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Abstract: We consider the problem of comparing probability densities among

multiple groups. To this end, we develop a new probabilistic tensor product

smoothing spline framework to model the joint density of two variables. Under

such a framework, the probability density comparison is equivalent to testing the

presence/absence of interactions, for which we propose a penalized likelihood ratio

test. Here we show that the test statistic is asymptotically chi-squared distributed

under the null hypothesis. Furthermore, we derive a sharp minimax testing rate

based on the Bernstein width for nonparametric multi-sample tests, and show

that our proposed test statistic is minimax optimal. In addition, we develop a

data-adaptive tuning criterion for choosing the penalty parameter. The results of

simulations and real applications demonstrate that the proposed test outperforms

conventional approaches under various scenarios.
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1. Introduction

A fundamental problem in statistics is testing whether the probability

densities underlying U groups of observed data are the same, and is known as

the multi-sample test. This test plays an essential role in scientific fields such

as modern biological sciences and deep learning. For instance, in metagenomics

studies, comparing the densities of specific microbial species (or strains) from

different treatment groups yields insights on the disease and treatments (Bilban

et al. (2006); Turnbaugh et al. (2009); Qin et al. (2012)); in genomics, identifying

differentially expressed genes among multiple groups or conditions is fundamental

to many downstream analyses; and in machine learning, the multi-sample test

is becoming an essential component in some deep learning algorithms (Li et al.

(2017)).

In these modern applications, the underlying distributions usually demon-

strate complex patterns, including multi-modality and long tails, making it

difficult to specify their distributional families. In general, the classic normality-
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based tests, such as the two-sample t-test (Anderson (1958)) and the Shapiro–

Wilk test (Shapiro and Wilk (1965)), are not appropriate, and nonparametric

approaches are more appealing, owing to their distribution-free feature. Here

examples include distance-based tests, such as the Kolmogorov–Smirnov (K–

S) test (Darling (1957)) and Anderson–Darling (AD) test (Scholz and Stephens

(1987)), and their variants. An alternative is to apply discretization (“slicing”)

to continuous random variables (Miller and Siegmund (1982)). Jiang, Ye and

Liu (2015) propose the dynamic slicing test (DSLICE), which penalizes the

number of slices to regularize the test statistics. Gretton et al. (2007, 2012)

propose maximum mean discrepancy (MMD) two-sample tests by embedding the

probability distribution into a reproducible kernel Hilbert space (RKHS). Eric,

Bach and Harchaoui (2008) propose the regularized MMD test by regularizing

the eigenvalues of the kernel matrix. Kim (2021) extend the MMD test to a

multi-sample test using the maximum of pair-wise MMDs. In addition, several

approaches based on a kernel density estimation have been proposed (Anderson,

Hall and Titterington (1994); Cao and Van Keilegom (2006); Mart́ınez-Camblor,

de Uña Álvarez and Corral (2008); Mart́ınez-Camblor and de Uña-Álvarez (2009);

Zhan and Hart (2014)). A common challenge for MMD–based and kernel density–

based testing approaches is the choice of the tuning parameters, for example, the

kernel bandwidth or the roughness penalty parameter, because the power of such

methods is sensitive to these parameters. Furthermore, they have drawbacks

when applied to long-tailed distributions, because the kernel bandwidth is fixed

across the entire sample (Silverman (1986)), leading to low power in terms of

detecting changes at the tails. In many applications, such as gene expression

analyses, metagenomics, and economics, long-tailed distributions are common.

To overcome these limitations, we propose a likelihood-based test that can

automatically adapt to densities with different shapes, and develop a data-

adaptive tuning method to automatically choose the penalization parameter.

We consider X as a continuous random vector and Z as a discrete random

variable, indicating the group information. Instead of directly comparing the

multiple densities, we characterize the dependence between X and Z using its

log-transformed joint density η(x, z) within a space H. The key idea is to

uniquely decompose the log-transformed joint density η ∈ H into the main effects

ηX , ηZ and the interaction effect ηXZ . To do so, we use a novel probabilistic

decomposition of H in which the magnitude of the interaction exactly quantifies

the density difference between multiple groups. The multi-sample test is thus

equivalent to the interaction test

H0 : ηXZ(x, z) = 0 vs. H1 : ηXZ(x, z) ̸= 0. (1.1)

We propose a penalized likelihood ratio (PLR) test by evaluating the penalized

log-likelihood functional of η under H0 and H1, and establish its null distribution
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as a chi-squared distribution. Distance-based with distance-based testing meth-

ods are not easily generalizable to multi-sample tests, because the asymptotic

distribution of the maximum pair-wise distance usually does not have an explicit

form. In contrast, the proposed PLR test can be applied directly to multi-sample

tests by letting Z ∈ {1, . . . , U}. We further propose a data-adaptive rule that

selects the tuning parameter to guarantee testing optimality. The PLR test makes

full use of the distribution information, and is sensitive to the density difference

between the null and the alternative hypotheses.

This work makes several main contributions to the literature. First, without

an explicit expression of the function estimate, the technical tools used in the

Wald–type nonparamatric tests in Xing et al. (2020), Liu et al. (2021) and Liu,

Shang and Cheng (2020) cannot be generalized to a likelihood-based test. We

propose a new probabilistic decomposition of the tensor product RKHS in Section

3. Existing studies on functional decomposition without considering probabilistic

measures (Gu (2013); Wahba (1990)) focus on estimation, leaving hypothesis

testing as an open problem. By embedding the probability measures of X and

Z into the tensor product decomposition of H, we can transform the problem of

a density comparison into a significance test of the interaction between X and

Z, which provides a foundation for the minimax testing principle (see Section

4). This new probabilistic decomposition framework can be generalized to a

broader class of dependence tests, including higher-order independence tests and

conditional independence tests, by using the magnitudes of the decomposed

terms to measure the corresponding dependency. Second, we establish the

minimax lower bound for density comparison problems based on the Bernstein

width (Pinkus (2012)). Existing minimax lower bounds of the testing rate are

commonly derived from Gaussian sequence models (Ingster (1989, 1993); Wei

and Wainwright (2018); Xing et al. (2020)) in a simple regression setting, and

thus cannot be adapted to a density comparison. In contrast, our result can be

easily generalized to a wide range of dependence testing problems. We further

prove that the PLR–based multi-sample test is minimax optimal. In contrast

to our proposed PLR test, the log-likelihood ratio without a penalty term does

not enjoy minimax optimality. Li and Yuan (2019) propose a normalized MMD

by choosing scaling parameters for the Gaussian kernel properly, and establish

its minimax property. Similar to the original MMD (Gretton et al. (2007)),

the approach of Li and Yuan (2019) is also based on a fixed kernel bandwidth,

which can lead to low sensitivity when the underlying densities are long-tailed.

However, our proposed approach is based on the penalized likelihood estimators,

which can adapt automatically to long–tailed distributions. As shown in the

simulation and real-data studies in Sections 5 and 6 respectively, our proposed

test exhibits greater power when the underlying densities have complex features,

such as long tails and multi-modality. In addition, we reveal an interesting

connection between the PLR and MMD tests in the Supplimenary Material. We
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also thank our referees for helpful insights on the connections between the MMD

test and the Hilbert–Schmidt independence criterion (HSIC) test. We show that

the MMD test (with a particularly selected kernel) is exactly the squared norm

of the gradient of the log-likelihood ratio.

The rest of this paper is organized as follows. In Section 2, we construct our

proposed penalized likelihood ratio test. Section 3 introduces the probabilistic

decomposition of the tensor product RHKS and the main theoretical results,

including the asymptotic distribution of the PLR test and its power performance.

Section 4 establishes the minimax lower bound of the density comparisons, and we

demonstrate the finite-sample performance of our test using simulation studies.

Section 6 presents analyses of two real-world examples using our test. Section 7

contains a discussion. In the Supplementary Material, we extend our PLR test

to the case when the number of samples is divergent, and establish the minimax

distinguishable rate and the connection between our PLR test and the MMD

test. Proofs of the main results are provided in the Supplemenary Material.

2. PLR for a Multi-Sample Test

The multi-sample problem can be stated as follows. Suppose we have n

independent d-dimensional observations, Xi ∈ [0, 1]d, for i = 1, . . . , n. Each Xi

is associated with a label Zi ∈ {1, . . . , U}, which indicates that Xi is taken from

the population indexed by Zi with a probability density function fZi
. We aim to

test whether f1, . . . , fU are the same. Other than a smoothness constraint, we do

not impose any constraints on the probability density functions f1, . . . , fU .

An equivalent formulation of the problem can be given in terms of the joint

distribution of X and Z and their conditional independence. That is, consider

n independent an identically distributed (i.i.d.) observations, Yi = (Xi, Zi), for

i = 1, . . . , n, taken from a population Y = (X,Z) with a joint probability density

f(x, z). Let

η(x, z) = log(f(x, z)).

Let fX|Z=z(x) be the conditional density of X given Z = z, for z = 1, . . . , U . The

multi-sample problem is equivalent to testing whether X and Z are independent,

that is,

H0 : fX|Z=1(·) = · · · = fX|Z=U(·)
vs. H1 : ∃ u1 ̸= u2 such that fX|Z=u1

(·) ̸= fX|Z=u2
(·). (2.1)

We denote n1 = |{i : Zi = 1}|, . . . , nU = |{i : Zi = U}|, and assume that nj are

comparable, that is, there exist constants 0 < c1 ≤ c2 such that c1n1 ≤ nu ≤
c2n1, for ∀ u = 1, . . . , U . We characterize the dependence between X and Z by

their interaction with respect to their joint density, and show that testing the

significance of this interaction is equivalent to the multi-sample test. We first



MINIMAX MULTI-SAMPLE TEST 2069

consider the case when U is a fixed constant, and then extend the theory for

diverging U .

In order to characterize the interaction between X and Z, we first define two

averaging operators acting on the log-transformed joint density function η(x, z).

For any x, the operator Ax maps η(x, z) to EXη(X, z), a function in z, and for

any z, the operator Az maps η(x, z) to EZη(x, Z). The interaction term is then

characterized by the decomposition

ηXZ(x, z) = (I − Ax)(I − Az)η(x, z) ≡ η(x, z)− (Axη)(z)− (Azη)(x) +AxAzη,

(2.2)

where I is the identity operator. Note that (2.2) is essentially derived from

a functional ANOVA decomposition of η(x, z), where AxAzη is the constant,

(I − Ax)Azη and (I − Az)Axη are the main effects of x and z, respectively,

and (I − Ax)(I − Az)η is the interaction effect. A straightforward derivation

shows that the multi-sample test is equivalent to testing whether ηXZ is zero; see

Proposition S.4 in the Supplimentary Material.

We assume that η is in an RKHS H, and let H0 = {η ∈ H | ηXZ = 0} be the

subspace of H containing all bivariate functions with ANOVA decompositions

that have a zero interaction term. Based on Proposition S.4, the multi-sample

test problem in (2.1) is equivalent to testing

H0 : η ∈ H0 vs. H1 : η ∈ H\H0. (2.3)

Consider estimating η by minimizing of the penalized likelihood

ℓn,λ(η) = − 1

n

n∑
i=1

η(xi, zi) +
∑

z∈{1,...,U}

∫
X
eη(x,z)dx+

λ

2
J(η), (2.4)

where X = [0, 1]d. The two sums form the negative log-likelihood representing

the goodness-of-fit, J(·) is a quadratic functional enforcing a roughness penalty

on η, and λ > 0 is a tuning parameter controlling the trade-off. We propose the

following PLR test statistic:

PLR = inf
η∈H0

ℓn,λ(η)− inf
η∈H

ℓn,λ(η), (2.5)

where the first and second terms are the optimal penalized likelihoods under the

reduced model H0 and the full model H, respectively.

Note that the integrals in (2.4) guarantee the unitary constraint of a

probability density function (see Theorem 3.1 in Silverman (1982)). We choose

equation (2.4) instead of the logarithm of the integral in Gu and Qiu (1993),

because the Fréchet derivative of the PLR includes an integral in the denominator,

which makes the theoretical derivation more difficult.
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2.1. Penalized likelihood functional under the full model

Under the full model, we minimize (2.4) in H. Let H⟨X⟩ be an RKHS of

functions on the marginal domain [0, 1]d and H⟨Z⟩ be an RKHS of functions

on {1, . . . , U}. Then, the full space H = H⟨X⟩ ⊗ H⟨Z⟩ is their tensor

product and also an RKHS, where ⊗ denotes the tensor product of two linear

spaces. Correspondingly, if K⟨X⟩ and K⟨Z⟩ are the reproducing kernels (RKs)

uniquely associated with the RKHS H⟨X⟩ and H⟨Z⟩, respectively, then the

RK for H is simply the product of K⟨X⟩ and K⟨Z⟩; that is, K(Yi,Yj) =

K⟨X⟩(Xi, Xj)K⟨Z⟩(Zi, Zj).

For the continuous domain [0, 1]d, we consider the mth–order Sobolev space

on [0, 1]d, that is, H⟨X⟩ = {f ∈ L2([0, 1]d) | f (α) ∈ L2([0, 1]d), ∀ |α| ≤ m},
where |α| =

∑d
l=1 αl. When d = 1, the associated kernel K⟨X⟩(Xi, Xj) =

1 + (−1)m−1k2m(Xi − Xj), where k2m(x) is the 2mth–order scaled Bernoulli

polynomial (Abramowitz and Stegun (1948)). For m = 2, k4(x) = (1/24)((x −
0.5)4 − 0.5(x − 0.5)2 + (7/240)), and the corresponding K⟨X⟩ is known as the

homogeneous cubic spline kernel. When d > 2, Novak et al. (2018) show

that the associated kernel is K⟨X⟩(Xi, Xj) =
∫
Rd [

∏d
l=1 cos(2π(Xil −Xjl)Gl)]/[1 +∑

0<|α|≤m

∏d
l=1(2πGl)

2αl ]dG, where G ∈ Rd. An example for the discrete kernel

is K(Zi, Zj) = 1{Zi=Zj}.

Let η̂n,λ be the penalized likelihood estimator of η under H1, that is,

η̂n,λ = argmin
η∈H

ℓn,λ(η). (2.6)

Because of the integration in (2.4), the representer theorem (Wahba (1990))

does not apply here, and the exact solution is not computable (Gu (2013)). We

consider the efficient approximation of Gu (2013) by calculating the minimizer of

the penalized likelihood functional in H† = span{K(Yi, ·), i = 1, . . . , n}. By the

definition of H†, the minimizer η†(·) of ℓn,λ(η) for η† ∈ H† has the form

η†(·) =
n∑

i=1

K(Yi, ·)ci = ζTc, ∀η† ∈ H†, (2.7)

where ζT = (K(Y1, ·), . . . ,K(Yn, ·)) is the vector of functions obtained from the

kernel K with its first argument fixed at Yi, and c = (c1, . . . , cn) is the coefficient

vector. Because J(η) is ⟨η, η⟩H where ⟨·, ·⟩H is the inner product in H with

reproducing kernel K, we have J(η†) = cTQc, where Q ∈ Rn×n is the empirical

kernel matrix with (i, j)th entry Qij = K(Yi,Yj). This representation converts

the infinite-dimensional minimization problem of (2.4) with respect to η into a

finite-dimensional optimization problem with respect to the coefficient vector c,

by solving



MINIMAX MULTI-SAMPLE TEST 2071

ĉ = argmin
c

{
− 1

n
1T
nQc+

∫
Y
exp{ζTc}dy + λ

2
cTQc

}
, (2.8)

where 1n is an n×1 vector of ones, and the second term is the same as the second

term in (2.4), with the summation and integration over (x, z) replaced with an

integration over y, for convenience of presentation. The objective function in

(2.8) is strictly convex (Tapia and Thompson (1978)). Thus, we can optimize it

with respect to c using a standard convex optimization procedure, such as the

Newton–Raphson algorithm; see, for example, Gu (2013) and Wang (2011). The

integrals in (2.8) can be calculated using numerical integration (see Section 7.4.2

in Gu (2013) for details). When n is large, the representation (2.7) involves a large

number of coefficients, which may lead to numerical instability. To tackle this, one

may consider only a subsample of {Yi : i = 1, . . . , n} to use in the presentation

(Kim and Gu (2004); Ma, Huang and Zhang (2015)). For the nonparametric

inference problem, the subsampling method maintains the minimax optimality

as a result of the properly selected subsample size, as shown in Liu et al. (2021).

Practically, we follow Liu et al. (2021) when selecting the subsample size, which

shows comparable power with the full data. In general, we denote by

η̂†
n,λ = ζT ĉ (2.9)

the penalized maximum likelihood estimate under the full model.

2.2. Penalized likelihood functional under the reduced model

Let η̂0
n,λ be the penalized likelihood estimator of η under H0 in (2.3), that is,

η̂0
n,λ = argmin

η∈H0

ℓn,λ(η). (2.10)

In Section 3.1, we show that H0 is also an RKHS, with a kernel function

K0(·, ·), which enables us to use a similar reparameterization trick to solve the

problem in (2.10). In the following, we show the kernel function K0(Yi,Yj) =

K⟨X⟩
0 (Xi, Xj)K⟨Z⟩

0 (Zi, Zj)+K⟨X⟩
1 (Xi, Xj)K⟨X⟩

0 (Zi, Zj)+K⟨X⟩
0 (Xi, Xj)K⟨X⟩

1 (Zi, Zj),

where K⟨X⟩
0 (Xi, Xj) = EX [K⟨X⟩(X,Xj)] + EX [K⟨X⟩(Xi, X)] − EX,X̃K⟨X⟩(X, X̃),

K⟨X⟩
1 = K⟨X⟩−K⟨X⟩

0 , K⟨Z⟩
0 (Zi, Zj) = ωZi

+ωZj
−
∑1

ℓ=0 ω
2
ℓ , K

⟨Z⟩
1 = K⟨Z⟩−K⟨Z⟩

1 , and

ωl = P (Z = l), for l = 1, . . . , U . We insert the empirical estimate of ω̂l = nl/n,

for l = 1, . . . , U , to calculate K⟨Z⟩. The detailed derivation of K0 depends on our

proposed probabilistic decomposition of H, and is deferred to Section 3.1.

Similarly to (2.7), we consider the efficient approximation in Gu (2013)

by calculating the minimizer of the penalized likelihood functional in H0† =

span{K0(Yi, ·), i = 1, . . . , n}, which has the form

η0†(·) =
n∑

i=1

K0(Yi, ·)c0i = ζT0 c0, ∀η0† ∈ H0†. (2.11)
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To obtain the penalized likelihood estimators, we first solve the quadratic program

ĉ0 = argmin
c0

{
− 1

n
1T
nQ0c0 +

∫
Y
exp{ζT0 c0}+

λ

2
cT0 Q0c0

}
, (2.12)

where the (i, j)th entry of Q0 is K0(Yi,Yj). Numerically, we express

Q0 = [(In −H)Q⟨X⟩(In −H)] ◦ [(In −H)Q⟨Z⟩(In −H)]

+[HQ⟨X⟩H] ◦ [(In −H)Q⟨Z⟩(In −H)]

+[(In −H)Q⟨X⟩(In −H)] ◦ [HQ⟨Z⟩H],

where Q⟨X⟩ is the empirical kernel matrix of H⟨X⟩ with (i, j)th entry Q
⟨X⟩
ij =

K⟨X⟩(Xi, Xj), Q⟨Z⟩ is the empirical kernel matrix of H⟨Z⟩ with (i, j)th entry

Q
⟨Z⟩
ij = K⟨Z⟩(Zi, Zj), and H = In − (1/n)1n1

T
n , where In is the n × n identity

matrix, 1n is an n×1 vector of ones, and ◦ denotes the Hadamard product. Then,

we solve the quadratic optimization similarly to (2.8), and output the function

estimate

η̂0,†
n,λ = ζ0

T
ĉ0. (2.13)

2.3. Test statistics

Plugging the minimizers of the penalized likelihood functional under the full

and reduced models into (2.5), we have the PLR statistic

PLRn,λ = ℓn,λ(η̂
0
n,λ)− ℓn,λ(η̂n,λ). (2.14)

We show in Section 3.2 that PLRn,λ is asymptotically χ2 distributed under H0

in the sense that (2bn,λ)
−1/2(2PLRn,λ − bn,λ) → N(0, 1) as bn,λ diverges, for a

wide range of λ. Because η̂n,λ and η̂0
n,λ are not computable, we use their efficient

approximations η̂†
n,λ and η̂0,†

n,λ, respectively. Then, an efficient approximation of

the test statistic (2.14) is

PLR†
n,λ = ℓn,λ(η̂

0,†
n,λ)− ℓn,λ(η̂

†
n,λ),

which we show that this efficient approximation has the same asymptotic

distribution as PLRn,λ. In practice, we use the gss package (Gu and Qiu (1993))

to implement the scalable computation, using the efficient approximation in Kim

and Gu (2004) with a compuation cost of O(Nq2), with q = O(N2/(2m+1)) for the

mth–order Sobolev space.

For the nonparametric multi-sample test, the parameter space under H0 is

infinite-dimensional as n → ∞. Thus, the assumptions of the Neyman–Pearson

lemma are not satisfied, and the uniformly most powerful test may not exist, in

general. We evaluate the power performance using the minimax rate of testing,

which is defined as the minimal distance between the null and the alternative
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hypotheses such that valid testing is possible (Ingster (1989)). For any generic

0–1 valued testing rule Φ = Φ(Y1, . . . ,Yn) and a distinguishable rate dn > 0

measuring the distance between the null and the alternative hypotheses, we define

the total error Err(Φ, dn) of Φ under dn as

Err(Φ, dn) = EH0
{Φ}+ sup

∥ηXZ∥2≥dn

Eη {1− Φ} , (2.15)

where EH0
{·} denotes the expectation with respect to the truth η∗ under H0.

The first and second terms on the right side of (2.15) represent the type-I and

type-II errors, respectively, of Φ. In Section 3, we show that the distinguishable

rate of our proposed PLR test is related to the tuning parameter λ. We then

derive the optimal distinguishable rate by carefully selecting λ. A data-adaptive

tuning method is developed for practical use. In Section 4, we use information

theory to establish the minimum distinguishable rate dn for general testing rules,

extending the minimax testing principle pioneered by Ingster (1989) to a density

comparison.

3. Theoretical Properties of PLR Test

In this section, we first introduce the probabilistic decomposition of a

tensor product RKHS, enabling us to construct the kernel on the subspace

H0. Such a decomposition is also of independent interest for studying different

kinds of dependence between random variables. Compared with the function

ANOVA decomposition in Wahba (1990) and Gu and Qiu (1993), the proposed

decomposition makes the interaction term in (2.2) have a zero expectation

under the null hypothesis, which plays an essential role in deriving the limiting

distribution of our test statistic. We then derive the asymptotic null distribution

of our proposed test statistic and the optimal power of the test. Lastly, we develop

a data-adaptive tuning procedure to choose the penalty parameter.

3.1. Probabilistic decomposition of the tensor product RKHS

We assume that the function η(x, z) belongs to a tensor product RKHS

H = H⟨X⟩ ⊗ H⟨Z⟩, in which H⟨X⟩ and H⟨Z⟩ represent the marginal RKHS of

X and Z, respectively. We aim to decompose H into orthogonal subspaces

with a hierarchical structure similar to that of the main effects and interactions

in a smoothing spline ANOVA (Wahba (1990); Gu (2013); Lin (2000); Wang

(2011)), while embedding the probabilistic distributions of X and Z into the

decomposition. This decomposition enables us to convert the multi-sample test

problem into testing for the presence of an interaction. It includes two steps:

decompose each marginal RKHS into mean and main effects, and then apply the

distributive law to expand the tensor product of the marginal RKHS into a series

of subspaces.
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We first introduce the probabilistic tensor decomposition of the discrete

domain function space H⟨Z⟩ := {f(z) : z ∈ {1, . . . , U}} using a probabilistic

averaging operator. Note that H⟨Z⟩ = RU , with the Euclidean inner product

(⟨·, ·⟩2), and the kernel on H⟨Z⟩ is K⟨Z⟩(z, z̃) = 1{z=z̃}. Consider a discrete

probabilistic measure PZ on Z = {1, . . . , U} such that PZ(Z = j) = ωj ≥ 0,

with
∑U

j=1 ωj = 1. Let ω = (ω1, . . . , ωU), and define the probabilistic averaging

operator as AZ := f → EZf(Z) = ⟨ω, f⟩H⟨Z⟩ . Because EZ [K⟨Z⟩
Z ] = ω, we

can rewrite the probabilistic averaging operator as AZ := f → EZf(Z) =

⟨EZ [K⟨Z⟩
Z ], f⟩2. Then, EZ [K⟨Z⟩

Z ] can be treated as a mean embedding of PZ in

H⟨Z⟩. We further define the tensor sum decomposition of H⟨Z⟩ as

H⟨Z⟩ = H⟨Z⟩
0 ⊕H⟨Z⟩

1 := span{EZK⟨Z⟩
Z } ⊕ {f ∈ H : EZ{f(Z)} = 0}, (3.1)

where H⟨Z⟩
0 is the grand mean space, and H⟨Z⟩

1 is the main effect space.

Each subspace in (3.1) is an RKHS with their corresponding kernels stated in

Lemma S.1 in the Supplimentary Material. For fixed a design of Z, we set

ωj = nj/
∑U

j=1 nj.

Next, let us consider the continuous random variableX ∈ X and a probability

measure PX on X . We suppose H⟨X⟩ is the mth-order Sobolev space with the

corresponding inner product ⟨·, ·⟩H⟨X⟩ . The results also hold for its homogeneous

subspace. Let K⟨X⟩ be the corresponding kernel satisfying ⟨f,K⟨X⟩
x ⟩H⟨X⟩ = f(x),

for any f ∈ H⟨X⟩. Similarly, the probabilistic averaging operator is AX := f →
EXf(X) = EX⟨K⟨X⟩

X , f⟩H⟨X⟩ = ⟨EXK⟨X⟩
X , f⟩H⟨X⟩ . Here, EXK⟨X⟩

X plays the same

role as ω in the Euclidean space. Then, the tensor sum decomposition of a

functional space is defined as

H⟨X⟩ = H⟨X⟩
0 ⊕H⟨X⟩

1 := span{EXK⟨X⟩
X } ⊕ {f ∈ H⟨X⟩ : AXf = 0}. (3.2)

Analogously, we call H⟨X⟩
0 the grand mean space and H⟨X⟩

1 the main effect space.

Here EXK⟨X⟩
X is known as the kernel mean embedding, which is well established in

the statistics literature (Berlinet and Thomas-Agnan (2011)). The construction

of the kernel functions for H⟨X⟩
0 and H⟨X⟩

1 are included in Lemma S.2 in the

Supplementary Material.

We are now ready to consider the RKHS H = H⟨X⟩ ⊗ H⟨Z⟩ on the product

domain Y = X × Z. Applying the distributive rule, the decomposition of H is

written as

H = (H⟨X⟩
0 ⊕H⟨X⟩

1 )⊗ (H⟨Z⟩
0 ⊕H⟨Z⟩

1 ) ≡ H00 ⊕H10 ⊕H01 ⊕H11, (3.3)

where Hij = H⟨X⟩
i ⊗ H⟨Z⟩

j , for i = 0, 1 and j = 0, 1. Analogously to the classic

ANOVA, H10 and H01 are the RKHSs for the main effects, and H11 is the RKHS

for the interaction. We call the decomposition of H in (3.3) the probabilistic

decomposition of the tensor product RKHS H, because it embeds the probability
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measure of the random variables X and Z. Based on Theorem 2.6 in Gu (2013),

we construct the kernels K00,K10,K01, and K11 for the subspaces H00,H10,H01,

andH11, respectively; see Lemma S.3 in the Supplimentary Material for a detailed

construction.

3.2. Asymptotic distribution and Wilks’ phenomenon

In this section, we present the asymptotic distribution of our PLR test

statistic in Theorem 1. The proof relies on a technical lemma about the eigen-

structures of H0 and H; see Lemma 1 below. For any η, η̃ ∈ H, define

⟨η, η̃⟩ = V (η, η̃) + λJ(η, η̃), (3.4)

where V (η, η̃) = Eη∗{η(Y)η̃(Y)} with the expectation taken under the true η∗,

and J is a bilinear form corresponding to (2.4). Then, it holds that H and H0,

endowed with the inner product (3.4), are both RKHSs; see Lemma 2. In the

following lemma, we characterize the eigenvalues and eigenvectors of the Rayleigh

quotient V/J .

Lemma 1.

(a) There exist a sequence of functions {ξp}∞p=1 ⊂ H and a sequence of non-

negative eigenvalues {ρp}∞p=1, with ρp ≍ p2m/d, such that V (ξp, ξp′) = δp,p′ ,

J(ξp, ξp′) = ρpδp,p′, for all p, p′ ≥ 1, and any η ∈ H can be written as

η =
∑∞

p=1 V (η, ξp)ξp.

(b) Moreover, there exists a proper subset {ρ0p, ξ0p}∞p=1 of {ρp, ξp}∞p=1 satisfying

{ξ0p}∞p=1 ⊂ H0, and for any η ∈ H0, η =
∑∞

p=1 V (η, ξ0p)ξ
0
p. The convergence

of both series holds under (3.4).

(c) ρ⊥p ≍ p2m/d, where {ρ⊥p }∞p=1 ⊂ {ρp}∞p=1 is a subset of eigenvalues correspond-

ing to {ξ⊥p }∞p=1 ≡ {ξp}∞p=1\{ξ0p}∞p=1. The set {ξ⊥p }∞p=1 generates the orthogonal

complement of H0 under the inner product (3.4).

Lemma 1 introduces an eigensystem that simultaneously diagonalizes the

bilinear forms V and J . This eigensystem does not depend on the unknown

null density, depending only on the functional space H. Moreover, H0 can be

generated by a proper subset of the eigenfunctions, which is crucial for analyzing

the likelihood ratios.

Let ⟨·, ·⟩0 denote the restriction of ⟨·, ·⟩ on the subspace H0. Specifically, for

any η, η̃ ∈ H0, ⟨η, η̃⟩0 = ⟨η, η̃⟩. Then, H and H0 are both RKHSs endowed with

these inner products.

Lemma 2. (H, ⟨·, ·⟩) and (H0, ⟨·, ·⟩0) are both RKHSs with the corresponding

inner products.
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Following Lemma 2, there exist reproducing kernel functions K̃(·, ·) and

K̃0(·, ·) defined on Y × Y satisfying, for any y ∈ Y, η ∈ H, η̃ ∈ H0:

K̃y(·) ≡ K̃(y, ·) ∈ H, K̃0
y(·) ≡ K̃0(y, ·) ∈ H0,

⟨K̃y, η⟩ = η(y), ⟨K̃0
y, η̃⟩0 = η̃(y). (3.5)

We further introduce positive-definite self-adjoint operators Wλ : H → H
and W 0

λ : H0 → H0, such that

⟨Wλη, η̃⟩ = λJ(η, η̃) or all η, η̃ ∈ H,

⟨W 0
λη, η̃⟩0 = λJ0(η, η̃) for all η, η̃ ∈ H0, (3.6)

where J0(η, η̃) = θ−1
01 J01(η, η̃) + θ−1

10 J10(η, η̃) is the restriction of J over H0. By

(3.6), we get ⟨η, η̃⟩ = V (η, η̃) + ⟨Wλη, η̃⟩, ⟨η, η̃⟩0 = V (η, η̃) + ⟨W 0
λη, η̃⟩0. In the

following, we give explicit expressions of K̃y(·) and Wλξp(·).

Proposition 1. For any y ∈ Y and η ∈ H, we have

∥η∥2 =
∞∑
p=1

|V (η, ξp)|2(1 + λρp),

K̃y(·) =
∞∑
p=1

ξp(y)

1 + λρp
ξp(·), K̃0

y(·) =
∞∑
p=1

ξ0p(y)

1 + λρ0p
ξ0p(·),

Wλξp(·) =
λρp

1 + λρp
ξp(·), W 0

λξ
0
p(·) =

λρ0p
1 + λρ0p

ξ0p(·),

where {ρ0p, ξ0p}∞p=1 and {ρp, ξp}∞p=1 are the eigensystems defined in Lemma 1.

As shown in Proposition 1, the eigenvalues for K̃ are {(1 + λρp)
−1}∞p=1, and

have a slower decay rate that of the eigenvalues for K, owing the scaling by λ.

In particular, K̃ can be viewed as a scaled kernel, with the product kernel KH =

K00 +K01 +K10 +K11 introduced in Lemma S.3 in the Supplimentary Material.

Note that trace(K̃) =
∑∞

p=1(1+λρp)
−1 ≍ λ−d/(2m) is the effective dimension that

measures the complexity of H; see Bartlett, Bousquet and Mendelson (2005) and

Mendelson (2002).

Next, we derive the null asymptotic distribution of the PLR statistics, which

relies on the Taylor expansion of the PLR functional. First, we introduce the

Frechét derivatives of the log-likelihood functional. Denote by D,D2, and D3 the

first-, second-, and third-order Frechét derivatives, respectively, of ℓn,λ(η). Let

Sn,λ(η) and S0
n,λ be the score functions of the log-likelihood functionals ℓn,λ and

ℓ0n,λ, respectively. Define y = (x, z). Then, these derivatives can be summarized

as follows:
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For any η,∆η1,∆η2,∆η3 ∈ H,

Dℓn,λ(η)∆η1 = − 1

n

n∑
i=1

∆η1(Yi) +

∫
Y
∆η1(y)e

η(y)dy + λJ(η,∆η1)

= ⟨− 1

n

n∑
i=1

K̃Yi
+ EηK̃Y +Wλη,∆η1⟩

≡ ⟨Sn,λ(η),∆η1⟩, (3.7)

D2ℓn,λ(η)∆η1∆η2 =

∫
Y
∆η1(y)∆η2(y)e

η(y)dy + λJ(∆η1,∆η2), (3.8)

D3ℓn,λ(η)∆η1∆η2∆η3 =

∫
Y
∆η1(y)∆η2(y)∆η3(y)e

η(y)dy. (3.9)

The second equality of (3.7) follows from the reproducing property (3.5) and∫
Y
∆η(y)eη(y)dy = Eη∆η1(Y) = Eη⟨K̃Y,∆η1⟩ = ⟨EηK̃Y,∆η1⟩.

The Taylor expansion of the PLR functional gives

PLRn,λ = ℓn,λ(η̂
0
n,λ)− ℓn,λ(η̂n,λ)

= Dℓn,λ(η̂n,λ)g +

∫ 1

0

∫ 1

0

sD2ℓn,λ(η̂n,λ + ss′g)ggdsds′

=

∫ 1

0

∫ 1

0

s{D2ℓn,λ(η̂n,λ + ss′g)gg −D2ℓn,λ(η
∗)gg}dsds′ + 1

2
D2ℓn,λ(η

∗)gg

≡ I1 + I2, (3.10)

where g = η̂0
n,λ − η̂n,λ and η∗ is the underlying truth. In the proof of Theorem 1,

we show that I2 is a leading term compared with I1. From (3.8), we have that

I2 = (1/2)∥g∥2 = (1/2)∥η̂0
n,λ − η̂n,λ∥2. As we will see, the asymptotic distribution

of ∥η̂n,λ − η̂0
n,λ∥2 relies on the Bahadur representations of η̂0

n,λ and η̂n,λ.

We further prove the following Bahadur representations for the difference

between the two penalized likelihood estimators by adapting the empirical

processes technique of Shang and Cheng (2013). Lemma 3 is crucial for proving

Theorem 1.

Lemma 3. Suppose h = λd/2m and nh2 → ∞. Then, we have

n1/2∥η̂n,λ − η̂0
n,λ∥ = n1/2∥S0

n,λ(η
∗)− Sn,λ(η

∗)∥+ oP (1),

where Sn,λ(η
∗) and S0

n,λ(η
∗) are the score functions for ℓn,λ and ℓ0n,λ, respectively.

This lemma shows that the main term I2 in Taylor’s expansion of the

PLR functional is determined by the norm of the difference between the score

function of ℓn,λ and the score function of ℓ0n,λ. Because the score functions have
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explicit expressions through Proposition 1, we can characterize the asymptotic

null distribution of I2 using the eigensystem introduced in Lemma 1.

Before stating our main theorem, we introduce an assumption commonly

used in the literature for deriving the rates of density estimates; see, for example,

Theorem 9.3 of Gu (2013).

Assumption 1. There exists a convex set B ⊂ H around η∗ and a constant

c1 > 0 such that, for any η ∈ B, cEη∗{η̃2(Y)} ≤ Eη{η̃2(Y)}. Furthermore,

with probability approaching one, η̂n,λ ∈ B; and, under H0, with probability

approaching one, η̂0
n,λ ∈ B.

This condition is satisfied when η̂n,λ and η̂0
n,λ are stochastically bounded

and the members of B have uniform upper and lower bounds on the domain

Y. The following theorem provides the asymptotic distribution for the PLR test

statistic under Assumption 1. The proofs of Theorem 1 and Corollary 1 are in

the Supplementary Material S.6.3.

Theorem 1. Suppose m ≥ 1 and Assumption 1 holds. Let h = λd/2m and

nh2m+d = O(1), nh2 → ∞ as n → ∞. Under H0, we have

2n · PLRn,λ − θλ√
2σλ

d−→ N(0, 1), n → ∞, (3.11)

where θλ =
∑∞

p=1(1/1 + λρ⊥p ), σ2
λ =

∑∞
p=1(1/(1 + λρ⊥p )

2).

Note that h ≍ n−c, with 1/(2m+ d) ≤ c ≤ 1/2 satisfying the rate conditions

in Theorem 1. Therefore the asymptotic distribution (3.11) holds under a wide

range of choices of h. The quantities θλ and σλ depend solely on the eigenvalues

ρ⊥p and λ. Based on (3.11), we propose the following decision rule Φn,λ at the

significance level α:

Φn,λ(α) = 1(|2n · PLRn,λ − θλ| ≥ z1−α/2

√
2σλ), (3.12)

where 1(·) is the indicator function, and z1−α/2 is the 1 − α/2 quantile of the

standard normal distribution. Hence, we reject H0 at the significance level α

if Φn,λ = 1. Wilks’ phenomenon is also observed here, similarly to the non-

parametric/semiparametric regression framework (Fan, Zhang and Zhang (2001);

Shang and Cheng (2013)). Specifically, let rλ = θλ/σ
2
λ. Then, (3.11) implies that,

as n → ∞,
2nrλ · PLRn,λ − rλθλ√

2rλθλ

d−→ N(0, 1).

Therefore, 2nrλ · PLRn,λ is asymptotically distributed as a χ2 distribution with

degrees of freedom rλθλ. In the following corollary, we extend our asymptotic

theory to the emiprical version of ρ⊥p .
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Corollary 1. Assume that Assumption 1 holds. Let h = λd/2m and nh2m+d =

O(1), nh2 → ∞ as n → ∞. Under H0, we have

2n · PLR†
n,λ − θλ√

2σλ

d−→ N(0, 1), n → ∞, (3.13)

where θ̂λ =
∑n

p=1 1/(1 + λρ̂⊥p ), σ̂2
λ =

∑n
p=1 1/(1 + λρ̂⊥p )

2, {ρ̂⊥p }np=1 are empirical

eigenvalues for K11.

In Corollary 1, we show the asymptotic distribution of the efficient approxi-

mation PLR†
n,λ. The proof of Corollary 1 uses the local Radamacher complexity

(Liu et al. (2021); Bartlett, Bousquet and Mendelson (2005)) to bound the tail

sum of the eigenvalues for H† and H0†, and the accurate error bound for the

eigenvalues of the kernel matrix in Braun (2006).

3.3. Power analysis and minimaxity

In this section, we investigate the power of PLR under local alternatives.

Define the distinguishable rate as

dn :=

√
λ+

σλ

n
. (3.14)

The distinguishable rate is used to measure the distance between the null

and the alternative hypotheses. Theorem 2 shows that the power of PLR

approaches one, provided that the norm of η∗
XZ , the interaction term in the

probabilistic decomposition of η∗, has a norm bounded below by dn. The squared

distinguishable rate d2n consists of two components: λ, representing the squared

bias of the estimator, and σλ/n, with the order of n−1h−1/2 representing the

standard derivation of PLRn,λ. Because σλ decreases with λ, the minimal

distinguishable rate for the PLR test is achieved by choosing an appropriate

λ such that λ ≍ σλ/n. Our result owes much to the analytic expression of

independence (in terms of interactions) based on the proposed probabilistic tensor

product decomposition framework.

Let Pη∗ denote the probability measure induced under η∗, ∥η∥sup denote the

supremum norm over Y, and ∥η∥2 =
√
V (η).

Theorem 2. Suppose Assumption 1 holds and let dn be the distinguishable rate

defined in (3.14), m > 3/2, η∗ ∈ H with ∥η∗
XZ∥sup = o(1), J(η∗

XZ) < ∞, ∥η∗
XZ∥2 ≳

dn. For any ε ∈ (0, 1), there exists a positive Nε such that, for any n ≥ Nε,

Pη∗(Φn,λ(α) = 1) ≥ 1 − ε. When λ ≍ λ∗ ≡ n−4m/(4m+d), dn is upper bounded by

d∗n ≡ n−2m/(4m+d).

The proof of Theorem 2 is in the Supplimentary Material S.6.3. Theorem

2 demonstrates that, when λ ≍ λ∗, PLR can successfully detect any local

alternatives, provided that they separate from the null by at least d∗n. In Section
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4, we establish the minimax lower bound for the distinguishable rate of a general

multi-sample test to show that this upper bound cannot be improved. This means

that no test can successfully detect local alternatives if they separate from the

null by a rate faster than d∗n. Therefore, we claim that our PLR test is minimax

optimal.

For any ε ∈ (0, 1) and α ∈ (0, ε), Theorem 1 shows that EH0
{Φn,λ∗(α)}

tends to α. Theorem 2 shows that Eη∗{1 − Φn,λ∗(α)} ≤ ε − α, provided that

∥η∗
XZ∥2 ≥ Cε−αd

∗
n, for a large constant Cε−α. Therefore, asymptotically,

Err(Φn,λ∗(α), Cε−αd
∗
n) ≤ ε. (3.15)

In other words, the total error of PLR can be controlled by using an arbitrary ε,

provided that the null and local alternatives are d∗n apart.

4. Minimax Lower Bound of the Distinguishable Rate

For any ε ∈ (0, 1), define the minimax distinguishable rate d⋄n(ε) as

d⋄n(ε) = inf{dn > 0 : inf
Φ

Err(Φ, dn) ≤ ε}, (4.1)

where the infimum in (4.1) is taken over all 0-1-valued testing rules based on

the sample Yi. Note that d⋄n(ε) characterizes the smallest separation between

the null and local alternatives such that there exists a testing approach with a

total error of at most ε. Next, we establish a lower bound for d⋄n. That is, if

dn is smaller than a certain lower bound, no test exists that can distinguish the

alternative from the null.

We first introduce a geometric interpretation of the hypothesis testing (2.3).

Here, we consider the local alternatives in E = {η ∈ H : ∥η∥H < 1/2}.
Geometrically, E is an ellipsoid with axis lengths equal to the eigenvalues of H.

For any η ∈ E , the projection of η on E11 := H11 ∩ E is ηXZ , where H11 is defined

in (3.3). The magnitude of the interaction ηXZ can be qualified by ∥ηXZ∥2. The
distinguishable rate dn is the radius of the sphere centered at ηXZ = 0 in E11.

Intuitively, the testing will be harder when the projection of η onH11 is closer

to the original point ηXZ = 0. We then introduce the Bernstein width of Pinkus

(2012) to characterize the testing difficulty. For a compact set C, the Bernstein

k-width is defined as

bk,2(C) := argmax
r≥0

{Bk+1
2 (r) ⊂ C ∩ S for some subspace S ∈ Sk+1}, (4.2)

where Sk+1 denotes the set of all (k + 1)-dimensional subspaces, and Bk+1
2 (r) is

the (k+1)-dimensional L2-ball with radius r and center at ηXZ = 0 in H11. Based

on the Bernstein width, we give an upper bound of the testing radius, namely,

for any η projected in the ball with radius less than this bound, the total error
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is larger than 1/2.

Lemma 4. For any η ∈ H, we have Err(Φ, dn) ≥ 1/2, for all dn ≪ rB(δ
∗) :=

sup{δ | δ ≤ 1/2
√
n(kB(δ))

1/4}, where kB(δ) := argmaxk{b2k−1,2(H11) ≥ δ2} is

the Bernstein lower critical dimension, and rB(δ
∗) is called the Bernstein lower

critical radius.

In Lemma 4, we show that when dn is less than rB(δ
∗), there is no test

that can distinguish the alternative from the null. In order to achieve nontrivial

power, we need dn to be larger than the Bernstein lower critical radius rB(δ
∗).

The critical radius rB(δ
∗) depends on the shape of the space H11. The lower

bound of kB(δ) depends on the decay rate of the eigenvalues for H11. According

to the Liebig’s law, the radius of a k-dimensional ball that can be embedded into

H11 is determined by the kth largest eigenvalue. Lemma 5 characterizes the lower

bound of kB(δ) by the largest k such that the kth largest eigenvalue is larger than

δ2.

Lemma 5. Let γk be the kth largest eigenvalue of H11. Then, we have

kB(δ) > argmax
k

{√γk ≥ δ}. (4.3)

Note that γk ≍ k−2m/d. Then argmaxk{
√
γk ≥ δ} ≍ δ−d/m. Substituting the

lower bound of kB(δ) into Lemma 4, we achieve rB(δ
∗), which is the minimax

lower bound for the distinguishable rate in the following theorem.

Theorem 3. Suppose η ∈ H. For any ε ∈ (0, 1), the minimax distinguishable

rate for the testing hypotheses (2.3) is d⋄n(ε) ≳ n−2m/(4m+d).

Theorem 3 provides general guidance justifying a local minimax test for

testing ηXZ = 0. The proof of Theorem 3 is presented in the Supplimentary

Material S.6.4. Comparing d⋄n(ε) with d∗n derived in Theorem 2, we find that the

PLR test is minimax optimal.

5. Simulation Studies

In this section, we demonstrate the finite-sample performance of the proposed

test, alongside that of its competitors, using simulation studies. We choose the

K-S and AD tests as representatives of the most popular CDF-based tests, the

normalized MMD test (Li and Yuan (2019)) as a kernel-based test, the empirical

likelihood test (ELT) (Cao and Van Keilegom (2006)) and kernel density test

(KDT) (Zhan and Hart (2014)) as density-based tests, and the DSLICE (Jiang,

Ye and Liu (2015)) as a discretization-based test. We use the function ad.test()

provided in the kSamples R package for the AD test, conduct the MMD test using

the dHSIC R package with the default Gaussian kernel, use the dslice R package

for the DSLICE test, and implement the ELT and KDT using the code provided
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by the authors. For our proposed PLR test, we choose the roughness parameter

using the data-adaptive tuning parameter selection criteria in Section S.1 in

the Supplimentary Material, and present. Also, we have additional simulation

studies for beta, beta mixtures, a multivariate distribution (d > 2), and multiple

distributions (U > 2) in the Supplimentary Material S.4.

The samples Yi = (Xi, Zi), for i = 1, . . . , n, are generated as follows. We

first generate Zi
i.i.d.∼ Bernoulli(0.5), with 0/1 representing the control/treatment

group. Then, Xi are generated independently from the conditional distribution

fX|Z(x) in the following settings. In each setting, we choose the averaged sample

size n in each group as 125, 250, 375, 500, 625, 750, 875, 1000. The size and

power are calculated as the proportions of rejection based on 1,000 independent

trials.

Setting 1: Gaussian distributions with mean zero and a group-specific variance:

X | Z = z ∼ N (0, (1 + δ11z=1)
2), where δ1 = 0, 0.2, 0.3.

Setting 2: Uni-modal Gaussian distribution versus bi-modal Gaussian distri-

bution: X | Z = z ∼ 0.5N(−δ21z=1, (1 + δ221z=0)) + 0.5N(δ21z=1,

(1 + δ221z=0)), where we set δ2 = 0, 1, 1.2.

Setting 3: Asymmetric mixture Gaussian distributions: X | Z = z ∼
0.5N(2, 1) + 0.5N(−2, (1− δ31z=1)

2), where δ3 = 0, 0.3, 0.45.

Setting 4: Symmetric mixture distributions: X | Z = z ∼ 0.5N(2, (1 −
δ41z=1)

2) + 0.5N(−2, (1− δ41z=1)
2), where δ4 = 0, 0.3, 0.6.

Note that δ1 = 0, δ2 = 0, δ3 = 0, or δ4 = 0 corresponds to the true H0, which

we use to examine the size of the test statistics. Nonzero δ represents different

levels of heterogeneity between the two groups.

Figure S1 in the Supplimentary Material displays the power of each of the

six tests. For Setting 1, Figure S1(a)–(b) show that the power of the PLR,

MMD, ELT, AD, DSLICE, and KDT tests rapidly approaches one when n or δ1
increases. The power of the K-S test increases slightly more slowly than that of

the other five tests. DSLICE appears to be slightly less powerful than the other

four tests, maybe because of its discrete nature and its challenges in choosing

a proper penalization parameter in the penalized slicing approach. For Setting

2, as shown in Figure S1(c)–(d), the MMD and PLR tests show comparable

power. The PLR test has slightly higher power when the heterogeneity is higher.

The power difference between these two tests increases as δ2 increases. AD and

K-S show significantly lower power. For Setting 3, Figure S1(e)–(f) show again

that the PLR test has the highest power. DSLICE performs quite well here,

possibly because of its flexibility in slicing. In contrast, K-S, MMD, ELT, AD,

and KDT have significantly lower power than that of both PLR and DSLICE.

For Setting 4, PLR and DSLICE show similar power in Figure S1(g)–(h). The
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power values of MMD, K-S and AD are significantly lower than the others. The

results demonstrate that both PLR and DSLICE are more adaptive to differently

shaped distributions than the other four methods are. Furthermore, PLR enjoys

additional advantages to DSLICE when the underlying distribution is smooth.

Figure S2 in the Supplimentary Material displays the size of K-S, MMD,

ELT, AD, DSLICE, KDT, and PLR, all of which are around the nominal level

of 0.05 in Settings 1 and 2, confirming that all tests are asymptotically valid.

In Setting 3 and Setting 4, the size of the PLR test is still asymptotically

correct, and that of DSLICE is reasonably close. The sizes of K-S, MMD,

and ELT are significantly below 0.05, showing that these three tests are too

conservative in handling bimodal distributions. We also test the performance

under a multivariate distribution (d > 2) and under multiple distributions in

the Supplemenary Material, finding that the proposed tests maintain the highest

power with a controlled type-I error, as they do in simulation studies with beta

and a mixtrure of beta distributions.

6. Real-Data Analysis

In this section, we apply the PLR K-S, and MMD tests to a metagenomic

analysis of type–II diabetes. We also present an example about a gene expression

analysis of chronic lymphocytic leukaemia in the Supplementary Material S.5.2.

Recent studies show that gut microbiota play an important role in many

human diseases, such as obesity and diabetes, and have observed significant

associations between diseases and gut microbial composition (Turnbaugh et al.

(2009); Qin et al. (2012)). Owing to the rapid development of metagenomics, it is

possible to study microbial DNA contents directly using environmental samples.

Compared with traditional culture-based methods, metagenomics can study

unculturable microorganisms and are much more scalable. Several metagenomic

binning algorithms, such as MetaGen (Xing, Liu and Zhong (2017)), have been

proposed to estimate the abundance of microbial species with high accuracy. As

observed in Turnbaugh et al. (2009), the microbial distributions demonstrate

large cross-individual differences, because there are many environmental factors,

such as age, dietary habits, and antibiotic usage, which can alter the composition

of gut microbiota. A powerful test that can detect such distributional differences

between populations would be useful in metagenomic analysis.

This study aims to detect whether the microbial species have different

distributions between the case and the control groups. For a particular microbial

species, let Xi be the log-transformed abundance for the ith individual, and let

Zi = 1/0 represent the case/control group. We apply the proposed PLR test to a

metagenomic data set, with 145 sequenced gut microbial DNA samples from 71

T2D patients (case group) and 74 individuals unaffected by T2D (control group),

using Illumina Genome Analyzer, yielding 378.4 gigabase paired-end reads. We
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use MetaGen (Xing, Liu and Zhong (2017)) to perform the metagenomic binning,

in which DNA fragments are clustered into species-level bins, and estimate the

abundance of 2,450 identified species bins. We apply the K-S, MMD, and PLR

tests to 1,005 species clusters that have an abundance larger than 1% of the

mean abundance in more than 50% of the total samples. The 1005 p-values

are calculated using K-S, MMD, and PLR for each species. We adjust the p-

values using the Benjamini–Hochberg method (Benjamini and Hochberg (1995)).

Controlling the false discovery rate at 5%, we compare the identified species from

the three methods in Figure S7 in the Supplimentary Material. The PLR, K-S,

and MMD tests identify 101, 4, and 13 species, respectively. The species identified

by PLR include those identified by K-S or MMD.

Moreover, two species are identified only by the PLR test in Figure S7

(B–C). The densities of these two species are both bimodal in both the case

and the control groups. Figure S7(B) plots the conditional density of the log-

transformed abundance of Roseburia intestinalis. The majority of the case

group has a significantly low abundance. In Figure S7(C), the other species,

Faecalibacterium prausnitzii has a lower abundance for a subgroup of patients

in the case group. Both species are butyrate–producing bacteria that can exert

profound immunometabolic effects, and thus are probiotic less abundant in T2D

patients. Our finding is consistent with that of Tilg and Moschen (2014), who

also observed that the two species’ concentrations are lower in T2D subjects.

In addition, we found that several Lactobacillus species are increased in T2D

patients, as in de la Vega-Monroy et al. (2013) and Qin et al. (2012).

7. Discussion

We have proposed a probabilistic decomposition approach for probability

densities based on the PLR. As demonstrated in simulation studies, our method

performs well under various families of density functions of different modalities.

Notably, our test possesses Wilks’ phenomenon and testing minimaxity. Such

results are not easy to derive for distance-based methods. Furthermore, Wilks’

phenomenon leads to an easy-to-execute testing rule that does not involve

resampling.

Supplementary Material

The online Supplementary Materal contains figures related to the simulation

studies and real-data analysis, additional simulated and real examples, the data-

adaptive tuning parameter selection, an extension to the case of a divergent

number of samples, the connection to the maximum mean discrepancy, all

technical proofs, and additional numerical results.
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