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Abstract: We propose a nonparametric density estimator based on data that are

repeatedly observed with independent measurement errors. We particularly focus

on cases where the Fourier transform of the error density has some zeros and shows

oscillations. Our estimator attains the same rates of convergence as obtains under

smooth error densities whose Fourier transform have the corresponding tails but no

zeros. We prove minimax results for estimating the distribution function and for

support estimation in the same model. A simulation study supports our findings.
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1. Model and Assumptions

Nonparametric density deconvolution is the problem of estimating a den-
sity function fX , or the corresponding distribution, based on contaminated data
under nonparametric conditions on fX . In the basic model, i.i.d. observations
Y1, . . . , Yn, generated by Yj = Xj + εj , are given. All X1, ε1, . . . , Xn, εn are in-
dependent; the εj represent the measurement errors and have the known density
fε; the Xj have the density of interest fX . Kernel methods for the deconvolution
problem were introduced in Carroll and Hall (1988) and Stefanski and Carroll
(1990).

A common condition on the error density fε is fft
ε (t) 6= 0 for all t ∈ R,

where gft denotes the Fourier transform of a generic function g. Also, one usually
imposes upper and lower bounds on fft

ε whose ratio is independent of t. In the
case of polynomially decaying fft

ε , the error density is called ordinary smooth;
densities with exponentially decaying Fourier transform are called supersmooth;
see Fan (1991, 1993). The Laplace density is an example of an ordinary smooth
density whereas the normal and Cauchy densities are examples of supersmooth
densities. We refer to both ordinary smooth and supersmooth fε as standard
error densities. Here, we focus on error densities whose Fourier transforms have
some zeros and show oscillatory or irregular behaviour. To better illustrate these
ideas we provide four examples of non-standard error distributions.
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(a) Uniform (continuous) distribution.

The density is

fε(x; a, b) =
{ 1

b−a , if a ≤ x ≤ b,

0, otherwise,

while the characteristic function, fft
ε , satisfies

fft
ε (t) =

exp(ibt) − exp(iat)
it(b − a)

=
2 exp{i(a + b)/2} sin{(b − a)t/2}

t(b − a)
.

(b) Uniform (discrete) distribution.

This distribution has a probability function

p(k; j, l) =
{

1
l , if k = j, j + 1, . . . , j + l − 1,

0, for other k ,

and the characteristic function

fft
ε (t) =

exp[it{j + (l − 1)/2}] sin(lt/2)
l sin(t/2)

.

(c) Ordinary smooth densities (e.g., Laplace density) convolved with a (conti-
nuous or discrete) uniform distribution.

(d) A density with characteristic function vanishing on some intervals.

The density

fε(x) =
1 − cos(x)

πx2

∞∑
j=0

(1 + c|j|)−α cos(
5jx

2
) ,

where α > 1 and c > 0 is sufficiently large, has the Fourier transform

fft
ε (t) =

1
2
(1 − |t|)+ +

1
2

∞∑
j=−∞

(1 + c|j|)−α (1 − |t +
5j

2
|)+

which vanishes on the set
⋃∞

j=1[5j/2−3/2, 5j/2−1]∪ [1−5j/2, 3/2−5j/2].

Uniform measurement error densities appear in astronomy. Sun et al. (2003)
describe an experiment where contaminated measurements on the velocity of halo
stars in the Milky Way are obtained. In some cases, the measurement error is
uniform if the contamination is caused by such effects as mechanical stiffness of
the spectrograph.

Nonparametric deconvolution estimators are usually obtained by a kernel
method, where the deconvolution step is carried out in the spectral domain via a
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division by fft
ε . Some alternative approaches are based on splines, e.g., Mendel-

sohn and Rice (1982) and Carroll, Maca and Ruppert (1999), and on SIMEX
methods, e.g., Carroll, Maca and Ruppert (1999), but here we choose to work
with an inverse-Fourier-type estimator.

In Johnstone et al. (2004) and Kerkyacharian, Picard and Raimondo (2007),
boxcar deconvolution problems, i.e. uniform deconvolution in a periodic setting,
are considered in a white noise model. The authors derive nearly optimal rates
under certain conditions on the ratio of the scaling parameter of the error density
and the length of true signal support. Note that the periodic framework in these
papers is significantly different from the usual deconvolution setting in density
estimation. In the usual density estimation based on additively corrupted data,
it has been shown by Devroye (1989) that consistent estimation of fX is possible
if the set Nε =

{
t > 0 : fft

ε (t) = 0
}

has Lebesgue measure zero. Under the
even weaker condition that no open, non-void interval is included in Nε, Meister
(2005) establishes consistency with respect to a specific topology on the densities.
However, if Nε contains some open, non-empty intervals, as in example (d), then
fX is not identifiable (see Devroye (1989)), from which it follows that there is
no consistent estimator of fX in example (d). Hall and Meister (2007) consider
error densities when fft

ε has some isolated and periodic zeros (example (a) and
(b)). They show that the optimal convergence rates as derived in Fan (1991,
1993) for standard error densities remain valid for supersmooth fε; however, for
ordinary smooth fε, these rates can be ensured only in rare cases.

The situation changes dramatically if repeated measurements, as in analysis
of variance models, are available. In the current paper, we consider the replicated
measurement model, where each Xj is observed at least twice with different
errors. Therefore, the data Yj,k, j ∈ {1, . . . , n}, k ∈ {1, 2}, with

Yj,k = Xj + εj,k , (1.1)

are available, where the εj,k have the density fε and all Xj , εj,k are independent.
The replicated measurement model has been studied by Horowitz and Markatou
(1996), Li and Vuong (1998), Hall and Yao (2003), Schennach (2004a,b), Neu-
mann (2007), Delaigle, Hall and Meister (2008), where it has been shown that
fX can be consistently estimated in some cases even if fε is not known in ad-
vance. A similar problem is studied in Neumann (1997) and Efromovich (1997),
where the error density is estimable from additional direct observations; this is
a major advantage in comparison to the basic deconvolution model where prior
knowledge of the error distribution is essential.

We show here that optimal rates of convergence are unaffected by oscilla-
tions of fft

ε under model (1.1). For all fε that satisfy (1.2), we obtain the same
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convergence rates as under ordinary smooth error densities whose Fourier trans-
forms have the corresponding tails, but no zeros. This phenomenon does not
occur in the case without any replications, rather the convergence rates usually
show deterioration under error densities with isolated zeros in the Fourier domain
(example (a)); see Hall and Meister (2007). However, our estimator even attains
these rates for error densities such as example (d); inconsistency occurs here in
the basic deconvolution model without any replications. We further extend this
theory to the problem of estimating the probability of an interval and the support
of fX in model (1.1).

To provide some intuition about the empirical information contained in the
data, we consider (Yj,1, Yj,2)′ and its characteristic function fft

(Yj,1,Yj,2)(t1, t2) =

fft
X (t1 + t2)f

ft
ε (t1)f

ft
ε (t2); the information about fft

X (t) can be obtained from
fft
(Yj,1,Yj,2)(τ, t − τ) if fft

ε (τ) and fft
ε (t − τ) are both nonzero. There is an im-

portant difference between the replicated measurement setting and the standard
deconvolution model as the parameter τ can be selected for any t. In the Fourier
domain, deconvolving the density is carried out by dividing the empirically ac-
cessible function fft

(Yj,1,Yj,2)(τ, t− τ) by fft
ε (τ)fft

ε (t− τ). Intuitively, the accuracy

of the estimator increases when |fft
ε (τ)fft

ε (t − τ)| becomes larger. Therefore, it
seems advantageous to select τ so that the latter term is maximized. Division by
zero can also be avoided by an appropriate choice of τ .

To derive a general framework for studying unconventional error distribu-
tions we assume that

ρ(t) ≥ C(1 + |t|)−α, for some C > 0, α ≥ 0 , (1.2)

where ρ(t) := supτ

∣∣∣fft
ε (τ)fft

ε (t − τ)
∣∣∣. In examples (a)–(d), (1.2) is satisfied;

more precisely, in example (a), we have α = 1; in example (b), we have α = 0; in
example (c), α is equal to the smoothness degree of the ordinary smooth density
plus 1 or 0 for continuous and discrete uniform distributions, respectively; in
example (d), α appears in the definition of the error density. Note that (1.2) is
implied by the existence of an increasing sequence (Tk)k ↑ ∞ with T0 = 0 and
Tk+1−Tk < δSε, for all k with a fixed δ ∈ (0, 1) and Sε = min{t ≥ 0 : fft

ε (t) = 0},
so that

|fft
ε (Tk)| ≥ Cε

(
1 + Tk

)−α (1.3)

holds for all integers k ≥ 0. When fft
ε has no zeros we set Sε = ∞. It can

be shown that fε as in (d) satisfies (1.3) with Sε = 1/2 and Tk = 5k/2; thus,
it satisfies condition (1.2). These conditions are significantly weaker than the
usual version of ordinary smooth densities in Fan (1991), where the inequality
in (1.3) is assumed to be valid on the whole real line instead on the discrete set
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{Tk}. Ordinary smooth error densities with parameter α are thus included in
our framework.

2. Density Estimation

On the basis of the observations (Y1,1, Y1,2)′, . . . , (Yn,1, Yn,2)′ obeying model
(1.1), we take the estimator of the lth derivative of fX (l ∈ N ∪ {0}) to be

f̂
(l)
X,n(x) = Re

(
1
2π

∫ ∞

−∞
exp(−itx)(−it)lKft(thn)

ϕ̂Y,n{τ(t), t − τ(t)}
fft

ε {τ(t)}fft
ε {t − τ(t)}

dt

)
,

(2.1)
where ϕ̂Y,n(s, t) = n−1

∑n
j=1 exp(isYj,1+itYj,2), K is a kernel function, h = hn >

0 is a bandwidth parameter, and τ is a function which satisfies |fft
ε {τ(t)}fft

ε {t−
τ(t)}| ≥ ρ(t)/2, and ρ as defined at (1.2). We recall that Kft denotes the Fourier
transform of K and, to simplify notation, we write f̂X,n(x) := f̂

(0)
X,n(x).

If one is sure that this supremum is also a maximum, e.g., if |fft
ε (t)| → 0 as

|t| → ∞, then one can select τ such that

|fft
ε {τ(t)}fft

ε {t − τ(t)}| = sup
s

|fft
ε (s)fft

ε (t − s)| = ρ(t). (2.2)

In examples (a) to (d), τ(t) in (2.2) has to be determined numerically, as no
explicit formula is available. However, an appropriate grid search can often be
restricted to certain compact intervals. In example (a), define gt(s) = | sin{(b −
a)s/2} sin{(b − a)(t − s)/2}| and ht(s) = |s(t − s)|. By definition, τ(t) is the
maximizer of gt(s)/ht(s). The target function gt/ht is symmetric about t/2, the
function gt is 2π/(b − a)-periodic and, for t > 0, ht is monotonously decreasing
on [t/2, t] and increasing on [t,∞). For t > 0, it suffices to search for τ(t) on the
interval [max{t/2, t − 2π/(b − a)}, t + 2π/(b − a)].

In order to establish rates of convergence for the pointwise risk (MSE) at a
specific point x0 ∈ R, local smoothness assumptions in x0 are required; they are
given by

fX ∈ H(x0, β, L) :=
{
f : f is a density with bβc derivatives and∣∣∣f (bβc)(x0) − f (bβc)(y)

∣∣∣ ≤ L|x0 − y|β−bβc , for all y ∈ R
}
,

where bβc is the largest integer strictly less than β. Of course, we have to assume
that l in (2.1) does not exceed bβc. Then, we have a result about upper bounds
on the MSE.

Theorem 2.1. Let K be a kernel of order ≥ bβc − l , l ∈ {0, . . . , bβc} with∫ ∞

−∞
|Kft(t)|2|t|2α+2ldt < ∞.
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Under (1.2) with hn ³ n−1/(2β+2α+1), we have

sup
fX∈H(x0,β,L)

EfX

∣∣∣f̂ (l)
X,n(x0) − f

(l)
X (x0)

∣∣∣2 = O
{

n−2(β−l)/(2β+2α+1)
}

.

These rates coincide with those derived for ordinary smooth error densi-
ties with the Fourier-tail behaviour described in Fan (1991). Therefore, the re-
peated measurement model (1.1) allows one to relax the assumption of ordinary
smooth fε to (1.2), while keeping the convergence rates.

This result can be extended to L2(R)-risk (also known as MISE) when local
smoothness class H(x0, β, L) is changed to the Sobolev class S(β, L), where

fX ∈ S(β, L) :=
{
f : f is a density and

∫ ∞

−∞
(1 + |t|)2β |fft(t)|2dt ≤ L

}
,

β > 0. (In the case of integer β this is a usual Sobolev class; otherwise we call it
generalized Sobolev class.)

As an analogue to Theorem 2.1, we have the following result.

Theorem 2.2. Suppose supt6=0{|Kft(t) − 1| |t|l−β} < ∞, l ∈ {0, . . . , bβc}, and∫ ∞

−∞
|Kft(t)|2|t|2α+2ldt < ∞.

Under (1.2) with hn ³ n−1/(2β+2α+1), we have

sup
fX∈S(β,L)

EfX
‖f̂ (l)

X,n − f
(l)
X ‖2

L2(R) = O
{

n−2(β−l)/(2β+2α+1)
}

.

This theorem yields coincidence of the rates when considering the MISE as
well, see e.g., Fan (1993) for a similar integrated risk under ordinary smooth fε.

As a fully data-driven choice of the bandwidth h, cross-validation methods
may be considered, involving minimization of the empirically accessible

CV(h) =
∫ ∣∣∣f̂X,n(x; h)

∣∣∣2dx− 1
π

Re
∫

Kft(th)|ρ(t)|−2ψ̂Y,n{τ(t), t−τ(t)}dt , (2.3)

where ψ̂Y,n(s, t) := {n(n − 1)}−1
∑∑
j 6=k

exp
{
is(Yj,1 − Yk,1) + it(Yj,2 − Yk,2)

}
.

Cross-validation has been proposed in density deconvolution without replications
by Stefanski and Carroll (1990); a rigorous study is provided in Hesse (1999).

Finally, we mention that our method is also applicable to the supersmooth
case of densities with exponential Fourier tails. Our method also attains the
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optimal logarithmic convergence rates; and it addresses those fε, that are con-
volutions of supersmooth densities and uniform densities or, to be more general,
densities with exponential Fourier tails and zeros in the Fourier domain. The
ridge-parameter estimator of Hall and Meister (2007) also attains these logarith-
mic rates, and without replicates.

If a different number of measurements is given for each observation, say
kj measurements for the jth observation, we may generalize the definition of
estimator (2.1). First, given the data Yj,k, j = 1, . . . , n, k = 1, . . . , kj , we set

ρ̃j(t) = sup
τ1+···+τkj

=t

∣∣∣ kj∏
k=1

fft
ε (τk)

∣∣∣.
Analogously, we choose a function τ̃j(t) =

(
τ̃j,1(t), . . . , τ̃j,kj

(t)
)

such that∑kj

k=1 τ̃j,k(t) = t and ∣∣∣ kj∏
k=1

fft
ε (τ̃j,k)

∣∣∣ ≥ ρ̃j(t)
2

.

Then, instead of estimator (2.1), we suggest

f̃
(l)
X (x) = Re

( 1
2π

∫ ∞

−∞
exp(−itx)(−it)lKft(thn)

[ n∑
j=1

∣∣∣ kj∏
k=1

fft
ε {τ̃j,k(t)}

∣∣∣2]−1

n∑
j=1

exp
{

i

kj∑
k=1

τ̃j,k(t)Yj,k

} kj∏
k=1

fft
ε {−τ̃j,k(t)}dt

)
as the estimator of f

(l)
X (x). This estimator is inspired by the heteroscedastic

estimator introduced in Delaigle and Meister (2008). It is still well-defined if we
have just one measurement (kj = 1) for some of the data. The investigation of
the asymptotic properties of this procedure is left open for future research.

3. Distribution Estimation

In this section, we study the asymptotic risk for estimating

Pa,b =
∫ b

a
fX(x)dx

for some arbitrary but fixed a < b. The related problem of estimating the
cumulative distribution function was studied in Zhang (1990), Fan (1991), and
Hall and Lahiri (2008) for ordinary smooth fε. Considering Pa,b as the L2(R)-
inner product of fX and the indicator function I1[a,b] we obtain by the Plancherel
isometry that ∫

f(x)g(x)dx =
1
2π

∫
fft(t)gft(t)dt
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for all f, g ∈ L2(R) (see e.g., Yosida (1968)), and that

Pa,b =
∫

I1[a,b](x)fX(x)dx =
1
2π

∫
Ψa,b(−t)fft

X (t)dt,

where Ψa,b(t) = I1ft
[a,b] =

{
exp(ibt) − exp(iat)

}
/(it). This motivates an estimator

for Pa,b as

P̂a,b,n =
1
2π

∫
Ψa,b(−t)Kft(thn)

ϕ̂Y,n{τ(t), t − τ(t)}
fft

ε {τ(t)} fft
ε {t − τ(t)}

dt. (3.1)

Its asymptotic performance is studied in the next theorem. Here we need global
Hölder smoothness, setting

H(β, L) =
⋂
x∈R

H(x, β, L).

Theorem 3.1. Suppose K is a kernel of order bβc+1, β ≥ 0 and
∫ ∞
−∞ |Kft(t)|2

(1 + |t|)2α−2dt < ∞. Under (1.2) with

hn ³


O{n−1/(2β+2)}, if α < 1

2 ,{
log(n)

n

}1/(2β+2)
, if α = 1

2 ,

n−1/(2β+2α+1), if α > 1
2 ,

one has

sup
fX∈H(β,L)

EfX
|P̂a,b,n − Pa,b|2 =


O(n−1), if α < 1

2 ,

O
{

log(n)
n

}
, if α = 1

2 ,

O{n−2(β+1)/(2β+2α+1)}, if α > 1
2 .

Note that no smoothness assumptions on fX (i.e., β = 0) is needed to obtain
the rate n−1 or n−2/(2α+1) in cases α < 1/2 or α > 1/2, respectively. However,
smoothness restrictions on fX accelerate the rate of convergence in the latter case.
Therefore, as in the case where X1, . . . , Xn are directly observed, the problem of
distribution estimation is different from density estimation, as considered in the
previous section, and the rates can be arbitrarily slow in absence of smoothness.

For α > 1/2, the bandwidth selection in Theorem 3.1 that leads to optimal
rates converges to zero at the same rate as the rate-optimal bandwidth in density
estimation with respect to the MISE; see Theorem 2.2. The cross-validation
bandwidth minimizes the MISE asymptotically in standard density deconvolution
(see Hesse (1999)). Therefore, in practical applications it seems appropriate to
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use cross-validation in order to select the bandwidth in distribution estimation
as well.

4. Support Estimation

We consider the problem of estimating the support of fX . We restrict our
consideration to that part of the support that is included in [0, 1], denoted by SX .
If fX vanishes outside [0, 1] then SX becomes the support of fX . However, non-
compactly supported fX are also included in our framework. If a different interval
is of interest, the data can be transformed to [0, 1] with no loss.

Our assumptions are the following.

(S1) SX = [a, b] ⊆ [0, 1], where a < b.

(S2) fX(x) = 0 for all x ∈ [0, 1]\SX and fX(x) ≥ cf > 0 for all x ∈ SX , where
cf is a known constant.

(S3) fX(x) ≤ cmax < ∞ for all x ∈ [0, 1].

Note that fX is bounded away from zero on SX and may have jump disconti-
nuities at its endpoints. No smoothness conditions on fX are imposed. Condition
(S1) restricts the complexity of the support inside [0, 1] but no other assumptions
on the support are required. For deconvolution support estimation for standard
error densities, see e.g., Goldenshluger and Tsybakov (2004), Delaigle and Gijbels
(2006), and Meister (2006).

To construct an estimator of SX , we consider the function T (A) :=
∫
A fX(x)dx

−cfλ(A)/2, where λ denotes Lebesgue-Borel measure and A ⊆ [0, 1]. We notice
that T takes its maximum at A = SX . Functions such as T are referred to as
excess mass functions in the literature, see e.g., Hartigan (1987), Müller and Saw-
itzki (1991), Nolan (1991), Polonik (1995) and Cuevas, Manteiga and Rodriguez
Casal (2006). Excess mass has been used to estimate level sets of a density, i.e.,
those regions where the density has some given lower bound, but are also ap-
plicable to support estimation for multivariate data. So far most considerations
have been restricted to cases where the data are measured without any error.

We introduce equidistant grid points aj = jhn, and the set of intervals
Gn := {(aj , ak) : j, k = 0, . . . , [1/hn]}. As an estimator of

∫
A fX(x)dx for

A ∈ Gn, we employ P̂A,n := P̂aj ,ak,n, where A = (aj , ak) and P̂a,b,n is defined as
in the previous section. As an empirically accessible version of T , we take

T̂n(A) := P̂A,n −
cf

2
λ(A).

Then, our estimator ŜX,n of SX is taken to be that element of Gn that
maximizes T̂n within the collection Gn. In the case of several maximizing sets,
we choose just one of them as ŜX,n.
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The densities satisfying (S1)−(S3) are collected in the class Scmax,cf
. The

convergence rates are given as follows.

Theorem 4.1. Under (1.2), if∫ ∞
−∞ |Kft(t)|2(1 + |t|)2α−2dt < ∞ and

∫ ∞
−∞ |Kft(t)|(1 + |t|)α−1dt,

hn ³


n−1, if α < 1

2 ,{
log(n)

n

}1/2
, if α = 1

2 ,

n−1/(2α+1), if α > 1
2 ,

then

sup
fX∈Scmax,cf

EfX

{
λ(ŜX,n∆SX)

}
=


O{n−1/2}, if α < 1

2 ,

O
{√

log(n)
n

}
, if α = 1

2 ,

O{n−1/(2α+1)}, if α > 1
2 ,

where A∆B = (A \ B) ∪ (B \ A) denotes the symmetric difference of the sets A

and B.

The selection of the bandwidth according to Theorem 4.1 does not require
knowledge of the smoothness degree β. However, the constant cf must be known
in order to construct the estimator ŜX,n; it is sufficient to know just a lower bound
on the restriction of fX to its support, not necessarily the infimum. Choosing cf

based on the data and constructing an adaptive estimator is a difficult problem.
In the error-free setting, Cuevas and Fraiman (1997) study support estimation
based on the empirical level sets of a kernel density estimator; therein, the con-
stant cf is treated as a smoothing parameter.

In the current problem, it is also possible to derive a reasonable data-driven
selector as

ĉf = sup
{
c ∈ [0, 1] : Q̂n(c) ≤ Q̂n(0) + ρn

}
,

where

Q̂n(c) =
∫ 1

0
max

{
|f̂X,n(x)|, c

}
|f̂X,n(x)|dx ,

and the density estimator f̂X,n is defined at (2.1). Its bandwidth can be chosen
according to the cross-validation method introduced in (2.3). We may select the
sequence (ρn)n ³ (log n)−1 arbitrarily. This empirical selector of cf is motivated
by the fact that Q(c), the term we obtain by replacing f̂X,n by the true density
fX , is a constant function on [0, c0,f ], where c0,f is equal to the largest constant
cf that satisfies (S2) and, for c > c0,f , the function Q(c) is increasing. We can
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prove that P
(
ĉf ∈ [c0,f − δ, c0,f + δ]

)
converges to one for any δ > 0 if fX has

a bounded, continuous and integrable derivative except at the boundaries a and
b. We propose to set cf equal to the empirically accessible quantity ĉf in the
construction of ŜX,n.

5. Lower Asymptotic Risk Bounds

We establish lower asymptotic risk bounds in order to show that our estima-
tors attain the optimal convergence rates with respect to an arbitrary estimator
based on the given data structure. To derive these bounds, we specify appro-
priate finite-dimensional subclasses of the considered nonparametric distribution
classes; these subclasses are comprehensive enough to capture the difficulty of
the nonparametric estimation problem. In particular, the lower asymptotic risk
bounds derived for these subclasses coincide with the upper bounds established
for our estimators.

In the two cases of pointwise density estimation and probability estimation
it suffices to consider one-dimensional subexperiments. To generate potential
densities for the Xj ’s, we start with a density of the so-called Pearson type VII,

f0(x) =
Γ(r)√

πΓ(r − 1/2)
c

{1 + (cx)2}r
, (5.1)

where 1/2 < r < 1. Two competing densities are now obtained as

fX,θ(x) = f0(x) + θcδβ
nH(

x

δn
), (5.2)

where θ ∈ {0, 1}, δn ³ n−1/(2β+2α+1) and the function H satisfies

(A1) (i) H(l)(0) 6= 0, for l = 0, . . . , bβc, and
∫ 0
−∞ H(x)dx = 0,

(ii) H ∈ H(β, L),
(iii)

∫ ∞
−∞ H(x)dx = 0,

(iv) Hft(t) = 0, if |t| 6∈ [1, 2],
(v) supt |(Hft)(j)(t)| < ∞ (j = 0, 1, 2),
(vi) H(x) = O(|x|−2r).

It follows from the arguments in Fan (1991) that a function H with these prop-
erties exists and that fX,0, fX,1 ∈ H(β, L) if the constant c in (5.1) and (5.2) is
sufficiently small.

For the error distribution we assume a bounded density fε and a character-
istic function satisfying

(A2) (i)
∫
|(fft

ε )(j1)(τ)(fft
ε )(j2)(t − τ)|2dτ =: ρ(j1,j2)(t) = O

{
(1 + |t|)−2α

}
,

j1, j2 = 0, 1,
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(ii) fε(x) ≥ C/(1 + x2)r′ , where r′ = 2 − r.

Remark 1. Condition (A2)(i) differs from (1.2), it follows from (fft
ε )(j)(t) ≤

C(1 + |t|)−α, for all t ∈ R, j ∈ {0, 1}, for some C > 0. Such a condition is in Fan
(1991, 1993). In general (A2) is needed to bound the Hellinger distance by the
L2(R)-distance of the densities so that Parseval’s identity may be applied.

Lemma 5.1. Suppose that (A1) and (A2) hold. If gθ(y, z) =
∫

fX,θ(x)fε(y −
x)fε(z−x)dx, θ = 0, 1, then He 2(g0, g1) = O(n−1), where He (f, g)={(1/2)

∫
(
√

f
−√

g)2}1/2 denotes Hellinger distance.

On the basis of this lemma, we can now derive a lower asymptotic risk bound.

Theorem 5.1. Suppose that (A1) and (A2) hold. Then

(i) inf
ef
(l)
X,n

max
θ∈{0,1}

Eθ

∣∣∣f̃ (l)
X,n(0) − f

(l)
X,θ(0)

∣∣∣2 ≥ Cn−2(β−l)/(2β+2α+1),

(ii) inf
ePa,b,n

max
θ∈{0,1}

Eθ

(
P̃a,b,n − Pa,b,θ

)2
≥

{
Cn−1, if α ≤ 1

2 ,

Cn−2(β+1)/(2β+2α+1), if α > 1
2 .

In the case of density estimation in L2, different subclasses of target densities
must be used in order to establish optimal lower bounds. We consider densities
of the form

fX,θ(x) = f0(x) +
Mn∑
j=1

θjcδ
β
nH(

x

δn
− j), (5.3)

where θ = (θ1, . . . , θMn)′ ∈ {0, 1}Mn , δn ³ n−1/(2β+2α+1) and Mn = [1/δn]. The
function H is assumed to satisfy

(A1’) (i) 0 <
∫
|H(l)|2(x)dx < ∞, for l = 0, . . . , bβc,

(ii) H ∈ S(β, L),
(iii)

∫ ∞
−∞ H(x)dx = 0,

(iv) Hft(t) = 0, if |t| 6∈ [1, 2],
(v) supt |(Hft)(j)(t)| < ∞ (j = 0, 1, 2),
(vi) H(x) = O(|x|−2r).

It follows again from the arguments in Fan (1991) that such a function H
exists and that fX,θ ∈ S(β, L) for all θ ∈ {0, 1}Mn , if the constant c in (5.3) is
sufficiently small.

Lemma 5.2. Suppose that (A1’) and (A2) hold. If gθ(y, z) =
∫

fX,θ(x)fε(y −
x)fε(z − x)dx, θ ∈ {0, 1}Mn, then

max
θ∈{0,1}Mn ,1≤j≤Mn

He 2
{

g(θ1,...,θMn ), g(θ1,...,θj−1,1−θj ,θj+1,...,θMn )

}
= O(n−1).
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This lemma leads to a lower asymptotic bound for the MISE.

Theorem 5.2. Suppose that (A1’) and (A2) hold. Then

inf
ef
(l)
X,n

max
θ∈{0,1}Mn

Eθ

∥∥∥f̃
(l)
X,n − f

(l)
X,θ

∥∥∥2

L2(R)
≥ Cn−2(β−l)/(2β+2α+1).

With respect to the convergence rates in support estimation (Section ), let

fn(x) =
1

2(1 − εn/8)
I1[εn/8,1](x) +

1
2c(1 + x2)

I1R\[0,1](x) ,

with c :=
∫

R\[0,1](1+x2)−1dx, for some sequence (εn)n ↓ 0 still to be determined.
Let Q(x) = {1− cos(x)}2/(πx2)2, with Fourier transform Qft twice continuously
differentiable and supported on [−2, 2], and consider the densities

f̃n(x) = fn(x) + cos(
2πx

εn
)Q(

x

εn
)

with Fourier transforms

f̃ft
n (t) = fft

n (t) +
εn

2
Qft

{
εn(t − 2π

εn
)
}

+
εn

2
Qft

{
εn(t +

2π

εn
)
}
.

We easily verify that all fn, f̃n are contained in Scmax,cf
for some appropriate

parameters cf , cmax. We use (fn)n and (f̃n)n as the competing sequences for fX .
We show the lower bound matching Theorem 4.1 for α > 1/2.

Theorem 5.3. Suppose that (A2) holds with r = 1. Then, for any estimator
S̃X,n of SX , we have

max
fX∈{fn,f̃n}

E
{

λ
(
S̃X,n∆SX

)}
≥ Cn−1/(2α+1).

6. Simulations

To illustrate the potential of our density estimator, we present the results
of a small simulation study. The implementation was done on the basis of the
statistical software package R; see R Development Core Team (2007).

We considered the estimator f̂X,n = f̂
(0)
X,n defined by (2.1) with the sinc

kernel Kft(t) = I1[−1,1](t). The bandwidth was chosen by the cross validation
criterion (2.3). We were particularly interested in cases where traditional kernel
deconvolution estimators fail. Accordingly, we chose a uniform distribution on
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[−1, 1] for the errors, one that has a characteristic function fft
ε (t) = sin(t)/t,

with isolated zeros at t = kπ, k = ±1,±2, . . . .
Suppose we have data Yj,k = Xj + εj,k with two replications, k ∈ {1, 2}.

As an alternative to our estimator, one could perhaps average these data first,
Ȳj = (Yj,1 + Yj,2)/2, and apply some deconvolution technique afterward. Since
the characteristic function of the errors of the averaged data has again isolated
zeros, we take as an alternative estimator the one proposed by Hall and Meister
(2007):

f̃X,n(x) =
1
2π

∫ ∞

−∞

f̂ft
Ȳ

(t)fft
ε̄ (−t)|fft

ε̄ (t)|2[
max{|fft

ε̄ (t)|, h(t)}
]3 exp(−itx)dt,

where f̂ft
Ȳ

(t) = n−1
∑n

j=1 exp(itȲj) and h(t) = κt2. The isolated zeros of fft
ε̄ are

taken into account by the ridge function h, where the parameter κ is chosen as
a minimizer of the cross validation function

CV (κ) =
∫ ∞

−∞
|f̃X,n(x)|2dx

− 1
πn(n − 1)

∫ ∞

−∞

|fft
ε̄ (t)|2

(max{|fft
ε̄ (t)|, κt2})3

∑
j 6=k

exp{−i(Ȳj − Ȳk)}dt.

Note that fft
ε̄ has isolated zeros at t = 2kπ, for k = ±1,±2, . . . . To demonstrate

possible problems with these zeros we chose a target density fX as

fX(u) =
{1 − cos(u)}{1 + cos(2πu)}

πu2
.

The characteristic function

fft
X (t) = (1 − |t|)+ +

{(1 − |t + 2π|)+ + (1 − |t − 2π|)+}
2

,

has considerable mass around the points ±2π; see Figure 1.
In view of the difficulty of the estimation problem, we expect that relatively

large sample sizes are required to obtain good results. Therefore, we tried a
sample size of n = 1, 000. Table 1 shows estimates of the mean squared error of
both estimators based on N = 1, 000 Monte Carlo replications.

Figure 2 shows the target density (thick solid line), and shows estimates
corresponding to a moderately favorable sample (with the 250th smallest sum
of ISEs, dashed line), an average sample (with the 500th smallest sum of ISEs,
dotted line), and a moderately unfavorable sample (with the 750th smallest sum
of ISEs, dot-dashed line).

These plots indicate that f̂X,n estimates the target quantity reasonably
well in many instances, while f̃X,n tends to approximate a different density,



DENSITY DECONVOLUTION 1623

Figure 1. Left: target density fX , right: characteristic function fft
X .

Figure 2. Left: target density fX (solid) and three of our estimates, right:
target density fX (solid) and three estimates from Hall and Meister (2007).

Table 1. MSE, n = 1, 000.

MSE, n = 1, 000

our estimator f̂X,n 0.0506

estimator f̃X,n in Hall and Meister (2007) 0.1067

fX,wrong(u) = (1 − cos(u))/(πu2). Figure 3, which contains corresponding es-
timates of the characteristic function, f̂ft

X,n and f̃ft
X,n, reveals what happens in

both cases. Here we indicate the real parts of the estimates by dashed lines
and the imaginary parts by dotted lines. While f̂ft

X,n tends to estimate fft
X , f̃ft

X,n

merely approximates (1−|t|)+, the characteristic function of the density fX,wrong.
This is of course the expected effect of the ridging that was introduced by Hall
and Meister (2007) in order to deal with zeros of the characteristic function of
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Figure 3. Left: char. function fft
X (solid) and three of our estimates, right:

char. function fft
X (solid) and three estimates from Hall and Meister (2007).

Figure 4. Left: target density fX (solid) and three of our estimates, right:
target density fX (solid) and three estimates from Hall and Meister (2007).

Table 2. MSE, n = 3, 000.
MSE, n=3,000

our estimator f̂X,n 0.0189

estimator f̃X,n in Hall and Meister (2007) 0.0697

the error density.
These effects become even more pronounced for large sample sizes; see Ta-

ble 2 and Figures 4 and 5 for analogous results with n = 3, 000.
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Figure 5. Left: char. function fft
X (solid) and three of our estimates, right:

char. function fft
X (solid) and three estimates from Hall and Meister (2007).

7. Proofs

Proof of Theorem 2.1. We have that

EfX
f̂

(l)
X,n(x0) =

1
2π

∫ ∞

−∞
exp(−itx0)(−it)lKft(thn)EfX

ϕ̂Y,n{τ(t), t − τ(t)}
fft

ε {τ(t)}fft
ε {t − τ(t)}

dt

=
1
2π

∫ ∞

−∞
exp(−itx0)(−it)lKft(thn)fft

X (t)dt

=
∫ ∞

−∞

1
hn

K

(
x0 − y

hn

)
f

(l)
X (y)dy.

This implies that

EfX
f̂

(l)
X,n(x0) − f

(l)
X (x0) =

∫ ∞

−∞

1
hn

K

(
x0 − y

hn

){
f

(l)
X (y) − f

(l)
X (x0)

}
dy

= O
(
hβ−l

n

)
. (7.1)

Furthermore, we find

Var
{

f̂
(l)
X,n(x0)

}
≤ 1

n(2π)2
EfX

∣∣∣∣ ∫ ∞

−∞
exp(−itx0)(−it)lKft(thn)

×exp(itX1) exp{iτ(t)ε11} exp[i{t − τ(t)}ε12]

fft
ε {τ(t)}fft

ε {t − τ(t)}
dt

∣∣∣∣2
=

1
n(2π)2

EfX

∫ ∞

−∞

∣∣ ∫ ∞

−∞
exp(ity) exp(−itx0)(−it)lKft(thn)

×exp{iτ(t)ε11} exp[i{t − τ(t)}ε12]

fft
ε {τ(t)}fft

ε {t − τ(t)}
dt

∣∣2fX(y)dy
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≤ ‖fX‖∞
n(2π)2

EfX

∫ ∞

−∞

∣∣ ∫ ∞

−∞
exp(ity) exp(−itx0)(−it)lKft(thn)

×exp{iτ(t)ε11} exp[i{t − τ(t)}ε12]

fft
ε {τ(t)}fft

ε {t − τ(t)}
dt

∣∣2dy.

Applying Plancherel’s identity, and taking into account that supf∈H(β,L) ‖f‖∞ <

∞ (see, for example, Lemma 1 in Bickel and Ritov (1988)), we obtain that

Var
{

f̂
(l)
X,n(x0)

}
≤ C

n
EfX

∫ ∞

−∞

∣∣∣∣∣exp(−itx0)(−it)lKft(thn)
exp{iτ(t)ε11} exp[i{t − τ(t)}ε12]

fft
ε {τ(t)}fft

ε {t − τ(t)}

∣∣∣∣∣
2

dt

≤ C

n

∫ ∞

−∞
|t|2l|Kft(thn)|2ρ(t)−2dt

= O
(
n−1h−2α−2l−1

n

)
,

which completes the proof.

Proof of Theorem 2.2. As in (7.1), we have that

EfX
f̂

(l)
X,n(x) − f

(l)
X (x) =

∫ ∞

−∞

1
hn

K

(
x − y

hn

){
f

(l)
X (y) − f

(l)
X (x)

}
dy,

which implies by Parseval’s identity that∥∥∥EfX
f̂

(l)
X,n − f

(l)
X

∥∥∥2

L2(R)
=

1
2π

∫ ∞

−∞

∣∣∣{Kft(thn) − 1}(−it)lfft
X (t)

∣∣∣2 dt

≤ C

∫ ∞

−∞
|Kft(thn) − 1|2|t|2(l−β) |t|2β |fft

X (t)|2dt

= O

[
sup

t
{|Kft(thn) − 1|2|t|2(l−β)}

]
= O

{
h2(β−l)

n

}
.

Furthermore, we have, again by Parseval’s identity, that∫ ∞

−∞
Var

{
f̂

(l)
X,n(x)

}
dx =

∫ ∞

−∞
EfX

∣∣∣f̂ (l)
X,n(x) − EfX

f̂
(l)
X,n(x)

∣∣∣2 dx

=
1
2π

∫ ∞

−∞
EfX

∣∣∣Kft(thn)(−it)l{ϕ̂X,n(t) − fft
X (t)}

∣∣∣2 dt

≤ C

n

∫ ∞

−∞

∣∣∣Kft(thn)(−it)l/ρ(t)
∣∣∣2 dt
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≤ C

n

∫ ∞

−∞
|Kft(thn)|2(1 + |t|)2α+2ldt

= O
(
n−1h−2α−2l−1

n

)
.

Proof of Theorem 3.1. We have that

EfX
P̂a,b,n =

1
2π

∫
Ψa,b(−t)Kft(thn)fft

X (t)dt

=
∫ b

a

∫
1
hn

K

(
y

hn

)
fX(x − y)dydx

=
∫

1
hn

K

(
y

hn

)∫ b

a
fX(x − y)dxdy

=
∫

1
hn

K

(
y

hn

)
{FX(b − y) − FX(a − y)}dy.

Therefore,

EfX
P̂a,b,n − Pa,b =

∫
1
hn

K

(
y

hn

)
{FX(b − y) − FX(b)}dy

−
∫

1
hn

K

(
y

hn

)
{FX(a − y) − FX(a)}dy

= O
(
hβ+1

n

)
. (7.2)

The variance of P̂a,b,n can be estimated as

Var (P̂a,b,n)

≤ 1
n

EfX

∣∣∣∣∣
∫

Ψa,b(−t)Kft(thn)
exp(itX1) exp{iτ(t)ε11} exp[i{t − τ(t)}ε12]

fft
ε {τ(t)}fft

ε {t − τ(t)}
dt

∣∣∣∣∣
2

=
1
n

E
∫ ∣∣∣∣∣

∫
exp(ity)Ψa,b(−t)Kft(thn)

exp{iτ(t)ε11} exp[i{t−τ(t)}ε12]

fft
ε {τ(t)}fft

ε {t − τ(t)}
dt

∣∣∣∣∣
2

fX(y)dy

≤ ‖fX‖∞
n

∫ ∣∣∣Ψa,b(−t)Kft(thn)/ρ(t)
∣∣∣2 dt

= O

(
‖fX‖∞

n

∫ ∣∣∣Kft(thn)(1 + |t|)α−1
∣∣∣2 dt

)

=


O(n−1) if α < 1

2 ,

O{n−1 log( 1
hn

)} if α = 1
2 ,

O(n−1h1−2α
n ) if α > 1

2 .

(7.3)
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Proof of Theorem 4.1. Let a0 = a0(fX), b0 = b0(fX) ∈ {aj : j = 0, . . . , [1/hn]}
be such that λ(SX∆[a0, b0]) is minimal. It is clear that

sup
fX∈Scmax,cf

λ(SX∆[a0, b0]) ≤ hn.

It follows from the definition of the set Scmax,cf
that estimates hold uniformly

in fX ∈ Scmax,cf
. First, there exists some constant C1 < ∞ such that, for all

0 ≤ j ≤ k ≤ [1/hn],{
Pa0,b0 −

cf (b0 − a0)
2

}
−

{
Paj ,ak

−
cf (ak − aj)

2

}
≥

cf

2
λ

(
[a0, b0]∆[aj , ak]

)
− C1hn =: d(j, k).

Note that P̂a,b,n − EP̂a,b can be written as
∑n

j=1 Zn,j , with

Zn,j =
1
n

1
2π

∫
Ψa,b(−t)Kft(thn)

(
exp[iτ(t)Yj,1 + i{t − τ(t)}Yj,2]

fft
ε {τ(t)} fft

ε {t − τ(t)}
− fft

X (t)

)
dt .

Then

ess sup |Zn,j | = O

{
n−1

∫
|Kft(thn)|(1 + |t|)α−1dt

}
= O

{
n−1h−α

n

}
,

which implies, in conjunction with (7.3), that

EZ4
n,j ≤ EZ2

n,j ess sup |Zn,j |2 =


O(n−4h−2α

n ) if α < 1
2 ,

O{n−4 log( 1
hn

)h−1
n } if α = 1

2 ,

O(n−4h−2α
n ) if α > 1

2 .

Therefore, again in conjunction with (7.3),

E
(
P̂a,b,n − EP̂a,b,n

)4
= E

( n∑
j=1

Zn,j

)4

= 3
{

Var
( n∑

j=1

Zn,j

)}2
+ n

{
EZ4

n,1 − 3(EZ2
n,1)

2
}

=


O(n−2 + n−3h−2α

n ) if α < 1
2

O[n−2{log(n)}2 + n−3 log(n)h−1
n ] if α = 1

2

O(n−2h2−4α
n + n−3h−2α

n ) if α > 1
2
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=


O(n−2) if α < 1

2

O[n−2{log(n)}2] if α = 1
2

O(n−2h2−4α
n ) if α > 1

2

= O(h4
n).

This implies, in conjunction with (7.2), that EfX

(
P̂a,b,n − Pa,b

)4
= O(h4

n) holds

uniformly in a, b. Therefore, for all j, k with (cf/2)λ([a0, b0]∆[aj , ak]) > C1hn,

PfX

(
ŜX,n = [aj , ak]

)
≤ PfX

{
P̂a0,b0,n −

cf (b0 − a0)
2

≤ P̂aj ,ak,n −
cf (ak − aj)

2

}
≤ PfX

{
Pa0,b0 − P̂a0,b0,n ≥ d(j, k)

2

}
+ PfX

{
Paj ,ak

− P̂aj ,ak,n ≥ d(j, k)
2

}
≤ C

h4
n

d(j, k)4
.

This, however, implies

EfX

(
ŜX,n∆SX

)
≤ hn + EfX

(
ŜX,n∆[a0, b0]

)
≤ hn +

∑
j,k

λ([aj , ak]∆[a0, b0]) PfX
(ŜX,n = [aj , ak])

= O(hn),

uniformly in fX ∈ Scmax,cf
.

Proof of Lemma 5.1. Recall that, for (Yj,1, Yj,2)′ = (Xj + εj,1, Xj + εj,2)′,

g0(y, z) =
∫

f0(x)fε(y − x)fε(z − x)dx,

g1(y, z) = g0(y, z) + cδβ
n

∫
H(

x

δn
)fε(y − x)fε(z − x)dx.

We can show that

g0(y, z) ≥ C

(1 + y2)(1 + z2)
. (7.4)

Actually, assume without loss of generality that |y| > |z|. Then

g0(y, z) ≥
∫

Cr

(1 + x2)r

C

{1 + (y − x)2}r′
C

{1 + (z − x)2}r′
dx
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=
∫

Cr

{1 + (y − x)2}r

C

(1 + x2)r′
C

{1 + (z − y + x)2}r′
dx

≥ C

(1 + y2)r{1 + (z − y)2}r′

≥ C

(1 + y2)r(1 + z2)r′
≥ C

(1 + y2)(1 + z2)
.

Therefore,

2He 2(g1, g0) ≤
∫ ∞

−∞

∫ ∞

−∞

|g1(y, z) − g0(y, z)|2

g0(y, z)
dy dz

≤ C

∫ ∞

−∞

∫ ∞

−∞
(1 + y2)(1 + z2) |g1(y, z) − g0(y, z)|2 dy dz

≤ C

∫ ∞

−∞

∫ ∞

−∞
|g1(y, z) − g0(y, z)|2 dy dz

+ C

∫ ∞

−∞

∫ ∞

−∞
y2 |g1(y, z) − g0(y, z)|2 dy dz

+ C

∫ ∞

−∞

∫ ∞

−∞
z2 |g1(y, z) − g0(y, z)|2 dy dz

+ C

∫ ∞

−∞

∫ ∞

−∞
y2z2 |g1(y, z) − g0(y, z)|2 dy dz

=: C {I1 + · · · + I4} .

Since g1(y, z)−g0(y, z) = cδβ
n

∫
H(x/δn)fε(y−x)fε(z−x)dx has Fourier trans-

form cδβ
n{H(·/δn)}ft(t1+t2)f

ft
ε (t1)f

ft
ε (t2) = cδβ+1

n Hft{(t1+t2)δn}fft
ε (t1)f

ft
ε (t2),

by Parseval’s identity,

I1 = c2δ2β+2
n

∫ ∫ ∣∣∣Hft{(t1 + t2)δn}fft
ε (t1)fft

ε (t2)
∣∣∣2 dt1dt2

= c2δ2β+2
n

∫ ∫ ∣∣∣Hft(tδn)fft
ε (τ)fft

ε (t − τ)
∣∣∣2 dτdt

= c2δ2β+1
n

∫
{t: 1≤|t|≤2}

∫ ∞

−∞

∣∣∣∣Hft(t)fft
ε (τ)fft

ε (
t

δn
− τ)

∣∣∣∣2 dτdt

= O

(
δ2β+1
n

∫
{t: 1≤|t|≤2}

∫ ∞

−∞

∣∣∣∣fft
ε (τ)fft

ε (
t

δn
− τ)

∣∣∣∣2 dτdt

)
= O

(
δ2β+2α+1
n

)
= O

(
n−1

)
. (7.5)

Similarly, since y{g1(y, z)−g0(y, z)} has Fourier transform cδβ+1
n (1/i)(∂/∂t1)
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Hft{(t1 + t2)δn}fft
ε (t1)f

ft
ε (t2), again by Parseval’s identity,

I2 = c2δ2β+2
n

∫ ∫ ∣∣∣∣∣∂Hft{(t1 + t2)δn}fft
ε (t1)f

ft
ε (t2)

∂t1

∣∣∣∣∣
2

dt1dt2

= c2δ2β+2
n

∫ ∫ ∣∣∣δn(Hft)′{(t1 + t2)δn}fft
ε (t1)fft

ε (t2)

+ Hft{(t1 + t2)δn}(fft
ε )′(t1)fft

ε (t2)
∣∣∣2 dt1dt2

≤ 2c2δ2β+3
n

∫
{t: 1≤|t|≤2}

∫ ∞

−∞

∣∣∣∣(Hft)′(t)fft
ε (τ)fft

ε (
t

δn
− τ)

∣∣∣∣2 dτdt

+ 2c2δ2β+1
n

∫
{t: 1≤|t|≤2}

∫ ∞

−∞

∣∣∣∣Hft(t)(fft
ε )′(τ)fft

ε (
t

δn
− τ)

∣∣∣∣2 dτdt

= O

{
δ2β+3
n

∫
{t: 1≤|t|≤2}

∫ ∞

−∞

∣∣∣∣fft
ε (τ)fft

ε (
t

δn
− τ)

∣∣∣∣2 dτdt

}

+ O

{
δ2β+1
n

∫
{t: 1≤|t|≤2}

∫ ∞

−∞

∣∣∣∣(fft
ε )′(τ)fft

ε (
t

δn
− τ)

∣∣∣∣2 dτdt

}
= O

(
δ2β+2α+3
n + δ2β+2α+1

n

)
= O

(
n−1

)
. (7.6)

Analogously,
I3 = O

(
n−1

)
. (7.7)

Finally, since yz{g1(y, z) − g0(y, z)} has Fourier transform cδβ+1
n i−2

(∂2/∂t1∂t2)Hft{(t1+t2)δn}fft
ε (t1)f

ft
ε (t2), we obtain in complete analogy to (7.6)

that

I4 = O

{
δ2β+5
n

∫
{t: 1≤|t|≤2}

∫ ∞

−∞

∣∣∣∣fft
ε (τ)fft

ε (
t

δn
− τ)

∣∣∣∣2 dτdt

}

+ O

{
δ2β+3
n

∫
{t: 1≤|t|≤2}

∫ ∞

−∞

∣∣∣∣(fft
ε )′(τ)fft

ε (
t

δn
− τ)

∣∣∣∣2 dτdt

}

+ O

{
δ2β+1
n

∫
{t: 1≤|t|≤2}

∫ ∞

−∞

∣∣∣∣(fft
ε )′(τ)(fft

ε )′(
t

δn
− τ)

∣∣∣∣2 dτdt

}
= O

(
n−1

)
, (7.8)

which completes this proof.

Proof of Theorem 5.1. Let g
(n)
θ (y) =

∏n
j=1 gθ(yj), θ = 0, 1, be the two

possible densities of (Y1,1, Y1,2 . . . , Yn,1, Yn,2)′, where y = (y1, . . . , yn)′. It follows
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from Lemma 5.1 and standard arguments that∫
R2n

min{g(n)
0 (y), g(n)

1 (y)}dy ≥ C, (7.9)

for some C > 0. Therefore, for any estimator f̃
(n)
X,n(0) of f

(l)
X,θ(0),

max
θ∈{0,1}

Eθ

∣∣∣f̃ (n)
X,n(0) − f

(l)
X,θ(0)

∣∣∣2
≥ 1

2

∫
R2n

{∣∣f̃ (n)
X,n(0;y) − f

(l)
X,0(0)

∣∣2
+

∣∣f̃ (n)
X,n(0; y) − f

(l)
X,1(0)

∣∣2} min{g(n)
0 (y), g(n)

1 (y)}dy

≥ 1
4

∣∣∣f (l)
X,0(0) − f

(l)
X,1(0)

∣∣∣2 ∫
R2n

min{g(n)
0 (y), g(n)

1 (y)}dy.

Since, by construction, |f (l)
X,0(0) − f

(l)
X,1(0)| ≥ Cn−(β−l)/(2β+2α+1), we obtain as-

sertion (i).
In complete analogy to the above calculations we can show that

max
θ∈{0,1}

Eθ

(
P̃a,b,n − Pa,b,θ

)2
≥ 1

4
(Pa,b,0 − Pa,b,1)

2
∫

R2n

min{g(n)
0 (y), g(n)

1 (y)}dy,

which proves (ii).

Proof of Theorem 5.2. Denote by g
(n)
θ (y) =

∏n
j=1 gθ(yj), θ ∈ {0, 1}Mn , the

possible densities of (Y1,1, Y1,2, . . . , Yn,1, Yn,2)′. We obtain from Lemma 5.2 that

min
θ∈{0,1}Mn ,1≤j≤Mn

∫
R2n

min{g(n)
(θ1,...,θMn )(y), g(n)

(θ1,...,θj−1,1−θj ,θj+1,...,θMn )(y)}dy ≥ C,

for some C > 0. Now for any estimator f̃
(l)
X,n of f

(l)
X ,

max
θ∈{0,1}Mn

Eθ

∥∥∥f̃
(l)
X,n − f

(l)
X

∥∥∥2

L2(R)

≥
Mn∑
j=1

∫ jδn

(j−1)δn

Eθ

∣∣∣f̃ (l)
X,n(x) − f

(l)
X,θ(x)

∣∣∣2 dx

≥
Mn∑
j=1

inf
(θ1,...,θj−1,θj+1,...,θMn )∈{0,1}Mn−1

1
2

{∫ jδn

(j−1)δn

E(θ1,...,θj−1,0,θj+1,...,θMn )

∣∣∣f̃ (l)
X,n(x)−f

(l)
X,(θ1,...,θj−1,0,θj+1,...,θMn)(x)

∣∣∣2dx
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+
∫ jδn

(j−1)δn

E(θ1,...,θj−1,1,θj+1,...,θMn )

∣∣∣f̃ (l)
X,n(x) − f

(l)
X,(θ1,...,θj−1,1,θj+1,...,θMn)(x)

∣∣∣2 dx

}
≥ Cn−2(β−l)/(2β+2α+1).

Proof of Theorem 5.3. We have

max
fX∈{fn,f̃n}

E
{

λ
(
S̃X,n∆SX

)}
≥ 1

2
λ
(
Sn∆S̃n

) ∫
· · ·

∫
min{g(y1) · · · g(yn) , g̃(y1) · · · g̃(yn)}dy1 · · · dyn ,

where Sn and S̃n denote the intersection of [0, 1] with the support of fn and f̃n,
respectively, and g(yj,1, yj,2) =

∫
fn(x)fε(yj,1 − x)fε(yj,2 − x)dx, with g̃ obtained

by replacing fn by f̃n. Using LeCam’s inequality (see e.g., Devroye (1987, p.7)),
we obtain that

max
fX∈{fn,f̃n}

E
{

λ
(
ŜX,n∆SX

)}
≥ const. λ

(
Sn∆S̃n

)
≥ const. εn. (7.10)

if the Hellinger distance He (g, g̃) satisfies

He 2(g, g̃) = O(n−1). (7.11)

To show (7.11), we apply (A2), part (ii), to get

g(y) ≥ C2

∫
{x: |x|≤1}

fn(x)
{
1 + (y1 − x)2

}−1{1 + (y2 − x)2
}−1

dx

≥ const.
∫
{x: |x|≤1}

fn(x)
(
1 + 2y2

1 + 2x2
)−1(1 + 2x2 + 2y2

2

)−1
dx

≥ const.
(
1 + y2

1

)−1(1 + y2
2

)−1
,

leading to

He 2(g, g̃)

≤
∫

{y: g(y)>0}

∣∣g(y) − g̃(y)
∣∣2[g(y)]−1dy

≤ const.
∫

R2

∣∣g(y) − g̃(y)
∣∣2(1 + y2

1 + y2
2 + y2

1y
2
2)dy

≤ const. max
(j1,j2)∈{0,1}2

∫
R2

∣∣∣ ∂j1+j2

∂tj11 ∂tj22
gft(t) − ∂j1+j2

∂tj11 ∂tj22
g̃ft(t)

∣∣∣2dt

≤ O(ε2
n) max

(j1,j2)∈{0,1}2,j3∈{0,1,2}
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R2

∣∣∣(Qft)(j3)
{
εn(t1 + t2 +

2π

εn
)
}
(fft

ε )(j1)(t1)(fft
ε )(j2)(t2)

∣∣∣2dt

+ O(ε2
n) max

(j1,j2)∈{0,1}2,j3∈{0,1,2}∫
R2

∣∣∣(Qft)(j3)
{
εn(t1 + t2 −

2π

εn
)
}
(fft

ε )(j1)(t1)(fft
ε )(j2)(t2)

∣∣∣2dt

≤ O(ε2
n) max

(j1,j2)∈{0,1}2

∫
[−2/εn±2π/εn,2/εn±2π/εn]

∫ ∣∣∣(fft
ε )(j1)(s)(fft

ε )(j2)(t − s)
∣∣∣2dsdt

= O
(
ε1+2α
n

)
,

where we have used Parseval’s identity and (A2), part (i). Therefore, (7.11) is
satisfied under the selection εn = n−1/(2α+1), and we can establish the desired
rate by (7.10).
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