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Abstract: Hierarchical latent attribute models (HLAMs) are a family of discrete la-

tent variable models that are attracting increasing attention in the educational, psy-

chological, and behavioral sciences. An HLAM includes a binary structural matrix

and a directed acyclic graph specifying hierarchical constraints on the configurations

of the latent attributes. These components encode practitioners’ design information

and carry important scientific meaning. However, despite the popularity of HLAMs,

the fundamental issue of identifiability remains unaddressed. The existence of the

attribute hierarchy graph leads to a degenerate parameter space, and the potentially

unknown structural matrix further complicates the identifiability problem. Here,

we identify the latent structure and model parameters underlying an HLAM, and

develop sufficient and necessary identifiability conditions. These results directly and

sharply characterize the effects on identifiability of different attribute types in the

graph. The proposed conditions provide insights into diagnostic test designs under

the attribute hierarchy, and serve as tools that we can use to assess the validity of

an estimated HLAM.

Key words and phrases: Attribute hierarchy graph, cognitive diagnosis, identifiabil-

ity, Q-matrix.

1. Introduction

Latent attribute models are a family of discrete latent variable models pop-

ular in multiple scientific disciplines, including cognitive diagnosis in educational

assessments (Junker and Sijtsma (2001); von Davier (2008); Henson, Templin and

Willse (2009); Rupp, Templin and Henson (2010); de la Torre (2011); Wang et al.

(2018)), psychiatric diagnosis of mental disorders (Templin and Henson (2006);

de la Torre, van der Ark and Rossi (2018)), and epidemiological and medical

measurement studies (Wu, Deloria-Knoll and Zeger (2017); PERCH Study Group

(2019)). Based on subjects’ responses (often binary) to a set of items, a latent

attribute model enables a fine-grained inference on the status of an underlying

set of the subjects’ latent traits. This further allows us to cluster the population
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into interpretable subgroups based on the inferred attribute patterns. In a latent

attribute model, each attribute is often assumed to be binary and carries a spe-

cific scientific meaning. For example, in an educational assessment, the observed

responses are students’ correct or wrong answers to a set of test items. Here

the latent attributes indicate students’ binary states of mastery or deficiency of

certain skills, as measured by the assessment (Junker and Sijtsma (2001); von

Davier (2008); Rupp, Templin and Henson (2010)). The dependence between

the latent attributes can be further modeled to incorporate practitioners’ prior

knowledge. A particularly popular and powerful way of modeling attribute de-

pendence in educational and psychological studies is to enforce hard constraints

on the hierarchical configurations of the attributes. Specifically, educational ex-

perts often postulate that some prerequisite relations exist among the binary skill

attributes, such that mastering some skills serves as a prerequisite for mastering

others (Leighton, Gierl and Hunka (2004)). Such a family of Hierarchical latent

attribute models (HLAMs) are attracting increasing attention in cognitive diag-

nostic applications; see Leighton, Gierl and Hunka (2004), Gierl, Leighton and

Hunka (2007), Templin and Bradshaw (2014), and Wang and Lu (2020). How-

ever, despite their popularity, the fundamental identifiability issue of HLAMs

remains unaddressed. This study fills this gap by providing the identifiability

theory for HLAMs.

HLAMs have close connections with many other popular statistical and ma-

chine learning models. Because each possible configuration of the discrete at-

tributes represents a pattern defining a latent subpopulation, an HLAM can be

viewed as a structured mixture model (McLachlan and Peel (2000)) and gives rises

to model-based clustering (Fraley and Raftery (2002)) of multivariate categorical

data. HLAMs are related to several multivariate discrete latent variable models

in the machine learning literature, including latent tree graphical models (Choi

et al. (2011)), restricted Boltzmann machines (Hinton (2002)), and latent feature

models (Ghahramani and Griffiths (2006)), but with two key differences. First,

the observed variables are assumed to have a certain structured dependence on

the latent attributes. This dependence is summarized by a structural matrix, the

so-called Q-matrix (Tatsuoka (1990)), to encode scientific interpretations. The

second key feature is that HLAMs incorporate the hierarchical structure among

the latent attributes. For instance, in educational cognitive diagnosis, possessing

certain skill attributes is often assumed to be prerequisite for possessing some

other skills (Leighton, Gierl and Hunka (2004); Templin and Bradshaw (2014)).

The real-world applications of HLAMs are challenged by the identifiability of

the attribute hierarchy, structural Q-matrix, and other model parameters. First,
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in many applications, the attribute hierarchy and the structural Q-matrix are

specified by domain experts, based on their understanding of the diagnostic tests.

Such specifications can be subjective, and may not reflect the underlying truth.

Second, the attribute hierarchy and the Q-matrix may even be entirely unknown

in an exploratory data analysis, where researchers hope to identify and estimate

these quantities directly from the observed data. In both of these situations,

a fundamental, yet open question is whether and when the attribute hierarchy

and the structural Q-matrix are identifiable. The identifiability of HLAMs is

closely connected to the uniqueness of tensor decompositions, because the proba-

bility distribution of an HLAM can be written as a mixture of highly constrained

higher-order tensors. In particular, HLAMs can be viewed as a special family

of restricted latent class models, with the Q-matrix imposing constraints on the

model parameters. However, related works on the identifiability of latent class

models and the uniqueness of tensor decompositions (e.g. Allman, Matias and

Rhodes, 2009; Anandkumar et al., 2014) cannot be applied directly to HLAMs

because of the constraints induced by the Q-matrix.

To tackle identifiability under such structural constraints, several recent

works (Xu (2017); Xu and Shang (2018); Gu and Xu (2019b); Fang, Liu and

Ying (2019); Gu and Xu (2020, 2019a); Chen, Culpepper and Liang (2020)) have

proposed identifiability conditions for latent attribute models. However, most

of these studies consider scenarios without any attribute hierarchy; Gu and Xu

(2020) assumed that both the true Q-matrix and true configurations of the at-

tribute patterns are known and fixed; and Gu and Xu (2019a) considered the

problem of learning the set of truly existing attribute patterns, but assumed the

Q-matrix is correctly specified beforehand. Nevertheless, none of these works

directly consider the hierarchical graphical structure of the attribute hierarchy.

Therefore, their results cannot provide explicit and sharp identifiability condi-

tions for an HLAM. On the other hand, in the cognitive diagnostic modeling

literature, researchers (Köhn and Chiu (2019); Cai, Tu and Ding (2018)) have

recently studied the “completeness” of the Q-matrix, a relevant concept revis-

ited in Section 3, under an attribute hierarchy. However, these results cannot

ensure that we can uniquely identify the model parameters that determine the

probabilistic HLAM. In summary, establishing identifiability without assuming

any knowledge of the Q-matrix and the attribute hierarchy remains unaddressed

in the literature, and is indeed a technically challenging task.

We address this identifiability question for popular HLAMs under an arbi-

trary attribute hierarchy. We develop explicit sufficient conditions for identifying

the attribute hierarchy, Q-matrix, and all model parameters in an HLAM. These
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sufficient conditions become necessary when the latent pattern space is saturated

with no hierarchy. For nonempty hierarchies, we discuss the necessity of these

individual conditions, and relax them in several nontrivial and interesting ways.

We then establish the fully general necessary and sufficient identifiability condi-

tions for the attribute hierarchy and model parameters under a fixed Q-matrix.

Our results sharply characterize the roles played by different types of attributes

in an attribute hierarchy graph, and can be used to assess the validity of an esti-

mated HLAM obtained from any estimation method. They also provide insights

into designing useful diagnostic tests under an attribute hierarchy with minimal

restrictions.

The rest of the paper is organized as follows. In Section 2, we introduce

the HLAM model setup. In Section 3, we present sufficient conditions for the

identifiability of Q, the attribute hierarchy, and the model parameters. In Section

4, to close the gap between the necessity and sufficiency of the identifiability

conditions, we focus on the case where Q is fixed, and derive the fully general

necessary and sufficient conditions for identifying the attribute hierarchy and

model parameters. In Section 5, we extend the identifiability result to other types

of HLAMs that have potentially more parameters than those studied in Sections

3 and 4. Section 6 concludes the paper. All technical proofs are presented in the

Supplementary Material.

2. Model Setup and Examples

This section introduces the HLAM model setup. We first introduce some

notation. For an integer m, denote [m] = {1, 2, . . . ,m}. For a set A, denote its

cardinality by |A|. Denote K × K identity matrix by IK , and K-dimensional

all-one and all-zero vectors by 1K and 0K , respectively.

An HLAM consists of two types of subject-specific binary variables, namely,

the observed responses r = (r1, . . . , rJ) ∈ {0, 1}J to J items, and the latent

attribute pattern α = (α1, . . . , αK) ∈ {0, 1}K , with αk indicating the mastery

or deficiency of the kth attribute. In this work, K is assumed to be known and

fixed. This assumption is well suited for the motivating applications in cognitive

diagnosis, where the number and the real-world meanings of the latent attributes

are usually known in the context of the application, and it is of interest to identify

and learn other quantities from the data. Next, we describe the distribution of the

latent attributes. Attribute k is said to be a prerequisite of attribute `, denoted

by k → `, if any pattern α with αk = 0 and α` = 1 is “forbidden” to exist. This

is a common assumption in applications such as cognitive diagnosis that model
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subjects’ learning processes (Leighton, Gierl and Hunka (2004); Templin and

Bradshaw (2014)). A subject’s latent pattern a is assumed to follow a categorical

distribution of population proportion parameters p = (pα, α ∈ {0, 1}K), with

pα ≥ 0 and
∑
α pα = 1. In particular, any pattern α not respecting the hierarchy

is deemed impossible to exist with population proportion pα = 0. An attribute

hierarchy is a set of prerequisite relations among the K attributes:

E = {k → ` : attribute k is a prerequisite for `}.

In general, an attribute hierarchy E implies a directed acyclic graph (DAG) among

the K attributes, with no directed cycles. This graph constrains which attribute

patterns are permissible or forbidden. Specifically, any E induces a set of allowable

configurations of attribute patterns out of {0, 1}K , which we denote by A(E), or

simply A when it causes no confusion. For an arbitrary E , the all-zero and all-one

attribute patterns 0K and 1K always belong to the induced A. This is because no

prerequisite relation among the attributes can rule out the existence of a pattern

possessing all or none of the attributes. When there is no attribute hierarchy

among the K attributes, E = ∅ and A = {0, 1}K . The set A is a proper subset

of {0, 1}K if E 6= ∅. An attribute hierarchy determines the sparsity pattern of the

vector of proportion parameters p, because pα > 0 if and only if α ∈ A(E), that

is, if and only if α is permissible under E . In this sense, a nonempty attribute

hierarchy necessarily leads to degenerate parameter space for p, because certain

entries of p will be constrained to be zero.

In an attribute hierarchy in cognitive diagnosis, the case of k → ` and `→ k

indicates that the skill attributes αk and α` are prerequisites for each other, which

is not interpretable, and hence is not used in modeling. Similarly, having any cycle

in the attribute hierarchy graph in the form of k1 → k2 → · · · → km → k1 is

also not interpretable. Therefore, a DAG structure among the latent attributes

is well suited to describe the hierarchical nature of the attributes that carry these

substantive meanings. Note that the DAG of an attribute hierarchy in an HLAM

differs from that in a Bayesian network (Pearl (1986)), because the former encodes

hard constraints on which variable patterns are permissible/forbidden, whereas

the latter encodes the conditional independence relations among the variables.

Remark 1. Our attribute hierarchy constraints that “k → ` implies αk = 0

and α` = 1 is impossible” have interesting connections to some other constraints

in the statistics literature. In variable selection, where the main effects of the

variables and their interaction effects may be present, the effect heredity princi-

ple (Hamada and Wu (1992)) posits that a corresponding interaction effect only
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Figure 1. Different attribute hierarchies among binary attributes for K = 4, where
|{0, 1}4| = 16. For example, the set of allowed attribute patterns under hierarchy (a) is
A1 = {04, (1000), (1100), (1001), (1101), 14}.

exists if the main effects of the variables exist. In particular, with θi and θj de-

noting the continuous regression coefficients associated with two heredity terms,

Yuan, Joseph and Zou (2009) used a linear inequality θi ≤ θj (a continuous relax-

ation of the hard constraints on the binary indicators of the variable inclusions)

to cleverly enforce the heredity constraint and facilitate computation. In causal

inferences, the monotonicity constraint in instrumental variable analyses (Hernán

and Robins (2006); Swanson et al. (2015)) posits that if the instrumental variable

satisfies z1 < z2, then the counterfactual treatment is a nondecreasing function

of the instrument, that is, Xz1
i ≤ Xz2

i , for all subjects i. A key difference be-

tween the attribute hierarchy constraints and the aforementioned constraints is

the involvement of many latent variables in HLAMs; indeed, all the α1, . . . , αK

among which the hierarchical constraints exist are latent. The binary patterns α

that respect the attribute hierarchy E follow an unknown categorical distribution

with parameters p = (pα) with
∑
α pα = 1, and the observed data distribution is

obtained after marginalizing out the latent structure, which is quite complicated.

Example 1. Fig 1 presents several hierarchies with the size of the associated A,

where a dotted arrow from αk to α` indicates k → ` and k is a direct prerequisite

for `. Note that under the hierarchy in Fig 1(a), the prerequisite 1 → 3 is an

indirect prerequisite implied by 1→ 2 (or 4) and 2 (or 4) → 3.

On top of the model of the latent attributes, an HLAM uses a J ×K binary

matrix Q = (qj,k) to encode the structural relationship between the J observed

response variables and the K latent attributes. In cognitive diagnostic assess-

ments, the matrix Q is often specified by domain experts to summarize which

abilities each test item targets (Tatsuoka (1990); von Davier (2008); Rupp, Tem-

plin and Henson (2010); de la Torre (2011)). Specifically, qj,k = 1 if and only if

the response rj to the jth item is statistically dependent on the latent variable

αk. The distribution of rj , that is, θj,α := P(rj = 1 | α), depends only on its

“parent” latent attributes αk that are connected to rj , that is, {αk : qj,k = 1}.
The structural matrix Q naturally induces a bipartite graph connecting the la-
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Q6×3 :=


q1
q2
q3
q4
q5
q6

 :=


1 0 0
0 1 0
0 0 1
1 1 0
0 1 1
1 0 1

 ;

r1 r2 r3 r4 r5 r6 r ∈ {0, 1}6

α1 α2 α3 α ∈ {0, 1}3

(a) Q-matrix (b) graphical model & attribute hierarchy

Figure 2. A binary structural matrix and the corresponding graphical model, with (solid)
directed edges from the latent to the observed variables representing dependencies. Below
the observed variables in (b) are the row vectors of Q6×3, that is, the item loading
vectors. The dotted arrows indicate the attribute hierarchy with E = {1 → 2, 1 → 3}
and A = {03, (100), (110), (101), 13}.

tent and the observed variables, with edges corresponding to entries of “1” in

Q = (qj,k). Fig 2 presents an example of a structural matrix Q and its corre-

sponding directed graphical model between the K = 3 latent attributes and J = 6

observed variables. The solid edges from the latent attributes to the observed

variables are specified by Q6×3. Furthermore, the observed responses to the J

items are conditionally independent, given the latent attribute pattern α.

In the psychometrics literature, various HLAMs adopting the Q-matrix con-

cept have been proposed with the goal of diagnosing targeted attributes (Junker

and Sijtsma (2001); Templin and Henson (2006); von Davier (2008); Henson,

Templin and Willse (2009); de la Torre (2011)). These are often called cogni-

tive diagnostic models. The general family of latent attribute models is also

widely used in other scientific areas, including psychiatric evaluations (Templin

and Henson (2006); de la Torre, van der Ark and Rossi (2018)) used to diagnose

patients’ mental disorders, and epidemiological diagnose of disease etiologies (Wu

et al. (2016); Wu, Deloria-Knoll and Zeger (2017); PERCH Study Group (2019)).

These applications share the common key interest of identifying multivariate dis-

crete latent attributes.

In this work, we mainly focus on a popular and fundamental type of model-

ing assumption under such a framework. As to be revealed soon, this modeling

assumption also has close connections to Boolean matrix factorizations (Ravan-

bakhsh, Póczos and Greiner (2016); Rukat et al. (2017)). Specifically, we mainly

consider HLAMs that assume a logical ideal response Γqj ,α, given an attribute

pattern α and an item loading vector qj , in the noiseless case. Then, item-level

noise parameters are introduced to account for the uncertainty of the observa-

tions. The following are two popular ways of defining the ideal response.
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The first is the deterministic input noisy output “And” gate (DINA) model

(Junker and Sijtsma (2001); de la Torre and Douglas (2004); von Davier (2014)).

The DINA model assumes a conjunctive relationship between the attributes. The

ideal response of attribute pattern α to item j is

(DINA ideal response) ΓAND
qj ,α =

K∏
k=1

α
qj,k
k , (2.1)

where the convention 00 ≡ 1 is adopted. It is not hard to check that the above

definition is equivalent to

ΓAND
qj ,α = 1(αk ≥ qj,k for all the k ∈ [K]). (2.2)

This definition intuitively and explicitly explains that the DINA adopts a con-

junctive modeling assumption, because only if a subject with attribute pattern α

possesses all of the attributes required by the loading vector qj is he/she consid-

ered capable of this item j and to have Γqj ,α = 1. Such a conjunctive relationship

is often assumed for diagnosis of students’ mastery or deficiency of skill attributes

in educational assessments, and Γqj ,α naturally indicates whether a student with

α has mastered all the attributes required by the test item j. With Γqj ,α in (2.1),

the uncertainty of the responses is further modeled by the item-specific Bernoulli

parameters

θ+
j = P(rj = 1 | Γqj ,α = 1), θ−j = P(rj = 1 | Γqj ,α = 0), (2.3)

where θ+
j > θ−j is assumed for identifiability. For each item j, the ideal response

Γqj ,·, if viewed as a function of attribute patterns, divides the patterns into

two latent classes, {α : Γqj ,α = 1} and {α : Γqj ,α = 0}, for which the item

parameters quantify the noise levels of the response to item j that deviates from

the ideal response. Note that θj,α is equal to either θ+
j or θ−j , depending on the

ideal response Γj,α. Denote the item parameter vectors by θ+ = (θ+
1 , . . . , θ

+
J )>

and θ− = (θ−1 , . . . , θ
−
J )>.

The second model is the deterministic input noisy output “Or” gate (DINO)

model (Templin and Henson (2006)). The DINO model assumes the following

ideal response,

(DINO ideal response) ΓOR
qj ,α = I(qj,k = αk = 1 for at least one k). (2.4)

Such disjunctive relationships are often assumed in psychiatric measurements of

mental disorders (Templin and Henson (2006); de la Torre, van der Ark and Rossi
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(2018)). With Γqj ,α in (2.4), the uncertainty of the responses is modeled by the

item-specific parameters defined in (2.3). In the Boolean matrix factorization

literature, a similar model has been proposed (Ravanbakhsh, Póczos and Greiner

(2016)). Adapted to the terminology here, Rukat et al. (2017) assumes the ideal

response takes the form

(equivalent to (2.4)) ΓOR
qj ,α = 1−

K∏
k=1

(1− αkqj,k), (2.5)

which is equivalent to the definition in (2.4), although their model constrains all

item-level noise parameters to be the same.

We next focus on asymmetric DINA-based HLAMs, because these are pop-

ular and fundamental models widely used in the motivating applications of ed-

ucational cognitive diagnosis. We also study the identifiability of DINO-based

HLAMs and another type of HLAM in Section 5. For notational simplicity, we

next write ΓAND
qj ,α simply as Γqj ,α. Denote by Γ(Q, E) the J×|A(E)| ideal response

matrix with the (j,α)th entry being Γqj ,α, for α ∈ A(E). Under the setup of

DINA-based HLAMs, the probability mass function of the J-dimensional random

response vector R takes the form

P (R = r | Q, E ,θ+,θ−,p) =
∑

α∈A(E)

pα

J∏
j=1

[Γqj ,αθ
+
j + (1− Γqj ,α)θ−j ]rj

× [1− Γqj ,αθ
+
j − (1− Γqj ,α)θ−j ]1−rj ,

where r ∈ {0, 1}J is an arbitrary response pattern.

3. Identifiability of Q, Attribute Hierarchy, and Model Parameters:

Establishing Sufficiency

This section presents a main result on the sufficient conditions for the iden-

tifiability of Q, E , and the model parameters θ+, θ−, and p. Following the def-

inition of identifiability in the statistics literature, we say that (Q, E ,θ+,θ−,p)

of an HLAM are identifiable if for any (Q, E ,θ+,θ−,p) in the parameter space

constrained by Q and E , there exist no (Q̄, Ē , θ̄+, θ̄−, p̄) 6= (Q, E ,θ+,θ−,p) such

that

P(R = r | Q̄, Ē , θ̄+, θ̄−, p̄) = P(R = r | Q, E ,θ+,θ−,p), ∀r ∈ {0, 1}J . (3.1)
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In this definition, the alternative vector of the proportion parameters p̄ is not

constrained to have support on A(E). Instead, the vector p̄ should be allowed to

have an arbitrary support Ā potentially resulting from an arbitrary Ē ; the goal of

establishing identifiability is indeed to develop conditions to ensure that as long

as (3.1) holds, one must have p̄ = p and Ē = E from the equations in (3.1).

Next, we introduce some additional notation and important concepts. Be-

cause an attribute hierarchy is a DAG, the K attributes {1, 2, . . . ,K} can be

arranged in a topological order such that the prerequisite relation “→” only hap-

pens in one direction; in other words, we can assume without loss of generality

that k → ` only if k < `. Define the following reachability matrix E among the

K attributes under the attribute hierarchy. Here E = (ek,`) is a K ×K binary

matrix, where ek,k = 1 for all k ∈ [K] and e`,k = 1, if attribute k is a direct

or indirect prerequisite for attribute `. In cognitive diagnosis, the concept of a

reachability matrix was first considered in Tatsuoka (1986) to represent the direct

and indirect relationships between attributes. It is not hard to see that if the

attributes 1, 2, . . . ,K are in a topological order, the reachability matrix E is a

lower-triangular matrix with all the diagonal entries being one.

Under DINA-based HLAMs, any nonempty attribute hierarchy E defines an

equivalence relation on the set of all Q-matrices. To see this, recall that Γ(Q, E)

denotes the J × |A(E)| ideal response matrix. If Γ(Q1, E) = Γ(Q2, E), then Q1

and Q2 are said to be in the same E-induced equivalence class and we denote

this by Q1
E∼ Q2. To interpret, if under a certain hierarchy E , two different Q-

matrices lead to identical ideal responses for all the permissible latent patterns

in A(E), then these two Q-matrices are indistinguishable based on the response

data, and should be treated as equivalent. The following example illustrates how

an attribute hierarchy determines a set of equivalent Q-matrices.

Example 2. Consider the attribute hierarchy E = {1 → 2, 1 → 3} in Fig 2,

which results in A(E) = {03, (100), (110), (101),13}. The identity matrix I3 is

equivalent to the reachability matrix E under E and

I3 =

1 0 0

0 1 0

0 0 1

 E∼ E =

1 0 0

1 1 0

1 0 1

 E∼

1 0 0

∗ 1 0

∗ 0 1

 , (3.2)

where the “∗”’s in the third matrix above indicate unspecified values, any of which

can be either zero or one. This equivalence is because the attribute α1 serves as

a prerequisite for both α2 and α3, and any item loading vector qj measuring α2

or α3 is equivalent to a modified one that also measures α1, in terms of classifying
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the patterns in A into two categories, {α : Γqj ,α = 1} and {α : Γqj ,α = 0}.
Note that any Q-matrix equivalent to IK under E = {1 → 2, 1 → 3} must take

the form of the third Q-matrix in (3.2). Under a DINA-based HLAM, if the

true Q-matrix Qtrue is not known, then any other Q with Q
E∼ Qtrue cannot

be distinguished from Qtrue based on the observations, even if the continuous

parameters (θ+,θ−,p) are all known. This is because the ideal response matrix

Γ(Q, E) is the key latent structure underlying a DINA-based HLAM, and if Q
E∼

Qtrue (equivalently, Γ(Q, E) = Γ(Qtrue, E)), then Q and Qtrue are inherently not

distinguishable.

Given any hierarchy E , the equivalence IK
E∼ E is always true; see, for exam-

ple, Eq. (3.2) in Example 2. Before presenting the theorem on sufficient condi-

tions for identifiability, we introduce two useful operations on a Q-matrix, given

an attribute hierarchy E : the “densifying” operation DE(·), and the “sparsifying”

operation SE(·), as follows.

Definition 1. Given an attribute hierarchy E and a matrix Q, do the following:

for any qj,h = 1 and k → h, set qj,k to one and obtain a modified matrix DE(Q).

This DE(Q) is said to be a “densified” version of Q.

Definition 2. Given an attribute hierarchy E and a matrix Q, do the following:

for any qj,h = 1 and k → h, set qj,k to zero and obtain a modified matrix SE(Q).

This SE(Q) is said to be a “sparsified” version of Q.

Under the above two definitions, given any attribute hierarchy E , the two

statements DE(IK) = E and SE(E) = IK always hold. Specifically, DE(IK) = E

means that in the special case where J = K and Q takes the form of an identity

matrix IK , densifying such a Q always gives a K×K reachability matrix E under

the hierarchy E . Similarly, SE(E) = IK means that in another special case where

J = K and Q takes the form of the reachability matrix E, sparsifying Q always

gives the identity matrix IK . These two special examples illustrate the defini-

tions of the sparsifying/densifying operations on Q-matrices and the relationship

between E and IK . In cognitive diagnosis, the densified Q-matrix with all row

vectors respecting the attribute hierarchy E is also said to satisfy the “restricted

Q-matrix design” (e.g., Cai, Tu and Ding (2018); Tu et al. (2018)); for such Q,

it holds that Q = DE(Q). Note that the sparsifying and densifying operations

modify Q only within the same equivalence class. Indeed, DE(Q) denotes the

densest Q with the largest number of ones in the equivalence class, while SE(Q)

denotes the sparsest Q with the largest number of zeros in the equivalence class.

In the special case with an empty attribute hierarchy, each equivalence class of Q
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contains only one element, which is Q itself, so Q = DE(Q) = SE(Q), for E = ∅.

As shown in the following theorem, our identifiability conditions are essentially

requirements on the equivalence class of Q described using the densifying and

sparsifying operations.

Theorem 1. Consider an HLAM under the DINA model and an attribute hier-

archy E. Then, (Γ(Q, E), θ+, θ−, p) are jointly identifiable if the true Q satisfies

the following conditions:

A. The Q contains the K ×K submatrix Q0 that is equivalent to the identity

matrix IK under the hierarchy E.

(Without loss of generality, assume the first K rows of Q form Q0, and

denote the remaining submatrix of Q by Q?.)

B. The SE(Q), the sparsified version of Q, has at least three ones in each

column.

C. The DE(Q?), the densified version of the submatrix Q?, contains K distinct

column vectors.

Furthermore, Conditions A, B, and C are necessary and sufficient when no hier-

archy exists with pα > 0, for all α ∈ {0, 1}K .

We make several remarks on the relationship between the new theory and

that of existing works.

Remark 2. In the cognitive diagnostic modeling literature, a Q-matrix is said to

be “complete” if it can distinguish all 2K latent attribute profiles (Chiu, Douglas

and Li (2009)). When the latent pattern space A is saturated with A = {0, 1}K ,

the completeness of Q is a natural and necessary requirement for identifiability.

When A = {0, 1}K , the Q-matrix is complete if it contains all K distinct stan-

dard basis vectors as row vectors, that is, Q contains an IK . When a certain

attribute hierarchy E exists leading to some A ( {0, 1}K , the requirement for

the “completeness” of Q changes. Recently, Köhn and Chiu (2019) and Cai, Tu

and Ding (2018) studied conditions for the completeness of Q under attribute

hierarchies. However, these conditions cannot ensure that the entire probabilistic

model structure involving Q, E , and the parameters p, θ+ and θ− are identi-

fiable and estimable from the data. To the best of our knowledge, Theorem 1

establishes the first identifiability result under an arbitrary attribute hierarchy

in the literature. Condition A in Theorem 1 is equivalent to requiring that the

sparsified SE(Q) contains an IK . Therefore, the combination of Conditions A

and B is equivalent to the following statement about SE(Q): SE(Q) contains an

IK and each column contains at least three ones.
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Remark 3. As stated in the last part of Theorem 1, when there is no attribute

hierarchy with E = ∅, Conditions A, B, and C become necessary and sufficient

for the identifiability of both Q and (E , θ+, θ−, p). In such a special case with

E = ∅, Gu and Xu (2021) established the following necessary and sufficient iden-

tifiability conditions: “completeness”, which requires that the true Q contain an

identity submatrix IK , “repeated-measurement”, which requires that Q have at

least three ones in each column, and “distinctiveness”, which requires that in

addition to containing an IK , Q should contain distinct column vectors in the

remaining submatrix; we denote these three requirements as Conditions A0, B0,

and C0, respectively. Our current conditions A, B, and C in Theorem 1 can be

thought of as “E-completeness,” “E-repeated-measurement,” “E-distinctiveness,”

given an attribute hierarchy E . When E = ∅, SE(Q) = DE(Q) = Q holds;

as a result, Condition A exactly requires that Q itself contain a submatrix IK ;

similarly, Conditions B and C exactly reduce to the conditions B0 and C0, re-

spectively, on Q itself. Indeed, in such cases with E = ∅, the current conditions

of “E-completeness,” “E-repeated-measurement,” and “E-distinctiveness” reduce

to the “completeness,” “repeated-measurement,” and “distinctiveness” conditions

proposed in Gu and Xu (2021). Establishing identifiability under an arbitrary

attribute hierarchy E , as in Theorem 1, is technically much more challenging than

the existing result for E = ∅. Moreover, in Section 4, under a fixed Q-matrix, we

investigate how the necessity of the identifiability conditions changes when there

is a nonempty hierarchy.

Theorem 1 ensures that the discrete ideal response structure Γ(Q, E) and all

associated model parameters (θ+, θ−, p) are identifiable. The following propo-

sition complements this conclusion and further establishes the identifiability of E
and Q based on Theorem 1.

Proposition 1. Consider a DINA-based HLAM. In addition to Conditions A–C

in Theorem 1, if the true Q is known to contain an IK , then (E ,θ+, θ−, p) are

identifiable. On the other hand, for Q must contain an IK to ensure that an

arbitrary E is identifiable.

Proposition 2. Consider a DINA-based HLAM. If Conditions A–C in Theorem

1 are satisfied and the true Q is known in part to contain a submatrix IK for

certain K items, then the equivalence class of Q defined by the attribute hierarchy

E is identifiable. That is, the specific Q is not strictly identifiable within its

equivalence class under any E 6= ∅, but the densified DE(Q) and the sparsified

SE(Q) are identifiable.
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The statement in Proposition 2 that Q is identifiable only up to its equiva-

lence class is inherent to all DINA- or DINO-type HLAMs, and is an inevitable

consequence of any nonempty attribute hierarchy E 6= ∅; see Example 2. How-

ever, this statement does not undermine the efficacy of the identifiability con-

clusion, because DE(Q) and SE(Q) themselves are still identifiable and provide

practical interpretability of the structural matrix. The following toy example

shows how to apply Theorem 1 to check identifiability.

Example 3. Consider the attribute hierarchy {α1 → α2, α1 → α3} amongK = 3

attributes, as in Fig 2. The following 8×3 structural matrix Q satisfies Conditions

A, B, and C in Theorem 1. In particular, the first three rows of Q serve as Q0

in Condition A, and the last five rows serve as Q?. In the following display,

the matrix entries modified by the sparsifying operation in Condition B and the

densifying operation in Condition C are highlighted and in bold. The resulting

SE(Q) and DE(Q) satisfy the requirements in Conditions B and C. Thus, the

HLAM associated with Q is identifiable.

Q =

(
Q0

Q?

)
=



I3

1 0 0

1 0 0

1 1 0

0 0 1

1 1 1


Sparsify
=⇒ SE(Q) =



I3

1 0 0

1 0 0

0 1 0

0 0 1

0 1 1


; (3.3)

Densify
=⇒ DE(Q) =



E

1 0 0

1 0 0

1 1 0

1 0 1

1 1 1


. (3.4)

When estimating an HLAM with the goal of recovering the ideal response

structure Γ(Q, E) and the continuous parameters, Theorem 1 guarantees that

Conditions A, B, and C suffice and are close to being necessary. If the goal is to

uniquely determine the attribute hierarchy from the identified Γ(Q, E), the ad-

ditional condition that Q contains an IK becomes necessary. This phenomenon

can be better understood by relating it to the identification of a factor loading

matrix in the factor analysis (Anderson (2009); Bai and Li (2012)); in this case,

the loading matrix is often required to include an identity submatrix or satisfy
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certain rank constraints, because otherwise it cannot be identifiable, owing to

rotational indeterminacy.

Existing results for the identifiability of non-hierarchical latent attribute

models (i.e., with an empty graph E = ∅ in Gu and Xu (2021)) adopt a key

assumption that pα > 0 for any possible binary pattern α ∈ {0, 1}K , and the

proofs in Gu and Xu (2021) rely heavily on this assumption on p to derive the

identifiability conditions. Importantly, when the assumption that “pα > 0, for

any α ∈ {0, 1}K” fails to hold, the proof in Gu and Xu (2021) no longer holds,

and we cannot simply modify their conclusions. Rather, we need to carefully an-

alyze the polynomial systems arising from the probability mass function (PMF)

of the observed R to derive suitable identifiability conditions.

Note that dealing with a degenerate parameter space of p under an attribute

hierarchy E requires quite delicate algebraic work. Specifically, our proof tech-

nique of identifiability is based on investigating the conditions under which the

highly complex and Q-matrix-constrained polynomial equations given by the

PMF of the vector R has unique roots; the uniqueness of the roots indicates

the identifiability of the parameters. When using this proof technique, we start

by inspecting the polynomial equations P(R = r | Q̄, Ē , θ̄+, θ̄−, p̄) = P(R = r |
Q, E ,θ+,θ−,p), ∀r ∈ {0, 1}J for the unknown true parameters (Q, E ,θ+,θ−,p)

and arbitrary alternative parameters (Q̄, Ē , θ̄+, θ̄−, p̄), and investigate which con-

ditions guarantee that the alternative parameters are identical to the true ones.

Under an unknown attribute hierarchy E , certain true proportions pα are equal

to zero, but we do not know which ones these are. Therefore, complex constraints

on polynomial equations occur, because certain terms vanish from the one side of

the equation (corresponding to the true parameters pα) but do not vanish from

the other side (corresponding to the unknown alternative parameters pα; we do

not know which pα = 0 out of all the possible α ∈ {0, 1}K). This fact makes

studying the identifiability issues in the current work considerably harder and

quite different from existing results for non-hierarchical latent attribute models

(e.g., Gu and Xu (2021)).

As stated at the end of Theorem 1, Conditions A, B, and C become sufficient

and necessary for identifiability when there is no hierarchy among the attributes.

Interestingly, the necessity of these conditions changes subtly when there is a

nonempty attribute hierarchy.
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4. Identifiability of Attribute Hierarchy and Model Parameters: Push-

ing Toward Necessity

In order to close the gap between necessity and sufficiency, we thoroughly

investigate the necessity of the identifiability conditions for (E ,θ+,θ−,p) under

the assumption that Q is known and fixed. In Subsection 4.1, we first investi-

gate the necessity of the conditions proposed in Section 3 individually, to gain

insight into how the necessity changes as the attribute hierarchy changes. Then,

in Subsection 4.2, we establish the general necessary and sufficient conditions

for identifying the attribute hierarchy and other parameters under an arbitrary

hierarchy graph E .

4.1. Investigating the necessity of Conditions A, B, and C individually

Our first result establishes the necessity of Condition A in Theorem 1.

Proposition 3. Consider a DINA-based HLAM. Condition A that the sparsified

SE(Q) contains an IK is necessary for the identifiability of (Γ(Q, E), θ+,θ−, p).

Proposition 3 shows that Condition A cannot be relaxed under any attribute

hierarchy. On the other hand, Conditions B and C are more “local” in the sense

that they relate to individual attributes (equivalently, individual columns of the

Q-matrix). Interestingly, the necessity of these two conditions depends greatly on

the role of each attribute in the attribute hierarchy graph. We next characterize

the fine boundary between the sufficiency and the necessity of the identifiability

conditions for various types of attributes. Given any attribute hierarchy graph

E , we define the following four types of attributes.

Definition 3 (Singleton attribute). An attribute k is a “singleton attribute”

if no attribute h exists such that k → h, and no attribute ` exists such that `→ k.

Definition 4 (Root attribute). An attribute k is a “root attribute” if there

exists some attribute h such that k → h, but there is no attribute ` such that

`→ k.

Definition 5 (Leaf attribute). An attribute k is a “leaf attribute” if there

exists some attribute ` such that ` → k, but there is no attribute h such that

k → h.

Definition 6 (Intermediate attribute). An attribute k is an “intermediate

attribute” if there exists some attribute ` with `→ k and some attribute h with

k → h.
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α1

α2

α3

α4

α5

α6

α1

α2

α3 α4

α5

α6

α1

α2 α3

α4 α5 α6

α1

α2 α3 α4 α5 α6

(a) (b) (c) (d)

Figure 3. The four attribute hierarchies presented in Leighton, Gierl and Hunka (2004):
(a) linear, (b) convergent, (c) divergent, and (d) unstructured. For example, in (b), α1 is
a root attribute, α2, . . . , α6 are intermediate attributes, α7 is a leaf attribute, and there
are no singleton attributes.

The above four definitions together describe a full categorization of attributes,

given any attribute hierarchy. In other words, given any E , an attribute is either a

singleton, a root, a leaf, or an intermediate attribute. As a special case, when the

attribute pattern space A = {0, 1}K is saturated, all K attributes are singleton

attributes.

Example 4. (Leighton, Gierl and Hunka (2004)) were among the first to con-

sider the attribute hierarchy method for the purpose of cognitive diagnosis. In

particular, they present and name the four types of hierarchies among K = 6

attributes, as shown in our Fig 3. In our terminology, in plot (a), attribute 1 is a

root attribute, attribute 6 is a leaf attribute, and the remaining attributes 2, 3,

4, and 5 are intermediate attributes; in plot (b), the roles of the six attributes are

the same as those in plot (a); in plot (c), attribute 1 is a root attribute, attributes

2 and 3 are intermediate attributes, and attributes 4, 5, and 6 are leaf attributes;

in plot (d), attribute 1 is a root, and the remaining attributes are leaves.

For ease of discussion, in the following conclusions on the necessity of the

identifiability conditions, we focus on Q-matrices that satisfy the restricted Q-

matrix design, that is, each row vector is a permissible attribute pattern under

the hierarchy E . In the literature on cognitive diagnostic modeling, the restricted

Q-matrix design is shown empirically to improve the clustering accuracy of di-
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agnostic test takers (Tu et al. (2018)). Our theoretical findings reveal that, in

addition to the restricted Q-matrix design, certain other requirements are neces-

sary to ensure identifiability.

Before presenting the next identifiability result, we first introduce a new

notion for the identifiability of the attribute hierarchy E and the proportion

parameters p, that is, identifiability up to the equivalence classes [E ] and [p],

respectively. Under an unknown nonempty hierarchy E 6= ∅, if all row vectors

of Q respect the attribute hierarchy, then there exists a trivial nonidentifiability

issue that can be resolved by introducing an equivalence relation, similar in spirit

to that in Gu and Xu (2020). To see this, consider K = 2 and E = {1 → 2}.
Then, both rows of a Q-matrix Q = E = (1, 0; 1, 1) respect the attribute hier-

archy. Further, consider the simplest special case without any item-level noise,

1− θ+
1 = 1− θ+

2 = θ−1 = θ−2 = 0. Now if E is unknown, then it is not hard to see

that any alternative proportion parameters p̄ satisfying the following equations

are nondistinguishable from the true parameters p:

p(00) = p̄(00) + p̄(01); p(10) = p̄(10); p(11) = p̄(11). (4.1)

The above phenomenon is closely related to the p-partial identifiability de-

fined in Gu and Xu (2020), which means that when Q does not contain an

identity submatrix IK (often called “incomplete” in cognitive diagnosis models),

the proportion parameters can at best be identified up to the equivalence classes

induced by Q. In the earlier toy example in the last paragraph, the attribute

patterns (00) and (01) are equivalent under the incomplete Q = (1, 0; 1, 1) be-

cause ΓQ,(00) = ΓQ,(01); thus, p̄(00) and p̄(01) can be identified up to their sum,

at best, as illustrated in (4.1). Therefore, we say (θ+,θ−, [E ], [p]) are identifiable

if the continuous parameters (θ+,θ−) are identifiable in the usual sense, and E
and p are identifiable up to each of their respective equivalence classes; that is,

the only nonidentifiability issue related to E (and hence p) is due to the equiva-

lence relation induced by Q, as in the example in (4.1). The following are formal

definitions of [E ] and [p]: given an attribute hierarchy E and a Q-matrix with

all row vectors respecting the hierarchy E (i.e., satisfying the restricted Q-matrix

design), define the equivalence class of the attribute hierarchies [E ] and that of

the proportion parameters [p] as

[E ] = {Ē : Γ(Q, E) = Γ(Q, Ē)} and

[p] = {p̄ : p̄ is associated with some Ē ∈ [E ], with (θ+ = 1J×1,θ
− = 0J×1, E ,p)

and (θ+ =1J×1,θ
−=0J×1, Ē , p̄) giving rise to the same distribution of R}
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=

{
p̄ = (p̄α,α ∈ {0, 1}K) : ∀α that respects the hierarchy E ,

∑
α′: ΓQ,α′=ΓQ,α

p̄α′ = pα

}
,

respectively. Note that the above nonidentifiability of a specific E within its

equivalence class [E ] is somewhat trivial, and can be easily resolved by simply

defining the final Ē? as the hierarchy with the most directed edges among all

possible hierarchies in the equivalence class [Ē ]. It is easy to see that Ē? is equal

to the true E in the toy example, because in order for Ē to have the most directed

edges, one needs to set p̄(01) = 0 under (4.1), which makes the resulting p̄ = p

and Ē? = E = {1 → 2}. By similar reasoning, this procedure also works more

generally for any hierarchy E . Therefore, when a fixed Q-matrix has all rows

respecting the hierarchy, it is still meaningful and useful to study the identifiabil-

ity of (θ+,θ−, [E ], [p]) and to investigate the minimal identifiability conditions.

Our results in this section establish the necessary and sufficient identifiability

conditions in this regard.

In the following Propositions 4–6, we show how Condition B can be relaxed,

in general, depending on whether the attribute is a root, a leaf, or an intermediate

attribute.

Proposition 4. (Necessary condition for singleton attribute). Consider a

DINA-based HLAM with a fixed Q-matrix whose row vectors respect the hierarchy

E. The following hold for a singleton attribute k in any attribute hierarchy:

(a)
∑J

j=1 qj,k ≥ 3 is necessary for the identifiability of (E ,θ+,θ−,p).

(b) There exist scenarios in which the equality in part (a) is achieved with∑J
j=1 qj,k = 3 and the identifiability of (θ+,θ−, [E ], [p]) is guaranteed.

Proposition 5. (Necessary condition for root and leaf attributes). Con-

sider a DINA-based HLAM with a fixed Q-matrix whose row vectors respect the

hierarchy E. Denote the (j, k)th entry of SE(Q) by qsparse
j,k . The following conclu-

sions hold for k if the attribute k is either a root or a leaf attribute:

(a)
∑J

j=1 q
sparse
j,k ≥ 2 is necessary for the identifiability of (E ,θ+,θ−,p).

(b) There exist scenarios in which the equality in part (a) is achieved with∑J
j=1 q

sparse
j,k = 2 and the identifiability of (θ+,θ−, [E ], [p]) is guaranteed.

Proposition 6. (Necessary condition for intermediate attribute). Con-

sider a DINA-based HLAM with a fixed Q-matrix whose row vectors respect the
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hierarchy E. Denote the (j, k)th entry of SE(Q) by qsparse
j,k . The following state-

ments hold for an intermediate attribute k:

(a)
∑J

j=1 q
sparse
j,k ≥ 1 is necessary for the identifiability of (E ,θ+,θ−,p).

(b) There exist scenarios in which the equality in part (a) is achieved with∑J
j=1 q

sparse
j,k = 1 and the identifiability of (θ+,θ−, [E ], [p]) is guaranteed.

Propositions 4–6 together characterize the identifiability phenomena caused

by different types of attributes in the attribute hierarchy graph. An intuitive

explanation for these conclusions is as follows. For a singleton attribute k that is

not connected to any other attribute in the attribute hierarchy graph, no addi-

tional information is provided by the other attributes. Therefore, the requirement

of k being measured by at least three items in the Q-matrix is necessary. This

aligns well with the conclusion established in Xu and Zhang (2016) and Gu and

Xu (2019b) for a latent attribute model without any hierarchy, where all the

attributes are singletons and each needs to be measured by at least three items.

However, this requirement can be relaxed for any other type of attribute which is

somewhat connected in the attribute hierarchy graph. In particular, fewer mea-

surements are needed for k in the Q-matrix, because more information is available

for this attribute in the attribute hierarchy graph. For a root attribute k with

some “child” or a leaf attribute with some “parent” as one-sided information,

the requirement is relaxed to k being measured by at least two items in SE(Q).

For an intermediate attribute k with some child and some parent as two-sided

information, the requirement is further relaxed to k being measured by at least

one item in SE(Q).

We next discuss the necessity of Condition C. Given Q, we denote by Q1:K,:

the submatrix consisting of its first K rows, and by Q(K+1):J,: the submatrix

consisting of its last J − K rows. For Q with rows respecting the attribute

hierarchy, Condition C requires Q(K+1):J, k 6= Q(K+1):J, `, for any k 6= `, when

Q1:K,: = E. We have the following result.

Proposition 7. (Necessity of Condition C). Consider a DINA-based HLAM

with a fixed Q whose row vectors respect the hierarchy E. The condition that

Q(K+1):J, k 6= Q(K+1):J, ` (when Q1:K,: = E) is necessary for identifiability if

both αk and α` are singleton attributes.
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4.2. Bridging the necessity and sufficiency of the identifiability condi-

tions

Still under a fixed and known Q-matrix, as in Section 4.1, we next investigate

how the sufficient identifiability conditions for (θ+,θ−,p) can meet the necessary

identifiability conditions proposed earlier in Propositions 5–7. In the next the-

orem, we establish that the combination of the individual necessary conditions

established in Section 4.1 are actually sufficient to guarantee the identifiability

in fully general scenarios. This result therefore establishes the general necessary

and sufficient condition on the Q-matrix for identifiability under an arbitrary

attribute structure.

Theorem 2. (Necessary and sufficient conditions under a fully general

E). Consider a DINA-based HLAM with a fixed Q-matrix whose row vectors

respect the hierarchy E. Then, Condition A and the following condition B? and

C? are necessary and sufficient for the identifiability of (θ+,θ−, [E ], [p]).

B?. In SE(Q), any intermediate attribute is measured by at least one item, any

root and leaf attributes are measured by at least two items, and any singleton

attribute is measured by at least three items.

C?. For any two singleton attributes αk and α`, Q(K+1):J, k 6= Q(K+1):J, `. (As-

sume Q1:K,: = E under Condition A.)

Theorem 2 covers any type of attribute structure and allows for any type of

attributes in the attribute hierarchy graph. In the special case in which there are

no singleton attributes in the graph, the necessary and sufficient identifiability

conditions in Theorem 2 can be simplified. We refer to a family of hierarchies

without any singleton attributes as a connected-graph hierarchy.

Corollary 1. (Necessary and sufficient condition under a connected-

graph hierarchy). Consider a DINA-based HLAM with a fixed Q-matrix whose

row vectors respect the hierarchy E. Suppose the K attributes form a connected

graph. Then, Condition A and the following Condition D are necessary and

sufficient for the identifiability of (E ,θ+,θ−, [p]).

D. In SE(Q), any root and leaf attributes are measured by at least two items,

and any intermediate attribute is each measured by at least one item.

Remark 4. In the first extreme case, if E = ∅, without any true hierarchy

among the attributes, then Conditions A, B?, and C? in Theorem 2 become

Conditions A, B, and C in Theorem 1 in Section 3. In the second extreme
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case, if there are no singleton attributes in the attribute hierarchy graph, then

Condition B? in Theorem 2 reduces to Condition D in Corollary 1; here Condition

C? in Theorem 2 should be understood as being always satisfied, and hence can

be omitted. That is, under a connected-graph hierarchy without any singleton

attributes, the Conditions A, B?, and C? in Theorem 2 reduce to Conditions A

and D in Corollary 1. Therefore, Theorem 2 covers Corollary 1 as a special case,

and is indeed fully general. We state these two results separately to highlight

the most general form of the result, and to show how the necessary and sufficient

conditions simplify under the popular family of connected-graph hierarchies, as

in Corollary 1.

The following example illustrates the minimal requirements on Q under the

attribute hierarchies considered in Leighton, Gierl and Hunka (2004).

Example 5. Under the linear hierarchy E = E linear in Figure 4(b), the 8×6 matrix

Qlinear
8×6 shown in Figure 4(a) encodes the minimal requirement for identifiability.

Figure 4(b) visualizes the sparsified version of Qlinear
8×6 as directed solid edges

from the latent attributes to the observed item responses. Under the so-called

convergent hierarchy and divergent hierarchy presented in Figure 3, the minimal

requirement on Q for model identifiability is presented in parts (c)–(d) and parts

(e)–(f) of Figure 4, repectively. For the divergent hierarchy E = Ediv in Figure

4(f), Qdiv
10×6 in Figure 4(c) gives an identifiable model under minimal conditions.

5. Identifiability of HLAMs Other than DINA-Based HLAMs

We also study the identifiability of HLAMs other than DINA-based HLAMs.

5.1. DINO-based HLAMs

As introduced in Section 2, the DINO model is a popular type of latent

attribute model, often used for the psychiatric and clinical measurement of mental

disorders (Templin and Henson (2006); de la Torre, van der Ark and Rossi (2018)).

A careful examination of the definitions of the ideal responses ΓAND and ΓOR

in (2.1) and (2.5) reveals the relationship ΓOR
qj ,α = 1 − ΓAND

qj ,1K−α, where 1K −
α = (1 − α1, . . . , 1 − αK)> also denotes an attribute pattern. Building on the

duality between DINA and DINO, the following proposition characterizes how

the identifiability results obtained under a DINA-based HLAM can be translated

to the case of a DINO-based HLAM.
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Qlinear
8×6 =



1 0 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0
1 1 1 1 0 0
1 1 1 1 1 0
1 1 1 1 1 1
1 0 0 0 0 0
1 1 1 1 1 1



α1 α2 α3 α4 α5 α6

r7 r1 r2 r3 r4 r5 r6 r8

(a) Qlinear
8×6 (b) visualization of the sparsified SE(Qlinear

8×6 )

Qconv
8×6 =



1 0 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0
1 1 0 1 0 0
1 1 1 1 1 0
1 1 1 1 1 1
1 0 0 0 0 0
1 1 1 1 1 1


α1 α2

α3

α4

α5 α6

r1r7 r2

r3

r4

r5 r6 r8

(c) Qconv
8×6 (d) visualization of the sparsified SE(Qconv

8×6 )

Qdiv
10×6 =



1 0 0 0 0 0
1 1 0 0 0 0
1 0 1 0 0 0
1 1 0 1 0 0
1 0 1 0 1 0
1 0 1 0 0 1
1 0 0 0 0 0
1 1 0 1 0 0
1 0 1 0 1 0
1 0 1 0 0 1



α1

α2 α3

α4 α5 α6

r1 r7

r2 r3

r4

r8 r5 r9

r6

r10

(e) Qdiv
10×6 (f) visualization of the sparsified SE(Qdiv

10×6)

Figure 4. Minimally sufficient requirements on Q for identifiability under the linear
hierarchy, convergent hierarchy, and divergent hierarchy proposed in Leighton, Gierl and
Hunka (2004), respectively.

Proposition 8. Consider a DINO-based HLAM with a fixed Q-matrix and an

unknown attribute hierarchy E. Define the reversed attribute hierarchy Ereverse as

Ereverse = {`→ k : if k → ` under the original hierarchy E}. (5.1)
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(a) For any α ∈ {0, 1}K , α ∈ A(E) if and only if 1K − α ∈ A(Ereverse). That

is, any attribute pattern α is allowable under the original hierarchy E if and

only if another attribute pattern α′ = 1−α is allowable under the reversed

hierarchy Ereverse.

(b) The attribute hierarchy E and model parameters under a DINO-based HLAM

are identifiable if and only if the reversed attribute hierarchy Ereverse and

model parameters are identifiable under a DINA-based HLAM with the same

Q-matrix.

For any attribute hierarchy graph E , the reversed hierarchy Ereverse in (5.1) is

another directed graph among the attributes, where the direction of each arrow

in E is reversed. Therefore, for the same set of K attributes, any root attribute in

E becomes a leaf attribute in Ereverse, and any leaf in E becomes a root in Ereverse.

Any intermediate or singleton attributes remain the same type when E is reversed

to Ereverse. Proposition 8 provides guidelines on how to check the identifiability

for a DINO-based HLAM using the identifiability results established earlier for

DINA-based HLAMs. In particular, we have the following necessary and sufficient

conditions for the identifiability of (E ,θ+,θ−,p) under a DINO-based HLAM

with a fixed Q-matrix.

Corollary 2. (Necessary and sufficient conditions under a general E for

a DINO-based HLAM). Consider a DINO-based HLAM with an attribute hi-

erarchy E and a fixed Q-matrix whose rows respect the reversed hierarchy Ereverse.

Consider the following condition.

A?. The Ereverse-densified matrix DEreverse(Q) contains a submatrix that is the

reachability matrix under the reversed hierarchy Ereverse.

Then, Condition A? and Conditions B?–C? in Theorem 2 are necessary and suf-

ficient for the identifiability of (E ,θ+,θ−,p).

5.2. Main-effect-based HLAMs

Another family of HLAMs in the literature (e.g., DiBello, Stout and Roussos

(1995); von Davier (2008); Henson, Templin and Willse (2009)) incorporate the

main effects of the latent attributes into the model. We review these main-effect-

based HLAMs in Example 6, and then provide the identifiability result for them.

Example 6. (HLAMs that model the main effects of attributes). Main-

effect HLAMs assume that the main effects of the attributes measured by each

item indicated by qj play a role in distinguishing the item parameters. Under a
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main-effect HLAM, the Bernoulli parameter θj,α can be written as

θmain-eff
j,α = f

(
βj,0 +

∑K

k=1
βj,kqj,kαk

)
, (5.2)

where f(·) is a link function. Note not we do not need all the β-coefficients in

the above display in the model specification; instead, only when qj,k = 1 will βj,k
be needed and truly incorporated in the model. Different link functions f(·) in

(5.2) lead to different models, including the linear logistic model (LLM; Maris

(1999)), with f(·) being the sigmoid function, and the additive cognitive diagnosis

model (ACDM; de la Torre (2011)), with f(·) being the identity. When f(·) is

a monotonically increasing function, it is usually assumed in practice that each

βj,k > 0 wherever qj,k = 1, for interpretability.

All-effect HLAMs model the main effects and the interaction effects of the

attributes. The Bernoulli parameter θj,α of an all-effect model is

θall-eff
j,α =f

(
βj,0 +

K∑
k=1

βj,k(qj,kαk) +
∑

1≤k1<k2≤K
βj,k1k2

(qj,k1
αk1

)(qj,k2
αk2

)+

· · ·+ βj,12···K

K∏
k=1

(qj,kαk)

)
. (5.3)

Similarly to (5.2), we do not need all the β-coefficients in the model specification.

When f(·) in (5.3) is the identity function, (5.3) gives the generalized DINA

(GDINA) model in de la Torre (2011); and when f(·) is the sigmoid function,

(5.3) gives the log-linear cognitive diagnosis models (LCDMs) in Henson, Templin

and Willse (2009); see also the general diagnostic models (GDMs) in von Davier

(2008). In general, we call the main-effect HLAMs in (5.2) and the all-effect

HLAMs in (5.3) main-effect-based HLAMs, because they both incorporate the

main effects of the latent attributes in the model.

Under main-effect-based HLAMs, the probability mass function of the J-

dimensional random response vector R can be written generally as

P (R = r | Q, E ,θ+,θ−,p) =
∑

α∈A(E)

pα

J∏
j=1

θ
rj
j,α × (1− θj,α)1−rj ,

where r ∈ {0, 1}J is an arbitrary response pattern. Notably, these main-effect-

based HLAMs have quite different algebraic structures to those two-parameter

HLAMs, namely the DINA and DINO models. The key structure of any two-

parameter HLAM is captured by the ideal response Γqj ,α in (2.1) or (2.4), under
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the “AND” or “OR” operations, respectively. Intuitively, two-parameter HLAMs

are characterized by a probabilistic version of the Boolean product of two groups

of binary vectors, the group of qj and the group of α; however, this is not the case

for any HLAM in Example 6, owing to the incorporation of the main effects of the

attributes. Indeed, incorporating main effects in the form of
∑K

k=1βj,kqj,kαk in

(5.2) or (5.3) is taking an inner product of the vectors qj and α and an additional

β-coefficient vector, rather than the Boolean product. As such, the necessary and

sufficient identifiability conditions derived for two-parameter HLAMs in Sections

3-4 do not apply to main-effect-based HLAMs.

Next, we give a set of sufficient conditions for the identifiability of main-

effect-based HLAMs. The technical concept of Γ(Q, E) (specifically, with Γ =

ΓAND defined in (2.1)) introduced in Section 3 is still useful here. Denote the

collection of all per-item Bernoulli parameters by Θ = (θj,α). We have the

following theorem.

Theorem 3. (Identifiability of HLAMs that model the main effects of

attributes). Consider an HLAM that incorporates the main effects of the at-

tributes, with Q and E both unknown. Suppose Θ satisfies a natural inequality

constraint θj,α 6= θj,α′ if Γqj ,α 6= Γqj ,α′. If Γ(Q, E) satisfies the following condi-

tions with the number of columns known, then (Θ,p) and Γ(Q, E) are identifiable.

E. There exist two disjoint sets of items S1, S2 ⊆ [J ], such that Γ(QS1,: , E)

and Γ(QS2,: , E) each has distinct column vectors.

F. For any α 6= α′ ∈ A(E), there exists some j 6∈ S1 ∪ S2 such that Γqj ,α 6=
Γqj ,α′.

G. For any α ∈ A(E), α′ ∈ {0, 1} \ A(E), there exists some j ∈ [J ] such that

Γqj ,α 6= Γqj ,α′.

In addition to the above three conditions, if Q is known in part to contain an

identity submatrix IK , then the attribute hierarchy E is identifiable from Γ(Q, E).

For main-effect-based HLAMs, the ideal response matrix Γ(Q, E) may not

sharply characterize the entire latent structure, owing to the incorporation of the

main effects, on contrast to the DINA-based HLAMs. To see this, consider two

latent patterns α and α′, with Γqj ,α = Γqj ,α′ = 0. Then, the specification in

(5.2) or (5.3) implies that it is possible that θj,α 6= θj,α′ . Therefore it is difficult,

if at all possible, to explicitly characterize the necessary identifiability conditions

in terms of Γ(Q, E) for main-effect-based HLAMs. However, Γ(Q, E) is still useful

for deriving the sufficient conditions for identifiability, as in Theorem 3. This is

because if Γqj ,α = Γqj ,α′ = 1, the two attribute patterns α and α′ both satisfy
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α � qj and α′ � qj , by the definition in (2.1). This implies that the patterns α

and α′ both possess all the attributes measured by the vector qj . As a result, the

definition of main-effect-based models in (5.2) or in (5.3) shows that there must be

θj,α = θj,α′ for these two patterns. This intuitively explains why Γ(Q, E) can be

used to describe a set of sufficient identifiability conditions for main-effect-based

HLAMs.

We make a remark on the relationship between the main-effect-based HLAMs

and the DINA-based HLAMs studied in Sections 3–4. On the one hand, the main-

effect-based HLAMs are more general than DINA-based HLAMs in the sense that

the formulation of θmain-eff
j,α in (5.2) or θall-eff

j,α in (5.3) can generally allow for more

than two Bernoulli parameters for each j, whereas DINA-based HLAMs always

have two parameters θ+
j and θ−j for each j. However, we focus on DINA-based

two-parameter HLAMs, which are widely used in the motivating applications

of cognitive diagnosis in educational settings. Indeed, these are the settings in

which attribute hierarchies receive the most attention in terms of modeling the

sequential acquisition of skill attributes (e.g., Leighton, Gierl and Hunka (2004);

Gierl, Leighton and Hunka (2007); Wang and Lu (2020)). On the practical side,

assuming a conjunctive relationship among the attributes, as in DINA, is often

believed to be suitable for modeling the response mechanism of diagnostic test

items in such settings (e.g., Junker and Sijtsma (2001); de la Torre and Douglas

(2004)). On the theoretical side, the identifiability of two-parameter DINA-based

HLAMs is more intriguing because of the Boolean product involved. The rich

combinatorial nature of such models gives the opportunity to close the gap be-

tween the necessity and sufficiency of identifiability requirements; interestingly,

these minimal requirements are explicit conditions on the discrete structure: the

Q-matrix and attribute types, as depicted in Section 4. Therefore, we believe

that closely examining DINA-based two-parameter HLAMs and establishing the

minimal identifiability conditions for them (as done in Sections 3–4) are highly

desirable, for both theoretical interest and practical relevance.

6. Conclusion

We have provided a first study on the identifiability of the hierarchical latent

attribute model, a complex-structured latent variable model popular for model-

ing modern assessment data. We propose sufficient identifiability conditions that

explicitly depend on the attribute hierarchy graph and the structural Q-matrix.

We also discuss the necessity of the identifiability conditions and sharply charac-

terize the effects on identifiability of different types of attributes in the attribute
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hierarchy graph. We focus mainly on the basic and popular HLAMs, namely the

DINA-based HLAMs, where each item is modeled using two parameters. We also

extend the theory to other types of HLAMs in Section 5.

One nice implication of identifiability is the estimability of both the latent

structure and the parameters that define the probabilistic model. When the pro-

posed conditions are satisfied, all the components of an HLAM can be uniquely

and consistently estimated from data based on the maximum likelihood. In a

practical data analysis under the HLAM framework, if Q and E are specified by

domain experts or applied researchers, then before seeing any data, one can check

whether Q and E satisfy our proposed conditions for assessing model identifia-

bility. On the other hand, if Q and E are not known and one hopes to estimate

them exploratorily from data, our identifiability results can also be useful. In

such scenarios, one can check whether the estimated Q̂ and Ê satisfy necessary

identifiability conditions; if not, then a more careful investigation of the diag-

nostic test design may be needed. Therefore, this study provides useful insights

into designing valid diagnostic tests and drawing valid scientific conclusions from

assessment data under a potentially complicated attribute hierarchy.

Supplementary Material

The supplementary material contains proofs of the theorems and some illus-

trative examples.
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