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Abstract: We consider the problem of comparing probability densities among
multiple groups. To this end, we develop a new probabilistic tensor product
smoothing spline framework to model the joint density of two variables. Under
such a framework, the probability density comparison is equivalent to testing the
presence/absence of interactions, for which we propose a penalized likelihood ratio
test. Here we show that the test statistic is asymptotically chi-squared distributed
under the null hypothesis. Furthermore, we derive a sharp minimax testing rate
based on the Bernstein width for nonparametric multi-sample tests, and show
that our proposed test statistic is minimax optimal. In addition, we develop a
data-adaptive tuning criterion for choosing the penalty parameter. The results of
simulations and real applications demonstrate that the proposed test outperforms

conventional approaches under various scenarios.
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1. Introduction

A fundamental problem in statistics is testing whether the probability
densities underlying U groups of observed data are the same, and is known as
the multi-sample test. This test plays an essential role in scientific fields such
as modern biological sciences and deep learning. For instance, in metagenomics
studies, comparing the densities of specific microbial species (or strains) from
different treatment groups yields insights on the disease and treatments (Bilban
et al.| (2006); Turnbaugh et al.| (2009); Qin et al|(2012)); in genomics, identifying
differentially expressed genes among multiple groups or conditions is fundamental
to many downstream analyses; and in machine learning, the multi-sample test
is becoming an essential component in some deep learning algorithms (Li et al.
(2017)).

In these modern applications, the underlying distributions usually demon-
strate complex patterns, including multi-modality and long tails, making it
difficult to specify their distributional families. In general, the classic normality-

*Corresponding author.


https://doi.org/10.5705/ss.202022.0141

2066 XING ET AL.

based tests, such as the two-sample t-test (Anderson| (1958))) and the Shapiro—
Wilk test (Shapiro and Wilk (1965)), are not appropriate, and nonparametric
approaches are more appealing, owing to their distribution-free feature. Here
examples include distance-based tests, such as the Kolmogorov—Smirnov (K-
S) test (Darling (1957))) and Anderson—Darling (AD) test (Scholz and Stephens
(1987)), and their variants. An alternative is to apply discretization (“slicing”)
to continuous random variables (Miller and Siegmund| (1982)). |Jiang, Ye and
Liu (2015) propose the dynamic slicing test (DSLICE), which penalizes the
number of slices to regularize the test statistics. |Gretton et al| (2007, 2012)
propose maximum mean discrepancy (MMD) two-sample tests by embedding the
probability distribution into a reproducible kernel Hilbert space (RKHS). |Eric,
Bach and Harchaoui| (2008) propose the regularized MMD test by regularizing
the eigenvalues of the kernel matrix. Kim (2021) extend the MMD test to a
multi-sample test using the maximum of pair-wise MMDs. In addition, several
approaches based on a kernel density estimation have been proposed (Anderson,
Hall and Titterington (1994); Cao and Van Keilegom (2006); Martinez-Camblor,
de Utia Alvarez and Corral (2008); Martinez-Camblor and de Una-Alvarez (2009);
Zhan and Hart| (2014)). A common challenge for MMD-based and kernel density—
based testing approaches is the choice of the tuning parameters, for example, the
kernel bandwidth or the roughness penalty parameter, because the power of such
methods is sensitive to these parameters. Furthermore, they have drawbacks
when applied to long-tailed distributions, because the kernel bandwidth is fixed
across the entire sample (Silverman| (1986))), leading to low power in terms of
detecting changes at the tails. In many applications, such as gene expression
analyses, metagenomics, and economics, long-tailed distributions are common.

To overcome these limitations, we propose a likelihood-based test that can
automatically adapt to densities with different shapes, and develop a data-
adaptive tuning method to automatically choose the penalization parameter.
We consider X as a continuous random vector and Z as a discrete random
variable, indicating the group information. Instead of directly comparing the
multiple densities, we characterize the dependence between X and Z using its
log-transformed joint density n(z,z) within a space H. The key idea is to
uniquely decompose the log-transformed joint density n € H into the main effects
Nx,Nz and the interaction effect nyz. To do so, we use a novel probabilistic
decomposition of H in which the magnitude of the interaction exactly quantifies
the density difference between multiple groups. The multi-sample test is thus
equivalent to the interaction test

Hy:nxz(x,z) =0vs. Hy :nxz(x,z) #0. (1.1)

We propose a penalized likelihood ratio (PLR) test by evaluating the penalized
log-likelihood functional of 7 under Hy and Hy, and establish its null distribution
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as a chi-squared distribution. Distance-based with distance-based testing meth-
ods are not easily generalizable to multi-sample tests, because the asymptotic
distribution of the maximum pair-wise distance usually does not have an explicit
form. In contrast, the proposed PLR test can be applied directly to multi-sample
tests by letting Z € {1,...,U}. We further propose a data-adaptive rule that
selects the tuning parameter to guarantee testing optimality. The PLR test makes
full use of the distribution information, and is sensitive to the density difference
between the null and the alternative hypotheses.

This work makes several main contributions to the literature. First, without
an explicit expression of the function estimate, the technical tools used in the
Wald—type nonparamatric tests in [Xing et al.| (2020), Liu et al.|(2021)) and Liu,
Shang and Cheng| (2020)) cannot be generalized to a likelihood-based test. We
propose a new probabilistic decomposition of the tensor product RKHS in Section
3. Existing studies on functional decomposition without considering probabilistic
measures (Gu/ (2013); Wahba, (1990))) focus on estimation, leaving hypothesis
testing as an open problem. By embedding the probability measures of X and
Z into the tensor product decomposition of H, we can transform the problem of
a density comparison into a significance test of the interaction between X and
Z, which provides a foundation for the minimax testing principle (see Section
4). This new probabilistic decomposition framework can be generalized to a
broader class of dependence tests, including higher-order independence tests and
conditional independence tests, by using the magnitudes of the decomposed
terms to measure the corresponding dependency. Second, we establish the
minimax lower bound for density comparison problems based on the Bernstein
width (Pinkus (2012)). Existing minimax lower bounds of the testing rate are
commonly derived from Gaussian sequence models (Ingster| (1989, |1993); Wei
and Wainwright| (2018); Xing et al. (2020))) in a simple regression setting, and
thus cannot be adapted to a density comparison. In contrast, our result can be
easily generalized to a wide range of dependence testing problems. We further
prove that the PLR-based multi-sample test is minimax optimal. In contrast
to our proposed PLR test, the log-likelihood ratio without a penalty term does
not enjoy minimax optimality. [Li and Yuan| (2019) propose a normalized MMD
by choosing scaling parameters for the Gaussian kernel properly, and establish
its minimax property. Similar to the original MMD (Gretton et al| (2007)),
the approach of |Li and Yuan| (2019) is also based on a fixed kernel bandwidth,
which can lead to low sensitivity when the underlying densities are long-tailed.
However, our proposed approach is based on the penalized likelihood estimators,
which can adapt automatically to long—tailed distributions. As shown in the
simulation and real-data studies in Sections 5 and 6 respectively, our proposed
test exhibits greater power when the underlying densities have complex features,
such as long tails and multi-modality. In addition, we reveal an interesting
connection between the PLR and MMD tests in the Supplimenary Material. We
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also thank our referees for helpful insights on the connections between the MMD
test and the Hilbert—Schmidt independence criterion (HSIC) test. We show that
the MMD test (with a particularly selected kernel) is exactly the squared norm
of the gradient of the log-likelihood ratio.

The rest of this paper is organized as follows. In Section 2, we construct our
proposed penalized likelihood ratio test. Section 3 introduces the probabilistic
decomposition of the tensor product RHKS and the main theoretical results,
including the asymptotic distribution of the PLR test and its power performance.
Section 4 establishes the minimax lower bound of the density comparisons, and we
demonstrate the finite-sample performance of our test using simulation studies.
Section 6 presents analyses of two real-world examples using our test. Section 7
contains a discussion. In the Supplementary Material, we extend our PLR test
to the case when the number of samples is divergent, and establish the minimax
distinguishable rate and the connection between our PLR test and the MMD
test. Proofs of the main results are provided in the Supplemenary Material.

2. PLR for a Multi-Sample Test

The multi-sample problem can be stated as follows. Suppose we have n
independent d-dimensional observations, X; € [0,1]% for i = 1,...,n. Each X;
is associated with a label Z; € {1,...,U}, which indicates that X; is taken from
the population indexed by Z; with a probability density function fz,. We aim to
test whether fi,..., fu are the same. Other than a smoothness constraint, we do
not impose any constraints on the probability density functions fi,..., fu.

An equivalent formulation of the problem can be given in terms of the joint
distribution of X and Z and their conditional independence. That is, consider
n independent an identically distributed (i.i.d.) observations, Y; = (X;, Z;), for
i =1,...,n, taken from a population Y = (X, Z) with a joint probability density
f(z, z). Let

n(z, z) = log(f(z,2)).

Let fx|z=.(z) be the conditional density of X given Z = z, for z =1,...,U. The
multi-sample problem is equivalent to testing whether X and Z are independent,
that is,

Hy : fX|Z:1(‘) == fX\Z:U(')
VS. H1 : d (751 7& Uo such that fX\Z:ul(') # fX\Z:uQ(')- (21)
We denote ny = |{i : Z; = 1}|,...,ny = [{i : Z; = U}|, and assume that n; are

comparable, that is, there exist constants 0 < ¢; < ¢y such that ¢;ny < n, <
cang, for V. u=1,...,U. We characterize the dependence between X and Z by
their interaction with respect to their joint density, and show that testing the
significance of this interaction is equivalent to the multi-sample test. We first
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consider the case when U is a fixed constant, and then extend the theory for
diverging U.

In order to characterize the interaction between X and Z, we first define two
averaging operators acting on the log-transformed joint density function 7(z, z).
For any z, the operator 4, maps 7n(z, z) to Exn(X, z), a function in z, and for
any z, the operator A, maps n(z, z) to Ezn(x, Z). The interaction term is then
characterized by the decomposition

Mx2(2,2) = (T = AN — Az, 2) = (@, 2) — () () — (Aam) (@) + A A,

(2.2)
where 7 is the identity operator. Note that is essentially derived from
a functional ANOVA decomposition of n(z,z), where A,A.n is the constant,
(Z — A;)A.n and (Z — A,)A,n are the main effects of = and z, respectively,
and (Z — A,)(Z — A.)n is the interaction effect. A straightforward derivation
shows that the multi-sample test is equivalent to testing whether nxz is zero; see
Proposition S.4 in the Supplimentary Material.

We assume that 1 is in an RKHS #, and let Ho = {n € H | nxz = 0} be the
subspace of H containing all bivariate functions with ANOVA decompositions
that have a zero interaction term. Based on Proposition S.4, the multi-sample
test problem in is equivalent to testing

Hy:neHy vs. Hy:neH\Ho. (2.3)

Consider estimating 1 by minimizing of the penalized likelihood

1< A
laa(n) = - Sonlwiz)+ Y /X ") dy; 4 §J(77), (2.4)
i=1 }

ze{1,..., U

where X = [0,1]¢. The two sums form the negative log-likelihood representing
the goodness-of-fit, J(-) is a quadratic functional enforcing a roughness penalty
on 7, and A > 0 is a tuning parameter controlling the trade-off. We propose the
following PLR test statistic:

PLR= inf £,x(n) — inf £x(n), (2.5)

where the first and second terms are the optimal penalized likelihoods under the
reduced model H, and the full model H, respectively.

Note that the integrals in guarantee the unitary constraint of a
probability density function (see Theorem 3.1 in Silverman| (1982)). We choose
equation instead of the logarithm of the integral in Gu and Qiu (1993),
because the Fréchet derivative of the PLR includes an integral in the denominator,
which makes the theoretical derivation more difficult.
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2.1. Penalized likelihood functional under the full model

Under the full model, we minimize in H. Let H‘*) be an RKHS of
functions on the marginal domain [0,1]? and H(?’ be an RKHS of functions
on {1,...,U}. Then, the full space H = HY) ® H? is their tensor
product and also an RKHS, where ® denotes the tensor product of two linear
spaces. Correspondingly, if KX and K{?) are the reproducing kernels (RKs)
uniquely associated with the RKHS H‘X) and H?), respectively, then the
RK for H is simply the product of K and K(%); that is, K(Y,;,Y;) =
KN Xy, X;)KEN(Z;, Z5).

For the continuous domain [0, 1], we consider the mth—order Sobolev space
on [0,1]%, that is, HX) = {f € L*([0,1]¢) | f@ € L%*([0,1]%), V|a| < m},
where || = Y0, oy. When d = 1, the associated kernel KX)(X;, X;) =
1+ (=1)™ ke, (X; — X;), where ky,(x) is the 2mth-order scaled Bernoulli
polynomial (Abramowitz and Stegun (1948))). For m = 2, k4(z) = (1/24)((x —
0.5)* — 0.5(x — 0.5)% + (7/240)), and the corresponding KX) is known as the
homogeneous cubic spline kernel. When d > 2, Novak et al| (2018) show
that the associated kernel is K™ (X, X;) = [o. [T/, cos(2m(Xy — X;)Gi)]/[1 +
> 0<|al<m [TL,(27G))?*|dG, where G € R%. An example for the discrete kernel
is K:(Z“ ZJ) = 1{Zi:Zj}-

Let 7,,.» be the penalized likelihood estimator of n under H;, that is,

Ty = argmin £, 5 (7). (2.6)
neH
Because of the integration in (2.4)), the representer theorem (Wahbal (1990))
does not apply here, and the exact solution is not computable (Gu| (2013)). We
consider the efficient approximation of |(Gul (2013)) by calculating the minimizer of
the penalized likelihood functional in H' = span{K(Y;,-),i = 1,...,n}. By the
definition of H', the minimizer n'(-) of £, \(n) for ' € H' has the form

n'() = Xn:lC(Yi, Jei =CTe, VnT € H, (2.7)
=1

where ¢T = (K(Y1,),...,K(Y,,)) is the vector of functions obtained from the
kernel K with its first argument fixed at Y;, and ¢ = (¢4, ..., ¢,) is the coefficient
vector. Because J(n) is (n,7m)» where (-,-)3 is the inner product in H with
reproducing kernel K, we have J(n') = ¢’ Qc, where Q € R™ " is the empirical
kernel matrix with (4, j)th entry Q;; = K(Y;,Y;). This representation converts
the infinite-dimensional minimization problem of with respect to 7 into a
finite-dimensional optimization problem with respect to the coefficient vector ¢,
by solving
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1
C = argmin {15@0 + / exp{¢Tec}dy + ;\cTQc} , (2.8)
c n hY%

where 1,, is an n x 1 vector of ones, and the second term is the same as the second
term in , with the summation and integration over (z, z) replaced with an
integration over y, for convenience of presentation. The objective function in
(2.8) is strictly convex (Tapia and Thompson! (1978)). Thus, we can optimize it
with respect to ¢ using a standard convex optimization procedure, such as the
Newton—Raphson algorithm; see, for example, (Gu| (2013) and [Wang (2011). The
integrals in can be calculated using numerical integration (see Section 7.4.2
in/Gu/ (2013) for details). When n is large, the representation involves a large
number of coefficients, which may lead to numerical instability. To tackle this, one
may consider only a subsample of {Y,; : i =1,...,n} to use in the presentation
(Kim and Gul (2004); Ma, Huang and Zhang| (2015))). For the nonparametric
inference problem, the subsampling method maintains the minimax optimality
as a result of the properly selected subsample size, as shown in [Liu et al.| (2021).
Practically, we follow [Liu et al.|(2021]) when selecting the subsample size, which
shows comparable power with the full data. In general, we denote by

ha=¢"e (2.9)
the penalized maximum likelihood estimate under the full model.

2.2. Penalized likelihood functional under the reduced model

Let 79 , be the penalized likelihood estimator of 7 under Hy in (2.3)), that is,

7727/\ = argmin ¢, (7). (2.10)
n€Ho
In Section 3.1, we show that H, is also an RKHS, with a kernel function
K°(-,-), which enables us to use a similar reparameterization trick to solve the
problem in (2.10). In the following, we show the kernel function K°(Y;,Y;) =
K™ (X, X5)KE(Zi, Z5) + K0 (X, X)KG (Z3, Z,) + K6 (X, X5) KT (23, Z),
where KX, X;) = Ex[KXO(X, X;)] + Ex[KX) (X, X)] — Ex £ K5)(X, X),
KX = KX — k590, K24, Z;) = wa, +wz, — Sy wi, K = K2 — K, and
w,=P(Z=1),forl =1,...,U. We insert the empirical estimate of &, = n;/n,
for I =1,...,U, to calculate K‘%’. The detailed derivation of X° depends on our
proposed probabilistic decomposition of H, and is deferred to Section 3.1.
Similarly to , we consider the efficient approximation in (Gu| (2013])
by calculating the minimizer of the penalized likelihood functional in H°f =
span{K°(Y;,-),i =1,...,n}, which has the form

n°T() =D K'Y, )eoi =l o, Vi'f € HOL. (2.11)
=1



2072 XING ET AL.

To obtain the penalized likelihood estimators, we first solve the quadratic program

. . 1 A
Cy = argmin {—nleoco + / exp{¢leco} + 2COTQOCO} , (2.12)
Y

Co

where the (4, j)th entry of Qo is K°(Y;,Y;). Numerically, we express

Qo = [(In - H)Q<X>(In - H)] 0 [(In - H)Q<Z>(In - H)]
+HHQY™ H] o (I, — H)Q'P/(I,, — H)]
(L = H)QWN(I, — H)] o [HQ' H],

where QX is the empirical kernel matrix of H*) with (4, j)th entry Q§f> =
KX(X5, X;), Q¥ is the empirical kernel matrix of H(? with (i,j)th entry
ijz) = K%(Z;,Z;), and H = I,, — (1/n)1,1%, where I, is the n x n identity
matrix, 1,, is an n x 1 vector of ones, and o denotes the Hadamard product. Then,
we solve the quadratic optimization similarly to (2.8), and output the function
estimate

il ="e (2.13)
2.3. Test statistics

Plugging the minimizers of the penalized likelihood functional under the full
and reduced models into ([2.5)), we have the PLR statistic

PLR, \ = fn},\(ﬁgy/\) — L x(Tnn)- (2.14)

We show in Section 3.2 that PLR,, , is asymptotically x? distributed under H,
in the sense that (2b, ) Y?(2PLR, » — b,) — N(0,1) as b, diverges, for a
wide range of X\. Because 7, » and 7, , are not computable, we use their efficient
approximations ﬁjl , and 1/7\2”;, respectively. Then, an efficient approximation of

the test statistic (2.14) is
PLRL,)\ = en/\(ﬁgt\) - E”y)\(ﬁl,)\)7

which we show that this efficient approximation has the same asymptotic
distribution as PLR,, . In practice, we use the gss package (Gu and Qiu|(1993))
to implement the scalable computation, using the efficient approximation in [Kim
and Gu/ (2004) with a compuation cost of O(N¢?), with ¢ = O(N?@m+D) for the
mth—order Sobolev space.

For the nonparametric multi-sample test, the parameter space under Hj is
infinite-dimensional as n — oo. Thus, the assumptions of the Neyman—Pearson
lemma are not satisfied, and the uniformly most powerful test may not exist, in
general. We evaluate the power performance using the minimax rate of testing,
which is defined as the minimal distance between the null and the alternative
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hypotheses such that valid testing is possible (Ingster| (1989)). For any generic
0-1 valued testing rule ® = ®(Y,,...,Y,) and a distinguishable rate d,, > 0
measuring the distance between the null and the alternative hypotheses, we define
the total error Err(®,d,) of ® under d,, as

Err(®,d,) =Eg, {®}+ sup E,{l1-®}, (2.15)

Inxzll2>dn

where Ep, {-} denotes the expectation with respect to the truth n* under H,.
The first and second terms on the right side of represent the type-I and
type-1I errors, respectively, of ®. In Section 3, we show that the distinguishable
rate of our proposed PLR test is related to the tuning parameter \. We then
derive the optimal distinguishable rate by carefully selecting A\. A data-adaptive
tuning method is developed for practical use. In Section 4, we use information
theory to establish the minimum distinguishable rate d,, for general testing rules,
extending the minimax testing principle pioneered by [Ingster| (1989) to a density
comparison.

3. Theoretical Properties of PLR Test

In this section, we first introduce the probabilistic decomposition of a
tensor product RKHS, enabling us to construct the kernel on the subspace
Ho. Such a decomposition is also of independent interest for studying different
kinds of dependence between random variables. Compared with the function
ANOVA decomposition in [Wahba, (1990) and Gu and Qiu| (1993), the proposed
decomposition makes the interaction term in have a zero expectation
under the null hypothesis, which plays an essential role in deriving the limiting
distribution of our test statistic. We then derive the asymptotic null distribution
of our proposed test statistic and the optimal power of the test. Lastly, we develop
a data-adaptive tuning procedure to choose the penalty parameter.

3.1. Probabilistic decomposition of the tensor product RKHS

We assume that the function 7n(z,z) belongs to a tensor product RKHS
H = HX @ HP, in which HX) and H(? represent the marginal RKHS of
X and Z, respectively. We aim to decompose H into orthogonal subspaces
with a hierarchical structure similar to that of the main effects and interactions
in a smoothing spline ANOVA (Wahba (1990)); |Gu (2013); Lin (2000)); [Wang
(2011)), while embedding the probabilistic distributions of X and Z into the
decomposition. This decomposition enables us to convert the multi-sample test
problem into testing for the presence of an interaction. It includes two steps:
decompose each marginal RKHS into mean and main effects, and then apply the
distributive law to expand the tensor product of the marginal RKHS into a series
of subspaces.



2074 XING ET AL.

We first introduce the probabilistic tensor decomposition of the discrete
domain function space H'%’ := {f(z) : z € {1,...,U}} using a probabilistic
averaging operator. Note that H(4 = RY, with the Euclidean inner product
((,")2), and the kernel on H'% is K{%)(z,Z) = 1,z;. Consider a discrete
probabilistic measure Pz on Z = {1,...,U} such that Pz(Z = j) = w; > 0,
with Z;J:l w; = 1. Let w = (wy,...,wy), and define the probabilistic averaging
operator as Ay = f — Ezf(Z) = (w, flun. Because EZ[KY] = w, we
can rewrite the probabilistic averaging operator as A, = f — Ezf(Z2) =
(EZ[K7), f)a. Then, Ez[KY] can be treated as a mean embedding of Py in
H{%). We further define the tensor sum decomposition of H (% as

HP = HP @1 = span{BL Ky @ {f e H:EL{f(Z2)} =0}, (3.1

where Héz) is the grand mean space, and 7—[§Z> is the main effect space.
Each subspace in is an RKHS with their corresponding kernels stated in
Lemma S.1 in the Supplimentary Material. For fixed a design of Z, we set
wi =/ Y5

Next, let us consider the continuous random variable X € X and a probability
measure Py on X. We suppose HX? is the mth-order Sobolev space with the
corresponding inner product (-, -)4x). The results also hold for its homogeneous
subspace. Let ) be the corresponding kernel satisfying (f, K)o = f(2),
for any f € HX). Similarly, the probabilistic averaging operator is Ay := f —
Exf(X) = Ex(K, Pl = ExKL?, o, Here, ExKY plays the same
role as w in the Euclidean space. Then, the tensor sum decomposition of a
functional space is defined as

HYO =1 @ HPD = span{Ex K} @ {f € HX) : Ax f =0} (3.2)

Analogously, we call H8X> the grand mean space and H§X> the main effect space.
Here E XICE?(> is known as the kernel mean embedding, which is well established in
the statistics literature (Berlinet and Thomas-Agnan| (2011))). The construction
of the kernel functions for 'HéX> and H§X> are included in Lemma S.2 in the
Supplementary Material.

We are now ready to consider the RKHS H = HX) ® H(% on the product
domain Y = & x Z. Applying the distributive rule, the decomposition of H is
written as

H=H o) o HP & 1) = Hoo ® Hio ® Hor & Has, (3.3)

where H;; = ’H§X> ® H§-Z>, for i = 0,1 and j = 0,1. Analogously to the classic
ANOVA, H,y and Hy, are the RKHSs for the main effects, and H;; is the RKHS
for the interaction. We call the decomposition of H in the probabilistic
decomposition of the tensor product RKHS H, because it embeds the probability
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measure of the random variables X and Z. Based on Theorem 2.6 in |Gu/ (2013),
we construct the kernels K%, K1 K and K for the subspaces Hoo, Hio, Ho1,
and H11, respectively; see Lemma S.3 in the Supplimentary Material for a detailed
construction.

3.2. Asymptotic distribution and Wilks’ phenomenon

In this section, we present the asymptotic distribution of our PLR test
statistic in Theorem 1. The proof relies on a technical lemma about the eigen-
structures of Hy and H; see Lemma 1 below. For any 7,7 € ‘H, define

<777 "7> = V(na "7) + AJ(U’ ﬁ)v (3'4)

where V(n,7) = E,-{n(Y)n(Y)} with the expectation taken under the true n*,
and J is a bilinear form corresponding to (2.4). Then, it holds that H and H,,
endowed with the inner product , are both RKHSs; see Lemma 2. In the
following lemma, we characterize the eigenvalues and eigenvectors of the Rayleigh
quotient V/J.

Lemma 1.

(a) There ezist a sequence of functions {&, oe1 C H and a sequence of non-
negative eigenvalues {p,}o2,, with p, < p*™/?, such that V(&,,&y) = 6y,
J(&p, &) = pplpy, for all p,p’ > 1, and any n € H can be written as
n= Z;il V(n,8p)8-

(b) Moreover, there exists a proper subset {pD, 032, of {p,,&p}o2, satisfying
{&302, C Ho, and for any n € Ho, n =302, V(n,8))&0. The convergence
of both series holds under (3.4)).

(¢) py = p*™/4, where {pr}o2, C {pp}2, is a subset of eigenvalues correspond-
ing to {& 102, = {6,102\ {60021 The set {&- 122, generates the orthogonal

complement of Hoy under the inner product (3.4)).

Lemma 1 introduces an eigensystem that simultaneously diagonalizes the
bilinear forms V and J. This eigensystem does not depend on the unknown
null density, depending only on the functional space H. Moreover, Hy can be
generated by a proper subset of the eigenfunctions, which is crucial for analyzing
the likelihood ratios.

Let (-,-)o denote the restriction of (-,-) on the subspace H,. Specifically, for
any 1,1 € Ho, (n,M)o = (n,7m). Then, H and H, are both RKHSs endowed with
these inner products.

Lemma 2. (H,(-,-)) and (Ho, (-, )o) are both RKHSs with the corresponding
inner products.
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Following Lemma 2, there exist reproducing kernel functions K(-,-) and
K°(-,-) defined on Y x Y satisfying, for any y € Y, n € H, i € Hy:

Iey() = K;(Y7 ) EH, K;}o,() = KO(Y: -) € Ho,
(Ky,m) =nly),  (Ky.mo =1(y)- (3.5)

We further introduce positive-definite self-adjoint operators Wy : H — H
and WY : Hy — Ho, such that

(Wan,m) = AJ(n,m) orall n,ne€H,
(Win,mo = Mo(n,m) for all n,7 € Ho, (3.6)

where Jy(n,7) = 05 Jor(n,7) + 010 Ji0(n,77) is the restriction of J over H,y. By
(3-6), we get (n,7) = V(n,7) + (Wan,7), (n,Mo = V(n,7) + (Win,7)o. In the

following, we give explicit expressions of /C,(-) and W&, (+).

Proposition 1. For anyy € Y and n € H, we have

Inll* = Zanép (14 App),

—0 _ - 2(Y) 0
Z Hm K30 =2 7555600

p=1 p

A AP
WAs,,(-):lf;p &), W) = 11560

where {p0, £}, and {p,, & )52, are the eigensystems defined in Lemma 1.

As shown in Proposition 1, the eigenvalues for K are {(1 + App) '}, and
have a slower decay rate that of the eigenvalues for IC, owing the scaling by A.
In particular, K can be viewed as a scaled kernel, with the product kernel K* =
K + KO + K19 4+ K1 introduced in Lemma S.3 in the Supplimentary Material.
Note that trace(K) = Sl (T4 Apy) ™! =< A= ™) s the effective dimension that
measures the complexity of H; see |Bartlett, Bousquet and Mendelson| (2005) and
Mendelson| (2002).

Next, we derive the null asymptotic distribution of the PLR statistics, which
relies on the Taylor expansion of the PLR functional. First, we introduce the
Frechét derivatives of the log-likelihood functional. Denote by D, D?, and D3 the
first-, second-, and third-order Frechét derivatives, respectively, of ¢, \(n). Let
Spa(n) and S? , be the score functions of the log-likelihood functionals /,, 5 and
9 , respectively. Define y = (z,z). Then, these derivatives can be summarized
as follows:
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For any n, Any, Any, Ans € H,
1 n
Dl = = > An(Y) + [ Au(y)e™dy + AT, An)
i=1 y

1 - :
= (= DKy, +E, Ky + Wan, Am)

i=1

= <Sn,)\(n)7 AU1>7 (37)
D2£n,A(U)A7I1AU2 = / A (Y)A%(Y)@n(y)dy + /\J(Aﬁh AU2)7 (3-8)
y
D3, 5 () Any Any Any = /y Any(y) Anz(y) Ans(y)e"™dy. (3.9)

The second equality of (3.7)) follows from the reproducing property (3.5 and
/ An(y)e"™dy = B, Any(Y) = Ey(Ky, Any) = (E, Ky, Any).
y
The Taylor expansion of the PLR functional gives

PLR, \ = En,/\(ﬁg,x) - €n7/\(77n,,\)

1,1
:Dﬁn,,\(?]n,x)g-i-// $D*(,, x(Max + 85'g)ggdsds’
0Jo

1 p1
o ! ES / ]' *
= / / ${D*l, AT + 55'9)gg — D*0, 5 (n7)gg}dsds’ + 5D2€m(n )99
0J0

=1+ 1, (3.10)

where g = % \ — Tax and n* is the underlying truth. In the proof of Theorem 1,
we show that I, is a leading term compared with ;. From , we have that
L = (1/2)|lg]1* = (1/2)[1%5 5 — Tnll*. As we will see, the asymptotic distribution
of ||7hn,x — 715 5|1 relies on the Bahadur representations of 7, , and 7, .

We further prove the following Bahadur representations for the difference
between the two penalized likelihood estimators by adapting the empirical
processes technique of Shang and Cheng| (2013)). Lemma 3 is crucial for proving
Theorem 1.

Lemma 3. Suppose h = A\¥?™ and nh?> — co. Then, we have
027 = sl = 02 SE A7) = Sun(n)l| + 0p(1),
where Sy, \(n*) and S \(n*) are the score functions for £, x and £, ,, respectively.

This lemma shows that the main term I, in Taylor’s expansion of the
PLR functional is determined by the norm of the difference between the score
function of £, » and the score function of £ . Because the score functions have
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explicit expressions through Proposition 1, we can characterize the asymptotic
null distribution of I, using the eigensystem introduced in Lemma 1.

Before stating our main theorem, we introduce an assumption commonly
used in the literature for deriving the rates of density estimates; see, for example,
Theorem 9.3 of (Gu| (2013)).

Assumption 1. There exists a conver set B C H around n* and a constant
c1 > 0 such that, for any n € B, cE,-{7*(Y)} < E,{7*(Y)}. Furthermore,
with probability approaching one, 1, € B; and, under H,, with probability
approaching one, 1, , € B.

This condition is satisfied when 7, and 7 , are stochastically bounded
and the members of B have uniform upper and lower bounds on the domain
Y. The following theorem provides the asymptotic distribution for the PLR test
statistic under Assumption 1. The proofs of Theorem 1 and Corollary 1 are in
the Supplementary Material S.6.3.

Theorem 1. Suppose m > 1 and Assumption 1 holds. Let h = \/?™ and
nh?mt4 = O(1), nh?* = 0o as n — co. Under Hy, we have

9 - PLR, , — 0
n AT 4 N(0,1), n— oo, (3.11)
V20,

where Oy =322 (1/14 Apy), 03 =302 (1/(14 Apy)?).

Note that h < n~¢, with 1/(2m + d) < ¢ < 1/2 satisfying the rate conditions
in Theorem 1. Therefore the asymptotic distribution holds under a wide
range of choices of h. The quantities 6, and o, depend solely on the eigenvalues
pj and A. Based on , we propose the following decision rule ®,, , at the
significance level a:

@, 1(a) =1(|2n - PLR, » — 05| > 21_0/2V20)), (3.12)

where 1(-) is the indicator function, and z;_,/» is the 1 — a/2 quantile of the
standard normal distribution. Hence, we reject Hy at the significance level «
it ®,, = 1. Wilks’ phenomenon is also observed here, similarly to the non-
parametric/semiparametric regression framework (Fan, Zhang and Zhang (2001));
Shang and Cheng (2013))). Specifically, let 7y = 6, /0. Then, implies that,

as n — o9,
2m",\ . PLRn’/\ - 7")\0/\

V 27’)\(9)\

Therefore, 2nry - PLR,, ) is asymptotically distributed as a x? distribution with

%5 N(0,1).

degrees of freedom r,#,. In the following corollary, we extend our asymptotic
theory to the emiprical version of p-.
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Corollary 1. Assume that Assumption 1 holds. Let h = A\¥?*™ and nh*>"+? =
O(1), nh? = oo as n — oo. Under Hy, we have

on-PLR' , —0
nA A 4N (0,1), n— oo, (3.13)
\/§U>\

where 0 = oo V(L4 Xpy), 63 = >0  1/(1+Apy)%, {py by are empirical
eigenvalues for K.

In Corollary 1, we show the asymptotic distribution of the efficient approxi-
mation PLRL y- The proof of Corollary 1 uses the local Radamacher complexity
(Liu et al| (2021)); Bartlett, Bousquet and Mendelson (2005)) to bound the tail
sum of the eigenvalues for H' and H°', and the accurate error bound for the
eigenvalues of the kernel matrix in |Braun (2006).

3.3. Power analysis and minimaxity

In this section, we investigate the power of PLR under local alternatives.
Define the distinguishable rate as

d, = A+ 2. (3.14)
n

The distinguishable rate is used to measure the distance between the null
and the alternative hypotheses. Theorem 2 shows that the power of PLR
approaches one, provided that the norm of 7% ,, the interaction term in the
probabilistic decomposition of *, has a norm bounded below by d,,. The squared
distinguishable rate d? consists of two components: A, representing the squared
bias of the estimator, and oy /n, with the order of n='h~1/2
standard derivation of PLR, . Because o, decreases with A, the minimal
distinguishable rate for the PLR test is achieved by choosing an appropriate
A such that A < o0,/n. Our result owes much to the analytic expression of
independence (in terms of interactions) based on the proposed probabilistic tensor
product decomposition framework.

representing the

Let P,. denote the probability measure induced under n*, ||7||sy, denote the
supremum norm over Y, and ||n]l. = +/V(n).

Theorem 2. Suppose Assumption 1 holds and let d,, be the distinguishable rate
defined in (3.14), m > 3/2, n* € H with |0 zlsup = 0(1), J(xz) < 00, [Inkzl2 2
d,. For any e € (0,1), there exists a positive N, such that, for any n > N,
P (®pa(a) =1) > 1—e. When A < \* = n=4m/Umtd) g s upper bounded by
d;kL = n—2m/(4m+d)‘

The proof of Theorem 2 is in the Supplimentary Material S.6.3. Theorem
2 demonstrates that, when A < A*, PLR can successfully detect any local
alternatives, provided that they separate from the null by at least d’. In Section
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4, we establish the minimax lower bound for the distinguishable rate of a general
multi-sample test to show that this upper bound cannot be improved. This means
that no test can successfully detect local alternatives if they separate from the
null by a rate faster than d;. Therefore, we claim that our PLR test is minimax
optimal.

For any ¢ € (0,1) and o € (0,¢), Theorem 1 shows that Ey {®, ()}
tends to a. Theorem 2 shows that E,-{1 — &, ,-(a)} < ¢ — «, provided that
I ll2 > C._.d:, for a large constant C._,. Therefore, asymptotically,

Err(®, \(a),C._od)) < e. (3.15)

In other words, the total error of PLR can be controlled by using an arbitrary ¢,
provided that the null and local alternatives are d; apart.

4. Minimax Lower Bound of the Distinguishable Rate

For any ¢ € (0, 1), define the minimax distinguishable rate dZ(¢) as
d;(e) =inf{d, > 0: igf Err(®,d,) < ¢}, (4.1)

where the infimum in is taken over all 0-1-valued testing rules based on
the sample Y,;. Note that d(¢) characterizes the smallest separation between
the null and local alternatives such that there exists a testing approach with a
total error of at most €. Next, we establish a lower bound for d. That is, if
d,, is smaller than a certain lower bound, no test exists that can distinguish the
alternative from the null.

We first introduce a geometric interpretation of the hypothesis testing .
Here, we consider the local alternatives in &€ = {n € H : |nllx < 1/2}.
Geometrically, £ is an ellipsoid with axis lengths equal to the eigenvalues of H.
For any n € &, the projection of n on &y := Hi1 NE is nxz, where Hq; is defined
in (3.3). The magnitude of the interaction 7xz can be qualified by ||nxz||2. The
distinguishable rate d,, is the radius of the sphere centered at nxz = 0 in &£;;.

Intuitively, the testing will be harder when the projection of 7 on ;1 is closer
to the original point 1xz = 0. We then introduce the Bernstein width of [Pinkus
(2012) to characterize the testing difficulty. For a compact set C, the Bernstein
k-width is defined as

br.2(C) := argmax{B5™(r) C C'N S for some subspace S € S}, (4.2)
r>0

where Sy, denotes the set of all (k + 1)-dimensional subspaces, and B5**(r) is
the (k+1)-dimensional Lo-ball with radius r and center at nxz = 0 in H;;. Based
on the Bernstein width, we give an upper bound of the testing radius, namely,
for any n projected in the ball with radius less than this bound, the total error
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is larger than 1/2.

Lemma 4. For any n € H, we have Err(®,d,) > 1/2, for all d, < r5(d*) :=
sup{d |6 < 1/2y/n(kp(0))"/*}, where kp(0) := argmax, {b7_, ,(H11) > 6%} is
the Bernstein lower critical dimension, and rg(6*) is called the Bernstein lower
critical radius.

In Lemma 4, we show that when d,, is less than rp(0*), there is no test
that can distinguish the alternative from the null. In order to achieve nontrivial
power, we need d,, to be larger than the Bernstein lower critical radius r5(6*).
The critical radius r5(d*) depends on the shape of the space H;;. The lower
bound of kg(d) depends on the decay rate of the eigenvalues for H;;. According
to the Liebig’s law, the radius of a k-dimensional ball that can be embedded into
H11 is determined by the kth largest eigenvalue. Lemma 5 characterizes the lower
bound of k5(d) by the largest k such that the kth largest eigenvalue is larger than
52

Lemma 5. Let vy, be the kth largest eigenvalue of Hyy. Then, we have

kp(6) > arginax{\/% >0} (4.3)

Note that 7;, < k=2™/4. Then argmax,{,/7; > 6} < §~%™. Substituting the
lower bound of kg(d) into Lemma 4, we achieve rg(6*), which is the minimax
lower bound for the distinguishable rate in the following theorem.

Theorem 3. Suppose n € H. For any ¢ € (0,1), the minimax distinguishable
rate for the testing hypotheses (2.3) is d°(g) = n=2m/(4m+d),

Theorem 3 provides general guidance justifying a local minimax test for
testing nxz = 0. The proof of Theorem 3 is presented in the Supplimentary
Material S.6.4. Comparing d¢,(¢) with d derived in Theorem 2, we find that the
PLR test is minimax optimal.

5. Simulation Studies

In this section, we demonstrate the finite-sample performance of the proposed
test, alongside that of its competitors, using simulation studies. We choose the
K-S and AD tests as representatives of the most popular CDF-based tests, the
normalized MMD test (Li and Yuan| (2019)) as a kernel-based test, the empirical
likelihood test (ELT) (Cao and Van Keilegom (2006)) and kernel density test
(KDT) (Zhan and Hart| (2014))) as density-based tests, and the DSLICE (Jiang,
Ye and Liu| (2015)) as a discretization-based test. We use the function ad.test()
provided in the kSamples R package for the AD test, conduct the MMD test using
the dHSIC R package with the default Gaussian kernel, use the dslice R package
for the DSLICE test, and implement the ELT and KDT using the code provided
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by the authors. For our proposed PLR test, we choose the roughness parameter
using the data-adaptive tuning parameter selection criteria in Section S.1 in
the Supplimentary Material, and present. Also, we have additional simulation
studies for beta, beta mixtures, a multivariate distribution (d > 2), and multiple
distributions (U > 2) in the Supplimentary Material S.4.

The samples Y; = (X;,Z;), for i = 1,...,n, are generated as follows. We
first generate Z; o Bernoulli(0.5), with 0/1 representing the control/treatment
group. Then, X; are generated independently from the conditional distribution
[x|z(x) in the following settings. In each setting, we choose the averaged sample
size n in each group as 125, 250, 375, 500, 625, 750, 875, 1000. The size and
power are calculated as the proportions of rejection based on 1,000 independent
trials.

Setting 1: Gaussian distributions with mean zero and a group-specific variance:
X | L=z~ N(O, (1 + 511,2:1)2)7 where 51 = 0,02,03

Setting 2: Uni-modal Gaussian distribution versus bi-modal Gaussian distri-
bution: X | Z = z ~ 0.5N(=81.-1,(1 + §51.)) + 0.5N(d21._4,
(1+621.—0)), where we set 65 = 0,1,1.2.

Setting 3: Asymmetric mixture Gaussian distributions: X | Z = 2z ~
0.5N(2,1) + 0.5N (=2, (1 — d51,-1)?), where 65 = 0,0.3,0.45.

Setting 4: Symmetric mixture distributions: X | Z = 2z ~ 0.5N(2,(1 —
541z:1)2) + 05N(*2, (1 — 541,2:1)2)7 where 64 = 0, 03, 0.6.

Note that §; =0, 6, = 0, 3 = 0, or §; = 0 corresponds to the true Hy, which
we use to examine the size of the test statistics. Nonzero ¢ represents different
levels of heterogeneity between the two groups.

Figure S1 in the Supplimentary Material displays the power of each of the
six tests. For Setting 1, Figure S1(a)-(b) show that the power of the PLR,
MMD, ELT, AD, DSLICE, and KDT tests rapidly approaches one when n or §;
increases. The power of the K-S test increases slightly more slowly than that of
the other five tests. DSLICE appears to be slightly less powerful than the other
four tests, maybe because of its discrete nature and its challenges in choosing
a proper penalization parameter in the penalized slicing approach. For Setting
2, as shown in Figure S1(c)—(d), the MMD and PLR tests show comparable
power. The PLR test has slightly higher power when the heterogeneity is higher.
The power difference between these two tests increases as d, increases. AD and
K-S show significantly lower power. For Setting 3, Figure S1(e)—(f) show again
that the PLR test has the highest power. DSLICE performs quite well here,
possibly because of its flexibility in slicing. In contrast, K-S, MMD, ELT, AD,
and KDT have significantly lower power than that of both PLR and DSLICE.
For Setting 4, PLR and DSLICE show similar power in Figure S1(g)—(h). The
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power values of MMD, K-S and AD are significantly lower than the others. The
results demonstrate that both PLR and DSLICE are more adaptive to differently
shaped distributions than the other four methods are. Furthermore, PLR enjoys
additional advantages to DSLICE when the underlying distribution is smooth.

Figure S2 in the Supplimentary Material displays the size of K-S, MMD,
ELT, AD, DSLICE, KDT, and PLR, all of which are around the nominal level
of 0.05 in Settings 1 and 2, confirming that all tests are asymptotically valid.
In Setting 3 and Setting 4, the size of the PLR test is still asymptotically
correct, and that of DSLICE is reasonably close. The sizes of K-S, MMD,
and ELT are significantly below 0.05, showing that these three tests are too
conservative in handling bimodal distributions. We also test the performance
under a multivariate distribution (d > 2) and under multiple distributions in
the Supplemenary Material, finding that the proposed tests maintain the highest
power with a controlled type-I error, as they do in simulation studies with beta
and a mixtrure of beta distributions.

6. Real-Data Analysis

In this section, we apply the PLR K-S, and MMD tests to a metagenomic
analysis of type—II diabetes. We also present an example about a gene expression
analysis of chronic lymphocytic leukaemia in the Supplementary Material S.5.2.

Recent studies show that gut microbiota play an important role in many
human diseases, such as obesity and diabetes, and have observed significant
associations between diseases and gut microbial composition (Turnbaugh et al.
(2009); |Qin et al. (2012))). Owing to the rapid development of metagenomics, it is
possible to study microbial DNA contents directly using environmental samples.
Compared with traditional culture-based methods, metagenomics can study
unculturable microorganisms and are much more scalable. Several metagenomic
binning algorithms, such as MetaGen (Xing, Liu and Zhong (2017))), have been
proposed to estimate the abundance of microbial species with high accuracy. As
observed in [Turnbaugh et al.| (2009), the microbial distributions demonstrate
large cross-individual differences, because there are many environmental factors,
such as age, dietary habits, and antibiotic usage, which can alter the composition
of gut microbiota. A powerful test that can detect such distributional differences
between populations would be useful in metagenomic analysis.

This study aims to detect whether the microbial species have different
distributions between the case and the control groups. For a particular microbial
species, let X; be the log-transformed abundance for the ith individual, and let
Z; = 1/0 represent the case/control group. We apply the proposed PLR test to a
metagenomic data set, with 145 sequenced gut microbial DNA samples from 71
T2D patients (case group) and 74 individuals unaffected by T2D (control group),
using Illumina Genome Analyzer, yielding 378.4 gigabase paired-end reads. We
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use MetaGen (Xing, Liu and Zhong| (2017)) to perform the metagenomic binning,
in which DNA fragments are clustered into species-level bins, and estimate the
abundance of 2,450 identified species bins. We apply the K-S, MMD, and PLR
tests to 1,005 species clusters that have an abundance larger than 1% of the
mean abundance in more than 50% of the total samples. The 1005 p-values
are calculated using K-S, MMD, and PLR for each species. We adjust the p-
values using the Benjamini-Hochberg method (Benjamini and Hochberg| (1995)).
Controlling the false discovery rate at 5%, we compare the identified species from
the three methods in Figure S7 in the Supplimentary Material. The PLR, K-S,
and MMD tests identify 101, 4, and 13 species, respectively. The species identified
by PLR include those identified by K-S or MMD.

Moreover, two species are identified only by the PLR test in Figure S7
(B-C). The densities of these two species are both bimodal in both the case
and the control groups. Figure S7(B) plots the conditional density of the log-
transformed abundance of Roseburia intestinalis. The majority of the case
group has a significantly low abundance. In Figure S7(C), the other species,
Faecalibacterium prausnitzii has a lower abundance for a subgroup of patients
in the case group. Both species are butyrate—producing bacteria that can exert
profound immunometabolic effects, and thus are probiotic less abundant in T2D
patients. Our finding is consistent with that of Tilg and Moschen| (2014)), who
also observed that the two species’ concentrations are lower in T2D subjects.
In addition, we found that several Lactobacillus species are increased in T2D
patients, as in de la Vega-Monroy et al. (2013) and Qin et al.| (2012]).

7. Discussion

We have proposed a probabilistic decomposition approach for probability
densities based on the PLR. As demonstrated in simulation studies, our method
performs well under various families of density functions of different modalities.
Notably, our test possesses Wilks’ phenomenon and testing minimaxity. Such
results are not easy to derive for distance-based methods. Furthermore, Wilks’
phenomenon leads to an easy-to-execute testing rule that does not involve
resampling.

Supplementary Material

The online Supplementary Materal contains figures related to the simulation
studies and real-data analysis, additional simulated and real examples, the data-
adaptive tuning parameter selection, an extension to the case of a divergent
number of samples, the connection to the maximum mean discrepancy, all
technical proofs, and additional numerical results.
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