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Abstract: Panel count data are commonly encountered in analysis of recurrent

events where the exact event times are unobserved. To accommodate the potential

non-linear covariate effect, we consider a non-parametric regression model for panel

count data. The regression B-splines method is used to estimate the regression func-

tion and the baseline mean function. The B-splines-based estimation is shown to

be consistent and the rate of convergence is obtained. Moreover, the asymptotic

normality for a class of smooth functionals of regression splines estimators is estab-

lished. Numerical studies were carried out to evaluate the finite sample properties.

Finally, we applied the proposed method to analyze the non-linear effect of one of

interleukin functions with the risk of childhood wheezing.

Key words and phrases: Empirical process, maximum pseudolikelihood estimator,

regression splines, wheezing.

1. Introduction

In many longitudinal studies, subjects’ information is observed at several

random discrete time points during the follow-up period. Instead of the event

times, only the number of events before each encounter (visit) is observed. The

number of visits and visit times vary among individuals. This kind of data is

often referred to as panel count data. Unlike recurrent event data, in panel count

data, the exact times of the events are not observed, and the number of events in

each observation interval can be greater than one. For example, in a childhood

wheezing study conducted at the Indiana University School of Medicine, 105

infants at a high risk of developing childhood asthma were followed for 5 years.

The interleukin function, airway reactivity, and demographic information were

collected at enrollment and the occurrence (number) of wheezing episodes were

collected on a monthly basis over the entire follow-up time, which resulted in

panel count data.
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Statistical methods for panel count data have been studied extensively in

the past three decades. Thall and Lachin (1988) studied the data from NCGS

using a marginal model. They proposed a non-parametric estimation of the rate

of the counting process. Sun and Kalbfleisch (1995) estimated the mean function

using the isotonic regression method. Lee and Kim (1998) analyzed correlated

panel data. Wellner and Zhang (2000) studied the large sample theory for the

likelihood-based non-parametric estimates for panel count data; they showed that

the non-parametric maximum pseudolikelihood estimator (NPMPLE) based on

the nonhomogeneous Poisson process is exactly the isotonic regression estima-

tor of Sun and Kalbfleisch (1995). In addition, they proved the consistency of

NPMPLE and derived the convergence rate. Zhang (2002) investigated a semi-

parametric regression model of panel count data with the pseudolikelihood ap-

proach. Nielsen and Dean (2008a,b) considered an estimating equation for recur-

rent event panel data without providing theoretical properties. Other methods

of semi-parametric regression analysis for panel count data were developed by

Sun and Wei (2000), Wellner and Zhang (2007) and Zhu et al. (2015). For a

comprehensive review of statistical methods for panel count data analysis, see

Sun and Zhao (2013).

The spline-based functional analysis has also been conducted for panel count

data. Lu, Zhang and Huang (2007, 2009) employed monotonic B-splines to model

the mean function, and developed a spline-based semi-parametric proportional

mean model. They demonstrated the benefits of spline-based estimators in ana-

lyzing panel count data. However, the effects of covariates on the mean function

were assumed to be multiplicative, which may be too restrictive in some appli-

cations.

In practice, the functional forms of covariate effects are often unknown or

too complicated to be explicitly specified. For example, in the aforementioned

childhood wheezing study, it is of interest to ascertain the effect of the inter-

leukin function during infancy with the risk of wheezing occurrence. However

the functional form of the interleukin 5 effect is unknown and can possibly be

non-linear as shown in Figure 3. Proper analysis of such data is lacking because

of non-existence of non-parametric regression in the literature of panel count

data.

In this article, the regression spline technique is used to model the regres-

sion function of the covariates and the baseline mean function using B-splines.

We modify the proportional mean model for panel count data of Lu, Zhang

and Huang (2009) by incorporating non-linear covariate effects, and conduct a
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B-splines-based functional analysis for the covariate effect, using the pseudo-

likelihood approach of Zhang (2002) for its numerical advantages. Our method

shows that the B-splines-based NPMPLEs of the baseline mean and the regres-

sion function are consistent and converge to the true corresponding functions at

the rate of r/(1 + 2r), where r is the degree of smoothness of the baseline mean

and the regression function. The asymptotic normality for a class of functionals

of the B-splines-based NPMPLE of the regression function is derived for making

a statistical inference.

The remainder of this paper is organized as follows. Section 2 presents the

model and estimation procedure. Section 3 illustrates its asymptotic properties.

The finite sample performance of the proposed estimators is reported, as numeri-

cally evaluated by simulation studies in Section 4. Section 5 applies the proposed

method to the aforementioned wheezing study. Section 6 concludes the paper

with some discussion. Technical details are outlined in the online Supplemen-

tary Materials, which can be accessed via ftp://public.sjtu.edu.cn/ using

account name yuzhangsheng and password public.

2. Model and Regression B-spline Estimators

First, we introduce some notation. Let N = {N(t) : t ≥ 0} be a counting

process and K be the number of observation times. Denote by T = {Tj : j =

1, 2, . . . ,K} the vector of ordered observation times with 0 < T1 < · · · < TK .

The counting process N(t) registers the number of events in a sequence of in-

tervals made by T1, T2, . . . , TK , which results in panel observed event counts

satisfying 0 ≤ N(T1) · · · ≤ N(TK). The observed data of a subject consist of

X = (K,T,N, Z), where T = (T1, . . . , TK), N = (N(T1), . . . ,N(TK)) and Z is a

vector of p-dimensional covariates. Suppose we have n independent and identi-

cally distributed copies of X denoted by

{Xi = (Ki, Ti,N(i), Zi), i = 1, . . . , n}

with Ti=(Ti,1, . . . , Ti,Ki
), Zi=(Zi1, . . . , Zip)

T and N(i) =(N(Ti,1), . . . ,N(Ti,Ki
)).

We consider a mean model for panel count data:

E{N(t)|Z} = Λ0(t) exp(β0(Z)), (2.1)

where β0(Z) = β01(Z1) + · · ·+β0p(Zp), with β0j(·) an unknown function without

a pre-specified functional form of Zj for j = 1, 2, . . . , p, and Λ0(t) is the unknown

cumulative baseline mean function. To ensure that the mean model (1) is identi-

fiable, we require β0j(0) ≡ 0 for j = 1, 2, . . . , p. For the rest of the paper, we only

ftp://public.sjtu.edu.cn/
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present the model for regression function β0(Z) with one covariate unless other-

wise specified for the sake of algebraic convenience. The estimation procedure

and theoretical justification can be readily generalized to models with p > 1.

For subject i, the panel cumulative counts N(Ti,1), . . . ,N(Ti,Ki
) are corre-

lated and it is generally difficult to specify their correlation structure. We adopt

the pseudolikelihood approach developed by Zhang (2002), which models the

marginal distribution for each N(Tij) and assumes mutual independence among

N(Ti,1), . . . ,N(Ti,Ki
). It follows that the log pseudolikelihood function for (β,Λ)

is given by

lps(θ) =

n∑
i=1

Ki∑
j=1

[N(Ti,j) {log Λ(Ti,j) + β(Zi)} − Λ(Ti,j) exp(β(Zi))] . (2.2)

We propose to estimate the functions log Λ and β(z) using the regression B-splines

method. Let T = {ti}mn1+2l1
i=1 be a sequence of knots that partition the time

interval, [σ1, τ1], into mn1 subintervals J1i = [tl1+i, tl1+i+1), i = 0, . . . ,mn1 − 1

and J1mn1
= [tl1+mn1

, tl1+mn1+1] with σ1 = t1 = · · · = tl1 < tl1+1 < · · · <
tmn1+l1 < tmn1+l1+1 = · · · = tmn1+2l1 = τ1, where mn1 = O(nv1) for 0 < v1 <
1
2 is the number of interior knots and l1 boundary knots t1 = · · · = tl1 and

tmn1+l1+1 = · · · = tmn1+2l1 on each side that are needed to complete the B-splines

basis functions for the l1th order B-splines (Schumaker (2007)).

Let Ψl1,t denote the class of B-splines of order l1 ≥ 1 that consists of functions

s1 satisfying (i) for each interval J1i, s1 is a polynomial of order l1 for i =

0, . . . ,mn1; (ii) for l1 ≥ 2, s1 is l′1 times continuously differentiable on [σ1, τ1] for

0 ≤ l′1 ≤ l1 − 2. The class Ψl1,t can be spanned by the B-splines basis functions

{B(1)
i (t), 1 ≤ i ≤ qn1} with qn1 = mn1 + l1,

Ψl1,t =

{
qn1∑
i=1

αiB
(1)
i (t) : α = (α1, α2, . . . , αqn1

) ∈ Rqn1

}
.

Since log Λ0(t) is a monotonically non-decreasing function, we restrict the non-

parametric estimator in the subclass

ψl1,t =

{
qn1∑
i=1

αiB
(1)
i (t) : α1 ≤ α2 · · · ≤ αqn1

}
,

as any member of ψl1,t is monotonically non-decreasing (Schumaker (2007)).

Similarly, let Z = {zi}mn2+2l2
i=1 be a sequence of knots that partition the

interval, [σ2, τ2], into mn2 subintervals J2i = [zl2+i, zl2+i+1), for i = 0, . . . ,mn2−1

and J2mn2
= [zl2+mn2

, zl2+mn2+1] with σ2 = z1 = · · · = zl2 < zl2+1 < · · · <
zmn2+l2 < zmn2+l2+1 = · · · = zmn2+2l2 = τ2, where mn2 = O(nv2) for 0 < v2 < 1/2



PANEL COUNT DATA ANALYSIS 813

is the number of interior knots, and l2 is the order of B-splines.

Let Φl2,z denote the class of B-splines of order l2 ≥ 1 that consists of functions

s2 satisfying the similar conditions as the Ψl1,t. The class Φl2,z can be spanned

by the B-splines basis function {B(2)
i (z), 1 ≤ i ≤ qn2} with qn2 = mn2 + l2,

Φl2,z =

{
qn2∑
i=1

ηiB
(2)
i (z) : η = (η1, η2, . . . , ηqn2

) ∈ Rqn2

}
.

In simulation studies and data application we use the popular cubic regression

B-splines (l1 = l2 = 4) to estimate the model parameters (β, log Λ). Specifically,

the baseline mean function Λ(t) and the regression function β(Z) are modelled

by the B-splines

log Λ(t) =

qn1∑
l=1

αlB
(1)
l (t) = αTB(1)(t) and β(z) =

qn2∑
l=1

ηlB
(2)
l (z) = ηTB(2)(z),

respectively, where B(1)(t) = {B(1)
1 (t), . . . , B

(1)
qn1(t)}T and B(2)(z) = {B(2)

1 (z), . . . ,

B
(2)
qn2(z)}T for qn1 = mn1 + 4 and qn2 = mn2 + 4.

After substituting the B-splines expression of Λ(·) and β(·) in (2.2), the log

pseudolikelihood function can be written as

lps(γ)=

n∑
i=1

Ki∑
j=1

[
N(Ti,j){αTB(1)(Ti,j)+ηTB(2)(Zi)}−exp

(
αTB(1)(Ti,j)+ηTB(2)(Zi)

)]

=

n∑
i=1

Ki∑
j=1

[
N(Ti,j){B(Ti,j , Zi)

Tγ} − exp
(
B(Ti,j , Zi)

Tγ
)]
,

where B(t, z) = (B(1)(t)T, B(2)(z)T)T and γ = (αT, ηT)T.

Hence, computation of a B-splines-based NPMPLE is converted to a convex

programming problem with the linear equality-inequality constraints

Aγ =


−1 1 0 . . . 0 0 0 . . . 0

0 −1 1 . . . 0 0 0 . . . 0
...

...
...

. . .
...

...
...

. . .
...

0 0 0 0 −1 1 0 . . . 0





α1

...

αqn1

η1

...

ηqn2


≥ 0.

To ensure identifiability, we add the zero-intercept constraint
∑qn2

l=1 ηlB
(2)
l (0) = 0

for the regression splines.

The algorithm for the convex programming problem subject to linear equality-
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inequality constraints developed by Lange (1994) is applied to this problem for

computing the B-splines based NPMPLE of (β0,Λ0).

3. Asymptotic Results

In this section we study the asymptotic properties of the B-splines-based

NPMPLE of (β0,Λ0), (β̂n(·), Λ̂n(·)). Denote by H the distribution for covariate Z

on R and by B the collection of Borel sets on R. Let B[0, τ ] = {B
⋂

[0, τ ] : B ∈ B}
and let µ2 denote the probability measure induced by H. Following the notation

in Wellner and Zhang (2007), for B ∈ B[0, τ ] and C ∈ B, we define

ν(B × C) =

∫
C

∞∑
k=1

P (K = k|Z = z)

k∑
j=1

P (Tk,j ∈ B|K = k, Z = z)dµ2(z)

with µ1(B) = ν(B × R).

We consider two classes of functions

F1 = {β : β is a continuous function in R} and

F2 = {Λ : [0,∞)→ [0,∞)|Λ is nondecreasing,Λ(0) = 0} .

We aim to find the B-splines NPMPLE (β̂n(·), Λ̂n(·)) in the parameter space

Θ = F1 × F2. In order to study the asymptotic properties of (β̂n(·), Λ̂n(·)), we

define an L2-metric d(θ1, θ2) for the parameter space Θ given by

d(θ1, θ2) =
{
‖β1 − β2‖2L2(µ2) + ‖Λ1 − Λ2‖2L2(µ1)

}1/2
for θi = (βi,Λi) ∈ Θ i = 1, 2.

We need some regularity conditions.

C1 The true parameter, θ0 = (β0,Λ0) ∈ Θ = F1 ×F2.

C2 The maximum spacing between the consecutive knots, defined as

∆1 = max
l1+1≤i≤mn1+l1+1

|ti − ti−1| = O(n−v1)

∆2 = max
l2+1≤i≤mn2+l2+1

|zi − zi−1| = O(n−v2)

satisfies ∆j/δj ≤Mj uniformly in nj , where Mj > 0 is a constant for j = 1, 2

with δ1 = minl1+1≤i≤mn1+l1+1 |ti − ti−1| and δ2 = minl2+1≤i≤mn2+l2+1 |zi −
zi−1|.

C3 The true baseline mean function Λ0 is rth bounded differentiable in O[T ]

with r > 1, where O[T ] = [σ1, τ1]. The regression function β0 is rth bounded

differentiable in O[Z] with r > 1, where O[Z] = [σ2, τ2]. There exists a

positive constant c1 such that Λ′0(t) ≥ c1 for t ∈ O[T ].
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C4 For j = 1, . . . ,K, TK,j ∈ [0, τ ] for some τ ∈ (0,∞). The measure µ1 × µ2

on ([0, τ ],B[0, τ ]) is absolutely continuous with respect to ν.

C5 The support of the covariate distribution H is a bounded set in R, denoted

as Z.

C6 For some functions h1 and h2, if h1(Z) + h2(T ) = 0 with probability 1 for

all Z and T , then h1 ≡ 0 and h2 ≡ 0.

C7 For some η ∈ (0, 1) and bounded function g ∈ Rd,

aTvar(g(Z)|U)a ≥ ηaTE(g(Z)g(Z)T|U)a a.s. for all a ∈ Rd,

where (U,Z) has distribution ν/ν(R+ ×Z).

C8 The function Mps
0 (X) =

∑K
j=1 N(Tj) log (N(Tj)) satisfies PMps

0 (X) <∞.

C9 There exists a positive integer k0 such that P (K ≤ k0) = 1.

C10 For some C ≥ 0 , E(eCN(t)|Z) is uniformly bounded for Z ∈ Z.

Remark 1. C1 indicates that the true model parameters are in the estimation

space. C2 can be viewed as knots selection criteria that are easily satisfied using

quantile spaced knots. C3 is required for the proof of rate of convergence and

is a reasonable assumption in view of application. C4 and C6 are required for

the identifiability of the non-parametric model. C5 and C7 are the technical

conditions for proving our theorems, they were similarly provided in Wellner and

Zhang (2007). C8-C10 are exactly the conditions C4, C9 and C10, respectively,

given in Wellner and Zhang (2007).

Theorem 1. If C1− C10 hold and the counting process N satisfies the propor-

tional mean model (1), then

d(θ̂n, θ0)→p 0 as n→∞.

Theorem 2. If C1− C10 hold and if v1 = v2 = 1/(1 + 2r), then

nr/(1+2r)d(θ̂n, θ0) = Op(1) as n→∞.

Let HΛ consist of all the functions in [σ1, τ1] whose total variation is bounded

by 1. Let Hβ consist of all the functions in [σ2, τ2] whose rth derivatives are

bounded by 1(r > 1). We take {Λ̂n(t)−Λ0(t), β̂n(z)−β0(z)} as a stochastic class

in l∞(HΛ ×Hβ) whose value for (h1, h2) ∈ HΛ ×Hβ is defined as∫ {
Λ̂n(t)− Λ0(t)

}
dh1(t) +

∫ {
β̂n(z)− β0(z)

}
dh2(z).



816 ZHAO ET AL.

Theorem 3. Under C1 − C10, n1/2{Λ̂n(t) − Λ0(t), β̂n(z) − β0(z)} converges

in distribution to a mean-zero Gaussian process with variance V (h1, h2) in the

metric space l∞(HΛ ×Hβ), where

V (h∗1, h
∗
2) = E{ϕ2(θ0;X,Z)[h∗1, h

∗
2]}

with

ϕ(θ0;X,Z)[h∗1, h
∗
2] =

K∑
j=1

[{
N(Tj)

Λ0(Tj)
− exp(β0(Z))

}
h∗1(Tj)

+
{
N(Tj)− Λ0(Tj) exp(β0(Z))

}
h∗2(Z)

]
,

in which h∗1 and h∗2 satisfy Q2(h∗1, h
∗
2)(t) = h1(t) and Q1(h∗1, h

∗
2)(z) = h2(z) with

Q1 and Q2 given in the Supplementary Materials.

Theorem 3 describes the asymptotic distribution of a class of estimated

smooth functionals of the model parameters and is useful in constructing a non-

parametric test for the covariate effect on the underlying counting process: H0 :

β0(z) = 0 for all z. To do so, we need to identify a specific h∗ = (h∗1, h
∗
2) such

that

Q2(h∗1, h
∗
2)(t) = 0 and Q1(h∗1, h

∗
2)(z) = H(z)

The selection of such h∗ results in
√
n

∫ {
β̂n(z)− β0(z)

}
dH(z)→d N(0, σ2

β0
)

with σ2
β0

given by

σ2
β0

=E

 K∑
j=1

[
{N(Tj)−Λ0(Tj)exp(β0(Z))}h∗2(Z)+

{
N(Tj)

Λ0(Tj)
−exp(β0(Z))

}
h∗1(Tj)

]2

=E


K∑
j=1

(
{N(Tj)−Λ0(Tj)exp(β0(Z))}

[
h∗2(Z)−E{h

∗
2(Z)exp(β0(Z))|K,Tj}

E{exp(β0(Z))|K,Tj}

])
2

based on Theorem 3 (the proof is provided in the Supplementary Materials). It

then leads to constructing the test statistic

Tn =

∫
β̂n(z)dHn(z) =

1

n

n∑
i=1

β̂n(Zi),

where Hn is the empirical distribution of Z. It can be shown (the proof is

provided in the Supplementary Materials) that under the null hypothesis H0, Tn
is asymptotically normally distributed with mean 0.
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Remark 2. Theorem 2 shows that the proposed B-splines-based NPMPLE

(β̂n(·), Λ̂n(·)) achieves the r/(1+2r) convergence rate. This convergence rate was

shown to be optimal in spline-smoothing non-parametric estimation literatures

(Speckman (1985); Zhang, Hua and Huang (2010)). Theorem 3 demonstrates

the asymptotic normality of the functionals of the proposed non-parametric es-

timators and facilitates procedures for making an inference on β0(·) and Λ0(·).
However, to do so, we need to estimate the standard error of a functional of the

B-splines-based NPMPLE, which is a daunting job in view of the complicated ex-

pression of the asymptotic variance. The bootstrap estimation for standard error

is a viable alternative for inference due to the numerical advantage in NPMPLE.

4. Simulation Studies

In this section, we report on simulation studies to evaluate the finite sample

performance of the proposed estimator. We generated n independent and identi-

cally distributed observations Xi = (Ki, Ti,N(i), Zi) for i = 1, . . . , n. For subject

i, the number of visits (or encounters), Ki, was generated from a discrete uniform

distribution on {1, 2, . . . , N1} for a finite N1. Given the number of visits Ki, the

visit times vector Ti = (Ti,1, . . . , Ti,Ki
) were Ki ordered random draws from a

Unif(0, T∞), where T∞ was the maximum length of follow up time. Between

two consecutive visit times Ti,j−1 and Ti,j , the number of recurrent events was

generated from a Poisson process model with interval event counts following the

Poisson distribution given by

Ni,j − Ni,j−1 ∼ Po {2(Ti,j − Ti,j−1) exp(β(Zi))} (j = 1, . . . ,Ki),

which results in Ni,j , the number of cumulative events at Ti,j following the Poisson

distribution with mean 2Ti,j exp(β(Zi)), conditional on Zi.

We used cubic B-splines for the non-parametric estimation of log Λ(t). Seven

interior knots were used with the locations determined by quantiles of the total

observation times {Ti,j : i = 1, 2, . . . , n; j = 1, 2, . . . ,Ki; } so that there were

approximately equal numbers of observations in each interval. Similarly, for the

regression function β(Z), the cubic B-splines non-parametric estimate was also

calculated with the seven interior knots chosen to be the quantiles of observed

covariate values {Zi; i = 1, 2, . . . , n}.
We performed the simulation studies under four different settings with sam-

ple sizes 100 and 400. In all these settings, the cumulative baseline mean function

was Λ(t) = 2t+1. The maximum number of visits per subject was set as N1 = 6,

and the maximum follow-up time was T∞ = 10. The covariate was generated
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from a uniform [0, 1] distribution, and the simulation was repeated 1,000 times

in each scenario.

S1. Null regression function β(Z) = 0.

S2. Linear regression function β(Z) = 2Z.

S3. Non-linear regression function β(Z) = Beta(Z, 2, 2), where Beta(·) is the

Beta density function.

S4. Non-linear regression function that oscillates at 0: β(Z)=1.5 sin(2πZ)I(Z ≤
0.5) + 0.5 sin(2πZ)I(Z > 0.5) where I(·) is the indicator function.

Estimation results are presented in Figures 1 and 2 for the four settings.

In these figures, the solid curve is the true regression function β0(z), and the

dotted, dashed and dash-dotted curves are the pointwise 2.5-quantile, mean and

97.5-quantile of β̂n(z)′s respectively, with the estimated β0(z) based on 1,000

replicates. It can be seen from Figures 1 and 2 that the mean curves of the

estimated regression function are almost overlapped with the corresponding true

curves in all the settings. The bandwidth between the pointwise 97.5 and 2.5

quantile curves decreases as sample size increases from 100 to 400. The simulation

studies numerically justify the estimation consistency stated in Theorem 1.

The result of Theorem 3 allows us to construct a test statistic to make an

inference about whether covariate Z affects the underlying counting process N(t)

by testing the null hypothesis H0 : β0(z) = 0 for all z. To evaluate the test

statistic Tn, we estimate the standard error of Tn by the bootstrap method based

on 100 resamplings with a replacement: that is, the estimate of se(Tn) is given by

the standard deviations of the 100 estimates of Tn from the bootstrap samples.

Table 1 presents the simulation results for Tn and the probability of rejecting

H0 under various scenarios. It can be seen from the table that the estimation bias

of
∫
β̂n(z)dHn(z) is virtually negligible, and the empirical standard deviation of

the estimator based on 1,000 repetitions decreases as sample size increases. How-

ever, the average of the bootstrap standard error estimates is slightly smaller than

the empirical standard deviation in all the settings, which results in a slightly

inflated type I error and testing power. We believe the reason for the underes-

timation of the standard error is due to the use of pseudolikelihood approach,

which causes the observed count data to be ”overdispersed” in terms of the pro-

posed model. This underestimation in standard error was also presented in a

study of B-splines-based semi-parametric models for panel count data by Hua,

Zhang and Tu (2014). It implies that one may need to have a p-value that is
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Table 1. Simulation results. SP, sample size; True value, the exact value of
∫
β0(z)dH(z);

M-C SD, Monte Carlo standard deviation; ASE, average of bootstrap standard errors;
Prob., probability.

Setting β(Z) SP True Bias M-C ASE Prob. of
value SD rejecting H0

I 0 100 0 0.021 0.209 0.176 0.116
400 0.001 0.124 0.115 0.086

II 2 ∗ Z 100 1.000 −0.005 0.224 0.186 0.980
400 −0.014 0.127 0.116 1.000

III Beta(Z, 2, 2) 100 1.000 −0.053 0.21 0.173 0.989
400 −0.017 0.12 0.111 1.000

IV 1.5 sin(2πZ)I(Z ≤ 0.5) 100 0.318 −0.089 0.221 0.193 0.256
+0.5 sin(2πZ)I(Z > 0.5) 400 −0.030 0.121 0.113 0.727

significantly smaller than 0.05 to reject the null hypothesis at the usual 0.05 level.

Comparison of Settings 3 and 4 (Table 1 and Figure 2) also indicates that the

test power is mainly affected by the value of
∫
β(z)dH(z) and is not sensitive to

the shape of β(z).

For applications, it will be more common to consider a spline-based semi-

parametric model. Following a referee’s suggestion, we also considered the model

E{N(t)|Z} = Λ(t) exp(β1(Z1)+β2Z2+β3Z3), where β1(Z1) = 0.5∗Beta(Z1, 2, 2),

Z1 and Z2 are continuous variables generated as Unif [0, 1], and Z3 is a binary

variable generated as Bernoulli(0.5). For the simulated data, we fitted Λ(t) and

β1(Z1) by B-splines and treated β2 and β3 as two unknown regression parameters

to be estimated. We conducted the same simulation study as in Data Settings 1-4.

Simulation results for this scenario are summarized in Table 2. The last column

in Table 2 is the probability of rejecting H0: β1(z1) = 0 for all z1 at significance

level 0.05, and the coverage probability of 95% confidence interval(CI) for β2 and

β3, respectively. From Table 2 and Figure 4 (provided in the Supplementary

Materials as Figure 1), it is seen that the proposed methodology works well

for a general splines-based semi-parametric model. To facilitate the use of our

method, we provide the computing code for the simulation studies online at

ftp://public.sjtu.edu.cn/. Readers can access the code with account name

yuzhangsheng and password public

5. Application

We applied the proposed method to the childhood wheezing study described

in Yao et al. (2010). This is a study designed to evaluate interleukin function

ftp://public.sjtu.edu.cn/
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Figure 1. Estimation results for the regression function: The solid curve is the true
regression function β0(z), the dotted, dashed and dash-dotted curves are the pointwise

2.5-quantile, mean and 97.5-quantile of β̂n(z)’s, respectively; (a1)-(a2) are the results of
β0(Z) = 0 under sample sizes 100 and 400; (b1)-(b2) are the results of β0(Z) = 2 ∗ Z
under sample sizes 100 and 400.

Table 2. Simulation results. β∗, β1(Z1), β2 or β3; SP, sample size; True value, the
exact value of

∫
β(z)dH(z), β2 and β3; M-C SD, Monte Carlo standard deviation; ASE,

average of bootstrap standard errors; **, probability of rejecting H0 : β1(z1) ≡ 0, and
coverage probability for β2 and β3.

Setting β∗ SP True value Bias M-C SD ASE ∗∗

V β1(Z1) = 0.5 ∗Beta(Z1, 2, 2) 100 0.5 −0.026 0.136 0.121 0.908
400 −0.010 0.084 0.077 1.000

β2 100 1.0 −0.001 0.057 0.058 0.940
400 0.001 0.028 0.027 0.920

β3 100 0.5 0.001 0.033 0.033 0.943
400 0.000 0.015 0.016 0.931
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Figure 2. Estimation results for the regression function: The solid curve is the true
regression function β0(z), the dotted, dashed and dash-dotted curves are the pointwise

2.5-quantile, mean and 97.5-quantile of β̂n(z)’s, respectively; (a1)-(a2) are the results
of β0(Z) = Beta(Z, 2, 2) under sample sizes 100 and 400; (b1)-(b2) are the results of
β0(Z) = 1.5 sin(2πZ)I(Z ≤ 0.5) + 0.5 sin(2πZ)I(Z > 0.5) under sample sizes 100 and
400.

during infancy with the risk of asthma and wheezing symptoms for the children

with atopic dermatitis. One hundred and five infants were followed for an aver-

age of 5 years. Patients’ baseline demographic information and one of interleukin

functions, Interleukin 5 denoted IL5, were included as covariates for data anal-

ysis. The number of wheezing episodes was collected over time telephonically.

Although the phone calls were scheduled to be made every month, the actual

time for the phone call varied from month to month, and the information was



822 ZHAO ET AL.

− − − − − −

−

β

Figure 3. Estimation of the regression function. Solid line, B-splines model; dotted line,
piecewise linear regression model.

not available every month as the research coordinator was not able to reach the

patients. The number of episodes since the last call was recorded, which was

potentially greater than one. This data type ideally fits the framework of panel

count data. Yu et al. (2013) used a recurrent event model to study the recur-

rence of wheezing symptoms without considering the actual number of wheezing

episodes between two consecutive calls. To make better use of the collected data

in studying the recurrence of wheezing, we conducted an analysis using a panel

count data model and modelled a flexible non-linear effect of IL5 on the wheezing

recurrence, using B-splines.

We analyzed the effect of IL5 on the wheezing symptoms adjusted for the

infant’s age, sex, and mother’s smoking status during pregnancy in the panel

count data model. In this study, the mean age (month) at enrollment was 10.9,

53.7% are boys, and 8.04% of mothers smoked during pregnancy. The non-

linear effect of IL5 was estimated using the proposed B-splines NPMPLE method

and is depicted in Figure 3. It appears that the effect of IL5 on wheezing is

more dramatic at the lower end of the IL5 values and gradually stabilizes as

IL5 increases. The hypothesis testing procedure described in Section 4 yields a

p-value of 0.005, indicating that IL5 is indeed an influential factor for wheezing

symptoms.

The multiple bumps shown in Figure 3 may present challenges in interpreta-

tion of the effect. However, this non-parametric approach is definitely informative

and it provides evidence to suggest a non-linear covariate effect. To ascertain a
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potential non-linear effect, we also fit the data using a piecewise linear regression

model with the changing point at log(IL-5) =−5.88. The cutoff point for IL-5 was

chosen based on the non-parametric estimate presented in Figure 3. The p-value

for the test of slope difference between the two linear lines was < 0.001, strongly

implying a non-linear effect of IL-5. The piecewise linear model has a meaningful

interpretation as a piecewise proportional effect and reveals similar information

about the IL-5 effect compared to the proposed method. Virtually, the IL-5 effect

on the underlying childhood wheezing process is much more pronounced when

IL-5 is small.

6. Discussion and Conclusions

We propose a regression B-splines-based NPMPLE method for panel count

data analysis. The proposed estimators for the baseline mean function and the

regression function are consistent and converge to the corresponding true func-

tions at the rate of r/(1 + 2r). This convergence rate was shown to be optimal

in spline-smoothing non-parametric estimation, Speckman (1985); Zhang, Hua

and Huang (2010). Simulation studies show that the estimators have good finite

sample properties. The proposed splines-based non-parametric functional anal-

ysis can be easily extended to the splines-based semi-parametric analysis with

both continuous and discrete covariates included for analysis. The proposed non-

parametric curve fitting is, to our knowledge, the first such method applied to

panel count data analysis, and hence fills the gap of non-parametric regression

for panel count data analysis.

The proposed splines-based regression method for non-parametric functional

analysis requires predetermination of the number of B-spines basis functions,

which increases as sample size increases. The validity of the asymptotic proper-

ties relies on the special placement of the interior knots to construct the basis

functions, which can be somewhat subjective. Another approach is to use the

penalized spline, in which the degree of smoothness of the estimated curve relies

on the tuning parameter that can be selected using an objective approach, such

as the cross-validation method. However, the asymptotic properties of penalized

spline estimators have yet to be studied.

The proposed NPMPLE method has the advantage in numerical computa-

tion due to its likelihood simplicity, but the trade-off of this approach is the un-

derestimation of the standard error for the estimated functions and their smooth

functionals, as shown in our simulation studies. This shortcoming is due to the
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fact that the proposed model does not fully account for the association among

the count data. Although some standard error correction methods have yet to be

developed, we believe that the complete Poisson model with the gamma frailty for

B-splines estimation developed in Hua, Zhang and Tu (2014) is a reasonable ap-

proach with which to address the underestimation issue for the pseudolikelihood

method.

The asymptotic normality theorem (Theorem 3) for a class of smooth func-

tionals not only facilitates a hypothesis testing method to test whether the co-

variate affects the underlying counting process, but is also potentially useful in

model diagnosis for ascertaining if the covariate effect is linear. This task remains

for further investigation.

Supplementary Materials

The Supplementary Materials include proofs of theorems and part simulation

results.
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