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Abstract: To identify funds skilled in both stock picking and market timing, we
develop a test for the zero product of these two skills to first single out funds with
at least one zero skill. Our simulations confirm the test’s accurate size and good
power. We apply our test to active U.S. equity mutual funds to exclude zero-skill
funds, and classify the remaining funds based on stock picking and market timing.
We find that the 1% of funds with both skills are the only group with significant
risk-adjusted performance. We also provide evidence for stock-picking and market-
timing trade-offs along multiple dimensions.
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1. Introduction

Following the seminal works of |Jensen| (1968)), Treynor and Mazuy| (1966)),
and Henriksson and Merton (1981), numerous studies evaluate mutual fund
performance using measures of stock-picking and market-timing skills inferred
from fund returns and common risk factors. On the one hand, if such measures
are rooted in funds’ superior human capital, then top funds should exhibit skills in
both stock picking and market timing. Back, Crane and Crotty (2018) also focus
on the trade-offs faced by mutual funds. On the other hand, top funds may face
trade-offs when applying the two types of skills. For example, Kon| (1983)), [Hen-
riksson| (1984)), Jagannathan and Korajczyk| (1986), and |Goetzmann, Ingersoll
and Ivkovi¢| (2000) empirically find a negative association between market-timing
and stock-picking skills. One economic explanation for this negative association
is proposed by |Kacperczyk, Nieuwerburgh and Veldkamp| (2014); Kacperczyk,
Van Nieuwerburgh and Veldkamp (2016|), who argue that stock picking and
market timing are not talents but tasks that trade off against each other. They
present evidence consistent with mutual fund managers allocating their time
to focusing on either stock picking or market timing, depending on economic
conditions. This negative association implies that we need to identify mutual
funds with both skills, if such funds exist.
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Our approach is motivated by the well-known underperformance of the
majority of the active management industry relative to passive index benchmarks.
Consequently, most mutual funds have zero skill in either stock picking or market
timing, and the results of studies of average investment performance can be
misleading when including such funds. To address this issue, we propose a new
approach that tests whether a fund has zero skill in either stock picking or market
timing.

This hypothesis test is equivalent to a composite test for a zero product
between the two skill parameters. We show that such a test is nontrivial to
implement, because a naive test that independently estimates each skill may
theoretically fail. Instead, our proposed direct inference for the product of these
two skills leads to a unified test, regardless of whether both skills are zero or
only one skill is zero. Our framework starts with a general factor model for
both skills, based on observed fund returns. To incorporate the econometric
features of daily data, we model errors by using a GARCH sequence to account
for heteroscedasticity and an ARMA-GARCH sequence for serial correlation and
heteroscedasticity. ARMA-GARCH models have become standard in modeling
heteroscedasticity since the works of [Engle (1982) and Bollerslev| (1986). We
further develop a weighted inference to reduce the heavy-tail effect of daily
returns. Because the proposed inference avoids estimating a GARCH model,
it is robust against heteroscedasticity and applicable to monthly returns. We
quantify the inference uncertainty using a random weighted bootstrap method.
Our simulation studies confirm that our test’s accurate size and good power across
various settings.

Empirically, using our test, we quantify the prevalence of stock-picking and
market-timing skills among all actively managed mutual funds in the United
States in a formal econometric way. Although [Kacperczyk, Nieuwerburgh and
Veldkamp| (2014)) find that the top 25% of managers exhibit stock-picking and
market-timing skills at different times, our novel statistical test finds that the co-
existence of both skills is far less prevalent, at about 1%. Overall, our proposed
test and findings may prove to be a valuable aid for mutual fund investment
allocation decisions.

The rest of the paper is organized as follows. Section 2 introduces the
proposed methodologies. Section 3 reports on the simulation study results.
Section 4 describes our data analysis and main findings. Other supporting results
and an extension to correlated and heteroscedastic errors are provided in the
online Supplementary Material. Section 5 concludes the paper. All theoretical
proofs are available in the appendix.



EVALUATING STOCK PICKING & MARKET TIMING SKILLS 275

2. Models, Tests, and Theoretical Results

Suppose Y, is a fund’s excess return (i.e., net returns minus the risk-free rate)
at time t, X; = (X¢1,..., Xt 4)" represents common factors, with X;; being the
market excess return, and A” denotes the transpose of the matrix or vector A.
To evaluate fund performance, the literature employs the following model:

K:a"i'/@TXt_‘_’YH(Xt,l)_‘_Eta t=1,...,n, (21)

where o and v measure a fund’s stock-picking and market-timing skills, respec-
tively, and H is a known function related to the market volatility. For example,
Treynor and Mazuy| (1966) use H(X;1) = X7, Henriksson and Merton| (1981)
use H (X, 1) = max(0, X; 1), Busse| (1999) uses the conditional standard deviation
of X1 as H(X; 1), and |Goetzmann, Ingersoll and Ivkovid| (2000) use H(X; 1) as a
monthly quantity computed from daily returns when the above model is applied
to monthly data. We refer readers to Bollen and Busse| (2001) for a comparison
of these measures.

Previous studies, such as |Carhart| (1997), report that most funds have zero
skill in either stock picking or market timing. Thus, including zero-skill funds
in a study introduces noise or even bias into the process of identifying funds
using stock-picking and market-timing skills and any analysis of fund skill trade-
offs. The effects of estimation uncertainty suggest that excluding funds with
at least one zero skill is important to more meaningfully evaluate mutual fund
performance. To do so, we note that identifying and then excluding funds with
at least one zero skill is equivalent to testing the composite null hypothesis,

Hy:a=0o0rvy=0. (2.2)

Put 6 = av. Then, Hy is equivalent to Hy : 6§ = 0. Therefore, one may
use the naive estimator 0;sg = @rsgVrse, where arsg and Arsg are the least
squares estimators for model (2.1)), that is,

(@rsp: Brsp Arse)” = argmin Y _{Y; — o — 87X, — yH (X, 1)}

B,y t=1

However, this estimator’s asymptotic limit depends on whether one skill or both
are zero. When a = 0 and v = 0, §L sg not only has a convergence rate of n=1,
rather than the standard n~'/2 rate, but also has a limiting distribution that is
nonnormal. Conversely, when only one of « or + is zero, 5L sg has the standard
convergence rate with a normal limit. Thus, it is challenging to test H, based on
é\LS £ without distinguishing between these two cases. This difficulty is noted by
Nguyen and Jiang (2020) in a different context. To develop a test for Hy with
the asymptotically correct size, we propose estimating 6 directly by constructing
a model with the parameter 6.
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Put Z, =Y, — 37 X;, for t =1,...,n. Then, model (2.1) implies that
Z¢ = o + E(e}) + 207 H (X,1) + 7 H*(Xo1) + 26 {a+vH (X 0) } +{e] — E(e))},

which motivates directly estimating # = o~y by minimizing

Z{ZgLSE — o —02H (X, 1) — v H*(X,1)}?, (2.3)

t=1
where o* = o? + E(e?), v* = +?, and
Zipsp =Y — BlgpXifort=1,... n.

Note that 2 — E(e?) = o2(n? — 1) + 07 — E(0?), which means that minimizing
can lead to an inconsistent inference if (1/y/n) >, {07 — E(0c?)} does not
converge in distribution because of a lack of finite moments.

To avoid the higher moments of Z?, we propose splitting the data into two
parts, and using a product to directly estimate 6 by noting that

Et€t+m = {Zt —a— ’YH(Xt,l)}{Zt+m —a— VH(Xter,l)}
= ZyZym — o+ YH(X 1)} g — {a + YH(Xi1m 1)} 24
Fon + O H (X 1) + H(Xipma)} + 7 H (X)) H(Xpma),

for t = 1,...,m, where m = [n/2], &y = @, and 7, = ~?. Unfortunately,
when heteroscedasticity exists, the asymptotic normality of the above inference
requires £(0}5},) < oo, which may need E(e}) < oo and E(X};) < oo. To avoid
these higher finite moment requirements caused by heteroscedasticity, we propose
employing the following weighted inference that models the risk factors using the
ARMA-GARCH models

{Xt,l =+ D0y GiaXemia + 205 Viae—ja + ey Eep = MGy (2.4)
5t2,l =w; + Zflzl ai,léffi,l + Z;I'lzl bj,la-tgfj,l’ l=1,...,d,
and assumes that the regression errors follow the GARCH model
P q
g = Moy, OF =w+ Zaisf_i + ijaf_j, (2.5)
i=1 j=1
where {(n:, Te1,---,7.a)” }i-; is a sequence of independent and identically dis-

tributed(i.i.d.) random vectors with means zero and variances one.
First, we estimate «, 3, and v using the weighted least squares:

(Gwise Bwise, Awrse)” = argmin Z{Yt —a— B X, —yH (X, 1) w,

B,y t=1
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where
wt_l1 =1+ max{|| X,||, H(X;1)} with || X,]| = 1121?<)§|Xt7i\. (2.6)

Next, we define Z,WLSE =Y, — B%LSEXH for t =1,...,n, and estimate 60
by

(al,wa 071)7 ’71,71;)7

m
= argmin E [Zt,WLSEZt+m,WLSE - {aWLSE + ’YWLSEH(Xt,l)}Zt+m7WLSE
a1,0,71 t=1

~{@wrse + AwrseH(Xiwm) Y Zowrse + o1 + 0{H(Xo1) + H(X i)}
+71H(Xt,1)H(Xt+m,1)]2wt,27

where

wid = 14 max{ Vil Xl [ Xl H(X01)y H (X )y HX00) H (X}
(2.7)
Following Ling| (2007)), we use the weight functions of and to reduce
the heavy-tail effect due to heteroscedasticity and bound the factors in the score
equations to ensure a normal limit when E(n?) < co. There are many different
choices of weight functions, but our simulation study confirms the good finite-

sample performance of using (2.6) and ([2.7]).

To establish the asymptotic behavior of the estimator, we employ the follow-
ing regularity conditions:

Cl. {e;} and {X,} are strictly stationary and ergodic with finite variance; see
the conditions in Theorem 3.1 of Basrak, Davis and Mikosch| (2002).

C2. {(Me,Meay---+Mea)”} is a sequence of i.i.d. random vectors with mean zero
and variance one.

C3. Assume
E(nt!ﬁt,h .. 77_7t,d) =0, (2-8)

and there exists § > 0 such that E|n,|*" < oo.
C4. Assume the covariance matrices of {w;16,(1, X7, H(X; 1))}, and
(Wi 28 4m{l, H(Xe 1) + H(Xiym), H(Xe 1) H(Xipma) 1%
are positive definite.

Theorem 1. Suppose models (2.1)), (2.4) and (2.5)) hold, with conditions C1-C4.
Then, as n — 0o, /n(by — 0) % N(0,02), where 62 has a complicated formula
given in the proof.
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To avoid estimating the complicated o7, we adopt the random weighted
bootstrap method of [Jin, Ying and Wei (2001) and Zhu (2016), as follows.
Note that the conventional residual-based bootstrap method (see Hall, [1992)
does not apply to our approach, because we do not infer the GARCH model of
the regression errors.

Step Ai. Draw a random sample of size n from the standard exponential distri-
bution. Denote these random draws by &%, ... &b,

Step Aii. Compute

(a?/VLSE’ %LSE/YWLSE) = argmmet{Yt —a— "X, —vH(X;1)}ws.

(a,B77)7 =1

Step Aiii. Define
th,WLSE =Y — 6%LSEX15’ t=1,...,n,

and calculate

nb T
(a? ,w) ew”Yi)w)

m

_ : b [7b Zb
= arg;nln E §t+m[Zt,WLSEZt+m,WLSE {aWLSE + 'YWLSEH(Xt 1)}Zt+m WLSE
a1,y =1

{QWLSE =+ ’YWLSEH(Xter,l)}Zb,WLSE + o + Q{H(Xt,l) + H(Xt+m,1)}
+’71H(Xt,1)H(Xt+m,1)]2wt,2,

Step Aiv. Repeat the above three steps B times to get {521}5:1, and estimate the
asymptotic variance of 6,, by

Theorem 2. Under the conditions of Theorem 1, 63 /o3 converges in probability
to one as B — oo and n — oo.

Using Theorems 1 and 2, we reject the null hypothesis of . at level a if
62 2/00 > X3 1_q Where x7,_, is the (1—a)th quantile of a chi-squared distribution
with one degree of freedom The Supplementary Material generalizes this method
to correlated and heteroscedastic €;. Alternatively, we can compute the p-value
for testing Hy in by (1/B) 2 1(|6.,] < |6, — 6,]), which leads to the
asymptotically correct size by taking B — oo and then n — oc.
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Table 1. ARMA-GARCH coefficients for the four factors.

L 10 w a b
X1 0.10467535 -0.07631574  0.04075129  0.14544129 0.7657024

Xy  -0.00238095  0.01933178  0.01296749 0.06118342 0.8908670
Xi3  -0.04445163  0.00072542 0.02254173 0.09856252  0.7906360
Xia o 0.05034941  0.01640715 0.02024227  0.14370110 0.8036767

3. Simulation Study

In this section, we investigate the finite-sample performance of the proposed
test in terms of its size and power. To mimic the results of realistic mutual fund
investing, we simulate fund returns under a factor model fitted to the empirical
features of the mutual funds in the data set that we study in Section 4. We
then analyze the test’s performance for different simulated settings, depending
on the stock-picking skill («), market-timing skill (), sample size, and data-
generating process. As a benchmark, we also compare the performance of
our proposed estimator with that of the naive ordinary least squares estimator
0 LsE = Qrsg7rse- 10 be more comparable, we employ a similar random weighted
lA)ootstrap method to estimate the asymptotic variance of the naive estimator
OrsE-

We draw random samples from the following four-factor model:

Yt:O{—F,@TXt"—'YH(Xt)l)‘f—gt, t:1,...,n, (31)

where X; = (Xy1,...,X:4)7 represents the four factors from Carhart| (1997):
the market excess return (MKT), size (SMB), book-to-market (HML), and mo-
mentum (UMD) factors, and H(X, ;) = X7, as defined by |Treynor and Mazuy
(1966). We set B8 = (0.9757290, —0.1010977,0.1064889, —0.2045018)" based on
the vector of empirical regression estimates of the four-factor model for a represen-
tative fund in our data set. We set the true stock-picking («) and market-timing
() parameters to be 0, 0.01, or 0.05.

We model the factors X;i,...,X;s4 by independent AR(1)-GARCH(1,1)
processes. We generate ¢; in independently from these four factors using
three different scenarios: a sequence of independent random variables with normal
distributions, a GARCH(1,1) process, and an AR(1)-GARCH(1,1) process. To
make our simulation more realistic, the coefficients of these models are obtained
from actual data. Specifically, we use the fGarch R package to fit an ARMA(1,0)-
GARCH(1,1) model to each of the four factors and the residuals from model
using a representative fund in our data set for the period from September
1, 1998, to December 31, 2018. Tables 1 and 2 summarize the coefficients of the
four factors X, i,..., X4 and the errors ¢, in the three scenarios.

We conduct the hypothesis test of Hy : € =0 (i.e., Hy : ary = 0) at the 10%
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Table 2. Coefficients for error.

0] w a b
0 0 0
0.03155241 0.11454071 0.61573066
08733819 0.03155241 0.11454071 0.61573066

€t

Scenario 1: i.i.d. N(0,0.1)
Scenario 2: GARCH(1,1)
Scenario 3: AR(1)-GARCH(1,1)

o o ol
o o o

significance level. Using 1,000 repetitions and B = 1000 bootstrap iterations for
the random weighted bootstrap method, we compute and compare the simulated
size and power of the hypothesis tests using our proposed estimator é\w and the
naive estimator §L5 . Tables 3 and 4 report the size and power, respectively. We
make the following observations:

i. In general, the test using the naive estimator gLSE has distorted size,
consistent with its asymptotic limit being a nonnormal distribution when
both o and ~ are close to zero. The test size is below 0.01 across all our
simulation settings, except when the sample size is large at 1,000, and « is
nonzero at 0.05.

ii. The test using the proposed estimator éw has accurate size for all cases we
consider. The proposed estimator is also a meaningful improvement relative
to the naive estimator.

iii. The power of the test using the proposed estimator @U increases with the
sample size or when « and v are greater than zero. The test under Scenario
1 has much higher power than under the other two scenarios.

iv. Our approach of splitting the data affects the test’s power when the sample
size is small.

In summary, it is challenging to test Hy : @« = 0 or v = 0, as exemplified by
the naive ordinary least squares estimator. The proposed technique of splitting
the data to test the product of the skill parameters provides a test with accurate
size and good power. However, it does affect the test power when the sample size
is small.

4. Data Analysis

This section applies our test to identify mutual funds with stock-picking
and/or market-timing skills. We start by describing our data set of actively
managed equity mutual funds. Next, we apply our test to exclude zero-skill funds
from the sample and classify the remaining funds into skill groups. We then use
these classifications to examine each skill group’s prevalence and returns and if
there are skill trade-offs.
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Table 3. Simulation study for comparing test size.

281

Case o vy Sample Size Method Scenario 1 Scenario 2 Scenario 3
One 0.00 0.00 100 Naive 0.002 0.001 0.002
100 New 0.107 0.114 0.119
200 Naive 0.000 0.002 0.001
200 New 0.106 0.088 0.094
1,000 Naive 0.000 0.000 0.000
1,000 New 0.107 0.101 0.116
Two  0.00 0.01 100 Naive 0.003 0.002 0.002
100 New 0.130 0.083 0.109
200 Naive 0.000 0.004 0.000
200 New 0.100 0.110 0.099
1,000 Naive 0.002 0.003 0.000
1,000 New 0.094 0.108 0.118
Three 0.00 0.05 100 Naive 0.001 0.007 0.003
100 New 0.120 0.101 0.091
200 Naive 0.000 0.004 0.007
200 New 0.099 0.113 0.109
1,000 Naive 0.002 0.051 0.057
1,000 New 0.099 0.086 0.104
Four  0.01 0.00 100 Naive 0.000 0.003 0.003
100 New 0.110 0.083 0.107
200 Naive 0.000 0.004 0.001
200 New 0.104 0.093 0.098
1,000 Naive 0.000 0.002 0.002
1,000 New 0.097 0.111 0.120
Five 0.05 0.00 100 Naive 0.001 0.009 0.008
100 New 0.094 0.099 0.100
200 Naive 0.002 0.014 0.015
200 New 0.090 0.116 0.093
1,000 Naive 0.002 0.086 0.084
1,000 New 0.093 0.101 0.110

This table reports the results of our simulation study comparing the test sizes of the proposed
estimator and the naive estimator at a significance level of 10%.

4.1. Data and implementation of test

We obtain U.S. open-end mutual fund returns and their characteristics from
CRSP (the Center for Research in Security Prices) Survivor-Bias-Free US Mutual
Fund Database. Funds’ daily and monthly returns are value-weighted averages

across all fund share classes (using the total net assets of the share class as the
weight). We collect the risk-free rate and risk factor data from the Ken French
data library.
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Table 4. Simulation study for comparing test power.

Case o 0% Sample Size Scenario 1 Scenario 2  Scenario 3
One 0.05 0.05 100 0.292 0.095 0.099
200 0.479 0.110 0.113
1,000 0.962 0.125 0.127
Two 0.05 0.10 100 0.580 0.113 0.097
200 0.829 0.103 0.118
1,000 1.000 0.165 0.201
Three 0.10 0.05 100 0.573 0.125 0.103
200 0.791 0.130 0.109
1,000 1.000 0.171 0.210
Four  0.10 0.10 100 0.893 0.126 0.130
200 0.987 0.143 0.156
1,000 1.000 0.366 0.394
Five 0.20 0.20 100 1.000 0.442 0.451
200 1.000 0.631 0.696
1,000 1.000 0.998 0.993

This table reports the results of our simulation study comparing the test power of the proposed estimator
at a significance level of 10%.

The actively managed mutual funds sample is constructed following Kacper-
czyk, Sialm and Zheng (2008]). We begin by using the investment objective
codes from CRSP. We exclude ETFSs, annuities, and index funds, based on their
indicator variables or fund names from CRSP, following [Busse, Jiang and Tang
(2021). Because we focus on equity funds, we require 80% of the assets under
management to be invested in common stocks. We restrict our sample to funds
that are at least one year old and have at least USD 15 million in assets under
management. We address incubation bias as in Evans (2010). Our final sample
includes 3,569 actively managed domestic equity funds in the U.S. for the period
from January 1980 to December 2018.

To test the null hypothesis of zero skill, Hy : @« = 0 or v = 0, we use daily
data available from 1998 to 2018 to fit model for each fund. To be consistent
with our simulation study, we estimate based on the four-factor specification
of |Carhart| (1997)), which includes the daily market excess return (MKT), size
(SMB), value (HML), and momentum (UMD) factors. We also run our tests
using the CAPM one-factor model, as in Jensen| (1968). We find qualitatively
similar results, with a slightly lower number of funds with both stock-picking and
market-timing skills. Our tests are based on the AR-GARCH model, where we
use the AIC to select the best AR model. Then, we use 1,000 bootstrap iterations
for each fund to compute the p-values against the null hypothesis.

To create our mutual fund skill classifications at the 10% level, we first sort
funds with either zero stock-picking or zero market-timing skill, based on a failure
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to reject the null, into a benchmark zero-skill group. Then, we classify funds
with either nonzero stock-picking or market-timing skills into four groups: (1)
the “Both” group, comprising funds with positive picking (a > 0) and timing
(v > 0) skills; (2) the “Picking” group, comprising funds with positive picking
and negative timing skills; (3) the “Timing” group, comprising funds with positive
timing and negative picking skills; (4) the “Neither” group, comprising funds with
negative picking and timing skills; and (5) the “Zero Skill” group, comprising all
other funds that fail to reject Hy. Our estimates of stock picking and market
timing come from the weighted least squares estimation given in Theorem S1,
with the weight function described in (S2) in the Supplementary Material. Lastly,
note that although we use daily data to implement the test, the conclusions also
apply at the fund level, some of which have monthly returns dating back to 1980.
Thus, to minimize survivorship bias, we also include funds that failed before 1998
in the zero-skill group.

4.2. Empirical results

The first line of Table 5 presents the results of our classification of funds into
mutually exclusive skill groups. At the 10% level, we find that 3,159 out of 3,569
funds have zero skill in either stock picking or market timing. Conversely, a very
small subset of 36 funds have positive stock-picking and market-timing skills. We
also find that a larger group of funds have one skill but not the other: 120 funds
have positive (negative) stock-picking (market-timing) skill and 146 funds have
positive (negative) market-timing (stock-picking) skill. Lastly, 108 funds have
neither stock-picking nor market-timing skills. As a result, funds that possess
both abilities are rare, occurring only 1.0% of the time. This is in contrast to the
finding of Kacperczyk, Nieuwerburgh and Veldkamp| (2014), which indicates that
the top 25% of managers exhibit both abilities.

Table 5 displays the return distributions for each skill group, computed by
summarizing the equally weighted average monthly returns of all funds within
each group. We expect funds with stock-picking skills to exhibit better per-
formance, based on risk-return trade-offs. Indeed, funds with both skills have
the highest Sharpe ratio at 0.69, followed by pure stock-picking funds at 0.55,
zero-skill funds at 0.52, funds with neither skill group at 0.51, and pure market-
timing funds at 0.48. Funds with market-timing skills should adjust their market
exposure during expansions and downturns. We define bear market states as
the 10% of months with the lowest market returns, during which we find that
funds in the timing-skill group reduce their overall market beta from 1.00 to 0.96.
In contrast, the other four skill groups have a higher market beta during bear
market states. We further find that pure market-timing funds have the lowest
volatility (i.e., standard deviation), the least negative return skewness, and the
smallest kurtosis among all skill groups during bear market states. Hence, pure
market-timing funds appear to manage downside risks as well.
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Table 5. Risk-return summary statistics.

Zero Skill Both Picking Timing Neither
Number of Funds 3,159.00 36.00 120.00 146.00 108.00
Annualized Mean Return (%) 8.09 981 9.20 7.42 8.31
Annualized Std. Dev. (%) 15.64 14.29 16.78  15.45 16.34
Annualized Sharpe Ratio 0.52 0.69 0.55 0.48 0.51
Skewness -0.80 -0.87 —-0.75 -0.68 —0.88
Kurtosis 562  6.15 5.82 4.90 5.67
Beta 1.01 0.89 1.05 1.00 1.04
Worst Monthly Return (%) —24.03 —21.55 —25.57 —21.53 —25.23
% of Months w/ Negative Return 38.68 37.18 39.53  38.89 38.89
Annualized Mean Return in Bear Markets (%)  —97.34 —84.54 —100.12 —96.59 —102.21
Annualized Std. Dev. in Bear Markets (%) 13.08 13.75 14.83  11.89 14.14
Beta in Bear Markets 1.05 1.01 1.14 0.96 1.12

This table presents summary statistics for the return distribution of the gross monthly excess returns
over the risk-free rate for active funds in each skill group. The sample period is from 1980 to 2018.

Given that our novel test appears to classify funds well based on their
skill, we next examine whether there are stock-picking and market-timing trade-
offs. We approach this question from three perspectives. First, comparing pure
stock-picking and pure market-timing funds in the third and fourth columns,
respectively, of Table 5, we do observe such a trade-off. Pure market timing
sacrifices the higher risk-return profile of pure stock picking to have better market
and downside risk management. Furthermore, these two skill groups appear to
generate different types of value for investors, because pure stock picking has
higher Sharpe ratios than those of zero-skill funds. In contrast, pure market
timing manages risk during downturns better than zero skill funds.

Second, our evidence suggests that funds with both skills favor stock picking
over market timing. We observe that the return distributions for funds with
stock-picking and market-timing skills are similar to that of the pure stock-picking
funds. Funds with both skills generate by far the best Sharpe ratios but fail to
scale back their market exposure (i.e., market beta) during bear market states.
They also incur the most negative skewness and the highest positive kurtosis,
meaning they are more exposed to heavy-tailed outcomes. At the same time,
relative to funds in other groups, those with both skills appear to have some
market-timing skill and the overall lowest volatility. Compared with pure market-
timing funds, they also have lower market exposure during bear market states.
Finally, they manage downside risks a bit better than pure stock pickers, because
their volatility during bear market states is lower.

Third, we do not find stock-picking and market-timing trade-offs for funds
with negative stock-picking and market-timing skills. While neither group has
a risk profile in terms of volatility and market beta similar to the pure stock-
picking group, they do not generate similarly high returns. They also fail to
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Table 6. Factor exposures of different funds.

Zero Skill Both Picking Timing Neither
Dep Var: R;
1 2) €) (4) (5) (6) Q) (®) 9) (10)
MKT, 1.008***  0.980*** 0.887*** 0.885™** 1.052™** 1.000*** 0.997*** 0.972*** 1.040*** 1.007***
(96.923) (105.322) (30.475) (46.793) (61.618) (70.425) (87.595) (74.150) (0.012)  (0.009)

SMB, 0.194*** 0.136*** 0.275%** 0.169*** 0.241%%*
(10.563) (4.850) (9.064) (10.456) (0.014)
HML, 0.002 0.127** ~0.064 ~0.004 —0.007
(0.088) (4.314) (—1.339) (—0.201) (0.015)

UMD, 0.008 ~0.035** 0.020 0.012 0.032**
(0.587) (—2.448) (0.847) (0.989) (0.009)

Constant  0.327 0.263  2.982*** 2.701*** 1.100  1.244 —0.264 —0.332  0.297  0.080
(0.556)  (0.624) (2.963) (3.379) (1.026)  (1.533) (—0.609) (—0.861) (0.625)  (0.483)

N 468 468 468 468 468 468 468 468 468 468
R? 0.967 0.983 0.897 0.913 0.915 0.948 0.970 0.983 0.944 0.969

This table presents the factor exposures of the gross monthly excess returns over the risk-free rate for
active funds in each skill group. All returns are annualized by multiplying by 12. In the parentheses
below the coefficient estimates, we report |Newey and West| (1987) t-statistics with 12 lags. The sample
period is from 1980 to 2018, with IV representing the number of months. ***, ** and * indicate statistical

significance at the 1%, 5%, and 10% levels, respectively.

decrease their market exposure and overall volatility during bear states. Finally,
they exhibit higher tail risks, with the most negative skewness and return during
bear markets.

Stock picking is heavily weighted over market timing by funds with both
skills, as they excel at stock picking. Of the four groups, they generate the highest
return at 9.81% per year and the lowest volatility at 14.29% per year. To examine
this stock-picking ability further, we explore whether standard factor exposures
can explain this risk-return profile. In Table 6, we regress the average monthly
excess return of each skill group on either (1) the market excess return (MKT), or
(2) the market excess return, plus the size (SMB), value (HML), and momentum
(UMD) factors, following |Carhart| (1997). Because both the independent and
the dependent variables in these regressions are returns, we can interpret the
constant, that is, alpha, as the average abnormal return unexplained by factor
exposures. At the 1% level, we find funds with both skills are the only group
generating statistically significant and positive alphas, earning 3.0% or 2.7% per
year, relative to the market or Carhart factor models. In sharp contrast, the
alphas of the other four groups are statistically insignificant.

Overall, our novel test points toward a meaningful classification of funds
based on stock-picking and market-timing skills. We can then identify funds with
either skill relative to zero-skill funds. Importantly, these are the only funds that
generate attractive risk-adjusted returns. The Supplementary Material reports
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additional analyses to validate these skill classifications based on each group’s
active management characteristics and stock-holding styles.

5. Conclusion

We have proposed a novel statistical test for at least one zero skill in stock
picking and market timing, because a direct inference for the product of these
two skills is infeasible. Applying the developed test to actively managed U.S.
mutual funds, we exclude zero-skill funds and find clear trade-offs between stock
picking and market timing among the remaining funds along multiple dimensions
related to a fund’s risk-return profile, market timing, active management, and
stock-holding style. Importantly, we find that only 1% of funds optimize these
trade-offs and possess both skills. These funds are the only group that generate
abnormal risk-adjusted returns, around 3% per year, while also managing their
market risk exposure.

Appendix: Theoretical Proofs

Define F; as the o-field generated by {0, u1,- -, foa:u <t,v <t+1}, 04
as the d-dimensional zero vector, and put

1 n
Wn = % tzzlwt’lat{17 Xg-,H(Xt,l)}T7

- 1 X7 H(X:,)
:*Zwt,l X, XtXtT XtH(Xt,l) 5
H(X;1) X7H(X:1) H*(X:1)

E(wt’l) E(wt?lXtT) E(wtylH(Xt 1))
T = E(w 1 X,) E(w 1 X, X]) E(w, 1 X.H(X;1)) |,
E(wtﬁlH(XtJ)) E(wtle;H(Xm)) E('LU,L 1H2<Xt 1))
E(wf &) E(wi ef X7) E(wi efH(X¢1))
= E(wtg,ﬁfxt) E(wfﬁfxtXtT) E(wt X H (X)) |

E(wi et H(X, 1)) E(wf ef XTH(X,1)) E(wt e HP (X))
H,=H(X;1)+ H(Xi1ma)s Ht =H(X:1)H(Xi1m1),

1 & ~
W, = —= wt,25t5t+m(]—aHt7Ht)T7
Vi &

1 H Ht
| I mzth Ht H2 Hth )
=1 H, H,H, H2
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Bwiseiet,,)  E(wiseiel, Hi)  Ewiyeied,, i)

f} = E(th,QE:?e?—‘rmHt) E(wtz,ngeg—‘rmHtQ) E(w?,28?6?+mHt}‘~[t) )
E(wiseiel, Hi) B(wiyeiet,, HiH,) E(wiyejeq,,, 1)

_ E(wt72) E(wt72Ht) E(wt’%,ﬁt)

F = E(wtg{[t) E(wt’QHtQ) E(wt’QHth) 5

E(thHt) E(wt72ﬁth) E(wt,gﬁ?)
Sy = E{w.pee(1, X[, H(X,1))" (1, Hy, Hy)},
Sy = E{w; (200 + vH,, 03, aHy + 2vH,)™ (1, Hy, Hy)}

Throughout, we use — and % to denote the convergence in probability and in
distribution, respectively.

Lemma 1. Define & = (o, 87,7)” and & = (Qwrse, By s, Ywise) - Under
conditions of Theorem 1, as n — oo, we have

T, 5T, W, % N0s, %), Vi€ —&) = -T"'W, +o0,(1). (A1)

Proof. It follows from ergodicity of {X,} that T, > T as n — oo. Use (2.§)
and the fact that {(n:, 7.1, ..., 7:,4)7 } is a sequence of independent and identically
distributed random variables, we have E(W;|F;_1) = 0442. Hence, it follows from
the central limit theorem for martingale differences in|Hall and Heyde| (1980) that

W, % N(0442,%). Because /n(€ — &) = —T';'W,,, we have

\/ﬁ(g_ £ =-T7'W, + 0p(1).

Lemma 2. Define &, = (c1,0,v)" and &, = (@10, 0w, Y1,0)7- Under conditions
of Theorem 1, oy = o2, 0 = ary, and v, = ¥?, as n — oo, we have

T, 5T, W, % N(0;,3), (A.2)
~ ~ [ 1 ~ ~
vm(€&, —&,) = -T {Wm + ﬁ(sl +8,)T Wn} +0,(1), (A.3)

Wnﬁ},; = \/§E{wt+m,1wt,2€t€?+m(17 X H(Xi4ma))" (1, Hy, l':‘v[t)}
+o,(1). (A.4)

Proof. Proofs of (A.2) and (A.4) follow the same arguments in proving (A.1).
For proving (A.3)), write

Z\t,WLSEZH—m,WLSE —{Qwerse + ;}\/H<Xt,1)}2t+m,WLSE

{a+ :?H(Xter,l)}Zt,WLSE + oy + 0H, + 1 H,

= {Zt,WLSE - aWLSE - :Y\WLSEH<Xt,1)}{2t+m,WLSE - aWLSE
—AwrspH(Xiim1)} = (@ —®) = (65 — ay) Hi — (5° = ") H,

= &€i4m — {(Qwrse — o) + (B\WLSE - B)" X+ Awerse —7)H (X 1) erem
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—{(awrse —a) + (BWLSE = B) Xy + (7 —7)H(Xy 1) e

(@ 5p — a?) + (@7 — o) H, + (37 12 L} + (\}ﬁ)

)

1
= €1E1qm + Ry1 + Ryp+ R34+ o0, <

Hence,

3 m
\/E(éw_sw) =-T { Z Z tZRtJ 1 Ht,Ht) }+0p(1)
Using (2.8), (A.2), and ergodicity, we have

\F Zwt 2Ry 1(1 H,, Ht)

__ L Zwt erem (L, Hy, H) (1, X7, H(X,0))Vm(€ — €)

t 1

= 0,(1),

1 m -
ﬁ Z wt,QRt,Q(la H,, Ht)T

== Zwt 2201, Hyy H)T(1, X7, H(Xo1))v/m(€ - €)

= Bl (1, B B (0L X7, HX)W(E - €) + 0,(1)
= —S1vm(§ —§) +o,(1),

m

1 ~
ﬁ Z wt,QRt,S(la H,, Ht)T

=—-— Zwt 2(1, Hy, Ht) (20 +vH;, 05, aHy + QWﬁt)\/%(g_ £) +o0,(1)

t 1

= —Sy/m(€ — €) + 0,(1).
Therefore, ({A.3]) follows from the equations above.

Proof of Theorem 1. The theorem follows from Lemmas 1 and 2 and the fact
that 6, — 0 = (0,1, 0)(§w — &), where o can be calculated explicitly, which we
skip deriving the formula as we will use the random weighted bootstrap method
to estimate it later.

~

cb (b b b b
Proof of Theorem 2. Define &' = (a% ,5m Bvrse Vwrse) s &) = (alw,

nb b T
9711’71 w) )
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w, Z & — Dwiae,(1, X7, H(X,1))7,

| 1 X7 H(X,,)
), = n ngwm ¢ X, X X.H(X:1) |,
H(X;1) X]TH(X,1) H?*(X:1)

1 & ~
Z §t+m - wt,2€t€t+m(17Ht7Ht)T-
m t=1

Therefore,

V(€ — ¢€)

1 n
_15 ngwt,lgt(la X/, H(Xt,l))T

1 n
715 Z gtbwt,lgt(lv XtT7 H(th))‘r + Op(1)7
t=1

implying that
Vi€ — &) = -T7'W; +0,(1).
Similarly,

Vm(€ —&,) = —f—l{ﬁf,:; + \}5(51 + @)r-lw};} +0,(1). (A.5)

We can show that

WP % N(0440, %), W2 5 N(03,3),
Wﬁ(WrZ)T = \@E{wt+m,1wt,25t5f+m(1 X;+m7H<Xt+m71)>T(17Ht?ﬁt)} +0,(1)

Hence, both /m(f, — 6) and /m(6", — 8,,) have a normal limit with the same
asymptotic variance. Further, we can show that (m/ B) S 1(51’ 0., )? converges
in probability to the asymptotic variance of \/m(6,, — 6) as B — oo and n — oo
by using the independence between {£'} and {Xt,Yt}. That is, the theorem
follows.

Supplementary Material

The online Supplementary Material generalizes the method to handle corre-
lated and heteroscedastic ¢;, and reports additional data analysis that validates
our classification of mutual funds based on stock-picking and market-timing skills.
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