focus on a fixed τ in Model (2.1), we suppress the index τ in β0(τ) in the rest of

the paper for notational convenience.

In this paper, we consider Model (2.1) to be possibly sparse. Let S = {0} ∪
{j ∈ {1, . . . , p} : β0

j ̸= 0} be the index set of the active (nonzero) coefficients,

including the intercept term; Sc = {0, . . . , p}\S is the set of inactive coefficients.

Let s = |S|−1 be the number of active covariates. A possibly sparse model refers

to 0 ≤ s ≤ p for some integer s; yet neither s nor S is known in advance. For

now, we suppose the covariate dimension p is fixed; later in Section 4, we extend

our theory to the case where p can increase with the sample size.

We briefly review the classical quantile regression analysis. Let Dn =

{(xi, yi) : i = 1, . . . , n} be a random sample of size n that satisfies Model (2.1).

The quantile regression estimator (Koenker and Bassett Jr (1978)) is

β̂ = argmin
u∈R(p+1)

n∑
i=1

ρτ (yi − xT

i u), (2.2)

where ρτ (v) = v{τ − 1(v < 0)} and 1(·) is the indicator function. With p ≪ n,

one can perform statistical inference for Model (2.1) based on the asymptotic

properties of the estimator β̂; refer to Koenker (2005) and Koenker et al. (2017)

for further discussion of quantile regression. Here, we highlight two aspects of the

estimator β̂: (i) it does not account for the possible model sparsity, and therefore

does not achieve optimal efficiency when Model (2.1) is sparse; (ii) its asymptotic

variance-covariance matrix involves the conditional density function of Y given

X, which requires non-parametric estimation that can be unstable in practice.

2.2. A pseudo-Bayesian framework

In this section, we present the pseudo-Bayesian framework for modeling the

quantile regression coefficient β in Model (2.1). We adopt the asymmetric Laplace

working likelihood:

L(Dn | β) ∝ exp

{
−

n∑
i=1

ρτ (yi − xT

i β)

}
, (2.3)

where ∝ means equality up to a multiplicative factor that does not depend on

β. We call L(Dn|β) a working likelihood because it does not correspond to the

true data-generating mechanism of Dn under parameter value β; in fact, there

is no “true” likelihood function, because Model (2.1) does not fully specify a
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Figure 1. Comparison between the prior πCA(u) and the prior induced by the SCAD
penalty of Fan and Li (2001); a is a tuning parameter in the SCAD penalty, and we set
a = 2 in the plot. Both priors are flat when |u| > aλ.

conditional distribution of Y given X. Choosing a working likelihood in the

form of (2.3) enjoys two benefits: (i) it allows the maximum working likelihood

estimator to coincide with the classical quantile regression estimator β̂ in (2.2);

and (ii) its Fisher information matrix shares a critical component with the

variance-covariance matrix of β̂ (Yang, Wang and He (2016)).

To incorporate possible model sparsity, we consider two examples of shrinkage

priors in the spirit of common penalty functions:

πAL(β) ∝ exp

{
−n1/2λn

p∑
j=1

wj|βj|
}
, (2.4)

πCA(β) ∝ exp

{
−n

p∑
j=1

pλn
(βj)

}
, (2.5)

where wj and the function pλn
(·) are given below; the tuning parameter λn

depends on the sample size, but we sometimes omit the subscript n when there

is no confusion. The prior (2.4) corresponds to the adaptive lasso (AL) penalty

(Zou (2006)), where wj = 1/|β̂j| for j ∈ {1, . . . , p} as in Wu and Liu (2009), and

β̂j is the jth component of β̂ defined in (2.2). In the clipped absolute (CA) prior

(2.5) we define pλ(u) = λ(|u| ∧ λ), which is motivated by the smoothly clipped

absolute deviation (SCAD) penalty of Fan and Li (2001). However, we remove

the smoothing component to simplify the theoretical derivation; see Figure 1 for

a visual comparison. For either (2.4) or (2.5), the prior on β0 is flat, that is,

π(β0) ∝ 1; therefore, β0 is not penalized. We discuss the prior choice further in

the next subsection.
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Given the working likelihood (2.3) and any prior π(β), we have the formal

posterior density

p (β | Dn) ∝ L(Dn | β)× π(β). (2.6)

Under either the AL (2.4) or the CA (2.5) prior, existing Markov chain Monte

Carlo (MCMC) algorithms enable efficient sampling from the posterior; see Li,

Xi and Lin (2010) and Alhamzawi, Yu and Benoit (2012) for the prior (2.4); and

Li (2011) and Adlouni, Salaou and St-Hilaire (2018) for priors similar to (2.5).

Note that although the CA prior (2.5) is improper, that is, integration of πCA(β)

over β ∈ Rp+1 diverges, the posterior (2.6) under the CA prior is still proper;

see Proposition S1 in the Supplementary Material. In the rest of this paper, we

examine the asymptotic properties of the posterior distribution, from which we

derive valid and adaptive confidence intervals in the frequentist sense.

2.3. Discussion on the choice of prior

Priors (2.4) and (2.5) are both examples from a general family of continuous

shrinkage priors; see e.g., Song and Liang (2017), Bhadra et al. (2019) and Zhang

et al. (2022) for discussions in the mean regression context. Common to these

priors is that the shrinkage is meant to be adaptive in a possibly sparse model,

and such adaptivity is central to our main results. The priors (2.4) and (2.5),

though relatively simple, are sufficient to demonstrate such adaptivity in our

setting, and therefore we focus on these two choices.

Here, we highlight the adaptivity of the priors (2.4) and (2.5), which is not

shared by all shrinkage priors; see also Remark 1. In the AL prior, each βj is

subject to a different scaling factor wj that is chosen adaptively from the data,

hence enabling adaptive shrinkage. On the other hand, the CA prior is not data

dependent, but has several desirable features (Song and Liang (2017)): (i) it has

a sharp peak near zero, which shrinks the smaller coefficients towards zero; and

(ii) it has a fat tail, which allows large coefficients to be unpenalized. Therefore,

both priors are adaptive, owning to their distinct features.

There are many other adaptive shrinkage priors designed specifically for

the Gaussian mean regression setting as in Carvalho, Polson and Scott (2010),

Bhattacharya et al. (2015); and Zhang et al. (2022), with the latter motivating

their choice from a prior on the coefficient of determination R2. However, few

works have focused on Bayesian quantile regression, because of the absence of

a true likelihood. While some existing priors can be adapted operationally for

quantile regression (Alhamzawi, Yu and Benoit (2012); Chen et al. (2013); Kohns

and Szendrei (2020)), we show in the online Supplementary Material that not all

such priors are appropriate for posterior inference. In this paper, we do not

promote any particular prior choice; instead, we use the relatively simple AL and

CA priors to illustrate the properties of posterior inference in possibly sparse

quantile regression models.
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3. Adaptive Posterior Inference

While posterior inference seems straightforward from the Bayesian perspec-

tive, its validity is not warranted for our pseudo-Bayesian approach because

the working likelihood is misspecified (Yang, Wang and He (2016)). In this

section, we begin by investigating the asymptotic properties of the posterior

distribution from the frequentist perspective. Next, we propose an adjustment

to the posterior variance-covariance matrix, and show that it can lead to valid

confidence intervals that adapt to model sparsity. In the last subsection, we

discuss an extension in which we use a weighted working likelihood to obtain

optimal efficiency. Throughout this section, the covariate dimension p is fixed in

Model (2.1).

3.1. Notation

Recall that we have β0 = (β0
0 , . . . , β

0
p)

T as the true regression coefficient in

Model (2.1), and that S is the index set of the active (nonzero) coefficients,

including the intercept term. Without loss of generality, we assume S =

{0, 1, . . . , s}. Recall β̂ is the classical quantile regression estimator in (2.2); let

β̃S ∈ Rs+1 be the oracle quantile regression estimator, which solves (2.2) using

only the active covariates. For any vector v = (v0, . . . , vp)
T, let vS = {vj : j ∈ S}

and vSc = {vj : j ̸∈ S}. For any matrix A ∈ R(p+1)×(p+1), we partition

A =

(
AS AS,Sc

ASc,S ASc

)
,

where AS ∈ R(s+1)×(s+1); for i, j ∈ {0, . . . , p}, we write A(i, j) as the (i+1, j+1)th

entry of A.

Recall that Dn is a random sample of size n from the distribution (X,Y ) ∼
pr∗, where the τth conditional quantile of Y satisfies Model (2.1). We also use

E∗(·) as the expectation operator under pr∗. Let ϵ = Y −XTβ0, and let fϵ|X (or

fϵ|XS ) be the conditional density function of ϵ given X (or XS). Furthermore, let

D = E∗(XXT) and G = E∗{XXTfϵ|XS (0)}. Given the data Dn and the prior π,

we consider the posterior probability measure as

Π (A | Dn) =

∫

A

p(β | Dn) dβ,

for any measurable set A ⊂ R(p+1), where p(β | Dn) is the posterior density in

(2.6).

We also use the following notation. For a vector v, let ∥v∥ and ∥v∥∞
be its ℓ2-norm and its maximum norm, respectively. For a matrix A, we

denote its maximal/minimal eigenvalue by θmax(A) and θmin(A), respectively.

For probability density functions h(x) and g(x), we denote their total variation



800 LI AND HE

distance by ∥h− g∥TV =
∫
|h− g|dx. For covariance matrices A and B, we write

A ⪯ B if B − A is positive semi-definite. For two deterministic sequences an

and bn, we write an ≪ bn if an = o(bn), and an ≲ bn if there exists a universal

constant C1 > 0 such that an ≤ C1bn. For any two stochastic sequences ân and

b̂n, we use ân ≪pr∗ b̂n and ân ≲pr∗ b̂n to denote ân = opr∗(b̂n) and ân = Opr∗(b̂n),

respectively; we define ân ≍pr∗ b̂n if both ân = Opr∗(b̂n) and b̂n = Opr∗(ân) hold.

3.2. Posterior asymptotics

In this subsection, we present the large-sample properties of the posterior

distribution defined in (2.6). To this end, we need the following technical

assumptions.

Assumption 1 (Identification). For any δ > 0, there exists ε > 0, such that

lim
n→∞

pr∗
[

sup
β:∥β−β0∥≥δ

{
Ln(β

0)− Ln(β)

n

}
≤ −ε

]
= 1,

where Ln(β) =
∑n

i=1 ρτ (yi − xi
Tβ).

Assumption 2 (Covariates). The covariate vector X has bounded support on

X ⊂ Rp+1. Furthermore, the eigenvalues of D = E∗(XXT) are all bounded away

from 0 and +∞.

Assumption 3 (Conditional densities). The conditional density function of

ϵ = Y −XTβ0 given X = x satisfies the following: (i) there exists L > 0, such

that for all u, u′ ∈ R,

sup
x∈X

|fϵ|X=x(u)− fϵ|X=x(u
′)| ≤ L|u− u′|;

and (ii) there exist two constants f and f , such that

0 < f ≤ inf
x∈X

{
fϵ|X=x(0)

}
≤ sup

u∈R
x∈X

{
fϵ|X=x(u)

}
≤ f.

Assumption 4 (Separation). For some constant b0 > 0, we have

min
j∈S\{0}

|β0
j | > b0.

We briefly discuss the assumptions. Assumptions 1–3 are standard in

pseudo-Bayesian modeling with a working likelihood (Chernozhukov and Hong

(2003); Yang, Wang and He (2016)) and in the quantile regression literature

(Knight (1998); Pan and Zhou (2020)); see also Koenker (2005, Sec. 4). In

particular, the two assertions in Assumption 3 hold for the conditional density

fϵ|XS (u) as well. Furthermore, Assumption 2 implies that the eigenvalues of
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G = E∗{XXTfϵ|XS (0)} are also bounded. Assumption 4 holds automatically

when we posit a fixed model as (2.1), where p is a constant; Similar separation

conditions are needed to achieve consistent model selection (Fan and Li (2001);

Wu and Liu (2009); Belloni and Chernozhukov (2011)).

Now, we present the main theoretical result on the posterior distribution

defined in (2.6).

Theorem 1. Consider the posterior distribution under either the AL prior (2.4)

or the CA prior (2.5). Suppose Assumptions 1–4 hold, and the tuning parameter

λ satisfies n−1/2 ≪ λ ≪ 1. Then, we have the following results:

1. Adaptive rate of contraction: for any sequence Mn → +∞,

Π

(∥∥βS − β0
S
∥∥ ≤ Mn

n1/2
, ∥βSc∥∞ ≤ Mn

nλ

∣∣∣∣ Dn

)
→ 1,

in pr∗-probability.

2. Distributional approximation: for some density functions πj(u) = Opr∗(1)

(u ∈ R, j ∈ Sc),

∥∥∥∥∥p (β | Dn)− ϕ

(
βS; β̃S,

1

n
G−1

S

)
×

∏
j ̸∈S

{nλπj(nλβj)}
∥∥∥∥∥
TV

→ 0,

in pr∗-probability, where ϕ(· ; µ,Σ) is the density function of a multivariate-

Gaussian distribution. In particular, πj(u) = (n−1/2wj/2) exp{−n−1/2wj|u|}
if we use the AL prior (2.4), and πj(u) = (1/2) exp{−|u|} if we use the CA

prior (2.5).

Theorem 1 shows that, despite the misspecification of the likelihood, the

posterior under either prior can separate the active and inactive coefficients with

a wide range of choices of λ. With nλ ≫ n1/2, part 1 of Theorem 1 shows that the

posterior for the inactive coefficients concentrates toward zero at a second-order

rate, which is super-efficient. Furthermore, part 2 of Theorem 1 shows that

the posterior for βS and βSc are approximately independent. In particular, the

posterior for βS is “oracle”, that is, the Gaussian limiting posterior for βS is the

same as if we knew the true model XS in advance (Sriram (2015)), regardless

of the prior we use. Thus, using the two shrinkage priors in Section 2.2, the

posterior distribution can adapt automatically to the model sparsity.

Although slightly different in the limit, the posterior shares the same

adaptation principle under both the AL and the CA priors in Section 2.2.

For an active coefficient, the prior casts no asymptotic effect on the posterior

distribution. For an inactive coefficient βj(j ∈ Sc), the shrinkage prior dominates

the working likelihood, because the limiting posterior density nλ × πj(nλβj) is

proportional to the corresponding prior when |nλβj| = O(1). Therefore, the
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shrinkage prior can separate the inactive coefficient from the active ones, which

is in line with Theorem 2.4 in Song and Liang (2017) for the Gaussian linear

model setting.

Remark 1. The adaptivity of the posterior shrinkage in Theorem 1 is not shared

under all popular Bayesian priors. For example, Castillo, Schmidt-Hieber and

van der Vaart (2015) shows that the traditional Bayesian lasso (Park and Casella

(2008)) cannot achieve the adaptation in the Gaussian mean regression setting,

in the sense that the posterior either over-shrinks the active coefficients or under-

shrinks the inactive coefficients.

3.3. Confidence intervals from posterior moments

Since the working likelihood (2.3) is misspecified, Theorem 1 alone does not

imply correct inference for quantile regression, and the posterior needs to be

properly calibrated. However, the correction on the posterior variance proposed

in Yang, Wang and He (2016) is no longer valid when we use shrinkage priors. In

light of Theorem 1, we give a modified adjustment that yields confidence intervals

based on posterior moments that are automatically adaptive to model sparsity.

We construct the confidence intervals for β0 based on the posterior mean

β̌ = (β̌0, . . . , β̌p) and the posterior variance-covariance matrix Σ̌ obtained from

any posterior sampling algorithm. We start from the adjustment used in Yang,

Wang and He (2016) by letting D̂ =
∑n

i=1 xix
T

i /n and Σ̌adj = nτ(1− τ)Σ̌ D̂ Σ̌.

Our proposed level 1− α confidence interval for each β0
j takes the form

β̌j ± zα/2ηj
{
Σ̌adj(j, j)

}1/2
, j ∈ {0, 1, . . . , p}, (3.1)

where ηj = min{n1/2λ,max{1, λ/|β̂j|}} is the adjustment weight, and zα/2 is the

upper α/2 quantile of the standard normal distribution. Theorem 2 gives several

properties of the proposed interval (3.1).

Theorem 2. Consider the posterior distribution under either the AL prior (2.4)

or the CA prior (2.5). Under the conditions of Theorem 1, we have the following

results:

1. Convergence of the posterior mean:

n1/2(β̌S − β0
S) → N

{
0 , τ(1− τ)G−1

S DSG
−1
S

}
,

nλ(β̌Sc − 0) → 0,

in distribution as n → ∞.

2. Properties of the adjusted variance:

n Σ̌adj,S = τ(1− τ)G−1
S DSG

−1
S + opr∗(1),

(n1/2λ)−2 ≲pr∗ (nλ)2 Σ̌adj(j, j) ≪pr∗ 1, j ̸∈ S.
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Theorem 2 informs us of several aspects of the proposed inferential approach.

First, the posterior mean for the active coefficient is first-order equivalent to the

oracle quantile regression estimator, as if we knew the set S. Furthermore, the

adjusted posterior variance-covariance matrix captures the sampling variance-

covariance of the posterior mean. For those coefficients, the adjustment weight

ηj = 1 + opr∗(1), because n−1/2 ≪ λ ≪ 1; hence the confidence intervals in the

form of (3.1) can be viewed as standard Wald-type intervals in the oracle model.

Next, we consider any inactive coefficient βj, where j ̸∈ S. In this case,

β̂j = Opr∗(n
−1/2), so the adjustment weight ηj ≍pr∗ n1/2λ → ∞ in (3.1) works to

inflate the Wald-type interval. Theorem 2 implies

β̌j − 0

ηj
{
Σ̌adj(j, j)

}1/2
→ 0, n1/2 ηj

{
Σ̌adj(j, j)

}1/2 → 0, j ̸∈ S,

in pr∗-probability. Therefore, the confidence interval in (3.1) achieves a

conservative 100% asymptotic coverage probability, but the interval length

remains super-efficient at the order of opr∗(n
−1/2).

In summary, the proposed procedure is valid for all coefficients, and the

resulting confidence intervals (3.1) are automatically adaptive to possible sparsity

in the model without relying on a dichotomous variable selection step. In a sparse

model (s < p), such interval estimates are more efficient than the classical quantile

regression inference using all the coefficients. Empirically, we later show that the

proposed intervals are less sensitive to tuning than direct quantile regression

inference following model selection.

Remark 2. (Value of the Bayesian computational framework) Theorems 1 and

2 show that the posterior variance-covariance matrix approximates G−1
S , which

is an essential quantity for oracle inference in quantile regression (Yang, Wang

and He (2016)). Because GS involves the conditional density function of Y given

X, common frequentist approaches require non-parametric estimation, even if we

know the true model. Refer to Chernozhukov and Hong (2003) for an in-depth

discussion of frequentist inference via MCMC.

Remark 3. (Statistical efficiency for inactive coefficients) For an inactive

coefficient βj, Theorem 2 suggests the width of its confidence interval (3.1),

denoted by ℓn, satisfies
1

nλn

≪ ℓn ≪ 1

n1/2
.

However, Theorem 1 suggests that the unadjusted posterior distribution for

βj is at the scale of 1/(nλn), which is of higher order than ℓn. Therefore,

statistical efficiency of the pseudo-Bayesian inference involves more than just the

convergence rate of the posterior distribution. Under a misspecified likelihood, we

need to investigate the distributional properties of the posterior mean, together

with any necessary adjustment, in order to achieve valid inference. This is where
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our work differs from others in the literature that focus on the concentration of

the posterior distributions.

3.4. Optimally weighted posterior inference

In the presence of heteroscedasticity, it is well-known since Newey (1990) that

the following optimally weighted quantile regression estimator is semi-parametric

efficient for estimating β0 when there is no sparsity:

β̂(w) = argmin
u∈R(p+1)

n∑
i=1

ζiρτ (yi − xT

i u),

where ζi = fϵ|X=xi
(0). In a possibly sparse quantile regression model,

a natural question is whether we can achieve the optimal semi-parametric

efficiency by using only the data on (XS , y), i.e., after “oracle” model selection

is attained. The answer is, somewhat surprisingly, negative, because the

“optimal” weights fϵ|XS (0) under the “oracle model” do not capture the full

heteroscedasticity in the data. Instead, we show that the statistical efficiency

can be further improved in our pseudo-Bayesian framework with the following

optimally weighted asymmetric Laplace working likelihood,

L(w)(Dn | β) ∝ exp

{
−

n∑
i=1

ζiρτ (yi − xT

i β)

}
. (3.2)

Coupling (3.2) with the shrinkage priors in Section 2.2, we obtain the posterior

density p(w)(β | Dn). Let β̌(w) be the posterior mean under the weighted

likelihood. The following result gives the sampling distribution of the posterior

mean for the active coefficients.

Proposition 1. Consider the weighted working likelihood (3.2) and either of the

prior (2.4) or (2.5). Under the same conditions as those in Theorem 1, the

posterior mean satisfies

n1/2(β̌
(w)
S − β0

S) → N
{
0 , τ(1− τ)Q−1

S
}
,

in distribution, where QS = E∗{XSX
T

Sf
2
ϵ|X(0)}.

On the other hand, if classical quantile regression is applied to (XS , Y ) with

the inactive covariates left out, the “optimally” weighted quantile regression

has an asymptotic variance of τ(1 − τ)V −1
S (Newey and Powell (1990)), where

VS = E∗{XSX
T

Sf
2
ϵ|XS

(0)} relies only on the active covariates. We show in the

Supplementary Material that

Q−1
S ⪯ V −1

S . (3.3)

Thus, focusing only on the oracle quantile regression model (even when it is

available) does not lead to optimal efficiency for the active coefficients.
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There is a simple reason why the inactive set of covariates should not be

abandoned. Even though XSc does not affect the conditional τth quantile of Y

given X, it may still affect other aspects of the conditional distribution of Y

given X; in particular, the density function fϵ|X(0) may depend on XSc . Unless

fϵ|X(0) = fϵ|XS (0), optimal efficiency for quantile regression analysis cannot be

achieved if we focus only on the active covariates. In general, a true “oracle”

model should identify covariates that affect the conditional density function

fϵ|X(0), alongside with XS .

Remark 4. To focus on the main idea, we suppose that the optimal weight

ζi = fϵ|X=xi
(0) in (3.2) is known. In practice, it is possible to use estimated

weights and achieve the same asymptotic efficiency as if we knew ζi; see, e.g.,

Newey and Powell (1990), Koenker and Zhao (1994), and Zhao (2001) for some

theoretical investigations. See also Section S1.6 of the online Supplementary

Material for empirical results using estimated weights.

4. Posterior Inference With Diverging Dimensions

In this section, we extend the results in Section 3.2 to the case with a large

number of covariates. Here we focus on the case where the covariate dimension

p = pn diverges with, while still at a smaller order of, the sample size n. In

Section 4.2, we discuss some practical recommendations when the dimension is

even higher, i.e., pn may grow faster than the sample size. Under the asymptotic

regimes of this section, the true model parameter β0 = β0
n may depend on n;

nevertheless we sometimes suppress the index n for the ease of presentation.

4.1. Posterior asymptotics under moderately increasing dimensions

Here, we consider the asymptotic regime of p = pn ≪ n. Under this setting,

we also allow the size of the active covariates, |S| = sn, to grow with the sample

size. For illustration purposes, we only focus on the CA prior (2.5), and show

that the posterior distribution still achieves adaptation to sparsity, even in the

regime of moderately increasing dimensions.

The asymptotic regime with a moderately increasing dimension is often

of practical interest. In conditional quantile modeling, it is common that the

complexity of Model (2.1) may depend on the available sample size. A common

example is when we approximate the unknown conditional quantile function by

a linear combination of series/basis expansions, e.g., B-splines, polynomials, and

wavelets (Chao, Volgushev and Cheng (2017); Belloni et al. (2019)). To control

the approximation error, the number of basis functions typically increases with

the sample size at a certain rate (He and Shi (1994)). The regime also covers

the so-called “many regressors” model in econometrics, where a large number of

variables is often necessary to model economic theories (Cattaneo, Jansson and

Newey (2018)).
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We first discuss some generalizations of the conditions in Section 3.2 when

the dimension pn → ∞. With pn = o(n), Assumptions 1 and 3 are standard in

the quantile regression literature (Belloni et al. (2019); Pan and Zhou (2020)).

On the other hand, Assumptions 2 and 4 may not be suitable for the increasing

dimensional regime; therefore, we adjust them as follows.

Assumption 2′ (Covariates). There exists a constant σ0 > 0, such that for all

∥u∥ = 1 and t > 0,

pr∗
(
|uTD−1/2X| ≥ σ0t

)
≤ 2e−t. (4.1)

Furthermore, the eigenvalues of the matrix D = E∗[XXT ] satisfy

p−1
n ≲ θmin(D) ≤ θmax(D) ≲ pn and θmin(DS) ≥ θ1 > 0, (4.2)

for some constant θ1 > 0.

Assumption 4′ (Sparsity). There exists a sequence bn > 0 such that for each

n,

min
j∈S\{0}

|β0
j | > bn.

Assumption 2′ consists of two parts. First, (4.1) states that the standardized

covariate D−1/2X is sub-exponential, which strengthens the boundedness of X

in Assumption 2; see Vershynin (2018, Sec. 3.3) for examples of sub-exponential

distributions in high dimensions. Second, (4.2) relaxes Assumption 2 by allowing

certain co-linearity among the p = pn covariates. Finally, Assumption 4′ requires

that all nonzero coefficients be sufficiently separated from zero, yet the threshold

bn is allowed to shrink toward zero as the sample size grows.

Our next result generalizes Theorem 1 to an increasing dimensional regime,

where we drop the subscript n in s and p for simplicity.

Theorem 3. Consider the posterior distribution under the CA prior (2.5) and

p → ∞. Suppose Assumptions 1, 2′, 3, and 4′ hold. If s4p2 log2 n = o(n), and

the tuning parameter λ is chosen such that

s1/2p log3/2 p

n1/2
≪ λ ≪ min

{
s−1/2, bn, bn[θmin(D)]1/2

}
. (4.3)

Then, we have the following results:

1. Adaptive rate of contraction: for any sequence Mn → +∞,

Π

(∥∥βS − β0
S
∥∥ ≤ Mn

√
s

n
, ∥βSc∥∞ ≤ Mn

s log p

nλ

∣∣∣∣ Dn

)
→ 1,

in pr∗-probability.
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2. Distributional approximation: for πj(u) = (1/2) exp{−|u|}, (∀j ∈ Sc),

∥∥∥∥∥p (β | Dn)− ϕ

(
βS; β̃S,

1

n
G−1

S

)
×

∏
j ̸∈S

{nλπj(nλβj)}
∥∥∥∥∥
TV

→ 0,

in pr∗-probability, where ϕ(· ; µ,Σ) is the density function of a multivariate-

Gaussian distribution; β̃S and G are defined in Section 3.1.

Theorem 3 explicitly characterizes the effect of increasing model dimensions.

Since (nλ)/(s log p) ≫ (np)1/2, part 1 of Theorem 3 shows that the posterior

distribution for all inactive coefficients concentrates toward zero at a second-order

rate, even if the number of such coefficients diverges. For part 2 of Theorem 3, it

is sometimes more informative to consider a one-dimensional linear combination

of parameters αTβ for ∥α∥ = 1 in the regime of increasing dimension (Fan and

Peng (2004)). If αS ̸= 0, then the posterior for αTβ is asymptotically “oracle”;

otherwise, the scale of the posterior is at the order of p1/2/(nλ) ≪ n−1/2, which

is super-efficient.

The range (4.3) for tuning parameter depends explicitly on design and spasity

conditions. As one example, we consider a sparse model where sn = s0 stays fixed

and pn → ∞. In addition to Assumptions 1, 2′, 3, and 4′, we suppose the design

matrix satisfies θmin(D) ≥ θ0 > 0, which aligns with the setting in Belloni et al.

(2019). Under this model setting, the conclusions in Theorem 3 hold if

p2 log2 n = o(n), bn ≫ p log3/2 p

n1/2
,

and
p log3/2 p

n1/2
≪ λn ≪ bn,

where bn is defined in Assumption 4′. With a sparse model, the above conditions

are comparable with those in the literature on Gaussian mean regression (Fan and

Peng (2004); Huang, Ma and Zhang (2008); Armagan, Dunson and Lee (2013)).

4.2. Practical posterior inference in higher dimensions

For problems with even higher dimensions, where the number of covariates

may exceed the number of observations, Bayesian inference for quantile regression

is much less understood. Furthermore, the variance adjustment in Section 3.3 is

not applicable when n < pn, since it relies on estimating the full covariance matrix

E∗[XXT ]. Therefore, a direct application of the pseudo-Bayesian approach

becomes problematic.

Nonetheless, the pseudo-Bayesian approach becomes useful when combined

with the idea of marginal screening (Fan and Lv (2008)). For high-dimensional

sparse problems with sn ≪ n < pn, it is often practically useful to employ a fast

screening step to reduce the dimension to a manageable scale, prior to further
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statistical analysis (Fan and Lv (2010); Liu, Zhong and Li (2015); Barut, Fan

and Verhasselt (2016)). Such screening is routinely applied in many real-world

applications (Bermingham et al. (2015); Tamba, Ni and Zhang (2017)).

For inference in high-dimensional quantile regression, we suggest using our

pseudo-Bayesian framework after applying a quantile sure screening procedure,

such as those proposed by He, Wang and Hong (2013), Wu and Yin (2015),

Shao and Zhang (2014), and Ma, Li and Tsai (2017). Under appropriate con-

ditions, these screening procedures keep all relevant covariates with probability

approaching one, while at the same time, the total number of retained covariates

is dn = O(nr) for some r < 1. Our Theorem 3 then applies to the dn-dimensional

posterior distribution post-screening.

5. Simulation

We use a set of Monte Carlo simulation to demonstrate that the asymptotic

properties established in this paper are present in finite-sample problems. We

include a limited comparison with some other inferential methods for quantile

regression. We highlight several key findings here; the implementations and

more detailed results are relegated to the online Supplementary Material. The

Supplementary Material also contain more discussions on variable selection

approaches and the use of other priors, as well as an additional simulation setting.

We generate random samples of size n from the following regression model:

Y = 1 + 3X2 − 5X5 +

{
1 + (X6 − 1)2

3

}
e,

where e ∼ N(0, 1) is independent of the covariate vector X = (X1, . . . , X6)
T ∼

N(0,Σ), with the (i, j)th entry of Σ being 0.8|i−j|, for i, j ∈ {1, . . . , 6}. The

data-generating process satisfies Model (2.1) at τ = 0.5, where X2 and X5 are

active, but X6 is inactive for the conditional median of Y given X. We consider

two sample sizes, n = 200 and n = 500, and use 2,000 Monte Carlo data sets in

each simulation.

For the proposed pseudo-Bayesian approach, we use the AL prior (2.4) in the

simulation study because of its computational attractiveness. We compare the

proposed approach with four other approaches for constructing 90% confidence

intervals of the median regression coefficients. The first three approaches are

the robust rank-score method of Koenker and Machado (1999) applied to: (i)

the full model with (X1, . . . , X6) included, (ii) the oracle model with (X2, X5)

included, and (iii) the selected model from adaptive lasso variable selection,

respectively. The fourth approach is the wild bootstrap for the adaptive lasso

quantile regression proposed recently by Wang, Van Keilegom and Maidman

(2018). Because an exhaustive comparison with all other methods is infeasible,

we focus on those four approaches that are known to exhibit good performance
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Table 1. Empirical coverage probabilities and average lengths (×100) for 90% confidence
intervals.

Empirical coverage Average length (s.e.)

n = 200

β2 β5 βzeros β2 β5 βzeros

Full 92 91 90 43.7 (0.25) 43.9 (0.25) 41.7 (0.10)

Oracle 89 93 100 22.5 (0.13) 32.6 (0.21) 0.0 (0.00)

Refit 84 86 89 28.1 (0.21) 34.7 (0.22) 11.4 (0.06)

WildPen 85 84 89 27.0 (0.13) 30.2 (0.14) 20.1 (0.08)

BayesAdj 93 93 96 28.1 (0.11) 32.7 (0.12) 11.7 (0.04)

n = 500

β2 β5 βzeros β2 β5 βzeros

Full 91 91 90 26.7 (0.12) 26.6 (0.12) 25.6 (0.06)

Oracle 90 93 100 14.0 (0.06) 20.5 (0.11) 0.0 (0.00)

Refit 81 86 89 17.2 (0.11) 21.5 (0.11) 6.3 (0.05)

WildPen 84 85 91 16.7 (0.07) 18.9 (0.07) 11.3 (0.06)

BayesAdj 89 91 95 16.3 (0.06) 19.3 (0.06) 6.1 (0.03)

“Full” refers to the rank-score method applied to all the covariates, “Oracle” uses only the active
covariates for the conditional median, and “Refit” is the rank-score method applied to a model
selected by the adaptive lasso. “WildPen” is the wild bootstrap approach of Wang, Van Keilegom
and Maidman (2018). “BayesAdj” refers to the adjusted posterior inference in Section 3.3. For
the “Refit” and “Oracle” methods, if a covariate is not included in the model, we report its
confidence interval as a singleton {0}. The column βzeros averages over all inactive coefficients
β1, β3, β4, and β6. The numbers shown in parentheses are the estimated standard errors. For
the coverage estimates, their standard errors are all below 0.9. For penalization/shrinkage, we
used λ = 0.066 when n = 200, and λ = 0.051 when n = 500.

under heteroscedastic models.

We first compare the performance of the approaches under a fixed tuning

parameter in Table 1. To ensure a fair comparison, we keep the tuning parameter

value λ the same across all Monte Carlo data sets at a given sample size,

for both the pseudo-Bayesian approach and the adaptive lasso model selection

procedure. We relegate further implementation details, including the tuning

parameter specification, to Section S1.1 of the online Supplementary Material.

Table 1 suggests that the adjusted posterior inference indeed achieves

adaptive performance. For the active coefficients, the adjusted posterior inference

gives much shorter intervals than those from the full model, and the results

are reasonably competitive with those from the oracle model. For the inactive

coefficients, the adjusted posterior inference gives much shorter intervals than

those under the full model with higher-than-nominal coverage probabilities. On

the other hand, the wild bootstrap approach and the rank-score method after

variable selection both fall short in terms of coverage. These approaches are all

asymptotically equivalent if oracle model selection is achieved. However, we find

that common variable selection approaches, including the adaptive lasso, do not
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Figure 2. Empirical coverage probabilities and average lengths for 90% confidence
intervals with different λ when n = 500. The true regression coefficients are β0

2 = 3,
β0
5 = −5, and β0

6 = 0. The value of λ marked by a vertical broken line is used to produce
Table 1, and the abbreviated method names are the same as those in Table 1.

achieve oracle selection often enough in this case with limited sample sizes; we

refer to Sections S1.2 and S1.3 of the online Supplementary Material for detailed

results. Therefore, approaches based on variable selection may not be consistently

reliable for inference (Leeb and Pötscher (2005); Wang, He and Xu (2020)).

In addition, the adjusted posterior inference gives more stable confidence

intervals, as the standard errors for interval lengths are among the smallest of all

methods in Table 1. This finite-sample stability of our psuedo-Bayesian approach

is because it does not require dichotomous variable selection; see Figure S1 in the

Supplementary Material for more details.

Next, we examine the effect of the tuning parameter in the comparisons of

shrinkage-based methods. To this end, we vary λ through a wide range of values,

and compare the performance in Figure 2 when the sample size n = 500; see

Figure S3 in the Supplementary Material for the results when n = 200. For the

active coefficients, the coverage probabilities of the pseudo-Bayesian approach are

more stable around the nominal levels than the other methods for a wide range of

λ values. For the inactive coefficient β6, the coverage probability for the proposed

method remains high, without any sacrifice in the lengths of the intervals relative

to other non-oracle methods. More extensive empirical experiments show that

the proposed approach tends to lose coverage if the shrinkage parameter λ is too

large. As a practical guide, we suggest choosing λ to be slightly smaller than the

value one would obtain from cross-validation for the adaptive lasso.

In the online Supplementary Material, we show the proposed pseudo-

Bayesian approach continues to have desirable inferential performance with higher
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covariate dimensions, and at other quantile levels. Furthermore, we demonstrate

that not all common shrinkage priors are directly suitable for the pseudo-Bayesian

framework. Refer to Sections S1.4, S1.5, and S2 of the online Supplementary

Material for detailed numerical results.

6. Conclusion

In this paper, we show that the Bayesian computational framework can be

useful for constructing frequentist confidence intervals in possibly sparse quantile

regression analysis. By employing appropriate shrinkage priors, we show that

the posterior inference adapts automatically to model sparsity. Asymptotically,

the proposed confidence intervals are oracle efficient for the active coefficients,

and are super-efficient for the inactive coefficients. Our results reveal the value of

Bayesian computational methods in frequentist inference even with a misspecified

likelihood.

Under appropriate assumptions to ensure oracle model selection asymptoti-

cally, the adjusted posterior inference is first-order equivalent to the following two-

step procedure: variable selection followed by quantile regression inference on the

selected model. With the goal being inference rather than variable selection, the

proposed pseudo-Bayesian approach enjoys two distinct advantages: (i) it avoids

the need to pursue dichotomous variable selection, which is often non-oracle in

finite-sample problems; and (ii) it avoids direct non-parametric estimation of the

nuisance parameter needed for frequentist inference. Therefore, the proposed

approach often leads to more stable inference for quantile regression. Additional

numerical results in the online Supplementary Material further demonstrate the

stability of our pseudo-Bayesian approach.

This paper focuses on problems with fixed or moderately increasing dimen-

sions. Even in fixed-dimensional problems, our asymptotic analysis for posterior

inference is new, under a misspecified likelihood and shrinkage priors. An

interesting avenue for future research would be to investigate what the pseudo-

Bayesian approach can offer in even higher dimensions.

We use two relatively simple shrinkage priors to demonstrate the properties

of the posterior inference. Nonetheless, it would be of interest to study the

appropriate use of more sophisticated priors, and to identify priors that lead to

optimal posterior inference for quantile regression.

Finally, we note the Bayesian computational framework can be especially

valuable in other complex settings, e.g., censored quantile regression problems

(Yang, Wang and He (2016); Wu and Narisetty (2021)), where the objective

function can be highly nonconvex (Powell (1984, 1986)). Our pseudo-Bayesian

approach can be used to produce statistical inference without direct optimization

of the objective function, while still incorporating possible model sparsity.
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Supplementary Material

The online Supplementary Material contains some additional simulation

results, as well as the proofs of all the results in this paper.
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