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Abstract: To identify funds skilled in both stock picking and market timing, we

develop a test for the zero product of these two skills to first single out funds with

at least one zero skill. Our simulations confirm the test’s accurate size and good

power. We apply our test to active U.S. equity mutual funds to exclude zero-skill

funds, and classify the remaining funds based on stock picking and market timing.

We find that the 1% of funds with both skills are the only group with significant

risk-adjusted performance. We also provide evidence for stock-picking and market-

timing trade-offs along multiple dimensions.
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1. Introduction

Following the seminal works of Jensen (1968), Treynor and Mazuy (1966),

and Henriksson and Merton (1981), numerous studies evaluate mutual fund

performance using measures of stock-picking and market-timing skills inferred

from fund returns and common risk factors. On the one hand, if such measures

are rooted in funds’ superior human capital, then top funds should exhibit skills in

both stock picking and market timing. Back, Crane and Crotty (2018) also focus

on the trade-offs faced by mutual funds. On the other hand, top funds may face

trade-offs when applying the two types of skills. For example, Kon (1983), Hen-

riksson (1984), Jagannathan and Korajczyk (1986), and Goetzmann, Ingersoll

and Ivković (2000) empirically find a negative association between market-timing

and stock-picking skills. One economic explanation for this negative association

is proposed by Kacperczyk, Nieuwerburgh and Veldkamp (2014); Kacperczyk,

Van Nieuwerburgh and Veldkamp (2016), who argue that stock picking and

market timing are not talents but tasks that trade off against each other. They

present evidence consistent with mutual fund managers allocating their time

to focusing on either stock picking or market timing, depending on economic

conditions. This negative association implies that we need to identify mutual

funds with both skills, if such funds exist.
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Our approach is motivated by the well-known underperformance of the

majority of the active management industry relative to passive index benchmarks.

Consequently, most mutual funds have zero skill in either stock picking or market

timing, and the results of studies of average investment performance can be

misleading when including such funds. To address this issue, we propose a new

approach that tests whether a fund has zero skill in either stock picking or market

timing.

This hypothesis test is equivalent to a composite test for a zero product

between the two skill parameters. We show that such a test is nontrivial to

implement, because a naive test that independently estimates each skill may

theoretically fail. Instead, our proposed direct inference for the product of these

two skills leads to a unified test, regardless of whether both skills are zero or

only one skill is zero. Our framework starts with a general factor model for

both skills, based on observed fund returns. To incorporate the econometric

features of daily data, we model errors by using a GARCH sequence to account

for heteroscedasticity and an ARMA-GARCH sequence for serial correlation and

heteroscedasticity. ARMA-GARCH models have become standard in modeling

heteroscedasticity since the works of Engle (1982) and Bollerslev (1986). We

further develop a weighted inference to reduce the heavy-tail effect of daily

returns. Because the proposed inference avoids estimating a GARCH model,

it is robust against heteroscedasticity and applicable to monthly returns. We

quantify the inference uncertainty using a random weighted bootstrap method.

Our simulation studies confirm that our test’s accurate size and good power across

various settings.

Empirically, using our test, we quantify the prevalence of stock-picking and

market-timing skills among all actively managed mutual funds in the United

States in a formal econometric way. Although Kacperczyk, Nieuwerburgh and

Veldkamp (2014) find that the top 25% of managers exhibit stock-picking and

market-timing skills at different times, our novel statistical test finds that the co-

existence of both skills is far less prevalent, at about 1%. Overall, our proposed

test and findings may prove to be a valuable aid for mutual fund investment

allocation decisions.

The rest of the paper is organized as follows. Section 2 introduces the

proposed methodologies. Section 3 reports on the simulation study results.

Section 4 describes our data analysis and main findings. Other supporting results

and an extension to correlated and heteroscedastic errors are provided in the

online Supplementary Material. Section 5 concludes the paper. All theoretical

proofs are available in the appendix.
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2. Models, Tests, and Theoretical Results

Suppose Yt is a fund’s excess return (i.e., net returns minus the risk-free rate)

at time t, Xt = (Xt,1, . . . , Xt,d)
τ represents common factors, with Xt,1 being the

market excess return, and Aτ denotes the transpose of the matrix or vector A.

To evaluate fund performance, the literature employs the following model:

Yt = α+ βτXt + γH(Xt,1) + εt, t = 1, . . . , n, (2.1)

where α and γ measure a fund’s stock-picking and market-timing skills, respec-

tively, and H is a known function related to the market volatility. For example,

Treynor and Mazuy (1966) use H(Xt,1) = X2
t,1, Henriksson and Merton (1981)

use H(Xt,1) = max(0, Xt,1), Busse (1999) uses the conditional standard deviation

of Xt,1 as H(Xt,1), and Goetzmann, Ingersoll and Ivković (2000) use H(Xt,1) as a

monthly quantity computed from daily returns when the above model is applied

to monthly data. We refer readers to Bollen and Busse (2001) for a comparison

of these measures.

Previous studies, such as Carhart (1997), report that most funds have zero

skill in either stock picking or market timing. Thus, including zero-skill funds

in a study introduces noise or even bias into the process of identifying funds

using stock-picking and market-timing skills and any analysis of fund skill trade-

offs. The effects of estimation uncertainty suggest that excluding funds with

at least one zero skill is important to more meaningfully evaluate mutual fund

performance. To do so, we note that identifying and then excluding funds with

at least one zero skill is equivalent to testing the composite null hypothesis,

H0 : α = 0 or γ = 0. (2.2)

Put θ = αγ. Then, H0 is equivalent to H0 : θ = 0. Therefore, one may

use the naive estimator θ̂LSE = α̂LSE γ̂LSE, where α̂LSE and γ̂LSE are the least

squares estimators for model (2.1), that is,

(α̂LSE, β̂
τ
LSE, γ̂LSE)

τ = argmin
α,β,γ

n∑
t=1

{Yt − α− βτXt − γH(Xt,1)}2.

However, this estimator’s asymptotic limit depends on whether one skill or both

are zero. When α = 0 and γ = 0, θ̂LSE not only has a convergence rate of n−1,

rather than the standard n−1/2 rate, but also has a limiting distribution that is

nonnormal. Conversely, when only one of α or γ is zero, θ̂LSE has the standard

convergence rate with a normal limit. Thus, it is challenging to test H0 based on

θ̂LSE without distinguishing between these two cases. This difficulty is noted by

Nguyen and Jiang (2020) in a different context. To develop a test for H0 with

the asymptotically correct size, we propose estimating θ directly by constructing

a model with the parameter θ.
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Put Zt = Yt − βτXt, for t = 1, . . . , n. Then, model (2.1) implies that

Z2
t = α2+E(ε2t )+2αγH(Xt,1)+γ

2H2(Xt,1)+2εt{α+γH(Xt,1)}+ {ε2t −E(ε2t )},

which motivates directly estimating θ = αγ by minimizing

n∑
t=1

{Ẑ2
t,LSE − α∗ − θ2H(Xt,1)− γ∗H2(Xt,1)}2, (2.3)

where α∗ = α2 + E(ε2t ), γ
∗ = γ2, and

Ẑt,LSE = Yt − β̂τ
LSEXt for t = 1, . . . , n.

Note that ε2t − E(ε2t ) = σ2
t (η

2
t − 1) + σ2

t − E(σ2
t ), which means that minimizing

(2.3) can lead to an inconsistent inference if (1/
√
n)

∑n
t=1{σ2

t − E(σ2
t )} does not

converge in distribution because of a lack of finite moments.

To avoid the higher moments of Z2
t , we propose splitting the data into two

parts, and using a product to directly estimate θ by noting that

εtεt+m = {Zt − α− γH(Xt,1)}{Zt+m − α− γH(Xt+m,1)}
= ZtZt+m − {α+ γH(Xt,1)}Zt+m − {α+ γH(Xt+m,1)}Zt

+α1 + θ{H(Xt,1) +H(Xt+m,1)}+ γ1H(Xt,1)H(Xt+m,1),

for t = 1, . . . ,m, where m = [n/2], α1 = α2, and γ1 = γ2. Unfortunately,

when heteroscedasticity exists, the asymptotic normality of the above inference

requires E(σ4
t σ̄

4
t,1) <∞, which may need E(ε8t ) <∞ and E(X8

t,1) <∞. To avoid

these higher finite moment requirements caused by heteroscedasticity, we propose

employing the following weighted inference that models the risk factors using the

ARMA-GARCH models{
Xt,l = µl +

∑sl
i=1 ϕi,lXt−i,l +

∑rl
j=1 ψj,lε̄t−j,l + ε̄t,l, ε̄t,l = η̄t,lσ̄t,l,

σ̄2
t,l = wl +

∑pl

i=1 ai,lε̄
2
t−i,l +

∑ql
j=1 bj,lσ̄

2
t−j,l, l = 1, . . . , d,

(2.4)

and assumes that the regression errors follow the GARCH model

εt = ηtσt, σ2
t = w +

p∑
i=1

aiε
2
t−i +

q∑
j=1

bjσ
2
t−j, (2.5)

where {(ηt, η̄t,1, . . . , η̄t,d)τ}nt=1 is a sequence of independent and identically dis-

tributed(i.i.d.) random vectors with means zero and variances one.

First, we estimate α,β, and γ using the weighted least squares:

(α̂WLSE, β̂WLSE, γ̂WLSE)
τ = argmin

α,β,γ

n∑
t=1

{Yt − α− βτXt − γH(Xt,1)}2wt,1,



EVALUATING STOCK PICKING & MARKET TIMING SKILLS 277

where

w−1
t,1 = 1 +max{||Xt||, H(Xt,1)} with ||Xt|| = max

1≤i≤d
|Xt,i|. (2.6)

Next, we define Ẑt,WLSE = Yt − β̂τ
WLSEXt, for t = 1, . . . , n, and estimate θ

by

(α̂1,w, θ̂w, γ̂1,w)
τ

= argmin
α1,θ,γ1

m∑
t=1

[Ẑt,WLSEẐt+m,WLSE − {α̂WLSE + γ̂WLSEH(Xt,1)}Ẑt+m,WLSE

−{α̂WLSE + γ̂WLSEH(Xt+m,1)}Ẑt,WLSE + α1 + θ{H(Xt,1) +H(Xt+m,1)}
+γ1H(Xt,1)H(Xt+m,1)]

2wt,2,

where

w−1
t,2 = 1 +max{|Yt|, ||Xt||, ||Xt+m||, H(Xt,1), H(Xt+m,1), H(Xt,1)H(Xt+m,1)}.

(2.7)

Following Ling (2007), we use the weight functions of (2.6) and (2.7) to reduce

the heavy-tail effect due to heteroscedasticity and bound the factors in the score

equations to ensure a normal limit when E(η2t ) < ∞. There are many different

choices of weight functions, but our simulation study confirms the good finite-

sample performance of using (2.6) and (2.7).

To establish the asymptotic behavior of the estimator, we employ the follow-

ing regularity conditions:

C1. {εt} and {Xt} are strictly stationary and ergodic with finite variance; see

the conditions in Theorem 3.1 of Basrak, Davis and Mikosch (2002).

C2. {(ηt, η̄t,1, . . . , η̄t,d)τ} is a sequence of i.i.d. random vectors with mean zero

and variance one.

C3. Assume

E(ηt|η̄t,1, . . . , η̄t,d) = 0, (2.8)

and there exists δ > 0 such that E|ηt|2+δ <∞.

C4. Assume the covariance matrices of {wt,1εt(1,X
τ
t , H(Xt,1))

τ}nt=1 and

[wt,2εtεt+m{1, H(Xt,1) +H(Xt+m,1), H(Xt,1)H(Xt+m,1)}τ ]mt=1

are positive definite.

Theorem 1. Suppose models (2.1), (2.4) and (2.5) hold, with conditions C1–C4.

Then, as n → ∞,
√
n(θ̂w − θ)

d→ N(0, σ2
0), where σ

2
0 has a complicated formula

given in the proof.
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To avoid estimating the complicated σ2
0, we adopt the random weighted

bootstrap method of Jin, Ying and Wei (2001) and Zhu (2016), as follows.

Note that the conventional residual-based bootstrap method (see Hall, 1992)

does not apply to our approach, because we do not infer the GARCH model of

the regression errors.

Step Ai. Draw a random sample of size n from the standard exponential distri-

bution. Denote these random draws by ξb1, . . . , ξ
b
n.

Step Aii. Compute

(α̂b
WLSE, β̂

bτ
WLSE, γ̂

b
WLSE)

τ = argmin
(α,βτ ,γ)τ

n∑
t=1

ξbt{Yt −α−βτXt − γH(Xt,1)}2wt,1.

Step Aiii. Define

Ẑb
t,WLSE = Yt − β̂bτ

WLSEXt, t = 1, . . . , n,

and calculate

(α̂b
1,w, θ̂

b
w, γ̂

b
1,w)

τ

= argmin
α1,θ,γ1

m∑
t=1

ξbt+m[Ẑ
b
t,WLSEẐ

b
t+m,WLSE − {α̂b

WLSE + γ̂b
WLSEH(Xt,1)}Ẑb

t+m,WLSE

−{α̂b
WLSE + γ̂b

WLSEH(Xt+m,1)}Ẑb
t,WLSE + α1 + θ{H(Xt,1) +H(Xt+m,1)}

+γ1H(Xt,1)H(Xt+m,1)]
2wt,2,

Step Aiv. Repeat the above three steps B times to get {θ̂bw}Bb=1, and estimate the

asymptotic variance of θ̂w by

σ̂2
0 =

n

B

B∑
b=1

(θ̂bw − θ̂w)
2.

Theorem 2. Under the conditions of Theorem 1, σ̂2
0/σ

2
0 converges in probability

to one as B → ∞ and n→ ∞.

Using Theorems 1 and 2, we reject the null hypothesis of (2.2) at level a if

θ̂2w/σ̂
2
0 > χ2

1,1−a, where χ
2
1,1−a is the (1−a)th quantile of a chi-squared distribution

with one degree of freedom. The Supplementary Material generalizes this method

to correlated and heteroscedastic εt. Alternatively, we can compute the p-value

for testing H0 in (2.2) by (1/B)
∑B

b=1 I(|θ̂w| < |θ̂bw − θ̂w|), which leads to the

asymptotically correct size by taking B → ∞ and then n→ ∞.
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Table 1. ARMA-GARCH coefficients for the four factors.

µ ϕ ω a b

Xt,1 0.10467535 -0.07631574 0.04075129 0.14544129 0.7657024

Xt,2 -0.00238095 0.01933178 0.01296749 0.06118342 0.8908670

Xt,3 -0.04445163 0.00072542 0.02254173 0.09856252 0.7906360

Xt,4 0.05034941 0.01640715 0.02024227 0.14370110 0.8036767

3. Simulation Study

In this section, we investigate the finite-sample performance of the proposed

test in terms of its size and power. To mimic the results of realistic mutual fund

investing, we simulate fund returns under a factor model fitted to the empirical

features of the mutual funds in the data set that we study in Section 4. We

then analyze the test’s performance for different simulated settings, depending

on the stock-picking skill (α), market-timing skill (γ), sample size, and data-

generating process. As a benchmark, we also compare the performance of

our proposed estimator with that of the naive ordinary least squares estimator

θ̂LSE = α̂LSE γ̂LSE. To be more comparable, we employ a similar random weighted

bootstrap method to estimate the asymptotic variance of the naive estimator

θ̂LSE.

We draw random samples from the following four-factor model:

Yt = α+ βτXt + γH(Xt,1) + εt, t = 1, . . . , n, (3.1)

where Xt = (Xt,1, . . . , Xt,4)
τ represents the four factors from Carhart (1997):

the market excess return (MKT), size (SMB), book-to-market (HML), and mo-

mentum (UMD) factors, and H(Xt,1) = X2
t,1, as defined by Treynor and Mazuy

(1966). We set β = (0.9757290,−0.1010977, 0.1064889,−0.2045018)τ based on

the vector of empirical regression estimates of the four-factor model for a represen-

tative fund in our data set. We set the true stock-picking (α) and market-timing

(γ) parameters to be 0, 0.01, or 0.05.

We model the factors Xt,1, . . . , Xt,4 by independent AR(1)-GARCH(1,1)

processes. We generate εt in (3.1) independently from these four factors using

three different scenarios: a sequence of independent random variables with normal

distributions, a GARCH(1,1) process, and an AR(1)-GARCH(1,1) process. To

make our simulation more realistic, the coefficients of these models are obtained

from actual data. Specifically, we use the fGarch R package to fit an ARMA(1,0)-

GARCH(1,1) model to each of the four factors and the residuals from model

(3.1) using a representative fund in our data set for the period from September

1, 1998, to December 31, 2018. Tables 1 and 2 summarize the coefficients of the

four factors Xt,1, . . . , Xt,4 and the errors εt in the three scenarios.

We conduct the hypothesis test of H0 : θ = 0 (i.e., H0 : αγ = 0) at the 10%
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Table 2. Coefficients for error.

εt µ ϕ ω a b

Scenario 1: i.i.d. N(0, 0.1) 0 0 0 0 0

Scenario 2: GARCH(1,1) 0 0 0.03155241 0.11454071 0.61573066

Scenario 3: AR(1)-GARCH(1,1) 0 -0.08733819 0.03155241 0.11454071 0.61573066

significance level. Using 1,000 repetitions and B = 1000 bootstrap iterations for

the random weighted bootstrap method, we compute and compare the simulated

size and power of the hypothesis tests using our proposed estimator θ̂w and the

naive estimator θ̂LSE. Tables 3 and 4 report the size and power, respectively. We

make the following observations:

i. In general, the test using the naive estimator θ̂LSE has distorted size,

consistent with its asymptotic limit being a nonnormal distribution when

both α and γ are close to zero. The test size is below 0.01 across all our

simulation settings, except when the sample size is large at 1,000, and α is

nonzero at 0.05.

ii. The test using the proposed estimator θ̂w has accurate size for all cases we

consider. The proposed estimator is also a meaningful improvement relative

to the naive estimator.

iii. The power of the test using the proposed estimator θ̂w increases with the

sample size or when α and γ are greater than zero. The test under Scenario

1 has much higher power than under the other two scenarios.

iv. Our approach of splitting the data affects the test’s power when the sample

size is small.

In summary, it is challenging to test H0 : α = 0 or γ = 0, as exemplified by

the naive ordinary least squares estimator. The proposed technique of splitting

the data to test the product of the skill parameters provides a test with accurate

size and good power. However, it does affect the test power when the sample size

is small.

4. Data Analysis

This section applies our test to identify mutual funds with stock-picking

and/or market-timing skills. We start by describing our data set of actively

managed equity mutual funds. Next, we apply our test to exclude zero-skill funds

from the sample and classify the remaining funds into skill groups. We then use

these classifications to examine each skill group’s prevalence and returns and if

there are skill trade-offs.
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Table 3. Simulation study for comparing test size.

Case α γ Sample Size Method Scenario 1 Scenario 2 Scenario 3

One 0.00 0.00 100 Naive 0.002 0.001 0.002

100 New 0.107 0.114 0.119

200 Naive 0.000 0.002 0.001

200 New 0.106 0.088 0.094

1,000 Naive 0.000 0.000 0.000

1,000 New 0.107 0.101 0.116

Two 0.00 0.01 100 Naive 0.003 0.002 0.002

100 New 0.130 0.083 0.109

200 Naive 0.000 0.004 0.000

200 New 0.100 0.110 0.099

1,000 Naive 0.002 0.003 0.000

1,000 New 0.094 0.108 0.118

Three 0.00 0.05 100 Naive 0.001 0.007 0.003

100 New 0.120 0.101 0.091

200 Naive 0.000 0.004 0.007

200 New 0.099 0.113 0.109

1,000 Naive 0.002 0.051 0.057

1,000 New 0.099 0.086 0.104

Four 0.01 0.00 100 Naive 0.000 0.003 0.003

100 New 0.110 0.083 0.107

200 Naive 0.000 0.004 0.001

200 New 0.104 0.093 0.098

1,000 Naive 0.000 0.002 0.002

1,000 New 0.097 0.111 0.120

Five 0.05 0.00 100 Naive 0.001 0.009 0.008

100 New 0.094 0.099 0.100

200 Naive 0.002 0.014 0.015

200 New 0.090 0.116 0.093

1,000 Naive 0.002 0.086 0.084

1,000 New 0.093 0.101 0.110

This table reports the results of our simulation study comparing the test sizes of the proposed
estimator and the naive estimator at a significance level of 10%.

4.1. Data and implementation of test

We obtain U.S. open-end mutual fund returns and their characteristics from

CRSP (the Center for Research in Security Prices) Survivor-Bias-Free US Mutual

Fund Database. Funds’ daily and monthly returns are value-weighted averages

across all fund share classes (using the total net assets of the share class as the

weight). We collect the risk-free rate and risk factor data from the Ken French

data library.



282 SHAN ET AL.

Table 4. Simulation study for comparing test power.

Case α γ Sample Size Scenario 1 Scenario 2 Scenario 3

One 0.05 0.05 100 0.292 0.095 0.099

200 0.479 0.110 0.113

1,000 0.962 0.125 0.127

Two 0.05 0.10 100 0.580 0.113 0.097

200 0.829 0.103 0.118

1,000 1.000 0.165 0.201

Three 0.10 0.05 100 0.573 0.125 0.103

200 0.791 0.130 0.109

1,000 1.000 0.171 0.210

Four 0.10 0.10 100 0.893 0.126 0.130

200 0.987 0.143 0.156

1,000 1.000 0.366 0.394

Five 0.20 0.20 100 1.000 0.442 0.451

200 1.000 0.631 0.696

1,000 1.000 0.998 0.993

This table reports the results of our simulation study comparing the test power of the proposed estimator
at a significance level of 10%.

The actively managed mutual funds sample is constructed following Kacper-

czyk, Sialm and Zheng (2008). We begin by using the investment objective

codes from CRSP. We exclude ETFs, annuities, and index funds, based on their

indicator variables or fund names from CRSP, following Busse, Jiang and Tang

(2021). Because we focus on equity funds, we require 80% of the assets under

management to be invested in common stocks. We restrict our sample to funds

that are at least one year old and have at least USD 15 million in assets under

management. We address incubation bias as in Evans (2010). Our final sample

includes 3,569 actively managed domestic equity funds in the U.S. for the period

from January 1980 to December 2018.

To test the null hypothesis of zero skill, H0 : α = 0 or γ = 0, we use daily

data available from 1998 to 2018 to fit model (2.1) for each fund. To be consistent

with our simulation study, we estimate (2.1) based on the four-factor specification

of Carhart (1997), which includes the daily market excess return (MKT), size

(SMB), value (HML), and momentum (UMD) factors. We also run our tests

using the CAPM one-factor model, as in Jensen (1968). We find qualitatively

similar results, with a slightly lower number of funds with both stock-picking and

market-timing skills. Our tests are based on the AR-GARCH model, where we

use the AIC to select the best AR model. Then, we use 1,000 bootstrap iterations

for each fund to compute the p-values against the null hypothesis.

To create our mutual fund skill classifications at the 10% level, we first sort

funds with either zero stock-picking or zero market-timing skill, based on a failure
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to reject the null, into a benchmark zero-skill group. Then, we classify funds

with either nonzero stock-picking or market-timing skills into four groups: (1)

the “Both” group, comprising funds with positive picking (α > 0) and timing

(γ > 0) skills; (2) the “Picking” group, comprising funds with positive picking

and negative timing skills; (3) the “Timing” group, comprising funds with positive

timing and negative picking skills; (4) the “Neither” group, comprising funds with

negative picking and timing skills; and (5) the “Zero Skill” group, comprising all

other funds that fail to reject H0. Our estimates of stock picking and market

timing come from the weighted least squares estimation given in Theorem S1,

with the weight function described in (S2) in the Supplementary Material. Lastly,

note that although we use daily data to implement the test, the conclusions also

apply at the fund level, some of which have monthly returns dating back to 1980.

Thus, to minimize survivorship bias, we also include funds that failed before 1998

in the zero-skill group.

4.2. Empirical results

The first line of Table 5 presents the results of our classification of funds into

mutually exclusive skill groups. At the 10% level, we find that 3,159 out of 3,569

funds have zero skill in either stock picking or market timing. Conversely, a very

small subset of 36 funds have positive stock-picking and market-timing skills. We

also find that a larger group of funds have one skill but not the other: 120 funds

have positive (negative) stock-picking (market-timing) skill and 146 funds have

positive (negative) market-timing (stock-picking) skill. Lastly, 108 funds have

neither stock-picking nor market-timing skills. As a result, funds that possess

both abilities are rare, occurring only 1.0% of the time. This is in contrast to the

finding of Kacperczyk, Nieuwerburgh and Veldkamp (2014), which indicates that

the top 25% of managers exhibit both abilities.

Table 5 displays the return distributions for each skill group, computed by

summarizing the equally weighted average monthly returns of all funds within

each group. We expect funds with stock-picking skills to exhibit better per-

formance, based on risk-return trade-offs. Indeed, funds with both skills have

the highest Sharpe ratio at 0.69, followed by pure stock-picking funds at 0.55,

zero-skill funds at 0.52, funds with neither skill group at 0.51, and pure market-

timing funds at 0.48. Funds with market-timing skills should adjust their market

exposure during expansions and downturns. We define bear market states as

the 10% of months with the lowest market returns, during which we find that

funds in the timing-skill group reduce their overall market beta from 1.00 to 0.96.

In contrast, the other four skill groups have a higher market beta during bear

market states. We further find that pure market-timing funds have the lowest

volatility (i.e., standard deviation), the least negative return skewness, and the

smallest kurtosis among all skill groups during bear market states. Hence, pure

market-timing funds appear to manage downside risks as well.
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Table 5. Risk-return summary statistics.

Zero Skill Both Picking Timing Neither

Number of Funds 3,159.00 36.00 120.00 146.00 108.00

Annualized Mean Return (%) 8.09 9.81 9.20 7.42 8.31

Annualized Std. Dev. (%) 15.64 14.29 16.78 15.45 16.34

Annualized Sharpe Ratio 0.52 0.69 0.55 0.48 0.51

Skewness −0.80 −0.87 −0.75 −0.68 −0.88

Kurtosis 5.62 6.15 5.82 4.90 5.67

Beta 1.01 0.89 1.05 1.00 1.04

Worst Monthly Return (%) −24.03 −21.55 −25.57 −21.53 −25.23

% of Months w/ Negative Return 38.68 37.18 39.53 38.89 38.89

Annualized Mean Return in Bear Markets (%) −97.34 −84.54 −100.12 −96.59 −102.21

Annualized Std. Dev. in Bear Markets (%) 13.08 13.75 14.83 11.89 14.14

Beta in Bear Markets 1.05 1.01 1.14 0.96 1.12

This table presents summary statistics for the return distribution of the gross monthly excess returns
over the risk-free rate for active funds in each skill group. The sample period is from 1980 to 2018.

Given that our novel test appears to classify funds well based on their

skill, we next examine whether there are stock-picking and market-timing trade-

offs. We approach this question from three perspectives. First, comparing pure

stock-picking and pure market-timing funds in the third and fourth columns,

respectively, of Table 5, we do observe such a trade-off. Pure market timing

sacrifices the higher risk-return profile of pure stock picking to have better market

and downside risk management. Furthermore, these two skill groups appear to

generate different types of value for investors, because pure stock picking has

higher Sharpe ratios than those of zero-skill funds. In contrast, pure market

timing manages risk during downturns better than zero skill funds.

Second, our evidence suggests that funds with both skills favor stock picking

over market timing. We observe that the return distributions for funds with

stock-picking and market-timing skills are similar to that of the pure stock-picking

funds. Funds with both skills generate by far the best Sharpe ratios but fail to

scale back their market exposure (i.e., market beta) during bear market states.

They also incur the most negative skewness and the highest positive kurtosis,

meaning they are more exposed to heavy-tailed outcomes. At the same time,

relative to funds in other groups, those with both skills appear to have some

market-timing skill and the overall lowest volatility. Compared with pure market-

timing funds, they also have lower market exposure during bear market states.

Finally, they manage downside risks a bit better than pure stock pickers, because

their volatility during bear market states is lower.

Third, we do not find stock-picking and market-timing trade-offs for funds

with negative stock-picking and market-timing skills. While neither group has

a risk profile in terms of volatility and market beta similar to the pure stock-

picking group, they do not generate similarly high returns. They also fail to
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Table 6. Factor exposures of different funds.

Zero Skill Both Picking Timing Neither

Dep Var: Rt

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

MKTt 1.008∗∗∗ 0.980∗∗∗ 0.887∗∗∗ 0.885∗∗∗ 1.052∗∗∗ 1.000∗∗∗ 0.997∗∗∗ 0.972∗∗∗ 1.040∗∗∗ 1.007∗∗∗

(96.923) (105.322) (30.475) (46.793) (61.618) (70.425) (87.595) (74.150) (0.012) (0.009)

SMBt 0.194∗∗∗ 0.136∗∗∗ 0.275∗∗∗ 0.169∗∗∗ 0.241∗∗∗

(10.563) (4.850) (9.064) (10.456) (0.014)

HMLt 0.002 0.127∗∗∗ −0.064 −0.004 −0.007

(0.088) (4.314) (−1.339) (−0.201) (0.015)

UMDt 0.008 −0.035∗∗ 0.020 0.012 0.032∗∗∗

(0.587) (−2.448) (0.847) (0.989) (0.009)

Constant 0.327 0.263 2.982∗∗∗ 2.701∗∗∗ 1.100 1.244 −0.264 −0.332 0.297 0.080

(0.556) (0.624) (2.963) (3.379) (1.026) (1.533) (−0.609) (−0.861) (0.625) (0.483)

N 468 468 468 468 468 468 468 468 468 468

R2 0.967 0.983 0.897 0.913 0.915 0.948 0.970 0.983 0.944 0.969

This table presents the factor exposures of the gross monthly excess returns over the risk-free rate for
active funds in each skill group. All returns are annualized by multiplying by 12. In the parentheses
below the coefficient estimates, we report Newey and West (1987) t-statistics with 12 lags. The sample
period is from 1980 to 2018, with N representing the number of months. ∗∗∗, ∗∗, and ∗ indicate statistical
significance at the 1%, 5%, and 10% levels, respectively.

decrease their market exposure and overall volatility during bear states. Finally,

they exhibit higher tail risks, with the most negative skewness and return during

bear markets.

Stock picking is heavily weighted over market timing by funds with both

skills, as they excel at stock picking. Of the four groups, they generate the highest

return at 9.81% per year and the lowest volatility at 14.29% per year. To examine

this stock-picking ability further, we explore whether standard factor exposures

can explain this risk-return profile. In Table 6, we regress the average monthly

excess return of each skill group on either (1) the market excess return (MKT), or

(2) the market excess return, plus the size (SMB), value (HML), and momentum

(UMD) factors, following Carhart (1997). Because both the independent and

the dependent variables in these regressions are returns, we can interpret the

constant, that is, alpha, as the average abnormal return unexplained by factor

exposures. At the 1% level, we find funds with both skills are the only group

generating statistically significant and positive alphas, earning 3.0% or 2.7% per

year, relative to the market or Carhart factor models. In sharp contrast, the

alphas of the other four groups are statistically insignificant.

Overall, our novel test points toward a meaningful classification of funds

based on stock-picking and market-timing skills. We can then identify funds with

either skill relative to zero-skill funds. Importantly, these are the only funds that

generate attractive risk-adjusted returns. The Supplementary Material reports
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additional analyses to validate these skill classifications based on each group’s

active management characteristics and stock-holding styles.

5. Conclusion

We have proposed a novel statistical test for at least one zero skill in stock

picking and market timing, because a direct inference for the product of these

two skills is infeasible. Applying the developed test to actively managed U.S.

mutual funds, we exclude zero-skill funds and find clear trade-offs between stock

picking and market timing among the remaining funds along multiple dimensions

related to a fund’s risk-return profile, market timing, active management, and

stock-holding style. Importantly, we find that only 1% of funds optimize these

trade-offs and possess both skills. These funds are the only group that generate

abnormal risk-adjusted returns, around 3% per year, while also managing their

market risk exposure.

Appendix: Theoretical Proofs

Define Ft as the σ-field generated by {ηu, η̄v,1, . . . , η̄v,d : u ≤ t, v ≤ t+ 1}, 0d

as the d-dimensional zero vector, and put

Wn =
1√
n

n∑
t=1

wt,1εt{1,Xτ
t , H(Xt,1)}τ ,

Γn =
1

n

n∑
t=1

wt,1

 1 Xτ
t H(Xt,1)

Xt XtX
τ
t XtH(Xt,1)

H(Xt,1) X
τ
t H(Xt,1) H2(Xt,1)

 ,

Γ =

 E(wt,1) E(wt,1X
τ
t ) E(wt,1H(Xt,1))

E(wt,1Xt) E(wt,1XtX
τ
t ) E(wt,1XtH(Xt,1))

E(wt,1H(Xt,1)) E(wt,1X
τ
t H(Xt,1)) E(wt,1H

2(Xt,1))

 ,

Σ =

 E(w2
t,1ε

2
t ) E(w2

t,1ε
2
tX

τ
t ) E(w2

t,1ε
2
tH(Xt,1))

E(w2
t,1ε

2
tXt) E(w2

t,1ε
2
tXtX

τ
t ) E(w2

t,1ε
2
tXtH(Xt,1))

E(w2
t,1ε

2
tH(Xt,1)) E(w2

t,1ε
2
tX

τ
t H(Xt,1)) E(w2

t,1ε
2
tH

2(Xt,1))

 ,

Ht = H(Xt,1) +H(Xt+m,1), H̃t = H(Xt,1)H(Xt+m,1),

W̃m =
1√
m

m∑
t=1

wt,2εtεt+m(1, Ht, H̃t)
τ ,

Γ̃m =
1

m

m∑
t=1

wt,2

 1 Ht H̃t

Ht H2
t H̃tHt

H̃t HtH̃t H̃2
t

 ,
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Σ̃ =

 E(w2
t,2ε

2
tε

2
t+m) E(w2

t,2ε
2
tε

2
t+mHt) E(w2

t,2ε
2
tε

2
t+mH̃t)

E(w2
t,2ε

2
tε

2
t+mHt) E(w2

t,2ε
2
tε

2
t+mH

2
t ) E(w2

t,2ε
2
tε

2
t+mHtH̃t)

E(w2
t,2ε

2
tε

2
t+mH̃t) E(w2

t,2ε
2
tε

2
t+mH̃tHt) E(w2

t,2ε
2
tε

2
t+mH̃

2
t )

 ,

Γ̃ =

 E(wt,2) E(wt,2Ht) E(wt,2H̃t)

E(wt,2Ht) E(wt,2H
2
t ) E(wt,2H̃tHt)

E(wt,2H̃t) E(wt,2H̃tHt) E(wt,2H̃
2
t )

 ,

S̃1 = E{wt,2εt(1,X
τ
t , H(Xt,1))

τ (1, Ht, H̃t)
τ},

S̃2 = E{wt,2(2α+ γHt,0
τ
d, αHt + 2γH̃t)

τ (1, Ht, H̃t)
τ}.

Throughout, we use
p→ and

d→ to denote the convergence in probability and in

distribution, respectively.

Lemma 1. Define ξ = (α,βτ , γ)τ and ξ̂ = (α̂WLSE, β̂
τ
WLSE, γ̂WLSE)

τ . Under

conditions of Theorem 1, as n→ ∞, we have

Γn
p→ Γ, Wn

d→ N(0d+2,Σ),
√
n(ξ̂ − ξ) = −Γ−1Wn + op(1). (A.1)

Proof. It follows from ergodicity of {Xt} that Γn
p→ Γ as n → ∞. Use (2.8)

and the fact that {(ηt, η̄t,1, . . . , η̄t,d)τ} is a sequence of independent and identically

distributed random variables, we have E(Wt|Ft−1) = 0d+2. Hence, it follows from

the central limit theorem for martingale differences in Hall and Heyde (1980) that

Wn
d→ N(0d+2,Σ). Because

√
n(ξ̂ − ξ) = −Γ−1

n Wn, we have

√
n(ξ̂ − ξ) = −Γ−1Wn + op(1).

Lemma 2. Define ξw = (α1, θ, γ1)
τ and ξ̂w = (α̂1,w, θ̂w, γ̂1,w)

τ . Under conditions

of Theorem 1, α1 = α2, θ = αγ, and γ1 = γ2, as n→ ∞, we have

Γ̃m
p→ Γ̃, W̃m

d→ N(03, Σ̃), (A.2)

√
m(ξ̂w − ξw) = −Γ̃−1

{
W̃m +

1√
2
(S̃1 + S̃2)Γ

−1Wn

}
+ op(1), (A.3)

WnW̃
τ
m =

√
2E{wt+m,1wt,2εtε

2
t+m(1,X

τ
t+m, H(Xt+m,1))

τ (1, Ht, H̃t)}
+op(1). (A.4)

Proof. Proofs of (A.2) and (A.4) follow the same arguments in proving (A.1).

For proving (A.3), write

Ẑt,WLSEẐt+m,WLSE − {α̂WLSE + γ̂H(Xt,1)}Ẑt+m,WLSE

{α̂+ γ̂H(Xt+m,1)}Ẑt,WLSE + α1 + θHt + γ1H̃t

= {Ẑt,WLSE − α̂WLSE − γ̂WLSEH(Xt,1)}{Ẑt+m,WLSE − α̂WLSE

−γ̂WLSEH(Xt+m,1)} − (α̂2 − α2)− (α̂γ̂ − αγ)Ht − (γ̂2 − γ2)H̃t

= εtεt+m − {(α̂WLSE − α) + (β̂WLSE − β)τXt + (γ̂WLSE − γ)H(Xt,1)}εt+m
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−{(α̂WLSE − α) + (β̂WLSE − β)τXt+m + (γ̂ − γ)H(Xt,1)}εt

−{(α̂2
WLSE − α2) + (α̂γ̂ − αγ)Ht + (γ̂2 − γ2)H̃t}+ op

(
1√
n

)
= εtεt+m +Rt,1 +Rt,2 +Rt,3 + op

(
1√
n

)
.

Hence,

√
m(ξ̂w − ξw) = −Γ̃−1

{
W̃m +

3∑
j=1

1√
m

m∑
t=1

wt,2Rt,j(1, Ht, H̃t)
τ

}
+ op(1).

Using (2.8), (A.2), and ergodicity, we have

1√
m

m∑
t=1

wt,2Rt,1(1, Ht, H̃t)
τ

= − 1

m

m∑
t=1

wt,2εt+m(1, Ht, H̃t)
τ (1,Xτ

t , H(Xt,1))
√
m(ξ̂ − ξ)

= op(1),

1√
m

m∑
t=1

wt,2Rt,2(1, Ht, H̃t)
τ

= − 1

m

m∑
t=1

wt,2εt(1, Ht, H̃t)
τ (1,Xτ

t , H(Xt,1))
√
m(ξ̂ − ξ)

= −E{wt,2εt(1, Ht, H̃t)
τ (1,Xτ

t , H(Xt,1))}
√
m(ξ̂ − ξ) + op(1)

= −S̃1

√
m(ξ̂ − ξ) + op(1),

1√
m

m∑
t=1

wt,2Rt,3(1, Ht, H̃t)
τ

= − 1

m

m∑
t=1

wt,2(1, Ht, H̃t)
τ (2α+ γHt,0

τ
d, αHt + 2γH̃t)

√
m(ξ̂ − ξ) + op(1)

= −S̃2

√
m(ξ̂ − ξ) + op(1).

Therefore, (A.3) follows from the equations above.

Proof of Theorem 1. The theorem follows from Lemmas 1 and 2 and the fact

that θ̂w − θ = (0, 1, 0)(ξ̂w − ξw), where σ
2
0 can be calculated explicitly, which we

skip deriving the formula as we will use the random weighted bootstrap method

to estimate it later.

Proof of Theorem 2. Define ξ̂b = (α̂b
WLSE, β̂

bτ
WLSE, γ̂

b
WLSE)

τ , ξ̂b
w = (α̂b

1,w,

θ̂bw, γ̂
b
1,w)

τ ,
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W b
n =

1√
n

n∑
t=1

(ξbt − 1)wt,1εt(1,X
τ
t , H(Xt,1))

τ ,

Γb
n =

1

n

n∑
t=1

ξbtwt,1

 1 Xτ
t H(Xt,1)

Xt XtX
τ
t XtH(Xt,1)

H(Xt,1) X
τ
t H(Xt,1) H2(Xt,1)

 ,

W̃ b
m =

1√
m

m∑
t=1

(ξbt+m − 1)wt,2εtεt+m(1, Ht, H̃t)
τ .

Therefore,

√
n(ξ̂b − ξ)

= −(Γb
n)

−1 1

n

n∑
t=1

ξbtwt,1εt(1,X
τ
t , H(Xt,1))

τ

= −Γ−1 1

n

n∑
t=1

ξbtwt,1εt(1,X
τ
t , H(Xt,1))

τ + op(1),

implying that √
n(ξ̂b − ξ̂) = −Γ−1W b

n + op(1).

Similarly,

√
m(ξ̂b

w − ξ̂w) = −Γ̃−1

{
W̃ b

m +
1√
2
(S̃1 + S̃2)Γ

−1W b
n

}
+ op(1). (A.5)

We can show that

W b
n

d→ N(0d+2,Σ), W̃ b
m

d→ N(03, Σ̃),

W b
n(W̃

b
m)

τ =
√
2E{wt+m,1wt,2εtε

2
t+m(1,X

τ
t+m, H(Xt+m,1))

τ (1, Ht, H̃t)}+ op(1).

Hence, both
√
m(θ̂w − θ) and

√
m(θ̂bw − θ̂w) have a normal limit with the same

asymptotic variance. Further, we can show that (m/B)
∑B

b=1(θ̂
b
w− θ̂w)2 converges

in probability to the asymptotic variance of
√
m(θ̂w − θ) as B → ∞ and n→ ∞

by using the independence between {ξbt} and {Xt, Yt}. That is, the theorem

follows.

Supplementary Material

The online Supplementary Material generalizes the method to handle corre-

lated and heteroscedastic εt, and reports additional data analysis that validates

our classification of mutual funds based on stock-picking and market-timing skills.
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