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ENVELOPES FOR ELLIPTICAL MULTIVARIATE

LINEAR REGRESSION
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Abstract: We incorporate a reduced-rank envelope in an elliptical multivariate lin-

ear regression to improve the efficiency of estimation. The reduced-rank envelope

model takes advantage of both a reduced-rank regression and the envelope model,

and is an efficient estimation technique in multivariate linear regressions. However,

it uses the normal log-likelihood as its objective function, and is most effective when

the normality assumption holds. The proposed methodology incorporates ellipti-

cally contoured distributions. Consequently, it is more flexible, and its estimator

outperforms that of the normal case. When the specific distribution is unknown,

we present an estimator that performs well, as long as the ellipticity assumption

holds.

Key words and phrases: Elliptical multivariate linear regression, envelopes, reduced-

rank regression.

1. Introduction

The multivariate linear regression model studies the conditional distribution

of a stochastic response vector Y ∈ Rr as a linear function of the predictor vector

X ∈ Rp. It can be formulated as

Y = µY + β(X − µX) + ε, (1.1)

where β ∈ Rr×p is the coefficient matrix, and the error vector ε is independent

of X and follows a normal distribution with mean zero and covariance matrix

Σ. The standard method of estimation fits a linear regression model for each

response independently. Here, associations between responses are not consid-

ered; thus, the efficiency of the estimation can be improved by incorporating

such dependencies. The envelope model, introduced in a seminal paper Cook,

Li and Chiaromonte (2010) in the context of (1.1), uses sufficient dimension-

reduction techniques to identify the part of Y that is immaterial to the changes
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in X. This immaterial part is removed from any subsequent analysis, making

the estimation more efficient. Another method that considers the associations

between responses is the reduced-rank regression (Anderson (1951), Anderson

(1999), Izenman (1975), Reinsel and Velu (1998), Stoica and Viberg (1996)). A

reduced-rank regression assumes that the rank of the matrix β ∈ Rr×p is less

than or equal to d, where d ≤ min(r, p), resulting in fewer parameters and, thus,

estimators that are more efficient.

The envelope model and the reduced-rank regression both use dimension-

reduction techniques to improve the estimation efficiency, but they adopt differ-

ent perspectives and make different assumptions. In practice, determining which

method is more efficient for a given problem is not always straightforward. In

response to this problem, the reduced-rank envelope was proposed recently in

Cook, Forzani and Zhang (2015), which combines the advantages of both, while

making it more efficient than either of the individual methods. However, the es-

timation of the reduced-rank envelope model uses the normal likelihood function

as the objective function, and is most effective when the normality assumption

holds.

It is well known that the normality assumption is not always reasonable, in

which case, alternative distributions (or methodologies) need to be considered.

One choice is the family of elliptically contoured distributions, which includes

the normal, Student-t, power exponential, and contaminated normal distribu-

tions, among others. These may have heavier or lighter tails than the normal

distribution, and are more adaptive to the data. Elliptical multivariate linear

regression models have been studied extensively in the statistical literature; see,

for example, Bura and Forzani (2015), Cysneiros and Paula (2004), Dı́az-Garćıa,

Galea Rojas and Leiva-Sánchez (2003), Dı́az-Garćıa and Gutiérrez-Jáimez (2007),

Fernandez and Steel (1999), Gabriel (2004), Gómez, Gómez-Villegas and Maŕın

(2003), Galea, Riquelme and Paula (2000), Kowalski et al. (1999), Lange, Little

and Taylor (1989), Lemonte and Patriota (2011), Liu (2000), Liu (2002), Oso-

rio, Paula and Galea (2007), Russo, Paula and Aoki (2009), Savalli, Paula and

Cysneiros (2006), and Welsh and Richardson (1997), among others. In partic-

ular, Lemonte and Patriota (2011) introduces a general elliptical multivariate

regression model in which the mean vector and the scale matrix have parame-

ters in common. Then, they unify several elliptical models, including nonlinear

regressions, a mixed-effects model with nonlinear fixed effects, and errors-in-

variables models. Bias correction for the maximum likelihood estimator (MLE)

and adjustments of the likelihood-ratio statistics are also derived for this gen-
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eral model (see Melo, Ferrari and Patriota (2018), Melo, Ferrari and Patriota

(2017)). Elliptical distributions can also be used to consider robustness in a mul-

tivariate linear regression, as in Dutta and Genton (2017), Garćıa Ben, Mart́ınez

and Yohai (2006), Kudraszow and Maronna (2011), Maronna, Martin and Yohai

(2006), Rousseeuw et al. (2004), and Zhao, Lian and Ma (2017), among others.

Nevertheless, the envelope model has yet to be implemented in the context of

an elliptical multivariate regression. Furthermore, few studies have examined

reduced-rank regressions beyond the normal case. Thus far, the only attempts

to extend a reduced-rank regression to a nonnormal case have used M-estimators

or other robust estimators, including some from the elliptical class. For example,

Zhao, Lian and Ma (2017) develops a robust estimator for a reduced-rank re-

gression, and proposes a novel rank-based estimation procedure using Wilcoxon

scores. Although the reduced-rank estimator in Zhao, Lian and Ma (2017) al-

lows a general error distribution, we aim to further improve the efficiency of the

estimator using an MLE and the envelope method in the context of elliptical

multivariate linear regressions.

The goal of this study is to derive a reduced-rank regression estimator, enve-

lope estimator, and reduced-rank envelope estimator for an elliptical multivariate

linear regression. Because the reduced-rank regression and the envelope model

are special cases of the reduced-rank envelope model, we present a unified ap-

proach that focuses on the latter. We examine the asymptotic properties and

efficiency gains of the reduced-rank regression, envelope model, and reduced-

rank envelope model, and demonstrate their effectiveness using simulations and

real-data examples.

The rest of this paper is organized as follows. In Section 2, we introduce

the reduced-rank regression, envelope model, and reduced-rank envelope model

for elliptical multivariate linear regressions, and Section 3 describes the most

used elliptically contoured distributions in such regressions. In Section 4, we

derive the MLE for the models considered in Section 2, and propose a weighted

least square estimator when the error distribution is unknown, but elliptically

contoured. Section 5 presents the asymptotic properties of the estimators, and

demonstrates the efficiency gains without the normality assumptions. Section

6 discusses how to select the rank and dimension for the reduced-rank envelope

model. The simulation results are presented in Section 7, and examples are given

in Section 8. All proofs are included in the online Supplementary Material.
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2. Models

We consider the following elliptical multivariate linear regression model:

Y = µY + β(X − µX) + ε, ε ∼ ECr(0,Σ, gY |X), (2.1)

where Y ∈ Rr denotes the response vector, X ∈ Rp denotes the predictor vector,

β ∈ Rr×p, and ∼ denotes equal in distribution. If a random vector Z ∈ Rm

follows an elliptically contoured distribution ECm(µZ ,ΣZ , gZ) with density, then

the density function is given by

fZ(z) = |ΣZ |−1/2gZ
[
(z − µZ)TΣ−1

Z (z − µZ)
]
, (2.2)

where µZ ∈ Rm is the location parameter; ΣZ ∈ Rm×m is a positive-definite

scale matrix; gZ(·) ≥ 0 is a real-valued function, and
∫∞

0 um/2−1gZ(u)du < ∞.

We call (2.1) the standard model in the following discussion. Based on (2.1),

Y | X follows the elliptically contoured distribution ECr(µY |X ,Σ, gY |X), where

µY |X = µY + β(X − µX). When the conditional expectation and the variance

exist, E(Y | X) = µY |X and var(Y | X) = cXΣ, where cX = E(Q2)/r and

Q2 = (Y − µY |X)TΣ−1(Y − µY |X) (see Corollary 2 in Fang and Zhang (1990),

p.65). Note that, in general, var(Y | X) depends on X, except for the normal

errors with constant variance.

A reduced-rank regression assumes that the rank of the coefficient β in model

(2.1) is at most d ≤ min(p, r). As a result, we have

β = AB, A ∈ Rr×d, B ∈ Rd×p, rank(A) = rank(B) = d, (2.3)

for some A ∈ Rr×d and B ∈ Rd×p. Note that A and B are not identifiable,

because AB = (AU)(U−1B) := A∗B∗, for any invertible U . In the case of

normally distributed errors with a constant covariance matrix, the MLE of β for

(2.3) and its asymptotic distribution are derived in Anderson (1999), Reinsel and

Velu (1998), and Stoica and Viberg (1996), by imposing various constraints on

A and B for identifiability. Because the goal is to estimate β, rather than A

and/or B, Cook, Forzani and Zhang (2015) derived an estimator for β that does

not impose any constraints on A and B, other than requiring that the rank of

β be equal to d. It has been shown that when ε follows a multivariate normal

distribution with a constant covariance matrix, the reduced-rank regression may

yield an estimator for β that is more efficient than the ordinary least square

(OLS) estimator. Note that, under normality, the OLS estimator is the MLE for
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the standard model.

The envelope model Cook, Li and Chiaromonte (2010) provides another way

to obtain an efficient estimator. Let span(β) denote the subspace spanned by

the columns of β. Under model (2.1), if span(β) is contained in the span of m

(m < r) eigenvectors of the error covariance matrix Σ, but not necessarily the

leading eigenvectors, then the envelope estimator of β is expected to be more

efficient than the OLS estimator. More specifically, let S be a subspace of Rr

spanned by some eigenvectors of Σ, and let span(β) ⊆ S. The intersection of

all such S is called the Σ-envelope of β, which is denoted by EΣ(β). Let u be

the dimension of EΣ(β). Then, u ≤ r. Take Γ ∈ Rr×u to be an orthonormal

basis of EΣ(β), and Γ0 ∈ Rr×(r−u) to be a completion of Γ; that is, (Γ,Γ0) is an

orthogonal matrix. Because span(β) ⊆ EΣ(β) = span(Γ), there exists ξ ∈ Ru×p

such that β = Γξ. Because EΣ(β) is spanned by the eigenvectors of Σ, there

exist Ω ∈ Ru×u and Ω0 ∈ R(r−u)×(r−u), such that Σ = ΓΩΓT + Γ0Ω0ΓT0 . Here,

ξ includes the coordinates of β with respect to Γ, and Ω and Ω0 contain the

coordinates of Σ with respect to Γ and Γ0, respectively. To summarize, if β and

Γ satisfy the conditions

β = Γξ, Σ = ΓΩΓT + Γ0Ω0ΓT0 , (2.4)

we refer to (2.1) as an envelope model of dimension u. Based on (2.4), EΣ(β)

provides a link between β and Σ: the variation in ε can be decomposed into

ΓΩΓT , which is material to the estimation β, and Γ0Ω0ΓT0 , which is immaterial

to the estimation of β. Using this decomposition, Cook, Li and Chiaromonte

(2010) showed that the envelope estimator of β in a normal setting is at least as

efficient as the OLS estimator, asymptotically. The improvement in efficiency can

be substantial, especially if the immaterial variation ‖Γ0Ω0ΓT0 ‖ is substantially

larger than the material variation ‖ΓΩΓT ‖, where ‖ · ‖ denotes the spectral norm

of a matrix.

Under a normal distribution of the error term, Cook, Forzani and Zhang

(2015) presented a novel unified framework for the reduced-rank regression and

the envelope model, called the reduced-rank envelope model, which obtains es-

timators that are more efficient than those of the individual methods. Cook,

Forzani and Zhang (2015) assumed that β and Σ follow the envelope structure

(2.4), and that the coordinate ξ has a reduced-rank structure ξ = ηB, where

η ∈ Ru×d and B ∈ Rd×p, with rank d ≤ min(r, p). Then, model (2.1) is called
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the reduced-rank envelope model when

β = AB = ΓηB, Σ = ΓΩΓT + Γ0Ω0ΓT0 , (2.5)

where B ∈ Rd×p has rank d; η ∈ Ru×d, Ω ∈ Ru×u, and Ω0 ∈ R(r−u)×(r−u)

are positive-definite matrices; and Γ0 ∈ Rr×(r−u) is a completion of Γ; that is,

(Γ,Γ0) is an orthogonal matrix. The reduced-rank envelope model performs a

dimension reduction on two levels: The first level, β = AB, assumes we have a

reduced-rank regression. The second level, β = ΓηB, assumes that β intersects

only u eigenvectors of the covariance matrix Σ. When u = r, Γ = Ir; then, (2.5)

degenerates to the usual reduced-rank regression in (2.3). When d = min(u, p),

(2.5) reduces to the envelope model in (2.4). Finally, the reduced-rank envelope

model in (2.5) is equivalent to the standard model in (2.1) when d = u = r.

Cook, Forzani and Zhang (2015) obtained the MLEs of β and Σ, as well as their

asymptotic distributions under the normality assumption. Note that for the

reduced-rank regression, envelope model, and reduced-rank envelope model, the

constituent parameters A, B, Γ, Γ0, ξ, η, Ω, and Ω0 are not unique. Hence, they

are not identifiable. Nevertheless, β and Σ are unique. No additional constraints

are imposed on the constituent parameters in Cook, Forzani and Zhang (2015)

when studying the asymptotic distribution of the identifiable parameters β and

Σ.

3. Examples

In this section, we present three scenarios in which elliptically contoured

distributions are used in regressions.

3.1. The data matrix follows an elliptically contoured distribution

A case that is commonly studied in the literature is that in which the data

matrix follows a matrix elliptically contoured distribution. A p×q random matrix

Z follows a matrix elliptically contoured distribution ECp,q(M,A⊗B,Ψ) if and

only if vec(ZT ) follows an elliptically contoured distribution ECpq(vec(MT ), A⊗
B,Ψ), where ⊗ denotes the Kronecker product, and vec denotes the vector op-

erator that stacks the columns of a matrix into a vector.

Let X = (XT
1 , . . . , X

T
n )T ∈ Rn×p and Y = (Y T

1 , . . . , Y
T
n )T ∈ Rn×r be data

matrices, such that Y | X follows a matrix elliptically contoured distribution

ECn,r(M,η ⊗ Σ, g), with M = 1nµ
T
Y + (X − 1nµ

T
X)βT , where 1n denotes an

n-dimensional vector of ones. Under this assumption, and using Theorem 2.8
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from Gupta, Varga and Bodnar (2013), we have Yi | X ∼ Yi | Xi ∼ ECr(µY +

β(Xi−µX), ηiiΣ, g). This allows the errors to be modeled using a heteroscedastic

structure; see Gupta, Varga and Bodnar (2013) for further details. Examples of

this distribution include the matrix variate symmetric Kotz-type distribution,

Pearson type-II distribution, Pearson type-VII distribution, symmetric Bessel

distribution, symmetric logistic distribution, and symmetric stable law, among

others. Of the aforementioned distributions, the most common is the normal

distribution with a nonconstant variance Fang, Kotz and Ng (1990).

As an example of the matrix elliptically contoured distribution, we consider

that Y | X follows a matrix normal distribution Nn×r(M,η ⊗ Σ), with M =

1nµ
T
Y + (In− (1/n)1n1Tn )XβT and η a diagonal matrix. The diagonal elements of

η are denoted by ηii, where ηii > 0, for i = 1, . . . , n. Then,

Yi = µY + β(Xi − µX) + ε,

where ε ∼ N(0, ηiiΣ). Therefore, Yi | Xi follows a normal distribution with

mean µY + β(Xi − µX) and covariance matrix ηiiΣ. In other words, it is an

elliptically contoured distribution ECr(µY + β(Xi − µX),Σ, gi), with gi(t) =

(2πηii)
−r/2e−t/(2ηii).

Note that we consider only the error structure in which the covariance ma-

trices are proportional and the heteroscedasticity depends on g, but not the scale

parameter. The general nonconstant covariance structure is not included, be-

cause we would need a general rn × rn scale matrix instead of η ⊗ Σ in the

matrix elliptically contoured distribution.

3.2. X and Y are jointly elliptically contoured distributed

Sometimes, (XT , Y T )T jointly follows an elliptically contoured distribution,

or can be transformed to ellipticity (e.g., Cook and Nachtsheim (1994)). Suppose

(XT , Y T )T follows the distribution ECp+r((µ
T
X , µ

T
Y )T ,Φ, g). Then, its density

function is

fX,Y (x, y) = |Φ|−1/2g
[{

(xT , yT )− (µTX , µ
T
Y )
}

Φ−1
{

(xT , yT )− (µTX , µ
T
Y )
}T ]

,

where g(·) ≥ 0 and Φ is a (p + r) × (p + r) positive-definite matrix. Following

Bura and Forzani (2015), if we partition Φ as

Φ =

(
Φ11 Φ12

Φ21 Φ22

)
=

(
ΣX ΦY

ΦT
Y ΣY

)
, (3.1)
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then X and Y are marginally elliptically contoured distributed, where X follows

ECp(µX ,ΣX , g) and Y follows ECr(µY ,ΣY , g) (Theorem 2.8 from Gupta, Varga

and Bodnar (2013)). The conditional distribution of Y | X is also elliptically

contoured,

Y | X ∼ ECr(µY |X ,Φ22.1, gY |X),

where µY |X = µY + Φ21Φ−1
11 (X − µX), Φ22.1 = Φ22 − Φ21Φ−1

11 ΦT
21, and gY |X(t) =

g(t+m(X))/g(m(X)), with m(X) = (X − µX)TΦ−1
11 (X − µX). Note that µY |X

is linear in X and Φ22.1 is a constant.

Now, we use the multivariate t-distribution as an example. Suppose Z ∈ Rk

follows a multivariate t-distribution tk(µ,Σ, ν), where ν denotes the degrees of

freedom. The density function of Z is given by

fZ(z) =
Γ((ν + k)/2)

Γ(ν/2)

1

νπk/2
1√
|Σ|

(
1 +

(z − µ)TΣ−1(z − µ)

ν

)−(k+ν)/2

.

Suppose that (XT , Y T )T ∼ tp+r
(
(µTX , µ

T
Y )T ,Φ, ν

)
, with Φ following the structure

in (3.1). Then,

Y | X ∼ tr
(
µY + Φ21Φ−1

11 (X − µX),
ν + (x− µX)TΦ−1

11 (x− µX)

ν + p
Φ22.1, ν + p

)
.

Equivalently, Y | X ∼ ECr(µY |X ,Φ22.1, gY |X), with µY |X = µY + Φ21Φ−1
11 (X −

µX), Φ22.1 = Φ22 − Φ21Φ−1
11 ΦT

21, and gY |X(t) = cν,p,rg[t/h(X)]/h(X)r/2, where

g(t) = (ν + p+ t)−(p+r+ν)/2, h(X) = [ν + (X − µX)TΦ−1
11 (X − µX)]/(ν + p), and

cν,p,r is the normalizing constant.

3.3. Y given X follows an elliptically contoured distribution

It is also reasonable to assume that the error vector ε follows an elliptically

contoured distribution; in other words, Y given X follows an elliptically con-

toured distribution. We present two examples: Y | X follows a normal mixture

distribution, and Y | X follows a conditional t-distribution.

We say Y | X follows a normal mixture distribution if its density function is

a convex linear combination of normal density functions. Suppose Y | X follows

a normal mixture distribution from m normal distributions Nr(µY |X , kiΣ), for

i = 1, . . . ,m, with weights p1, . . . , pm. Then, its density function is given by

fY |X(y) =

m∑
i=1

pik
−r/2
i

1

(2π)r/2|Σ|1/2
e−(y−µY |X)T Σ−1(y−µY |X)/(2ki),
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where ki > 0, pi > 0, for i = 1, . . . , r, and
∑m

i=1 pi = 1. Equivalently, Y |
X follows an elliptically contoured distribution ECr(µY |X ,Σ, g), with g(t) =∑m

i=1 pik
−r/2
i (2π)−r/2|Σ|−1/2e−t/(2ki).

The t-distribution is useful for modeling heavy tails. As discussed in Sec-

tion 3.2, Y | X follows a t-distribution tr(µY + β(X − µX),Σ, ν) if its density

function takes the form

fY |X(y) =
Γ((ν + r)/2)

Γ(ν/2)

1

νπr/2
1√
|Σ|(

1 +
[y − µY + β(X − µX)]TΣ−1[y − µY + β(X − µX)]

ν

)−(r+ν)/2

.

Equivalently, Y | X follows an elliptically contoured distribution ECr(µY +

β(X −µX),Σ, g), with g(t) = cν,r(1 + t/ν)−(ν+r)/2, where cν,r = ν−1π−r/2Γ((ν +

r)/2)/Γ(ν/2) is a normalizing constant.

4. Estimation

Under the standard model (2.1), if the errors (ε1, . . . , εn) jointly follow a

matrix elliptically contoured distribution, the OLS estimator of β is its MLE

(See Chapter 9, Fang and Anderson (1990)). When the errors (ε1, . . . , εn) do

not jointly follow a matrix elliptically contoured distribution, but gY |X is known,

an estimator of β can be computed using an iterative re-weighted least squares

(IRLS) algorithm; see Bura and Forzani (2015) for a discussion of its properties.

When gY |X is unknown, Bura and Forzani (2015) derived an estimator of β and

investigated its properties.

The goal of this section is to derive the MLEs for the reduced-rank regression,

envelope model, and reduced-rank envelope model, for given d, u, and gY |X ,

where d is the rank of β, and u is the dimension of the envelope EΣ(β). The

procedures used to select d and u are discussed in Section 6. Note that when the

errors (ε1, . . . , εn) jointly follow a matrix elliptically contoured distribution, the

estimators of β obtained by Cook, Forzani and Zhang (2015) are the MLEs of

the corresponding models.

4.1. Parametrization for the different models

Let vech denote the vector half operator that stacks the lower triangle of

a matrix to a vector. Then, under the standard model in (2.1), the parameter

vector is h =
(
vecT (β), vechT (Σ)

)T
. We do not consider µX or µY , because the
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estimators are asymptotically independent of the estimators of β and Σ. Here ψ

denotes the parameter vector of the reduced-rank regression in (2.3), δ denotes

that of the envelope model in (2.4), and φ denotes that of the reduced-rank

envelope model (2.5). Then,

h =

(
vec(β)

vech(Σ)

)
, ψ =

 vec(A)

vec(B)

vech(Σ)

 , δ =


vec(Γ)

vec(ξ)

vech(Ω)

vech(Ω0)

 , φ =


vec(Γ)

vec(η)

vec(B)

vech(Ω)

vech(Ω0)

 .

We use N(v) to denote the number of parameters in the parameter vector v.

Then, N(h) = pr + r(r + 1)/2, N(ψ) = (r − d)d + pd + r(r + 1)/2, N(δ) =

pu + r(r + 1)/2, and N(φ) = (u − d)d + pd + r(r + 1)/2. The reduced-rank

regression has fewer parameters than the standard model, becauseN(h)−N(ψ) =

(p− d)(r − d) ≥ 0; the reduced-rank envelope model has even fewer parameters

than the reduced-rank regression does, because N(ψ)−N(φ) = (r−u)d ≥ 0. On

the other hand, compared with the standard model, the number of parameters is

reduced by p(r − u) ≥ 0 when using the envelope model, and is further reduced

by (p− d)(u− d) ≥ 0 when using the reduced-rank envelope model.

Remark 1. If the model assumption holds, fewer parameters often results in

better estimation efficiency and, thus, improved prediction accuracy. However,

if the model assumption does not hold, having fewer parameters introduces bias,

but may still reduce the variance of the estimator. In this case, we have a trade-off

between the bias and the variance reduction.

4.2. MLEs

Assume that Y | X follows an elliptically contoured distribution ECr(0,Σ,

gY |X), with density given by (2.2). Let (Xi, Yi) be n independent samples of

(X,Y ), for i = 1, . . . , n, and let mi = [Yi − µY − β(Xi − µX)]TΣ−1[Yi − µY −
β(Xi − µX)]. The log-likelihood function is given by

l = −n
2

log |Σ|+
n∑
i=1

log g(mi).

Henceforth, we denote gY |X as g. Taking the derivative of the log-likelihood

function with respect to β and Σ, and setting to zero, we have
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∂l

∂β
= −1

2

n∑
i=1

Wi
∂mi

∂β
= 0,

∂l

∂Σ
= −n

2
Σ−1 − 1

2

n∑
i=1

Wi
∂mi

∂Σ
= 0,

where Wi = −2g′(mi)/g(mi). If Y | X followed a normal distribution, the log-

likelihood function would be

l2 = −n
2

log |Σ| − 1

2

n∑
i=1

mi.

Taking the derivative of l2 with respect to β and Σ, and setting to zero, we have

∂l2
∂β

= −1

2

n∑
i=1

∂mi

∂β
= 0,

∂l2
∂Σ

= −n
2

Σ−1 − 1

2

n∑
i=1

∂mi

∂Σ
= 0.

If the weights Wi are positive and are known, we can transform the data to

(
√
WiXi,

√
WiYi) and solve for β and Σ as if the data follow a normal distribution.

With this idea in mind, we propose the following IRLS algorithm, for Wi ≥ 0.

The estimator obtained from this algorithm is equivalent to the MLE estimator

(See del Pino (1989) and Green (1984)).

1. Obtain initial values for β and Σ.

2. Repeat the following, until convergence:

(a) Compute Wi = −2g′(mi)/g(mi), with β and Σ being the current esti-

mators.

(b) Using the data (
√
WiXi,

√
WiYi), update the estimators of β and Σ as

if the data follow a normal distribution.

The estimator in Step 2(b) is obtained from the fast envelope estimation algo-

rithm developed in Cook, Forzani and Su (2016), which is implemented in the

R package Renvlp Lee and Su (2018). In addition to the standard model, this

algorithm can also be used for the reduced-rank regression, envelope model, and

reduced-rank envelope model. For example, consider the reduced-rank envelope

model:
∂l

∂φT
=

∂l

∂hT
∂h

∂φT
,

∂l2
∂φT

=
∂l2
∂hT

∂h

∂φT
.

Note that the term ∂h/∂φT is the same for both likelihoods, and that h is a

function of β and Σ. We can estimate the reduced-rank envelope estimator

using the preceding algorithm, except that 2(b) changes to “Using the data
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(
√
WiXi,

√
WiYi), update the reduced-rank envelope estimators of β and Σ as

if the data follow a normal distribution.” The reduced-rank regression and the

envelope model follow the same procedure. For completeness, the online Supple-

mentary Material includes the derivatives of mi with respect to the parameters

β and Σ.

4.3. Weights

We now give the weights for some commonly used elliptically contoured

distributions.

Normal with nonconstant variance

If Yi | Xi follows a normal distribution N(µY |X , ηiiΣ), with ηii > 0, for i =

1, . . . , n, then Wi = 1/ηii.

Normal mixture distribution

Suppose Y | X follows a normal mixture distribution fromm normal distributions

Nr(µY |X , kiΣ), for i = 1, . . . ,m, with weights p1, . . . , pm. From the discussion in

Section 3.3, the weights are given by

W (ti) =

∑m
j=1 pjk

−r/2−1
j e−ti/2kj∑m

j=1 pjk
−r/2
j e−ti/2kj

,

where ti = [Yi − µY − β(Xi − µX)]TΣ−1[Yi − µY − β(Xi − µX)].

Multivariate t-distribution

Suppose (XT , Y T )T follows a joint multivariate t-distribution tp+r((µ
T
X , µ

T
Y )T ,Φ,

ν), with Φ following the structure in (3.1). Based on the discussion in Section 3.2,

Y | X follows the t-distribution tr(µY +Φ21Φ−1
11 (X−µX), (ν+(x−µX)TΦ−1

11 (x−
µX))/(ν + p)Φ22.1, ν + p). After some straightforward calculations,

Wi(ti) =
p+ r + ν

ν + (Xi − µX)TΦ−1
11 (Xi − µX) + ti

,

where ti = [Yi−µY −Φ21Φ−1
11 (Xi−µX)]TΣ−1

Y |X [Yi−µY −Φ21Φ−1
11 (Xi−µX)] and

ΣY |X = (ν + (x− µX)TΦ−1
11 (x− µX))Φ22.1/(ν + p).

Conditional t-distribution

Suppose Y | X follows a t-distribution, with tr(µY |X ,Σ, ν). Then,
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W (ti) =
ν + r

ν + ti
,

where ti = (Yi − µY |X)TΣ−1(Yi − µY |X).

Note that all weights are positive. For illustration purposes, the constants

ηii in the normal distribution with a nonconstant variance, and the ki in normal

mixture distribution are fixed and known in the calculation of the weights. If

they are unknown, or more generally, if g is unknown, Section 4.4 presents an

algorithm to estimate the weights.

4.4. Weighted least square estimators

The IRLS algorithm in Section 4.2 requires knowledge of g, which may not

be available in practice. In this section, we propose an algorithm for the case

when g is unknown.

Suppose that the model has the structure in (2.1). Then, we have var(Y |
X) = cXΣ, where cX = E(Q2)/r and Q2 = [Y − µY − β(X − µX)]TΣ−1[Y −
µY − β(X − µX)] (see Corollary 2 in Fang and Zhang (1990)). Note that cX can

vary across observations. We use cXi
to denote cX for the ith observation. If

cXi
is known, then we can transform the data to (c

−1/2
Xi

Xi, c
−1/2
Xi

Yi), and estimate

the parameters as if the data follow a normal distribution. If cXi
is unknown,

we estimate it using ĉXi
= [Yi − µ̂Y − β̂(Xi − µ̂X)]T Σ̂−1[Yi − µ̂Y − β̂(Xi − µ̂X)].

According to Bura and Forzani (2015), the resulting estimators of β and Σ are

robust to a moderate departure from normality. Let X̄ and Ȳ denote the sample

mean of X and Y . The following algorithm summarizes the preceding discussion.

1. Obtain initial values for β and Σ from the corresponding model (i.e. the

reduced-rank regression, envelope model, or reduced-rank envelope model).

Set the initial values of µX and µY as X̄ and Ȳ , respectively.

2. Repeat the following, until convergence:

(a) Compute ĉXi
= [Yi − µ̂Y − β̂(Xi − µ̂X)]T Σ̂−1[Yi − µ̂Y − β̂(Xi − µ̂X)],

where µ̂X , µ̂Y , β̂, and Σ̂ are estimates of µX , µY , β, and Σ, respectively.

(b) Using the data (ĉ
−1/2
Xi

Xi, ĉ
−1/2
Xi

Yi), update the estimators of β, Σ, µX ,

and µY under the corresponding model as if the data follow a normal

distribution.

Note that this algorithm is similar to that discussed in Section 4.2, except that

we are using ĉ−1
Xi

as weights, instead of using the exact weights computed from the
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knowledge of g. We refer to ĉ−1
Xi

as approximate weights in subsequent discussions.

The
√
n-consistency of the estimator of β, obtained using these approximate

weights, follows similarly to Theorem 4 from Bura and Forzani (2015).

5. Asymptotics

In this section, we present the asymptotic distribution for the MLEs of β: the

standard estimator β̂std, reduced-rank regression estimator β̂RR, envelope model

estimator β̂E , and reduced-rank envelope estimator β̂RE.

Without loss of generality, we assume that µX = 0 and the predictors are cen-

tered in the sample. Let Cr and Er denote the contraction and expansion matrix

defined in Henderson and Searle (1979) that connects the vector operator vec and

the vector half operator vech, as follows: vec(S) = Er vech(S) and vech(S) =

Crvec(S), for any r×r symmetric matrix S. Let U = Σ−1/2[Y −µY −β(X−µX)],

NX = E[(g′(UTU)/g(UTU))2UTU |X]/r, and MX = E[(g′(UTU)/g(UTU))2

(UTU)2|X]/[r(r + 2)]. We define Σ̃X = E(NXXX
T ) and M = E(MX) if X

is random and the expectations exist, and Σ̃X = limn→∞(1/n)
∑n

i=1NXi
XiX

T
i

and M = limn→∞(1/n)
∑n

i=1MXi
if X is fixed when the limits are finite. We fur-

ther assume that Σ̃X is positive definite and M > 0. For the rest of the section we

require g, such that the above quantities are finite, and that the MLE for model

(2.1) exists, is consistent, and is asymptotically normal (e.g., see the conditions

for elliptical distributions in Miao and Wu (1996), Bilodeau and Brenner (1999),

Bai and Wu (1993), Kent and Tyler (1991), Kudraszow and Maronna (2011),

Maronna (1976), Miao and Wu (1996), and Zhao, Lian and Ma (2017) or, more

generally, the conditions on Theorems 5.23, 5.31, 5.39, 5.41, or 5.42 from van

der Vaart (2000)). Then, the Fisher information for h =
(
vecT (β), vechT (Σ)

)T
is given by

Jh =

(
Jβ 0

0 JΣ

)
,

with Jβ = 4Σ̃X ⊗Σ−1 and JΣ = 2METr (Σ−1 ⊗Σ−1)Er + (M − 1/4)ETr vec(Σ−1)

vecT (Σ−1)Er. Detailed calculations are included in the Supplementary Material.

When ε follows a normal distribution, we have NX = M = 1/4, and Jh has the

same form as in the literature (e.g., Cook, Li and Chiaromonte (2010)).

Proposition 1 gives the asymptotic variance of the MLEs of β under the

standard model (2.1), reduced-rank regression (2.3), envelope model (2.4), and

reduced-rank envelope model (2.5). Suppose θ̂ is an estimator of θ. We write
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avar(
√
nθ̂) = V if

√
n(θ̂ − θ)

d−→ N(0, V ), where
d−→ denotes convergence in

distribution.

Proposition 1. Suppose model (2.1) holds; that is, the error vector ε follows the

elliptically contoured distribution ECr(0,Σ, g). Suppose the MLE of β under the

standard model (2.1), β̂std, exists, and vec(β̂std) is
√
n-consistent and asymptot-

ically normally distributed, with asymptotic variance equal to the inverse of the

Fisher information matrix Jβ. We further assume that (Xi, Yi), for i = 1, . . . , n,

are independent and identical copies of (X,Y ). Then,
√
nvec(β̂std−β) is asymp-

totically normally distributed with mean zero and variance given by (5.1). If

models (2.3), (2.4), or (2.5) hold, then
√
nvec(β̂RR − β),

√
nvec(β̂E − β), and√

nvec(β̂RE−β) are asymptotically normally distributed with mean zero and vari-

ance given by (5.2), (5.3), and (5.4), respectively.

avar[
√
nvec(β̂std)] =

1

4
Σ̃−1
X ⊗ Σ, (5.1)

avar[
√
nvec(β̂RR)] =

1

4
Σ̃−1
X ⊗ Σ− 1

4
(Σ̃−1

X −MB)⊗ (Σ−MA), (5.2)

avar[
√
nvec(β̂E)] =

1

4
Σ̃−1
X ⊗ ΓΩΓT +

1

4
(ξT ⊗ Γ0)[ξΣ̃Xξ

T ⊗ Ω−1
0 +M(Ω⊗ Ω−1

0

+Ω−1 ⊗ Ω0 − 2Iu ⊗ Ir−u)]−1(ξ ⊗ ΓT0 ), (5.3)

avar[
√
nvec(β̂RE)] =

1

4
Σ̃−1
X ⊗ Σ− 1

4
(Σ̃−1

X −MB)⊗ [Σ− Γη(ηTΩ−1η)−1ηTΓT ]

−1

4
MB ⊗ Γ0Ω0ΓT0 +

1

4
(BT ηT ⊗ Γ0)[ηBΣ̃XB

T ηT ⊗ Ω−1
0

+M(Ω⊗ Ω−1
0 + Ω−1 ⊗ Ω0 − 2Iu ⊗ Ir−u)]−1

(ηB ⊗ ΓT0 ), (5.4)

where MA = A(ATΣ−1A)−1AT and MB = BT (BΣ̃XB
T )−1B.

Remark 2. The asymptotic variance does not depend on the choices of A, B,

Γ, ξ, or η, because the values of the terms ξT ξ, MA, MB, Γη(ηTΩ−1η)−1ηTΓT ,

and BT ηT ηB are unique.

Remark 3. Note that avar[
√
nvec(β̂RE)] coincides with avar[

√
nvec(β̂RR)] when

u = r, and avar[
√
nvec(β̂RE)] coincides with avar[

√
nvec(β̂E)] when d = min(u, p).

This is consistent with the structure of the reduced-rank envelope model, which

degenerates to the reduced-rank regression when u = r, and to the envelope

model when d = min(u, p).

Now, we compare the efficiency of the models. Because Σ̃−1
X − MB and
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Σ−MA are both semi-positive definite, avar[
√
nvec(β̂std)]− avar[

√
nvec(β̂RR)] is

semi-positive definite. This implies that the reduced-rank regression estimator is

at least as efficient as the standard estimator when the reduced-rank regression

model holds.

Next, we prove that the envelope estimator is asymptotically at least as

efficient as the standard estimator. Note that Ω⊗Ω−1
0 + Ω−1 ⊗Ω0 − 2Iu ⊗ Ir−u

is semi-positive definite. Then,

(ξT ⊗ Γ0)[ξΣ̃Xξ
T ⊗ Ω−1

0 +M(Ω⊗ Ω−1
0 + Ω−1 ⊗ Ω0 − 2Iu ⊗ Ir−u)]−1(ξ ⊗ ΓT0 )

≤ (ξT ⊗ Γ0)(ξΣ̃Xξ
T ⊗ Ω−1

0 )−1(ξ ⊗ ΓT0 ) = ξT (ξΣ̃Xξ
T )−1ξ ⊗ Γ0Ω0ΓT0

≤ Σ̃−1
X ⊗ Γ0Ω0ΓT0 .

Therefore,

avar[
√
nvec(β̂E)] =

1

4
Σ̃−1
X ⊗ ΓΩΓT +

1

4
(ξT ⊗ Γ0)[ξΣ̃Xξ

T ⊗ Ω−1
0

+M(Ω⊗ Ω−1
0 + Ω−1 ⊗ Ω0 − 2Iu ⊗ Ir−u)]−1(ξ ⊗ ΓT0 )

≤ 1

4
Σ̃−1
X ⊗ ΓΩΓT +

1

4
Σ̃−1
X ⊗ Γ0Ω0ΓT0 =

1

4
Σ̃−1
X ⊗ Σ

= avar[
√
nvec(β̂std)].

To compare the reduced-rank envelope estimator and the reduced-rank regression

estimator, note that

4
{

avar[
√
nvec(β̂RR)]− avar[

√
nvec(β̂RE)]

}
= MB ⊗ Γ0Ω0ΓT0 − (BT ηT ⊗ Γ0)[ηBΣ̃XB

T ηT ⊗ Ω−1
0 +M(Ω⊗ Ω−1

0 + Ω−1 ⊗ Ω0

− 2Iu ⊗ Ir−u)]−1(ηB ⊗ ΓT0 )

≥MB ⊗ Γ0Ω0ΓT0 − (BT ηT ⊗ Γ0)(ηBΣ̃XB
T ηT ⊗ Ω−1

0 )−1(ηB ⊗ ΓT0 )

= BT (BΣ̃XB
T )−1B ⊗ Γ0Ω0ΓT0 −BT ηT (ηBΣ̃XB

T ηT )−1ηB ⊗ Γ0Ω0ΓT0

= BT (BΣ̃XB
T )−1/2(Id − P(BΣ̃XBT )1/2ηT )(BΣ̃XB

T )−1/2B ⊗ Γ0Ω0ΓT0 ≥ 0.

Therefore, the reduced-rank envelope estimator is at least as efficient as the

reduced-rank regression estimator. Finally, comparing the envelope estimator

and the reduced-rank envelope estimator, we have

1

4
Σ̃−1
X ⊗ Σ− 1

4
(Σ̃−1

X −MB)⊗ [Σ− Γη(ηTΩ−1η)−1ηTΓT ]− 1

4
MB ⊗ Γ0Ω0ΓT0

=
1

4
Σ̃−1
X ⊗ ΓΩΓT − 1

4
(Σ̃−1

X −MB)⊗ [ΓΩΓT − Γη(ηTΩ−1η)−1ηTΓT ]
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=
1

4
Σ̃−1
X ⊗ ΓΩΓT − 1

4
(Σ̃−1

X −MB)⊗ (ΓΩΓT − ΓΩ1/2PΩ−1/2ηΩ
1/2ΓT ),

where PΩ−1/2η denotes the projection matrix onto the space spanned by the

columns of Ω−1/2η. We have avar[
√
nvec(β̂E)] ≥ avar[

√
nvec(β̂RE)], because

Σ̃−1
X − MB and ΓΩΓT − ΓΩ1/2PΩ−1/2ηΩ

1/2ΓT are both semi-positive definite.

Therefore, the reduced-rank envelope model yields the most efficient estimator

among the compared models.

6. Selections of rank and envelope dimension

For the reduced-rank regression, we choose d using the same sequential test

as in Cook, Forzani and Zhang (2015). To test the null hypothesis d = d0, the test

statistic is T (d0) = (n− p− 1)
∑min(p,r)

i=d0+1 λ
2
i , where λi is the ith largest eigenvalue

of the matrix Σ̂
1/2
X β̂TstdΣ̂

−1/2
Y |X , Σ̂X denotes the sample covariance matrix of X, and

Σ̂Y |X denotes the sample covariance matrix of the residuals from the OLS fit of

Y on X. The reference distribution is a chi-squared distribution with degrees

of freedom (p − d0)(r − d0). We start with d0 = 0, and increase d0 if the null

hypothesis is rejected. We choose the smallest d0 that is not rejected. For the

envelope model, we can apply an information criterion such as the AIC or BIC to

select the dimension u. The criterion requires the log-likelihood function. Here,

we use the actual log-likelihood if g is known. If g is unknown, we substitute the

normal log-likelihood with the following approximate weights:

lu0
= −1

2

n∑
i=1

log |cXi
Σ̂| − 1

2

n∑
i=1

[Yi − Ȳ − β̂(Xi − X̄)]T Σ̂−1[Yi − Ȳ − β̂(Xi − X̄)],

where β̂ and Σ̂ are the envelope estimators obtained using the algorithm in Sec-

tion 4.4 with u = u0, for 0 ≤ u0 ≤ r. Then, u is chosen to minimize −2lu+kN(δ),

where N(δ) is the number of parameters in the envelope model at dimension u

(see Section 4.1), and k is the penalty, which takes the value 2 in the AIC and

log(n) in the BIC.

The reduced-rank envelope model has two parameters, d and u. We first

choose d using the same sequential test as in the reduced-rank regression. If d is

chosen to be r, then we have u = d = r. If d is chosen to be d0 < r, we compute

the information criterion, the AIC or BIC, for u = d0, . . . , r, in the same way

as we did for the envelope model. We select u that minimizes the information

criterion.
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7. Simulations

In this section, we report the results from numerical experiments used to

compare the performance of the estimators derived under the elliptically con-

toured distribution, normal likelihood, and approximate weights. The simula-

tion in Section 7.1 employs the envelope model, and that in Section 7.2 uses the

reduced-rank envelope model. Sections 7.1 and 7.2 focus on estimation perfor-

mance, and Section 7.3 focuses on prediction performance. For simplicity, we

refer to the envelope model derived in Cook, Li and Chiaromonte (2010) as the

basic envelope model, and to the reduced-rank envelope model derived in Cook,

Forzani and Zhang (2015) as the basic reduced-rank envelope model.

7.1. Envelope model

In this simulation, we investigate the estimation performance of our estima-

tors in the context of the envelope model. We set p = 5, r = 20, and u = 4.

The predictors are generated independently from a uniform (0, 5) distribution,

(Γ,Γ0) is obtained by orthogonalizing an r × r matrix of independent uniform

(0, 1) variates, and the elements in ξ are independent standard normal variates.

The errors are generated from a multivariate t-distribution with mean 0, degrees

of freedom 5 and Σ = σ2ΓΓT + σ2
0Γ0ΓT0 , where σ = 2 and σ0 = 5. The in-

tercept µY is zero. The sample size varies, from 100, 200, 400, 800, to 1,600.

For each sample size, we generated 10,000 replications. For each data set, we

computed the OLS estimator, basic envelope estimator, envelope estimator with

exact weights (computed from the true g), and envelope estimator derived using

the approximate weights. The estimation standard deviations of two randomly

selected elements in β are displayed in Figure 1. In the left panel, the basic

envelope model is more efficient than the OLS estimator. However, the envelope

estimators with exact weights and approximate weights achieve even better effi-

ciency. The right panel indicates that the basic envelope model can be similar, or

even less efficient than the OLS estimator, whereas the envelope estimators with

exact weights or approximate weights are always more efficient than the OLS es-

timator. For example, at sample size 1,600, the ratios of the estimation standard

deviation of the OLS estimator versus that of the basic envelope estimator for

all elements in β range from 0.800 to 2.701, with an average of 1.372. The ratios

of the OLS estimator over the envelope estimator with exact weights range from

1.111 to 3.536, with an average of 1.823. If approximate weights are used, the ra-

tios of the estimation standard deviation of the OLS estimator over the envelope
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Figure 1. Estimation standard deviation versus sample size for two randomly selected
elements in β. Line — marks the envelope estimator with approximate weights, line
−∗− marks the envelope estimator with exact weights, line - - marks the basic envelope
estimator, and line · · · marks the OLS estimator. The horizontal solid line at the bottom
marks the asymptotic standard deviation of the envelope estimator with exact weights.

estimator range from 1.301 to 3.467, with an average of 1.903. The performance

of the envelope estimator with approximate weights is very similar to that with

exact weights, as shown in Figure 1. At times, it may even be more efficient

than the envelope estimator with exact weights, because it is data adaptive, as

indicated in the right panel. Figure 1 also confirms the asymptotic distribution

derived in Section 5, and that the envelope estimator with exact weights is
√
n-

consistent. We computed the bootstrap standard deviation for each estimator,

and found that it is a good approximation to the actual estimation standard

deviation. This result is not shown in the figure for readability.

The average absolute bias and MSE of the estimators in Figure 1 are included

in Figure 2 and Figure 3, respectively. Note that the estimation variance is the

main component of the MSE. Furthermore, the pattern of the MSE in Figure 3

is similar to that of the estimation standard deviation in Figure 1.

The results in Figure 1 are based on a known dimension of the envelope

subspace. However, the dimension u is usually unknown in practice. Therefore,

we examine the performance of the dimension selection criteria discussed in Sec-

tion 6. For the 200 replications, we computed the fraction that a criterion selects

the true dimension. The results are summarized in Table 1. When the AIC and

BIC do not select the true dimension, we find that they always overestimate the

dimension. This will cause a loss of efficiency, but it does not introduce bias

into the estimation. When exact weights are used, the BIC is a consistent se-
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Figure 2. Average absolute bias versus sample size for two randomly selected elements
in β. The line types are the same as in Figure 1.

500 1,500

0.
00

0.
15

1,000

Sample size

M
ea

n 
sq

ua
re

d 
er

ro
r 

0.
05

 
0.

10

500 1,500

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

1,000

Sample size

M
ea

n 
sq

ua
re

d 
er

ro
r

Figure 3. Average MSE versus sample size for two randomly selected elements in β. The
line types are the same as in Figure 1.

lection criterion. The AIC is too conservative, and selects a bigger dimension in

most cases. When approximate weights are used, the BIC tends to overestimate

the dimension of the envelope subspace. However, we can still achieve efficiency

gains and have a smaller MSE than that of the standard model, as indicated in

Figure 4. When exact weights are used, the estimation standard deviation and

MSE of the envelope estimator are very close to those of the envelope estimator

with known dimension, owing to the consistency of the BIC.

We also investigate the performance of our estimators under normality. We

repeated the simulations with the same settings, except that the errors were

generated from a multivariate normal distribution. The results are summarized

in Figure 5, which shows that the estimation standard deviations and MSEs of
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Table 1. Percentage selection of the true dimension.

Exact Weights Approximate Weights

AIC BIC AIC BIC

n = 100 14.4% 81.6% 10.0% 39.8%

n = 200 14.2% 90.2% 14.7% 26.0%

n = 400 13.9% 95.1% 21.3% 31.9%

n = 800 13.7% 96.3% 28.0% 36.4%

n = 1,600 14.4% 98.1% 33.8% 42.6%
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Figure 4. Estimation standard deviations and MSEs for a randomly selected element
in β. Left panel: Estimation standard deviation versus sample size. Right panel: MSE
versus sample size. Line −∗− marks the envelope estimator with dimension selected by
BIC using exact weights, line — marks the envelope estimator with dimension selected
by BIC using approximate weights, line - - marks the envelope estimator with known
dimension and exact weights, and line · · · marks the OLS estimator.

the basic envelope estimator and those of the envelope estimators with “exact”

weights (i.e., weights computed from a t-distribution) and approximate weights

are almost indistinguishable. In this example, using weights derived from a t-

distribution or approximate weights does not cause a notable loss of efficiency in

the normal case. This may be because the approximate weights are computed

from data, and therefore are data adaptive. Although the “exact” weights depend

on the error distribution, they also have a data-dependent part (see Section 4.3).

Therefore, these estimators do not lose much efficiency when the true distribution

is normal. The performance of the dimension selection criteria is similar to that

in Table 1, except that the BIC with “exact” weights selects the true dimension

less frequently, and the BIC with approximate weights selects the true dimension

slightly more frequently.
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Figure 5. Estimation standard deviations and MSEs for a randomly selected element
in β. Left panel: Estimation standard deviation versus sample size. Right panel: MSE
versus sample size. The line types are the same as in Figure 1.

7.2. Reduced-rank envelope model

This simulation studies the estimation performance of different estimators

in the context of the reduced-rank envelope model. We set r = 10, p = 5, d = 2,

and u = 3. The matrix (Γ,Γ0) is obtained by normalizing an r × r matrix of in-

dependent uniform (0, 1) variates. The elements in η and B are standard normal

variates, Σ = σ2ΓAATΓT + σ2
0Γ0ΓT0 , where σ = 0.4, σ0 = 0.1, and elements in

A are N(0, 1) variates. The elements in the predictor vector X are independent

uniform (0, 1) variates. The errors are generated from a normal mixture dis-

tribution of two normal distributions N(0, 2Σ) and N(0, 0.1Σ), with probability

0.5 and 0.5, respectively. We varied the sample size from 100, 200, 400, 800, to

1,600. For each sample size, we generated 10,000 replications and computed the

OLS estimator, basic reduced-rank envelope estimator, and reduced-rank enve-

lope estimator with exact weights (derived from the true error distribution) and

approximate weights (Section 4.4). The estimation standard deviation for a ran-

domly chosen element in β is displayed in the left panel of Figure 6. Note that

the basic reduced-rank envelope estimator does not gain much efficiency com-

pared to the OLS estimator. For example, with sample size 100, the standard

deviation ratios of the OLS estimator versus the basic reduced-rank envelope

estimator range from 0.94 to 3.26, with an average of 1.42. The reduced-rank

envelope estimator computed from the exact weights obtains the most efficiency

gains. When the sample size is 100, the ratios of the OLS estimator versus the

reduced envelope estimator with exact weights range from 2.37 to 12.00, with an
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Figure 6. Estimation standard deviation and bootstrap standard deviation for a ran-
domly selected element in β. Left panel: Estimation standard deviation only. Right
panel: Estimation standard deviation with bootstrap standard deviation imposed. Line
— marks the reduced-rank envelope estimator with exact weights, line − · − marks
the reduced-rank envelope estimator with approximate weights, line - - marks the basic
reduced-rank envelope estimator, and line · · · marks the OLS estimator. The lines with
circles mark the bootstrap standard deviations for the corresponding estimator.

average of 3.98. This indicates that correctly specifying the structure of the error

distribution offers efficiency gains in the estimation. However, we do not know

the exact weights in practice. Figure 6 shows that the estimator computed from

the approximate weights still provides substantial efficiency gains. The ratios

of the OLS estimator versus the reduced envelope estimator with approximate

weights range from 1.63 to 8.79, with an average of 2.77. Although the esti-

mator with approximate weights is not as efficient as the estimator with exact

weights, it is still more efficient than the basic reduced-rank envelope estimator

or the OLS estimator. We also computed the bootstrap standard deviation of

the estimators from 10,000 residual bootstraps; see the right panel of Figure 6.

The bootstrap standard deviation seems to be a good estimator of the actual

estimation standard deviation. Therefore, we compare the efficiency of different

estimators using bootstrap standard deviations in applications.

We investigate the bias and the MSE of the estimators. The results are sum-

marized in Figure 7. Comparing the scale of the estimation standard deviation

and the bias, we find that for all estimators, the estimation standard deviation is

the major component of the MSE. Therefore, the MSEs follow a similar trend to

that of the estimation standard deviation. From the absolute bias plot, we find

that the OLS estimator and the basic reduced-rank envelope estimator are more

biased than the reduced-rank envelope estimators with true and approximate
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Figure 7. Average absolute bias and MSE for a randomly selected element in β. Left
panel: Bias versus sample size. Right panel: MSE versus sample size. The line types are
the same as in Figure 6.

weights. Figures 6 and 7 together show that we obtain a less biased and more

efficiency estimator by considering the error distribution.

Now, we examine the performance of the sequential test, AIC, and BIC

discussed in Section 6 in the selection of d and u. We use the same context as

that for Figures 6 and 7, and compute the percentage of times that a particular

criterion selects the true dimension (out of 200 replications). The significance

level for the sequential test is set at 0.01. The results are summarized in Table 2.

The fraction that the sequential test chooses the true d approaches 99% as the

sample size becomes large. When exact weights are used, the BIC performs better

because it is a consistent selection criterion. The AIC tends to be conservative

and always selects a bigger dimension. When approximate weights are used,

the AIC and BIC tend to overestimate the dimension of the envelope subspace.

Overestimation causes a loss of efficiency, but it retains useful information. Based

on this result, we use the BIC to choose u in applications. Next, we compared

the estimators with known and selected dimension, as we did in Figure 4 of

Section 7.1. The pattern is the same as in Figure 4. The reduced-rank envelope

estimator with dimension selected by the BIC using approximate weights loses

some efficiency compared with the estimator with known dimension and exact

weights. However, it is still notably more efficient than the estimator with the

basic reduced-rank envelope estimator.

We repeated the simulation with the same setting as in Figure 6, but the

errors were generated from the multivariate normal distribution N(0, 2Σ). The

results are included in the Supplementary Material.
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Table 2. Percentage selection of the true dimension.

Selection of d Exact weights Approximate weights

Sequential test AIC BIC AIC BIC

n = 100 96.3% 71.3% 97.1% 11.4% 12.2%

n = 200 98.1% 77.0% 99.0% 18.1% 19.0%

n = 400 98.6% 79.3% 99.7% 24.9% 26.6%

n = 800 98.9% 81.6% 99.8% 28.2% 31.1%

n = 1,600 98.8% 83.5% 99.8% 26.0% 29.3%

7.3. Prediction

By modeling the error distribution, the efficiency gains in estimation often

lead to improvements in prediction accuracy. In this section, we report the re-

sults of two numerical studies on prediction performance, one under the envelope

model, and the other under the reduced-rank envelope model.

We first generated the data from the envelope model in (2.4), where p = 5,

r = 5, u = 3, and n = 25. The predictors are independent uniform (0, 4)

random variates. The coefficients have the structure β = Γξ, where elements in

ξ are independent standard normal random variates, and (Γ,Γ0) are obtained by

orthogonalizing an r×r matrix of uniform (0, 1) variates. The errors are generated

from the multivariate t-distribution with mean 0, degrees of freedom 5, and Σ =

σ2ΓΓT + σ2
0Γ0ΓT0 , where σ = 0.9 and σ0 = 2. We used five-fold cross validation

to evaluate the prediction error, and the experiment was repeated for 50 random

splits. The prediction error was computed as

√
(Y − Ŷ )T (Y − Ŷ ), where Ŷ was

the predicted value based on the estimators calculated from the training data.

The average prediction error for 50 random splits was calculated for the OLS

estimator, basic envelope estimator, envelope estimator with exact weights, and

envelope estimator with approximate weights. The results appear in Figure 8.

The average prediction error for the OLS estimator is 8.34. Note that the basic

envelope estimator always has a larger prediction error than that of the OLS

estimator, for all u, and its prediction error at u = 3 is 8.46. This indicates that by

misspecifying the error distribution, we can also have worse performance in terms

of prediction. The predictor error for the envelope estimator with exact weights

achieves its minimum 7.49 at the u = 3. Compared with the OLS estimator,

the envelope estimator with exact weights reduces the prediction error by 10.2%.

The estimator with approximate weights achieves a minimum prediction error

of 7.21 at u = 3, which is a 14.8% reduction over the OLS estimator. In this
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Figure 8. Prediction error versus u. Line — marks the envelope estimator with exact
weights, line−·−marks the reduced-rank envelope estimator with approximated weights,
line - - marks the basic reduced-rank envelope estimator, and line · · · marks the OLS
estimator.

example, the estimator with approximate weights gives a better prediction than

the estimator with exact weights. This might be because we have a small sample

size and because the approximate weights are more adaptive to the data.

In the second numerical study, data were simulated from the reduced-rank

envelope model given in (2.5). We set p = 5, r = 10, d = 2, u = 3, and

n = 30. The predictors are independent uniform (0, 1) random variates, and

the errors are normal mixture random variates from two normal populations,

N(0, 2Σ) and N(0, 0.1Σ), with probability 0.5 and 0.5. Here, Σ has the structure

Σ = σ2ΓAATΓT + σ2
0Γ0ΓT0 , where σ = 0.4, σ0 = 0.1, and the elements in A are

standard normal random variates. The regression coefficient β has the structure

β = ΓηB, where elements in B and η are independent standard normal random

variates, and (Γ,Γ0) is obtained by normalizing an r × r matrix of independent

uniform (0, 1) random variates. We computed the prediction errors of the OLS

estimator, basic reduced-rank envelope estimator, and reduced-rank envelope es-

timators with true and approximate weights for u, from d to r−1. The prediction

errors are calculated based on five-fold cross-validation, with 50 random splits

of the data. The results are included in Figure 9. The prediction error of the

OLS estimator is 1.35. The basic reduced-rank envelope estimator achieves its

minimum prediction error 1.20 at u = 7, although the prediction errors for u ≥ 3

are all quite close. Compared with the OLS estimator, the basic reduced-rank
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Figure 9. Prediction error versus u. Line — marks the envelope estimator with exact
weights, line −·− marks the reduced-rank envelope estimator with approximate weights,
line - - marks the basic reduced-rank envelope estimator, and line · · · marks the OLS
estimator.

envelope estimator reduced the prediction error by 11.1%. The reduced-rank

envelope estimator with exact weights achieves a minimum prediction error 1.14

at u = 6, which is a 15.6% reduction compared with the OLS estimator. The

reduced-rank envelope estimator with approximate weights achieves a minimum

prediction error of 1.11 at u = 5, which is a 17.8% reduction compared with the

OLS estimator. In this numerical study, although the basic envelope estimator

shows better prediction performance than that of the OLS estimator, by tak-

ing the error distribution into account, we can further improve the prediction

performance.

From the simulation results, it seems that when the true gY |X is unknown,

it is best to use approximate weights.

8. Examples

8.1. Concrete slump test data

The slump flow of concrete depends on the components of the concrete. This

data set contains 103 records on various mix proportions Yeh (2007), where the

initial data set included 78 records and 25 new records were added later. The

input variables are cement, fly ash, slag, water, super plasticizer, coarse aggre-

gate, and fine aggregate. These are ingredients of concrete, and are measured in
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kilograms per cubic meter concrete. The output variables are slump, flow, and

28-day compressive strength. We use the first 78 records as a training set, and

the new 25 records as the testing set. The prediction error of the OLS estimator

is 25.0. We fit the basic envelope model to the data, and the BIC suggests u = 2.

The bootstrap standard deviation ratios of the OLS estimator versus the basic

envelope estimator range from 0.985 to 1.087, with an average of 1.028. This

indicates that the basic envelope model does not yield much of an efficiency gain

for this data. The prediction error for the basic envelope estimator is 24.2, which

is quite close to that of the OLS estimator. From the discussion in Section 7, we

find that when the error distribution is unknown, the approximate weights are

adaptive to the data, and give good estimations and prediction results. We fit the

data using the reduced-rank envelope estimator with approximate weights. The

sequential test selected d = 2 and the BIC suggested u = 2. Thus, the reduced-

rank envelope estimator degenerates to the envelope estimator with approximate

weights. The bootstrap standard deviation ratios of the OLS estimator ver-

sus the envelope estimator with approximate weights range from 4.925 to 118.2,

with an average of 55.57, which suggests a substantial efficiency gain. This is

confirmed by the prediction performance. The prediction error is 12.27 for the

envelope estimator with approximate weight. This is a 51% reduction compared

with the prediction error of the OLS estimator, and a 49% reduction compared

with the basic envelope estimator. This example shows that considering the error

structure of the data achieves efficiency gains and better prediction performance.

8.2. Vehicle data

The vehicle data examined here contain measurements for various character-

istics of 30 vehicles from different manufacturers, including Audi, Dodge, Honda,

and so on. The data are available in the R package plsdepot Sanchez (2016),

and are used to illustrate the partial least squares regression methods. Follow-

ing Sanchez (2016), we use price in dollars (USD), insurance risk rating, fuel

consumption (miles per gallon) in a city, and fuel consumption on highways as

responses. The predictors are indicators for turbo aspiration, vehicles with two

doors, and hatchback body style, car length, width and height, curb weight, en-

gine size, horsepower, and peak revolutions per minute. This data set does not

come with a natural testing set, so we used five-fold cross-validation with 50

random splits to evaluate the prediction performance. We scale the data so that

all variables have unit standard deviation because the range of the response vari-

ables is relatively wide. For example, price in dollars ranges from 5,348 to 37,038,
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whereas the fuel consumption in a city ranges from 15 to 38. If the original scale

is used, the prediction error is dominated by the price in dollars. The prediction

error for the OLS estimator is 1.70. Then, we fit the reduced-rank envelope es-

timator with approximate weights. The sequential test selected d = 2 and the

BIC suggested u = 3. The prediction error is 1.52, which is a 10.6% reduction

compared with that of the OLS estimator. The basic reduced-rank envelope esti-

mator with u = 3 and d = 2 has prediction error 1.64, which is a 3.5% reduction

compared with that of the OLS estimator. The bootstrap standard deviation ra-

tios of the OLS estimator versus the basic reduced-rank envelope estimator range

from 0.919 to 1.844, with an average of 1.277. In addition, the ratios of boot-

strap standard deviations of the OLS estimator versus those of the reduced-rank

envelope estimator with approximate weights range from 0.862 to 1.734, with an

average of 1.289. In this case, the standard deviations of the two estimators are

similar. However, because the basic reduced-rank envelope estimator has a larger

bias, due to the misspecification of the error structure, the reduced-rank envelope

estimator with approximate weights gives better prediction performance.

Supplementary Material

The online Supplementary Material contains proofs for the results presented

here, as well as additional simulation results.
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