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Abstract: We obtain an optimal bound for a Gaussian approximation of a large class

of vector-valued random processes. Our results provide a substantial generalization

of earlier results that assume independence and/or stationarity. Based on the decay

rate of the functional dependence measure, we quantify the error bound of the

Gaussian approximation using the sample size n and the moment condition. Under

the assumption of pth finite moment, with p > 2, this can range from a worst case

rate of n1/2 to the best case rate of n1/p.
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1. Introduction

The functional central limit theorem (FCLT), or invariance principle plays

an important role in statistics. Let Xi for i ≥ 1, be independent and identically

distributed (i.i.d.) random vectors in Rd with mean zero and covariance matrix

Σ, and let Sj =
∑j

i=1Xi. The FCLT asserts that

{n−1/2Sbnuc, 0 ≤ u ≤ 1} ⇒ {Σ1/2IB(u), 0 ≤ u ≤ 1}, (1.1)

where btc = max{i ∈ Z : i ≤ t} and IB is the standard Brownian motion in

Rd; that is it has independent increments, and IB(u + v) − IB(u) ∼ N(0, vId)

for u, v ≥ 0. In this study, we generalize (1.1) by developing a convergence

rate of (1.1) for multiple time series that can be dependent and nonidentically

distributed.

The invariance principle was introduced by Erdös and Kac (1946); Doob

(1949); Donsker (1952); Prohorov (1956) furthered their ideas, which led to the

theory of weak convergence of probability measures. There is an extensive body

of literature on Gaussian approximations when the dimension d = 1. In this

case, optimal rates for independent random variables were obtained by Komlós,

Major and Tusnády (1975) and Sakhanenko (2006), among others. When d = 1
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and Xi is i.i.d. with mean zero and variance σ2 and has a finite pth moment for

p > 2, Komlós, Major and Tusnády (1975, 1976) established the following result:

max
1≤i≤n

|S′i − σB(i)| = oa.s.(τn), (1.2)

where B(·) is the standard Brownian motion and S′n is constructed on a richer

space; such that (Si)i≤n
D
= (S′i)i≤n, and the approximation rate τn = n1/p is opti-

mal. Results of the type shown in (1.2) have many applications in statistics be-

cause we can use functionals involving Gaussian processes to approximate statis-

tics of (Xi)
n
i=1, and thus exploit the properties of Gaussian processes. Their result

was generalized to independent random vectors by Einmahl (1987a,b, 1989); Za-

itsev (2000, 2001a,b); Götze and Zaitsev (2008), who optimal and nearly optimal

results.

To generalize (1.2) to multiple time series, we consider the possibly nonsta-

tionary, d-dimensional, mean zero, vector-valued process

Xi = (Xi1, . . . , Xid)
T = Hi(Fi) = Hi(εi, εi−1, . . .), i ∈ Z, (1.3)

where T denotes a matrix transpose, Fi = (εi, εi−1, . . .) and εi for i ∈ Z, are

i.i.d. random variables. Here, Hi(·) is a measurable function such that Xi is

well defined. We allow Hi to be possibly nonlinear in its argument (εi, εi−1, . . .)

in order to capture a much larger class of processes. If Hi(·) ≡ H(·) does not

depend on i, (1.3) defines a stationary causal process. The latter framework is

very general; see Tsay (2010); Wu (2005); Priestley (1988), among others. When

d = 1, Wiener (1958) considered representing stationary processes by functionals

of i.i.d. random variables.

Lütkepohl (2005) presented numerous applications of the functional central

limit theorem for multiple time series analysis. Wu and Zhao (2007) and Zhou

and Wu (2010) applied Gaussian approximation results with suboptimal approx-

imation rates to trend estimations and functional regression models. For the

class of weakly dependent processes (1.3), we show that there exists a probabil-

ity space (Ωc, Ac, Pc) on which we can define random vectors Xc
i , with the partial

sum process Sci =
∑i

t=1X
c
t and a Gaussian process Gci =

∑i
t=1 Y

c
t . Here Y c

t is a

mean zero independent Gaussian vector, such that (Sci )1≤i≤n
D
= (Si)1≤i≤n and

max
i≤n
|Sci −Gci | = oP (τn) in (Ωc, Ac, Pc), (1.4)

where the approximation bound τn is related to the dependence decaying rates.
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Our result is useful for asymptotic inferences involving multiple time series. As a

primary contribution, we generalize and improve the existing results for Gaussian

approximations in several ways. For some p > 2, we assume uniform integrability

of the pth moment and obtain an approximation bound τn in terms of p and the

decay rate of the functional dependence measure. In particular, if the dependence

decays sufficiently quickly, for τn, we are able to achieve the optimal oP (n1/p)

bound. In the current literature, optimal results have been obtained for some

special cases only. We start with a brief overview of these.

For stationary processes with d = 1, a suboptimal rate was derived by Wu

(2007), where the martingale approximation is applied. Berkes, Liu and Wu

(2014) considered the causal stationary process given in (1.3) above obtaining the

n1/p bound for p > 2. It is considerably more challenging to deal with vector-

valued processes. Eberlein (1986) obtained a Gaussian approximation result

for dependent random vectors with an approximation error O(n1/2−κ), for some

small κ > 0. However, this bound can be too crude for many statistical applica-

tions. The martingale approximation approach in Wu (2007) cannot be applied

to vector-valued processes because Strassen’s embedding fails for vector-valued

martingales Monrad and Philipp (1991) in general. For a stationary multiple

time series with additional constraints, Liu and Lin (2009) obtained an impor-

tant result on strong invariance principles for stationary processes with bounds

of the order n1/p, with 2 < p < 4. Wu and Zhou (2011) obtained suboptimal

rates for multiple nonstationary time series. A critical limitation of the results in

Wu and Zhou (2011); Liu and Lin (2009) is the restriction 2 < p < 4. Whether

the bound n1/p can be achieved when p ≥ 4 remains an open problem.

In this paper, we show that under proper decaying conditions on functional

dependence measures for the process (1.3), we can indeed obtain the optimal

bound n1/p for p ≥ 4. Our condition is stated in the form of (2.3), which employs

the two parameters χ and A to formulate the temporal dependence of the process.

In general, larger values of χ and A mean the dependence decays more quickly.

With proper conditions on A, we find optimal τn = τn(χ) for a general χ > 0.

In Corollary 2.1 in Berkes, Liu and Wu (2014) the authors discussed univariate

and stationary processes. However, their focus was on larger values of χ that

allowed them to obtain τn = n1/p. In Theorem 1, we obtain a rate for any

χ > 0, and show that if χ increases from 0 to a certain number χ0, we obtain

the optimal τn, varying from the worst, n1/2, to the optimal, n1/p. This work

is useful for processes in which dependence does not decay sufficiently quickly.

For the borderline case χ = χ0, we have a rate of oP (n1/p) for 2 < p < 4, and
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for p ≥ 4, we have a rate of oP (n1/p log n). However, if χ > χ0, we obtain the

optimal oP (n1/p) bound for all p > 2.

Our sharp Gaussian approximation result is quite useful for simultaneous

inferences of curves where the unknown function is not even Lipschitz continuous.

Although many studies have examined curve estimations by assuming smooth

or regular behavior of a function few have focused on functions that are not

differentiable or not Lipschitz continuous. Our Gaussian approximation can play

a key role in weakening the smoothness assumption and thus enlarging the scope

of statistical inferences. Moreover, the optimal oP (n1/p) bound for 2 < p <

4 and the stationary processes obtained in Liu and Lin (2009) have remained

popular choices over the past few years for multivariate Gaussian approximations.

Therefore, we can apply our sharper invariance principle to generalize that of (Liu

and Lin (2009)) one in multiple ways, thus yielding optimal rates when p ≥ 4.

The rest of the article is organized as follows. In section 2, we introduce

the functional dependence measure and present our main result. Applications

to linear processes and to locally stationary nonlinear nonLipschitz processes are

given in section 3. The proof of Theorem 1 is outlined in section 4. A detailed

version is provided in the online Supplementary Material section 6. The goal of

the sketched outline is to give the readers a basic idea of our long and involved

derivation. Some useful results used throughout the proofs are presented in the

online Supplementary Material section 7.

We now introduce some notation. For a random vector Y , write Y ∈ Lp, for

p > 0, if ‖Y ‖p := E(|Y |p)1/p < ∞. If Y ∈ L2, V ar(Y ) denotes the covariance

matrix. For the L2 norm write ‖ · ‖ = ‖ · ‖2. Throughout the text, cp denotes

a constant that depends only on p and c denotes a universal constants. These

might take different values in different lines, unless otherwise specified. Then,

x+ = max(x, 0) and x− = −min(x, 0). For two positive sequences an and bn, if

an/bn → 0 (resp. an/bn → ∞), write an � bn (resp. an � bn). Write an . bn
if an ≤ cbn, for some c < ∞. The d-variate normal distribution with mean µ

and covariance matrix Σ is denoted by N(µ,Σ). Denote by Id the d× d identity

matrix. For a matrix A = (aij), we define its Frobenius norm as |A| = (
∑
a2ij)

1/2.

For a positive semi-definite matrix A with spectral decomposition A = QDQT,

where Q is orthonormal and D = (λ1, . . . , λd) with λ1 ≥ · · · ≥ λd, write the

Grammian square root as A1/2 = QD1/2QT, where ρ∗(A) = λd and ρ∗(A) = λ1.
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2. Main Results

We first introduce the uniform functional dependence measure on the under-

lying process using the idea of coupling. Let ε′i, εj , for i, j ∈ Z, be i.i.d. random

variables. Assume Xi ∈ Lp, p > 0. For j ≥ 0, 0 < r ≤ p, define the functional

dependence measure

δj,r = sup
i
‖Xi −Xi,(i−j)‖r = sup

i
‖Hi(Fi)−Hi(Fi,(i−j))‖r, (2.1)

where Fi,(k) is the coupled version of Fi, with εk in Fi replaced by an i.i.d. copy

ε′k,

Fi,(k) = (εi, εi−1, . . . , ε
′
k, εk−1, . . .) and Xi,(i−j) = Hi(Fi,(i−j)).

In addition, Fi,(k) = Fi if k > i. Note that, ‖Hi(Fi) − Hi(Fi,(i−j))‖r measures

the dependence of Xi on εi−j . Because the physical mechanism function Hi may

differ for a nonstationary process, we choose to define the functional dependence

measure in a uniform manner. The quantity δj,r measures the uniform j-lag

dependence in terms of the rth moment. Assume throughout that

Θ0,p =

∞∑
i=0

δi,p <∞. (2.2)

This condition implies short-range dependence in the sense that the cumulative

dependence of (Xj)j≥k on εk is finite. For clarity of presentation, in this paper

we assume there exists χ > 0, A > 0 such that the tail cumulative dependence

measure

Θi,p =

∞∑
j=i

δj,p = O
(
i−χ(log i)−A

)
. (2.3)

Larger χ or A implies weaker dependence. Our Gaussian approximation rate τn
(cf., Theorems 1 and 2) depends on χ and A. Define functions fj(·, ·) as follows

f1 = f1(p, χ) = p2χ2 + p2χ, f2 = 2pχ2 + 3pχ− 2χ, (2.4)

f3 = p3(1 + χ)2 + 6f1 + 4pχ− 2, f4 = 2p(2pχ2 + 3pχ+ p− 2),

f5 = p2(p2 + 4p− 12)χ2 + 2p(p3 + p2 − 4p− 4)χ+ (p2 − p− 2)2.

Assume that the process in (1.3) satisfies the uniform integrability and regularity

conditions on the covariance structure:
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(2.A) The series (|Xi|p)i≥1 is uniformly integrable: supi≥1E(|Xi|p1|Xi|≥u) →
0 as u→∞;

(2.B) (Lower bound on eigenvalues of covariance matrices of increment processes)

There exists λ∗ > 0 and l∗ ∈ N, such that for all t ≥ 1, l ≥ l∗,

ρ∗(V ar(St+l − St)) ≥ λ∗l.

The uniform integrability assumption is necessary owing to the nonstationarity

of the process. The latter is frequently imposed in study of multiple time series.

Theorem 1. Assume E(Xi) = 0, (2.A)–(2.B), and (2.3) holds with

0 < χ < χ0 =
p2 − 4 + (p− 2)

√
p2 + 20p+ 4

8p
, (2.5)

A >
(2p+ p2)χ+ p2 + 3p+ 2 + f

1/2
5

p(1 + p+ 2χ)
. (2.6)

Then, (1.4) holds with the approximation bound τn = n1/r, where

1

r
=
f1 + p2χ+ p2 − 2p+ f2 − χ

√
(p− 2)(f3 − 3p)

f4
. (2.7)

Theorem 2. Assume E(Xi) = 0, (2.A)–(2.B), and (2.3) hold. Recall (2.5) for

χ0: (i) if χ > χ0 and A > 0, we can achieve (1.4) with τn = n1/p for all p > 2;

for χ = χ0, assume that A satisfies (2.6); (ii) if 2 < p < 4, we have τn = n1/p;

(iii) if p ≥ 4, we have τn = n1/p log n.

Theorems 1 and 2 concern the two cases χ < χ0 and χ ≥ χ0, respectively,

and they are proved in sections 4 and 5 respectively. The proof of Theorem 2

requires a more refined treatment so that the optimal rate can be derived. For

Theorem 1 and Theorem 2(i) and (iii), we apply Götze and Zaitsev (2008); see

Proposition 3. For Theorem 2(ii), Proposition 1 from Einmahl (1987a) is applied.

The expression of r is complicated. Figure 1 plots the power max(1/r, 1/p). As

χ→ 0, r → 2 and r = p if χ > χ0.

Remark 1. The lower bound of A for the case χ = χ0 can be further simplified

to

A >
p2 + 8p+ 4 + (p− 2)

√
p2 + 20p+ 4

6p
.
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Figure 1. Optimal bound as a function of χ.

3. Applications

3.1. Vector linear processes

Assume that Xi is a vector linear process

Xi =

∞∑
j=0

Bjεi−j , (3.1)

where Bj is d × d coefficient matrix, and εi = (εi1, . . . , εid)
T. Here εi is an i.i.d.

random variable with mean zero and a finite qth moment, for some q > 2. Assume

∞∑
j=t

|Bj | = O(t−χ(log t)−A), (3.2)

where A satisfies (2.6), with p therein replaced by q. The model in (3.1) covers a

large class of popular multiple timeseries models including the vector AR, vector

MA and vector ARMA models. under mild conditions on the coefficient matrices.

Specifically, for a zero-mean vector ARMA process with lags a and b

Xi −Ψ1Xi−1 − · · · −ΨaXi−a = εi + Φ1εi−1 + · · ·+ Φbεi−b, (3.3)
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the stability condition (see Lütkepohl (2005) for a definition) ensures a pure

vector MA representation (3.1). The stationarity of the Xi process and the

finite qth moment ensure condition (2.A), with p replaced by q. Write Ψ∗ =

I −Ψ1− · · ·−Ψa,Φ∗ = I + Φ1 + · · ·+ Φb. Assume Ψ∗, Φ∗, and Σe = E(e1e
T
1 ) are

nonsingular. Elementary calculation shows that, as l→∞,

V ar

(
Sl√
l

)
→ Ψ−1∗ Φ∗ΣeΦ

T
∗Ψ
−T
∗ ,

which is also non-singular. Thus condition (2.B) holds. Note that ‖Xi−Xi,(i−j)‖q
= O(|Bj |). Therefore, condition (2.3) is satisfied for the Xi process, from assump-

tion (3.2). Thus, under a suitable moment assumption, we can apply Theorems 1

and 2 to generalize the central limit theory-type results to a stronger invariance

principle.

Next, we discuss the covariance process for Xi that admits a representa-

tion as (3.1). Assume q > 4. Let the d(d + 1)/2-dimensional vector Wi =

(XirXis)1≤r≤s≤d. Then, W̄n :=
∑n

i=1Wi/n gives sample covariances of (Xi)
n
i=1.

Write p = q/2. Fix two coordinates 1 ≤ r ≤ s ≤ d. Then,

‖XirXis −Xi,(i−j)rXi,(i−j)s‖p
≤ ‖XirXis −XirXi,(i−j)s‖p + ‖XirXi,(i−j)s −Xi,(i−j)rXi,(i−j)s‖p
≤ ‖Xir‖q‖Xis −Xi,(i−j)s‖q + ‖Xir −Xi,(i−j)r‖q‖Xi,(i−j)s‖q
= O(|Bj |),

because εi has a finite qth moment. Thus, condition (3.2) translates to condition

(2.3) for the W process with p = q/2. Condition (2.A) is trivially satisfied

because the process Wi is stationary and has a finite pth moment. Let ΣW =∑∞
k=−∞Cov(W0,Wk) be the long-run covariance matrix of (Wi). We assume the

minimum eigenvalue of ΣW is positive. This ensures that condition (2.B) holds.

By Theorems 1 and 2, we have

max
i≤n
|iW̄i − iE(W1)− Σ

1/2
W IB(i)| = oP (τn), (3.4)

where τn takes the values n1/r (see (2.7)), and n1/p, based on χ < χ0 and χ > χ0,

respectively and IB is a centered standard Brownian motion. Result (3.4) is

helpful for change point inferences for multiple time series based on covariances;

see Aue et al. (2009); Trapani, Urga and Kao (2017), among others.
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3.2. Nonlinear nonstationary time series

Consider the process

Xi = F

(
Xi−1, εi, θ

(
i

n

))
, 1 ≤ i ≤ n,

where εi is an i.i.d. random variable, F is a measurable function, θ : [0, 1] → R
is a parametric function such that max0≤u≤1 ‖F (x0, εi, θ(u))‖p <∞, and

sup
0≤u≤1

sup
x 6=x′

‖F (x, εi, θ(u))− Fi(x′, εi, θ(u))‖p
|x− x′|

< 1. (3.5)

Then, the process Xi satisfies the following geometric moment contraction: for

some 0 < β < 1,

δi,p = O(βi). (3.6)

Thus, (2.3) holds for any χ > 0, and Theorem 2 is applicable with rate τn =

n1/p. This facilitates an inference for the unknown parametric function θ. Time-

varying analogues of ARCH-, GARCH-, AR-, ARMA-type models are prominent

examples in this large class of nonstationary models. We discuss the following

example of a threshold AR(1) model (Tong (1990)) with time-varying coefficients:

Yi = θ1

(
i

n

)
Y +
i−1 + θ2

(
i

n

)
Y −i−1 + ei, (3.7)

where ei is an i.i.d. mean-zero innovation. Assuming θ(·) = (θ1(·), θ2(·))T is

continuous, we can estimate θ(t), for t ∈ [0, 1], by

(θ̂1(t), θ̂2(t))
T = arg min

η1,η2

n∑
i=2

(Yi − η1Y +
i−1 − η2Y

−
i−1)

2K

(
i/n− t
bn

)
, (3.8)

where K is a symmetric kernel with bounded variation and compact support,

and bn is an appropriately chosen bandwidth. For such an estimation choice one

has √
nbnM(t)(θ̂(t)− θ(t)) =

1√
nbn

n∑
i=2

viv
T
i

(
θ

(
i

n

)
− θ(t)

)
K

(
i/n− t
bn

)

+
1√
nbn

n∑
i=2

vieiK

(
i/n− t
bn

)
, (3.9)
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where vi = (Y +
i−1, Y

−
i−1)

T and M(t) = (nbn)−1
∑n

i=2 viv
T
iK((i/n − t)/bn). As-

suming some mild conditions on the innovation process ei and the time-varying

functions θ1 and θ2, we can construct a simultaneous confidence interval for θ

from (3.9). Assume for some p > 2, ‖e1‖p < ∞, e1 has a density with support

(−∞,∞), and

s = sup
t

(|θ1(t)|+ |θ2(t)|) < 1. (3.10)

We verify the conditions of Theorem 2 using the bivariate process Xi = viei. To

prove (2.A), it suffices to show uniform integrability for (|Yi|p)i≥1 for the model

(3.7). It easily follows because ei is an i.i.d. innovation process with a finite pth

moment, and

|Yi| ≤ |ei|+ s|Yi−1| ≤
∞∑
j=0

sj |ei−j |.

Thus, (2.A) holds. As a result of the independence of ei, and beacuse x+x− = 0,

V ar(St+l−St) =

t+l∑
i=t+1

V ar(viei) =

t+l∑
i=t+1

diag(E((Y +
i−1)

2)E(e2i ), E((Y −i−1)
2)E(e2i )).

With Di = θ1(i/n)Y +
i−1 + θ2(i/n)Y −i−1 and c0 = 2 supi ‖Yi‖2,

E((Y +
i−1)

2) = E(((ei−1 +Di−2)
+)2) ≥ E(((ei−1 +Di−2)

+)2I(|Di−2| ≤ c0))
≥ E(((ei−1 − c0)+)2)P (|Di−2| ≤ c0)

> c1

(
1− 2 supi ‖Yi‖22

c20

)
, (3.11)

where c1 is a constant that does not depend on i. We have a similar calculation

for E((Y −i−1)
2), and thus, (2.B) is satisfied. Under assumption (3.10), because

Xi satisfies the geometric moment contraction property (3.5), (2.3) holds for any

χ > 0.

For the second term in (3.9), we apply the Gaussian approximation from

Theorem 2 with rate τn = n1/p. Using summation-by-parts, the negligibility

criterion for the term with the approximation rate requires

n1/p√
nbn
→ 0, (3.12)

assuming bounded variation of K (cf.,Wu and Zhao (2007)). Now, assume θ1(·)
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and θ2(·) are Hölder-α continuous for some α < 1/2. For the negligibility of the

first term in (3.9) portraying we need
√
nbnb

α
n → 0. This, along with (3.12) and

α < 1/2, requires p > 4. This portrays one scenario among many that demands a

sharper Gaussian approximation than n1/4. One such is obtained in Theorem 2.

In the regime of curve estimation, our result provides a strong tool by relaxing

the smoothness assumption on the coefficient curves/functions. This example

shows how to overcome the unavailability of a Taylor series expansion using the

minimal Hölder-continuity property and a sharper Gaussian approximation.

4. Key ideas of the proof of Theorem 1

The proof of Theorem 1 is quite involved. Here, we provide a brief outline of

the major components of the proof. In particular, we emphasize the difficulties

that arise as a result of the nonstationarity and the vector-valued process, as well

as the techniques we use to circumvent these problems. Because these techniques

allow us to solve this problem in such a general manner, we believe it might be of

interest to the reader to at least have an overview of the major steps. A detailed

proof is provided in the online Supplementary Material.

The first part of our proof consists of a series of approximations to create

almost independent blocks. The first of them, the truncation approximation,

ensures the optimal n1/p bound. This step differs from the treatment of Berkes,

Liu and Wu (2014) because of the choice of the truncation level; we included

the term tn, exploiting the uniform integrability assumption. This is necessary

because of the nonstationarity. Second, we use the m-dependence approximation

for a suitably chosen sequence mn in terms of the decay rate χ. This generalizes

the treatment in Berkes, Liu and Wu (2014) because it also allows for processes

where dependence decays slowly. Lastly, the blocking approximation requires

some sharp Rosenthal-type inequality that needs a γth moment of the block-

sums in the numerator with γ > p. It is essential to use a power higher than p to

obtain a better rate. This step needs a k-dic decomposition, where k is possibly

greater than or equal to three, to allow for nonstationarity.

To maintain clarity, we defer the exact choice of γ and mn in terms of χ and

A to subsection 4.4. Instead, in this subsection, we derive conditions (4.3) (see

(6.9), (6.12), and (6.13) in the online supplement A) to ensure an n1/r rate and

to solve γ,mn, and r later to obtain the best possible choices for this sequence.

Henceforth, we drop the suffix of mn for convenience.



1410 KARMAKAR AND WU

4.1. Outline of preparation step

The importance of the preparation step is two-fold. It creates a platform

for the conditional Gaussian approximation and regrouping by creating almost

independent blocks. Moreover, these steps allow us to build a system of equations

to solve for the approximation rate τn = n1/r as a function of the decay rate χ in

(2.3). These equations are key in our generic approach deriving the optimal rate

for slowly decaying dependence, and show how it possibly affects (see Figure 1)

the optimal Gaussian approximation rate.

For the truncating approximation, we exploit the uniform integrability to

introduce a sequence tn → 0 very slowly, such as

tn log log n→∞, (4.1)

and use it at the truncation level tnn
1/p. The truncation is defined through the

operato

Tb(v) = (Tb(v1), . . . , Tb(vd))
T, where Tb(w) = min(max(w,−b), b).

For the m-dependence approximation step and the blocking approximation, as-

sume

m = bnLtknc, 0 < k <
γ − p
γ/2− 1

, 0 < L < 1, (4.2)

n1/2−1/rΘm,r → 0, n1−γ/rmγ/2−1 → 0 and n1/p−1/γ
∞∑

j=m+1

δ
p/γ
j,p → 0, (4.3)

where the first term in (4.3) is required for the m-dependence step, and the other

two are for the blocking approximation. After these approximations, we have a

partial sum process S�n, with the following summarized definition:

S�i =

qi∑
j=1

Aj with Aj =

2k0jm∑
i=(2jk0−2k0)m+1

X̃i,

where X̃j = E(Ttnn1/p(Xj)|εj , . . . , εj−m)− E(Ttnn1/p(Xj)),

and k0 = bΘ2
0,2/λ∗c + 2, qi = bi/(2k0m)c. For this truncated, m-dependent and
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blocked process S�n, we have the approximation

max
1≤i≤n

|Si − S�i | = oP (n1/r).

See section 6.1 in the online Supplementary Material. Next, in subsections 4.2

and 4.3, we discuss how to obtain a Gaussian approximation for S�n.

4.2. Outline of conditional Gaussian approximation

The blocks created in the preparation steps are not independent because two

successive blocks share some εi in their shared border. In this second stage, we

consider the partial sum process conditioned on these borderline εi, which implies

conditional independence. Berkes, Liu and Wu (2014) performed a similar treat-

ment with a triadic decomposition for stationary scalar processes, and applied

Sakhanenko (2006) Gaussian approximation result to the conditioned process.

Because the result of Sakhanenko (2006) is only valid for d = 1, we need

to use the Gaussian approximation result from Götze and Zaitsev (2008) (see

Proposition 3) for d ≥ 2. This incurs a cost of verifying a very technical suf-

ficient condition on the covariance matrices of the independent vectors. This

verification is particularly complicated in our case because we are dealing with

a conditional process. We opt for a k-dic decomposition instead of the triadic

decomposition in Berkes, Liu and Wu (2014). This is necessary to accommodate

the nonstationarity of the process. We need k0 > Θ2
0,2/λ∗ (cf., (6.11)), where λ∗

is mentioned in Condition 2.B.

4.3. Outline of regrouping and unconditional Gaussian approximation:

In the last part of our proof, we obtain the Gaussian approximation for the

unconditional process by applying Proposition 3 one more time. In the second

part of our proof, we consider the conditional variance (cf., Vj(ā2k0j , ā2k0j+2k0) =

V ar(Yj(ā2k0j , ā2k0j+2k0)) in (6.20) of subsection 6.2) of the blocks. These condi-

tional variances are one-dependent. In order to apply Götze and Zaitsev (2008)

result, we rearrange the sums of these variances into sums of independent blocks

(cf., 6.22 in subsection 6.2). Owing to the nonstationarity, this regrouping is dif-

ferent and more complex than that of Berkes, Liu and Wu (2014). In particular,

the regrouping procedure leads to matrices that may not be positive-definite and,

hence, cannot be used directly as possible covariance matrices of Gaussian pro-

cesses. We overcome this obstacle by introducing a novel positive-definitization

that does not affect the optimal rate.
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4.4. Conclusion of the proof

This subsection discusses the choice of the sequence m, γ, and the rate τn =

n1/r, starting from the conditions in (4.3) (see equations (6.9), (6.12), and (6.13)

in the detailed version of the proof). Elementary calculations show that r < p

for χ < χ0. Provided 1− (χ+ 1)p/γ < 0, we have

∞∑
j=m+1

δ
p/γ
j,p ≤

∞∑
i=blog2mc

2i+1−1∑
j=2i

δ
p/γ
j,p ≤

∞∑
i=blog2mc

2i(1−p/γ)Θ
p/γ
2i,p (4.4)

=

∞∑
i=blog2mc

2i(1−p/γ)O(2−χip/γi−Ap/γ) = O(m1−p/γ−χp/γ(logm)−Ap/γ).

By (4.1) and (6.15), logm � log n. Assume that

1

2
− 1

r
− χL = 0, A >

γ

p
, (4.5)

1− γ

r
+ L

(γ
2
− 1
)

= 0, 0 < k <
(γ

2
− 1
)−1

(γ − p), (4.6)

1

p
− 1

γ
+

(
1− (χ+ 1)

p

γ

)
L = 0. (4.7)

Then, the conditions in (4.3) hold. Solving the equations in (4.5), (4.6), and

(4.7), we obtain r in (2.7), as follows:

γ =
(2p+ p2)χ+ p2 + 3p+ 2 + f

1/2
5

2 + 2p+ 4χ
,

L =
f1 − f2 + χ

√
(p− 2)(f3 − 3p)

χf4
,

with f1, . . . , f5 given in (2.4). Moreover, we specifically choose A > 2γ/p for a

crucial step in the proof of our Gaussian approximation; see (6.40).

Remark 2. Figure 2 depicts how γ and L change with p and χ for χ < χ0. Note

that L, the power of n in the expression of m, is close to one if χ is small. This

makes intuitive sense, because if the dependence decays very slowly, to make

blocks of size m (or a multiple of m) behave almost independently, we need a

larger L.
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Figure 2. (a) γ as a function of χ, (b) L as a function of χ.

5. Proof of Theorem 2

Proof. Case 1 (χ > χ0): Note that the optimal power γ and the optimal bound

1/r increase and decrease with χ, respectively (see also Figures 1 and 2). This

is a motivation behind tweaking our proof for the verification of (6.24) to handle

the (log n) term in the choice of l in (6.26). When using the Nagaev inequality

to show (6.43), we use a power γ′ > γ, while keeping the choice of l (cf., 6.26)

the same as before. We form a set of new equations:

1

2
+

1

p
− 2

r′
+ L′

(
1− (χ+ 1)

p

r′

)
= 0, (5.1)

1

p
− 1

γ′
+ L′ − L′ (χ+ 1)

p

γ′
= 0,

1− γ′

r′
+ L′

(
γ′

2
− 1

)
= 0.

The intuition behind the first of these equations is to use a higher power than

p in the m-dependence approximation. However, we have only defined moments

up to p. Therefore, we use Lemma 2 to obtain a new equation corresponding to

the m-dependence approximation using a power r′ that is little higher than p.

The solution of (5.1) has the property

γ′ <
2(1 + p+ pχ)

3
, (5.2)
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for χ > χ0. In addition, L′ < L(χ0) (cf., Figure 2) and, hence, m1−γ′/2 �
m′1−γ

′/2, where m′ is taken as nL
′
tkn, following (6.15). We apply Nagaev-type

inequality from Liu, Xiao and Wu (2013) to obtain

P (|S̃m| ≥
√
lm) .

m

(lm)γ′/2
νγ
′+1
R +

R∑
r=1

exp

(
−cγ′

λ2rl

θ̃2r,2

)
+
mγ′/2Θ̃γ′

m+1,γ′

(lm)γ′/2
(5.3)

+
m supi ‖Ttnn1/p(Xi)‖γ

′

γ′

(lm)γ′/2
+ exp

(
− cγ′ l

supi ‖Ttnn1/p(Xi)‖22

)
,

where νR =
∑R

r=1 µr, µr = (τ
γ′/2−1
r θ̃γ

′

r,γ′)
1/(γ′+1), λr = µr/νR, and θ̃r,t =

∑τr
i=1+τr−1

δ̃i,t, for some sequence 0 = τ0 < τ1 < · · · < τR = m. For the choice τr = 2r−1

for 1 ≤ r ≤ R − 1 = blog2mc, we obtain νγ
′+1
R = O(nγ

′/p−1tγ
′−p
n ) using (5.2),

or (6.4) under the decay condition on Θi,p in (2.3). The third term and the

exponential terms are straightforward to deal with. The fourth term is handled

similarly to (7.4). Combining these as in our new set of equations in (5.1), we get

P (|S̃m| ≥
√
lm) = o(m/n), which is sufficient to conclude the proof, as proposed

in (6.43).

The positive-definitization technique introduced in (6.31) is validated in

Proposition 9. This step requires γ > 4χ for χ > max(1/2, χ0). We observe

that γ′ − 4χ = 0 has a root χ1 > χ0. This allows us to replace χ in the decay

condition of Θi,p with min(χ, χ1), and thus completes the proof. The arguments

for the rest of the proof of Theorem 1 remain valid.

Case 2 (χ = χ0, 2 < p < 4): We apply Proposition 1 from Einmahl (1987a).

He proved a Gaussian approximation result for independent, but not necessarily

identical vectors with a diagonal covariance matrix. The two remarks following

the proposition mention that the diagonal nature of every covariance matrix

can be relaxed if these matrices have bounded eigenvalues. A careful check of

his proof reveals that it can be further relaxed to the assumption of bounded

eigenvalues of the covariance matrix of a normalized block sum only. This allows

us to replace l (see (6.26)) in the conclusion of Proposition 3 with l′ without

the logarithm term (log n) in the denominator and without the condition (6.25).

Thus, we obtain a rate of oP (n1/p) for all 2 < p < 4.

Case 3 (χ = χ0, p ≥ 4): In this case, we do not have a similar optimal

Gaussian approximation result for independent, but not identically distributed

random vectors. Instead we apply Proposition 3 again. The sufficient conditions

in that result lead to an unavoidable (log n) term in the choice of l (see 6.26).

This, in turn, leads to a rate of oP (n1/p log n). Note that χ0 > 1/2− 1/p for all
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p > 2. From the proof of the case 0 < χ < χ0, consider (6.45). Then, observe

that if χ = χ0,

n

m
P (|S̃m| ≥

√
lm) = O((log n)ptk(p/γ−p/2)n ),

which may diverge to ∞. To deal with this difficulty in this special case, we

choose a different m sequence. Our new set of conditions with τn = n1/p(log n)δ

are

n1/2−1/pm−χ(log n)−A−δ → 0,

n1/p−1/γm1−(χ+1)p/γ(log n)−Ap/γ → 0,

n1−γ/p(log n)−γδmγ/2−1 → 0,

(log n)γm1−γ/2nγ/p−1tγ−pn → 0,

where the last is obtained using γth moment in (5.3). Let m = bnL(log n)2γ/(γ−2)

tknc, with 0 < k < (γ/2 − 1)−1(γ − p). Then, we can achieve δ = 1. We still

have the same set of equations for L, γ, and r shown in (4.5), (4.6), and (4.7),

respectively. A careful check reveals that the rest of the proof follows with this

modified m sequence.

Supplementary Material

The online Supplementary Material contains detailed proofs of Theorem 1

(section 6) and some useful lemmas (section 7).
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