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Abstract: We present an approach for estimating shape-constrained kernel-based

probability density functions (PDFs) and probability mass functions (PMFs) that

includes constraints on the PDF (PMF) function itself, its integral (sum), and

derivatives (finite differences) of any order. We also allow for pointwise upper and

lower bounds (i.e., inequality constraints) on the PDF and PMF, in addition to

more popular equality constraints. Furthermore the approach handles a range

of transformations of the PDFs and PMFs including, for example, logarithmic

transformations, which allow us to impose log-concave or log-convex constraints.

We also provide the theoretical underpinnings for the procedures. The results of a

simulation-based comparison between our proposed approach and those Grenander-

type methods favor our approach when the data-generating process is smooth.

To the best of our knowledge, ours is also the only smooth framework that

handles PDFs and PMFs in the presence of inequality bounds, equality constraints,

and other popular constraints. An implementation in R incorporates constraints

such as monotonicity (both increasing and decreasing), convexity and concavity,

and log-convexity and log-concavity, among others, while respecting finite-support

boundaries by using boundary kernel functions.

Key words and phrases: Kernel density estimation, probability density function,

probability mass function, shape constraints.

1. Introduction

Shape constraints play a vital role in identification, estimation, and inference

in econometric and statistical applications (see, e.g., Chetverikov, Santos and

Shaikh (2018) for a review of recent developments and their importance in applied

work). Such constraints sometimes emerge naturally owing to the nature of the

data, but increasingly often are required when replacing parametric models with

more versatile semi- and nonparametric models. The ability to preserve the

qualitative shape properties present in a parametric model is a key component

of any alternative method. However, the consequences of misspecifying the

parametric model can be severe, and influence the choice of the nonparametric

alternative. There are two reasons why one might wish to integrate shape

constraints into a nonparametric estimation procedure. The first is to achieve

potential gains in estimator efficiency by imposing valid shape constraints on
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some statistical object of interest. That is, if one’s assumption about a shape

constraint on an otherwise unspecified curve is correct, then incorporating

this information into the estimation procedure can improve the finite-sample

performance of the corresponding estimator. The second reason is to assess

the validity of the shape constraints using formal quantitative inference, or to

determine the qualitative effect of the constraints on the resulting estimate.

Imposing shape constraints on an otherwise unrestricted nonparametric

curve is a key element of a sound empirical analysis that encompasses a range

of approaches; see Groeneboom and Jongbloed (2014) for examples of shape-

constrained estimators and algorithms, along with their theoretical properties.

Perhaps the most common applications of enforcing shape constraints arise when

modeling a conditional mean function (i.e., a regression), which is understandable,

given the popularity of regression analysis. However, the density function is also

a popular object of interest that necessitates a separate treatment from that of

regression, owing to its unique nature. Shape-constrained density estimation,

like its regression-based counterpart, has a rich history that can be traced to

the seminal work of Grenander (1956), who analyzes the maximum likelihood

estimator (MLE) of a decreasing density on the nonnegative half-line (see also

Groeneboom and Jongbloed (2018) for recent theoretical work in this direction).

Note that Prakasa Rao (1969) shows that this estimator exhibits nonstandard

asymptotic behavior, because it converges at a cube rate (n−1/3) at points at

which the true decreasing density is differentiable with a negative derivative. This

is slower than competing local kernel-based estimators that assume smoothness

(n−2/5), a common assumption among practitioners that we adopt in one of the

two kernel-based estimators we consider here. Although the density function

is our main object of interest, we also treat the mass function, and note that

kernel-based mass function estimators for categorical data have a different (and

faster, i.e., n−1/2) rate of convergence than that of their kernel density-based

counterparts.

In density estimation settings, a variety of innovative approaches have been

proposed for imposing specific constraints, such as monotonicity, concavity, and

log-concavity, among others. Though some of these approaches admit certain

combinations of shape constraints, many are tailored to a particular setting (e.g.,

monotonicity only). In addition, while some existing approaches incorporate

bounds on the support of the variable under study, others do not. Furthermore,

most existing approaches are predicated on continuously distributed random

variables, though constrained probability mass functions (PMFs) may also be

of value when modeling discrete support random variables, which arise frequently

in applied settings.

Grenander-based approaches (Grenander (1956)) have been widely used to

impose certain shape constraints, and one of their appealing features is that they

do not require any tuning parameters, unlike smooth kernel-based nonparametric
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methods, such as those proposed below, which require the specification of a

bandwidth. However, although Grenander-based approaches are nonparametric

in nature, they are nonsmooth which runs counter to the spirit of adopting a

smooth nonparametric approach in the first place. For example, the approach

Grenander (1956) proposes for imposing monotonicity can be characterized as

the left derivative of the least concave majorant of the empirical distribution

function, which is a nonsmooth function. Practitioners who routinely assume

smoothness and adopt smooth nonparametric estimators are not likely to be

attracted to nonsmooth nonparametric shape-constrained solutions, hence the

appeal of smooth shape-constrained nonparametric solutions, such as those

proposed herein.

The literature on constrained nonparametric estimation has grown signifi-

cantly over the past few decades. The approach that we extend here has proven

to be a particularly popular, versatile, and extensible method for imposing

constraints on a smooth nonparametric object (see Hall and Presnell (1999)).

This approach places weights directly on the sample realizations so that the

desired constraint is imposed effectively. In kernel-based regression settings, this

amounts to starting with a standard kernel estimator. Then, if the constraints

are violated in some region of the support we shift the regressand vertically in

such a way that a standard kernel regression on the shifted regressand delivers

a regression curve that satisfies the required constraints, while minimizing some

distance metric from the unconstrained regression function (Hall et al. (2001); Du,

Parmeter and Racine (2013)). In kernel-based density settings, this approach

can be leveraged by placing weights on the kernel function associated with

each sample realization (as opposed to the sample realizations themselves) to

produce a density that satisfies the required constraints. A similar method,

known as data sharpening (Hall and Kang (2005)), instead introduces weights

that shift the data horizontally prior to smoothing, a subtle, but important

distinction. We adopt the approach of Hall and Presnell (1999), because vertically

shifting observations can be undertaken using standard off-the-shelf quadratic

programming methods, whereas horizontally shifting observations may require

full-blown nonlinear programming, which may be less tractable from a practical

perspective.

Building on the work of Du, Parmeter and Racine (2013), who consider a

unified framework for smooth shape-constrained nonparametric kernel regression,

we propose a unified framework for smooth shape-constrained kernel density

and PMF estimation. Shape-constrained kernel density (and mass) function

estimation differs from shape-constrained kernel regression in terms of both its

practical implementation and in its theoretical properties, and hence requires

a separate treatment. Our approach is extremely flexible, and allows for a

range of constraints to be imposed simultaneously (presuming, of course, that

the set of constraints is internally consistent). The original implementation
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(Hall et al. (2001)) involves optimizing a power-divergence criterion. Du,

Parmeter and Racine (2013) propose replacing this criterion with an L2-norm

criterion, which delivers an estimator that retains all of the desirable features

of the power-divergence-based method, but is far more flexible and extensible

and far simpler to solve from a practical perspective. The method proposed here

generalizes the seminal work of Hall and Huang (2002), who impose unimodality

on a univariate kernel density estimator, and modify it in such a way as to

deliver a unified approach with a straightfoward implementation. We believe

that this unified framework will be of particular interest to practitioners who

wish to simultaneously impose a range of constraints in a smooth nonparametric

setting.

Additionally, we build on the insights of Li, Liu and Li (2017), who

propose a slightly modified version of the optimization criterion proposed by

Du, Parmeter and Racine (2013). While Li, Liu and Li (2017) adopt an L2-norm

criterion, as per Du, Parmeter and Racine (2013), rather than optimizing the

distance between the optimization weights and their unconstrained counterparts,

they instead optimize the distance between the constrained estimates and their

unconstrained counterparts. Although Li, Liu and Li (2017) provide convincing

simulation evidence that their modification can deliver constrained estimates with

improved finite-sample performance, they offer no theoretical justification for this

modification. We demonstrate theoretically that this modified L2-optimization

criterion delivers constraint weights that ensure identical asymptotic behavior

to that from optimizing the weights directly. By providing the theoretical

underpinnings for the slightly modified optimization criterion proposed by Li,

Liu and Li (2017), we establish that the constraint weights can be based on this

criterion with no loss of information.

Finally, we demonstrate how our method can be adapted to handle con-

straints on the log-density. This is an important generalization, because

constraints on the log-density, when enforced using the density function directly,

can result in a difficult nonlinear optimization problem. By focusing instead

directly on the log-density, we ensure straightforward constraint enforcement,

with trivial conversion back to the constrained density itself, all within the same

unified theoretical framework as that for constraints directly on the density.

The proposed approach differs from that of Du, Parmeter and Racine (2013),

among others, in several ways. In our setting, we are dealing with density

estimation and weights are applied on the kernel function. In contrast, in the

regression setting of Du, Parmeter and Racine (2013), weights are applied on

the dependent variable, which affects the proofs in a nontrivial way. Here we

prove Theorem 2 for the Cramér–von Mises distance function (earlier works have

not considered this distance metric), which requires handling cross-product terms

involving the constraint weights in the various components of our decomposition

of the constrained density estimator. Additionally, Theorem 3 is entirely new. To
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the best of our knowledge, it represents the first attempt to impose smoothness

constraints on a PMF estimator. While not a theoretical contribution, we also

demonstrate how to impose log-concavity on a smooth kernel density estimate in

a simple quadratic programming setup.

One of the constraints on the log-density, specifically log-concavity, has long

been a topic of interest in statistics; see Walther (2009) for an introduction,

and Samworth and Sen (2018) for a recent review. Briefly, log-concave densities

present an appealing and natural alternative to the class of unimodal densities.

Though the class of log-concave densities is a subset of the class of unimodal

densities, it contains most of the commonly used parametric distributions, and is

therefore a rich and useful nonparametric class. Recent developments include the

works of Feng et al. (2021) who study an adaptation of the nonparametric MLE

density for the class of upper semi-continuous log-concave densities on Rd (the

logarithm of the resulting estimate is a piecewise-linear nonsmooth function), and

Rathke and Schnörr (2019), who propose a fast implementation of the smoothed

version of this estimator.

Log-concavity has also played an important role in applied microeconomic

analysis. By imposing log-concavity in an otherwise unrestricted nonparametric

setting, economic studies that previously relied on a specific parametric model

can instead rely on less restrictive nonparametric models leading to more robust

results. Examples include the works of Bagnoli and Bergstrom (2005), who

describe how the log-concavity assumption allows just enough special structure

to yield workable theories across various subfields, Meyer-ter-Vehn, Smith and

Bognar (2017), who explore costly deliberations by two differentially informed

and possibly biased jurors, exploiting an assumption that jurors’ information

types have a log-concave density, and Tan and Zhou (2020), who rely on log-

concavity in agent heterogeneity to establish several formal results in a model of

price competition entry and multi-sided markets.

Our adaptation of the work of Hall and Huang (2002) to log-concavity also

stands in contrast to a recently proposed kernel-based linear adjustment mecha-

nism (Wolters and Braun (2018a,b)) that tackles constrained estimation using a

specified number of inflection points. This approach can also be used to enforce

log-concavity, though the authors do not consider this particular constraint.

However, it would require that we know the locations of these inflection points ex

ante, otherwise they need to be approximated using some optimization routine,

which has its drawbacks. In contrast, our proposed approach to imposing log-

concavity requires no prior knowledge or approximations of the locations of the

inflection points. Instead, we impose the constraints on the log-density directly,

leading to a direct system of linear inequality constraints, and thus a fast and

efficient algorithm for imposing log-concavity in a smooth setting is provided.

The linear adjustment mechanism of Wolters and Braun (2018b) is equivalent to

our approach if the number of adjustment functions is equivalent to the number
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of observations and the adjustment functions themselves are equivalent to the

kernel smoothing function of the unconstrained density estimator. However, they

do not consider using their linear adjustment mechanism approach to impose log-

concavity which, given its popularity in applied settings, forms the basis for one

of the Monte Carlo simulations we run to compare our approach with its peers;

see the R package scdensity (Wolters (2018)) for an implementation of the linear

adjustment mechanism approach.

In addition to the works referenced above, the related literature includes the

studies of Woodroofe and Sun (2002), who consider a penalized MLE estimate

of a density on the positive half of the real number line when the density

is nonincreasing, Meyer and Woodroofe (2004), who develop a nonparametric

MLE that is consistent for the mode, Hall and Kang (2005), who consider

unimodal kernel density estimation using data sharpening, Dette and Pilz (2006),

who conduct a comparative study of monotone constrained estimators, Birke

(2009), who considers shape-constrained density estimation using monotone

rearrangement (Hardy, Littlewood and Pólya (1952); Chernozhukov, Fernandez-

Val and Galichon (2009)), Dümbgen and Rufibach (2009), who studied the MLE

of a log-concave density, and Koenker and Mizera (2010), who formulate the

MLE of a log-concave density as a convex optimization problem, showing that it

has an equivalent dual formulation to that of a constrained maximum Shannon

entropy problem. Cule, Samworth and Stewart (2010) study a nonsmooth log-

concave MLE of a probability distribution function and Meyer and Habtzghi

(2011) use regression splines, based on the work of Meyer (2008), to formulate

a nonparametric MLE of strictly decreasing probability densities in terms of

convex programming and iteratively re-weighted least squares cone projection

algorithms. Chen and Samworth (2013) study the smoothed log-concave MLE

of a probability distribution function, Horowitz and Lee (2017) explain how to

estimate and obtain an asymptotic uniform confidence band for a conditional

mean function under possibly nonlinear shape restrictions, and Koenker and

Mizera (2018) consider a log-concave estimation for weaker forms of concavity

constraints that allow for heavier tail behavior and sharper modal peaks. More

recently, Lok and Tabri (2002) develop an empirical tilting method for shape-

constrained estimation over a data-driven grid of points to enforce the stochastic

dominance of a pair of cumulative distribution functions.

The rest of this paper proceeds as follows. Section 2 presents a unified

framework for kernel-based probability density function (PDF) and PMF estima-

tors and describes our approach. Here, Section 2.1 examines how we determine

the constraint weights, and Section 2.2 briefly discusses finite-support boundary

kernel functions and presents several examples of popular constraints. Section

3 outlines the theoretical properties of the proposed approach and Section 4

presents a set of Monte Carlo simulations that show that the proposed approach

is competitive with, and often improves upon leading methods that have been
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tailored to two popular constraints (log-concavity and monotonicity). Section

5 concludes the paper. Detailed theoretical proofs are relegated to the online

Supplementary Material, and an open implementation in R exists to assist

practitioners interested in exploring the proposed methods.

2. Shape-Constrained Kernel Density Estimation

Let Xi, for i = 1, . . . , n be an independent and identically distributed (i.i.d.)

random sample drawn from f(x), where n denotes the sample size. To estimate

f(x) using smooth nonparametric methods, we begin with the standard kernel

density estimator,

f̂(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
, (2.1)

where h is the bandwidth, K(·) is the kernel function, usually chosen as a

symmetric mean zero PDF itself, and x is a support point at which the density

is estimated (Rosenblatt (1956); Parzen (1962)). To help discuss our (constraint)

weighted density estimator, when imposing constraints on the density function,

we introduce a vector of constraint weights pi, for i = 1, . . . , n, and modify (2.1)

as follows:

f̂(x|p) =
1

h

n∑
i=1

piK

(
x−Xi

h

)
. (2.2)

Note that for pi = punif = 1/n, the uniform weights f̂(x|punif ) = f̂(x), which

is the standard (i.e., unconstrained) estimator (2.1). In other words, we use

the notation f̂(x|punif ) in what follows to represent (2.2) for the special case

in which the constraint weights assume the value pi = 1/n, for i = 1, . . . , n.

Furthermore, these special weights are denoted as punif , and for these and only

these, weights (2.2) is equal to(2.1), the standard kernel estimator (which we call

the unconstrained estimator).

To impose constraints on the density function, we let pi = n−1(1 + ai) act as

the constraint weights in (2.2), yielding the estimator

f̂(x|p) =
1

nh

n∑
i=1

(1 + ai)K

(
x−Xi

h

)

=
1

nh

n∑
i=1

(1 + ai)K(Zi)

=
1

nh

n∑
i=1

K(Zi) +
1

nh

n∑
i=1

aiK(Zi)

= f̂(x|punif ) +
1

nh

n∑
i=1

aiK(Zi), (2.3)
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where Zi = (x−Xi)/h and the unconstrained (i.e., uniform) weights are ai = 0

(i.e., pi = 1/n, the weights that return the unconstrained estimator).

Imposing constraints on the log-density function can be accomplished with

a slightly modified setup. To impose constraints on the log-density function (or

its derivatives), we instead consider an estimator of the form

f̂(x|p) = f̂(x)
n∏
i=1

exp

{
aiK(Zi)

nh

}
. (2.4)

Taking the logarithm of both sides, we obtain

log f̂(x|p) = log f̂(x) +
1

nh

n∑
i=1

aiK(Zi).

Hence the constrained density estimator when imposing constraints on the log-

density is given by

f̂(x|p) = exp

{
log f̂(x|punif ) +

1

nh

n∑
i=1

aiK(Zi)

}
,

where, the unconstrained weights used in the object f̂(x|punif ), correspond to ai =

0 in (2.4) which delivers the standard kernel density estimator f̂(x). Regardless

of the constraints considered, any constraints imposed on either the density or

the log-density, as expressed above, will be linear in ai, which, combined with

a quadratic objective function, leads naturally to solving a quadratic program.

The resulting constrained estimator arises from solving a quadratic program,

and then replacing the arbitrary weights ai with the feasible constrained weights

determined by the quadratic program.

Thus far, we have outlined two approaches that introduce weights that deliver

constrained density or log-density estimates. Now, we explicitly introduce the

constraints themselves in a general framework. Denote the jth derivative of

f̂(x|p), log f̂(x|p), and K(Zi) with respect to x as f̂ (j)(x|p), log(j) f̂(x|p), and

K(j)(Zi), respectively (the same goes for f̂(x|punif ) and log f̂(x|punif )). Let l(x)

and u(x) denote pointwise lower and upper bounds, respectively, that may change

with x, where l(x) ≤ u(x). The constraints on the jth derivative of the density

and log-density, for j = 0, 1, 2, . . ., can be expressed as

l(x) ≤ f̂ (j)(x|p) ≤ u(x) (2.5)

and

l(x) ≤ log(j) f̂(x|p) ≤ u(x),

respectively. Thus, for j = 0, we are constraining the density or log-density, for

j = 1, we are constraining the first derivative thereof, and so on. Consider, by
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way of illustration, the constraint f̂ (j)(x|p) ≥ l(x), which we express as

f̂ (j)(x|punif ) +
1

nh

n∑
i=1

aiK
(j)(Zi) ≥ l(x)

or
1

nh

n∑
i=1

aiK
(j)(Zi) ≥ l(x)− f̂ (j)(x|punif ).

Furthermore, the constraint log(j) f̂(x|p) ≥ l(x) (the lower bound l(x) may well

differ from that for f̂ (j)(x|p) above) can be expressed as

1

nh

n∑
i=1

aiK
(j)(Zi) ≥ l(x)− log(j) f̂(x|punif ).

One appealing feature of our approach is that we can simultaneously impose

a set of internally consistent constraints. For instance, if we wish to impose the

constraints that f̂ (0)(x|p) = f̂(x|p) ≥ 0 (nonnegativity of the constrained density)

and log(2) f̂(x|p) ≤ 0 (log-concavity), we can impose the constraints

1

nh

n∑
i=1

aiK(Zi) ≥ −f̂(x|punif )

and

− 1

nh

n∑
i=1

aiK
(2)(Zi) ≥ log(2) f̂(x|punif ).

When solving the quadratic program outlined in the next section, we typically

impose the constraint
∑n

i=1 ai = 0.

We wish to handle a rich array of constraints, and we may also find ourselves

in settings with random variables having either unbounded or compact support.

The most popular approaches for compact support kernel estimation use one

kernel function when the support is bounded above and below (e.g., Beta(a,b)),

one when the support is bounded below (e.g., Gamma(a)), or multiple kernel

functions when the support is bounded above and below (e.g., floating boundary

kernel functions). To deal with compact support random variables, in Section 2.2,

we use kernel carpentry to provide a flexible kernel function that is well-suited

to the current setting.

2.1. Selection of the constraint weights

Having established how to construct the constrained estimator for an

arbitrary set of weights, we now examine how best to select the weights to satisfy

some particular constraint of interest.
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A variety of approaches for constrained weight selection have been proposed

in the literature, each of which minimizes some measure of divergence between

the constrained and the unconstrained weights or the constrained and the

unconstrained estimates. Some divergence metrics are more computationally

demanding than others, and different metrics may impose binding restrictions

on the weights in order to produce valid estimates. For example, Hall et al.

(2001) suggest using the Cressie–Read power-divergence metric, Hall and Huang

(2002) investigate a smoothed Cramér–von Mises metric, and Du, Parmeter and

Racine (2013) suggest an L2-norm metric. Specifically, in the power-divergence

and L2-norm frameworks, the constrained weights are selected to be as close as

possible to the unconstrained weights (also called the uniform weights), whereas

in the smoothed Cramér–von Mises setting, the constrained weights are chosen

to minimize the squared integrated difference between the unconstrained and

the constrained densities. As Hall and Huang (2002) and Du, Parmeter and

Racine (2013) document, one benefit of adopting an L2-norm (i.e., the squared

distance) metric is that we can select smoothing parameters based solely on

the unconstrained estimator. Hence, standard off-the-shelf methods can be used

without modification, and we maintain this practice in what follows.

Following Hall and Huang (2002), Du, Parmeter and Racine (2013), and

Li, Liu and Li (2017), we consider two closely related approaches for the optimal

construction of the constraint weights, and emphasize their relative strengths. For

the first approach, we minimize the L2-norm divergence between the constraint

weights and the uniform weights, where the divergence metric is defined as follows:

DL2
(p) = (pu − p)′(pu − p).

In this case, provided the desired constraints are linear in p, we can solve

this minimization problem by means of a straightforward quadratic program

exercise using, say, the quadprog package (Turlach and Fortran (2019)) in R.

For the second approach, we minimize a smoothed Cramér–von Mises distance

metric, where the squared integrated difference between the unconstrained and

constrained densities is defined as follows:

DCM(p) = (n2|h|)−1
n∑
i=1

n∑
j=1

(npi − 1)(npj − 1)L

(
Xi −Xj

h

)
, (2.6)

where L(·) is the convolution kernel of K(·) with itself. Regardless of the metric

used, DL2
(p) and DCM(p) require that the constraint weights themselves satisfy a

constraint in order to guarantee that a proper probability density is produced (i.e.,

for constraints on the density function using (2.3) or constraints on the log-density

function using (2.4), we require
∑n

i=1 ai = 0). It is useful to focus on the relative

merits of each distance metric used to select the constraint weights. The obvious

benefit ofDL2
(p) is the relative theoretical ease with which to assess the properties
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of the corresponding constraint weights. As Du, Parmeter and Racine (2013)

demonstrate, the relative magnitude of the constraint weights with the L2-norm

is O(n−1). We can also view a difference from the uniform weights as a measure

of relative entropy with respect to the uniform distribution. The Cramér–von

Mises metric has obvious practical appeal, because it selects weights that lead

to the constrained density deviating as little as possible from the unconstrained

density. Moreover, as shown in simulations here and in Li, Liu and Li (2017),

selecting the weights to minimize DCM(p) naturally produces density estimates

that are closer to f(x) than are estimates from minimizing DL2
(p).

Note that using the power-divergence metric (Cressie and Read (1984)),

Dρ(p) =
1

ρ(1− ρ)

(
n−

n∑
i=1

(npi)
ρ

)
,

in this setting may not be useful, because it requires that the pi used to estimate a

density from (2.2) be nonnegative (pi must satisfy
∑n

i=1 pi = 1 and pi ≥ 0 for this

approach), and some constraints may require negative weights. Furthermore,

although Dρ(p) has an appealing immediate interpretation as a measure of

entropy, it does require that the user select an additional tuning parameter

for its implementation (ρ). Lastly, as Hall and Huang (2002) note, problems

can arise as pi approaches zero, because enforcing constraints on a curve leads

to “data compression” (i.e., the effective sample size used locally is smaller

than the corresponding effective sample size for the unconstrained estimator).

This difference is achieved by setting some of the constraint weights to zero.

This information is not lost however, but simply reassigned to observations that

receive nonzero weights. Thus, there can be substantial differences between our

elected metrics and Dρ(p); while both DL2
(p) and DCM(p) behave well when

pi approaches zero, Dρ(p) may not be applicable for certain constraints with

particular values of ρ.

2.2. Bounded support PDF kernel functions

We wish to develop an approach that will suit the many and varied

needs of a range of practitioners. Boundary bias affects the quality of

kernel density estimates when substantial probability mass occurs at a support

boundary. The most well-known solutions to this problem are data-reflection,

data-transformation, and kernel carpentry. Data-reflection involves duplicating

data symmetrically (i.e., reflecting) around its boundary, running standard

bandwidth selection and kernel estimation, and then adjusting the resulting

estimate to ensure it is proper (i.e., integrates to one) on its support. Data-

transformation involves some mathematical transform of the data that, when

rescaled, has the desired effect. Kernel carpentry uses kernel functions that adapt

to the presence of a boundary, thus mitigating the effect of the boundary. To
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some degree, these methods all reduce the amount of bias that would otherwise

be present near a boundary to that which holds in the interior of the support,

where it is free from boundary effects (in effect, lying h or greater distance

from the boundary in the interior). However, data-reflection and transformation

require extra steps of the user, which is both inconvenient and unnecessary. In

what follows, we take a kernel carpentry approach, and adopt truncated kernel

functions of the type

K(z, a, b) =

{
K(z)

G(zb)−G(za)
if za ≤ z ≤ zb,

0 otherwise,

where z = (x−X)/h, with X the random variable representing Xi, zb = (b−x)/h,

za = (a−x)/h, and G(z) =
∫ z
−∞K(t) dt. Given that K(z) is a standard univariate

kernel function, G(z) is the CDF counterpart to the PDF K(z) that we used to

estimate F (x). Note that if K(z) is, for instance, the Gaussian density function,

then K(z, a, b) is simply the (doubly) truncated Gaussian density function. When

a = −∞ and b =∞, then K(z, a, b) = K(z), which is a standard kernel function,

such as the Gaussian (or Epanechnikov). Hence this kernel function allows

for unbounded or compact support without modification. When conducting a

constrained estimation, it may be necessary to use the integrated version of

K(z, a, b), or derivatives thereof. We briefly outline some helpful relationships

used to obtain these objects from the doubly truncated kernel function K(z, a, b).

2.2.1. Integral kernel functions (e.g., CDF kernels)

To reduce the notational burden, let Hba(z) = H(zb)−H(za), for any function

H(·). To estimate a CDF using kernel methods in the presence of support

bounds, we can obtain the counterpart to K(z, a, b) by adopting the following

transformation for (doubly) truncated density functions:

G(z, a, b) =


0 if z < za,

G(max(min(z,zb),za))−G(za)

Gba(z)
if za ≤ z ≤ zb,

1 otherwise.

2.2.2. Derivative kernel functions

Some of the constraints we consider are placed on the derivative of the kernel

density estimates, and hence we may require derivatives of the kernel function.

To that end, we apply the quotient rule to obtain the first derivative of the doubly

truncated kernel function, yielding

K ′(z, a, b) =

{
K′(z)

Gba(z)
− K(z)G′

ba(z)

Gba(z)2
if za ≤ z ≤ zb,

0 otherwise.



SHAPE CONSTRAINED PDF AND PMF ESTIMATION 269

Note that
K(z)G′ba(z)

Gba(z)2
= K(z, a, b)

Kba(z)

Gba(z)
.

The second derivative is found by applying the quotient and the product

rules, yielding

K
′′
(z, a, b) =

{
d
dx

K′(z)

Gba(z)
− d

dx

K(z)G′
ba(z)

Gba(z)2
if za ≤ z ≤ zb,

0 otherwise.

Note that the first term on the right-hand side can be expressed as

d

dx

K ′(z)

Gba(z)
=
K

′′
(z)

Gba(z)
− K ′(z)Kba(z)

Gba(z)2
,

and the second term (ignoring the minus sign) can be expressed as

d

dx

K(z)Kba(z)

Gba(z)2
=
K ′(z)(K(zb)−K(za)) +K(z)K ′ba(z)

Gba(z)2

− 2K(z)Kba(z)Gba(z)G
′
ba(z)

Gba(z)4

=
K ′(z)Kba(z) +K(z)K ′ba(z)

Gba(z)2
− 2K(z)Kba(z)

2

Gba(z)3
.

Therefore, we obtain

K
′′
(z, a, b) =

{
K

′′
(z)

Gba(z)
− 2K′(z)Kba(z)+K(z)K′

ba(z)

Gba(z)2
+ 2K(z)Kba(z)

2

Gba(z)3
if za ≤ z ≤ zb,

0 otherwise.

Note that, for the Gaussian kernel, if a = −∞ and b = ∞, then K(za) =

K(zb) = K ′(za) = K ′(zb) = 0, and G(zb)−G(za) = 1; hence, K
′
(z, a, b) = K

′
(z)

and K
′′
(z, a, b) = K

′′
(z) in the unbounded support case, as expected.

The utility of this doubly truncated kernel function is that it can directly

admit unbounded support (i.e., on (−∞,∞)), support on [a,∞) with a finite,

support on (−∞, b] with b finite, and support on [a, b] with both a and b finite,

without further modification. Using this kernel function allows us to deliver an

approach that directly admits support bounds and shape constraints, which we

believe enhances its practical appeal by increasing its potential application.

2.3. Hypothesis testing

We can test the validity of the shape constraints being imposed by following

the insights of Hall et al. (2001) and Du, Parmeter and Racine (2013), and

using a bootstrap inferential procedure. Briefly, the test statistic is the value

of the objective function from solving the quadratic program when imposing

the constraints. The bootstrap procedure draws bootstrap resamples from the
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null (i.e., constrained) density in order to construct the null distribution of the

test statistic (i.e., the value of the objective function from solving the quadratic

program when imposing the constraints on the bootstrap resamples). The test

involves computing a P -value constructed by comparing the test statistic with

that obtained from the empirical distribution constructed under the null or,

alternatively, by comparing the test statistic with the desired 1 − α quantile

obtained from the empirical null distribution where α is the desired size of the

test procedure (the test is one-sided with a right-tailed rejection region).

More specifically, this bootstrap approach involves estimating the constrained

density f̂(x|p) based on the sample realizations {Xi}; and then rejecting H0 if

the observed value of D(p̂) is too large, where  ∈ {L2, CM}. To ensure that

the constraints are satisfied, we propose sampling from f̂(x|p) rather than from

f̂(x|punif ). A simple way to do this is to use rejection sampling.

These resamples are generated under H0. Hence we recompute f̂(x|p) for the

bootstrap sample {X∗i }; which we denote as f̂(x|p∗), yielding D(p
∗). We repeat

this process B times. Finally, we compute the empirical P value, PB, which is

simply the proportion of the B bootstrap resamples D(p
∗) that exceed D(p̂),

that is,

PB = 1− F̂ (D(p̂)) =
1

B

B∑
j=1

I(D(p
∗) > D(p̂)),

where I(·) is the indicator function and F̂ (D(p̂)) is the empirical distribution

function of the bootstrap statistics. Then, we reject the null hypothesis if PB is

less than α, the level of the test.

We now consider a few illustrative applications of imposing shape restrictions,

before turning to the theoretical underpinnings of the proposed method.

2.4. Illustrative applications: Monotonicity and concavity

Monotonicity and concavity constraints are two popular shape constraint

domains that our approach can cover. As in Du, Parmeter and Racine (2013), we

solve a simple quadratic program using (2.6) to generate the constrained estimate.

Figure 1 presents the results for a bounded density on [0, 1] imposing monotonicity

(the distribution is Beta(5,1)). For this simple illustration, we generate 100

observations and select the bandwidth using Silverman’s rule-of-thumb approach.

We see little difference between the constrained and the unconstrained estimators

for x > 0.6; all of the constraint enforcement occurs in the left tail of the density.

Given our restriction that the weights sum to zero, this leads to only minor

changes in the shape of the density beyond where the constraints need to be

enforced. This becomes clearer by looking at the lower plot in Figure 1, which

plots the constrained and unconstrained derivative estimates.

Figure 2 presents the results when imposing concavity on an unbounded

support random variable (the distribution is N(0, 1)). Once again, we generate
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Figure 1. Monotone shape-constrained density estimation (f̂ ′(x) ≥ 0). The upper figure
plots the constrained and unconstrained density estimates, the lower figure plots the
constrained and unconstrained first derivative estimates.

100 observations randomly and construct the bandwidth using Silverman’s rule-

of-thumb. Here, we enforce concavity on the density, which is not a property

of the Gaussian density (though it is log-concave). We see that enforcing

invalid constraints produces substantial distortions in both the density and the

corresponding first derivative, as expected.

2.5. Log-concave kernel density estimation

Log-concavity is a popular constraint, although it is only one of many

shape constraint domains that our approach can cover. To impose log-

concavity/convexity, we require d2 log(f̂(x))/dx2 and d2K(Zi)/dx
2. The former

is given by
d2 log(f̂(x))

dx2
=
f̂

′′
(x)f̂(x)− (f̂ ′(x))2

(f̂(x))2
,

and the latter is given by
d2K(Zi)

dx2
= K

′′
(Zi).

Note that

f̂ ′(x) =
1

nh

n∑
i=1

K ′(Zi),
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Figure 2. Concave shape-constrained density estimation (f̂
′′
(x) ≤ 0). The upper figure

plots the constrained and unconstrained density estimates, the lower figure plots the
constrained and unconstrained second derivative estimates.

f̂
′′
(x) =

1

nh

n∑
i=1

K
′′
(Zi).

2.6. Illustrative application: Log-concavity

Figure 3 presents the results for a draw from the N(0, 1) Gaussian distribu-

tion. The Gaussian density is log-concave, but the kernel estimate need not be, as

the following example illustrates. We generate 250 observations from a standard

normal distribution, and use Silverman’s rule-of-thumb bandwidth to smooth the

density. As in Figure 1, there is little difference between the constrained and the

unconstrained estimates. Moreover, the log-densities are also quite similar, aside

from one region of nonconcavity of the log-density for −2.5 < x < −1.9. Both

the constrained and the unconstrained densities integrate to one and are proper.

2.7. Categorical (ordered) PMFs

The approach we consider for a shape-constrained PDF estimation can also

be applied to a shape-constrained PMF estimation (Aitchison and Aitken (1976);

Racine, Li and Yan (2020)). When X is an ordered categorical variable (X ∈
D = {D0, D1, . . . , Dc−1}, where c is the number of (ordered) outcomes), we need

only the one value of ai per outcome (because ai = aj when Xi = Xj). When

placing shape constraints on derivatives, we adopt the classical convention that
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Figure 3. Log-concave shape-constrained density estimation. The upper figure plots the
constrained and unconstrained density estimates, the lower figure plots the constrained
and unconstrained log-density estimates.

for discrete support variables, derivatives are defined in terms of simple finite

differences. For an ordered discrete random variable, we use the notation P (x) =

Pr(X = x) to denote the PMF. Let P̂ (x) denote the kernel estimate of P (x)

given by

P̂ (x) =
1

n

n∑
i=1

l(Xi, x, λ),

where l(Xi, x, λ) is an appropriate kernel function for ordered discrete support

random variables. The counterpart of the first derivative in this setting is

∆j(x) = (P (x(j))− P (x(j−1)))/(x(j) − x(j−1)), where x(j) are the order statistics,

that can be computed directly from an unconstrained estimate (as can higher-

order derivatives, if needed). As was the case for the shape-constrained PDF

estimation, the counterpart to (2.3) for the PMF estimation can be written as

P̂ (x|p) = P̂ (x) +
n∑
i=1

ail(Xi, x, λ), (2.7)

where λ is the smoothing parameter analogous to the bandwidth h for its

continuous support counterpart. The mechanics of the shape-constrained PMF

estimator are the same as those for the shape-constrained PDF estimation

described previously, and so are not repeated here (see Racine, Li and Yan (2020)

for further details). We now consider an empirical illustration based on count data
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Figure 4. Unconstrained smooth and nonsmooth PMF estimates for patent data. The
smooth estimate appears as a solid line, the nonsmooth estimate as a dotted line.

that have ordered discrete support.

2.8. Empirical application: Shape-constrained PMFs

We consider a data set collected by Hausman, Hall and Griliches (2002) that

records the number (count) of successful patent applications by 128 U.S. firms

across a seven-year period (1968–1974). We model the kernel-smoothed PMF

for the number of successful patent applications with likelihood cross-validated

bandwidth selection, and present the results in Figure 4. The nonsmooth estimate

is quite noisy, whereas the smooth estimate is much less so. Like its empirical

counterpart, the smooth estimate delivers probability estimates that sum to one,

but the smooth estimate is expected to be more efficient from a squared error

perspective.

Figure 4 reveals that the unconstrained kernel PMF estimator, though

perhaps more plausible an estimate than the nonsmooth empirical estimator,

implausibly changes sign in many places. A perhaps more reasonable assumption

is that the estimate is monotonically decreasing. Hence we consider imposing

this shape constraint on the kernel PMF estimate. Figure 5 presents the

smooth unconstrained and monotonically constrained estimates. As noted

above, the derivatives for the PMF estimate are given by ∆j(x) = (P (x(j)) −
P (x(j−1)))/(x(j) − x(j−1)), where x(j) are the order statistics, which can be

computed directly. The weight matrix required to solve the quadratic program is

then the difference between kernel functions evaluated at x(j) and x(j−1) divided

by the difference x(j)−x(j−1). To impose the monotonically decreasing constraint,

we define ∆1(x) ≤ 0 (we reverse this definition for monotonically increasing

constraints).
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Figure 5. Unconstrained and constrained smooth probability function estimates for the
patent data.

3. Theoretical Properties of the Constrained Estimator

In this section, we provide four key theoretical results. First, under weak

conditions, the constraint weights generated by our approach are shown to

be well defined and unique. Second, we demonstrate the consistency of the

constrained density estimator, where appropriate, in terms of its closeness to

the unconstrained density estimator, which is well known to be consistent. We

consider three distinct settings: (i) when the constraints are indeed true on the

entire support of X; (ii) when the constraints are satisfied everywhere except

at points of measure zero; and (iii) when the constraints are violated on a

set with positive measure. For (i) and (ii), we establish the consistency of

the constrained density estimator under weak conditions on the order of the

derivatives of the true density and on the bandwidth (naturally, (iii) does not

allow for consistent estimation). Third, we extend our results in the continuous

case to those for ordered PMFs. Here, we are only able to establish consistency

when the constraints hold on the entire support of the discrete random variable;

nevertheless, these results are novel and of practical value. Fourth, we provide

the asymptotic distribution of our proposed test statistic when testing the null

hypothesis of the validity of the shape constraints being imposed.

Our theoretical results for continuous data are similar to those of Hall

et al. (2001) and Du, Parmeter and Racine (2013), but with four important

differences. First, Hall et al. (2001) and Du, Parmeter and Racine (2013) impose

constraints in a regression setting. The density setting is complicated by the lack

of an error term, such that we cannot apply existing theory directly. Second,

Hall et al. (2001) use the power-divergence measure of Cressie and Read (1984)

and Du, Parmeter and Racine (2013) use the L2-metric. Here, we establish the
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consistency of the constrained estimator using the objective function proposed by

Li, Liu and Li (2017), which, rather than selecting constraint weights as close as

possible to the uniform weights (as in Du, Parmeter and Racine (2013)), selects

weights as close as possible to the unconstrained estimator. Intuitively, this

modification makes sense, given that the unconstrained estimator is consistent

to begin with. Although Li, Liu and Li (2017) show the impressive finite-sample

properties of their objective function when selecting constraint weights for a

constrained Knn regression estimator, the change in the objective function also

necessitates changes to existing theory. Third, existing theory works relatively

well for constraints on the density. However, several additional modifications are

required when imposing constraints on, for example, the log-density. Fourth, we

develop the appropriate theory for the constrained estimation of the PMF. To the

best of our knowledge, this is the first application of these types of constrained

methods to kernel-smoothed discrete data.

To begin, Xi is of dimension r. Our goal is to impose constraints on the

density (or log-density) of the form f (s)(x) = [∂s1f(x) · · · ∂srf(x)]/[∂xs11 · · · ∂xsrr ]

(or log f (s)(x)), where s is an r-vector corresponding to the dimension of x. Note

that the general two-sided constraints in (2.5) can be expressed as one-sided

constraints of the form∑
s∈Sk

αs,kf
(s)(x)− ck(x) ≥ 0, k = 1, . . . , T, (3.1)

where T is the total number of restrictions, with the sum taken over all density

derivative vectors in Sk, and αs,k is used to generate the appropriate constraints

imposed on the density derivatives (j = 0, 1, . . .). This notation admits an

arbitrary number of internally consistent constraints imposed simultaneously on

the density and its derivatives, though in most cases, we expect that a single

constraint (i.e., T = 1) will suffice. As an example, for r = 1 and the imposition

of monotonicity, we have T = 1 with s = (1), Sk = {(1)}, αs,k = 1, and ck(x) = 0,

for all x.

Before formally developing the theory for our general constrained density

estimator, we introduce some additional simplifying notation. Denote the domain

of interest by J ≡ [m,b] =
∏r
i=1[mi, bi]. We also define a differential operator

f 7→ fD such that fD(x) is a length-T , vector with kth entry
∑

s∈Sk
αs,kf

(s)(x).

We take |s| =
∑r

i=1 si as the order for a derivative vector s = (s1, . . . , sr), and say

a derivative s1 has a higher order than that of s2 if |s1| > |s2|. Let S = ∪Tk=1Sk
and dS be the derivative of the maximum order among all the derivatives in S;

for simplicity, we drop the subscript S from dS. Without loss of generality, we

set ck(x) = 0 in what follows. Plugging (2.2) into (3.1) yields

n∑
i=1

piK
D
i (x) ≥ 0. (3.2)
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Here, KDi (x) represents the form of the constraints based on the appropriate

kernel derivatives, that is, it subsumes the appropriate entries of the derivative

vector fD(x). Lastly, we define f̃(x) = f̂(x|punif ) to further simplify our notation.

Although the theory we present here is capable of imposing constraints on

either the density or the log-density, for notational simplicity, we presume that

the practitioner is interested in only one or the other.

3.1. Existence of the constrained PDF estimator

The first result that we establish is an existence result, that is, that a set

of weights exists, provided that the constraints imposed are internally consistent

and satisfy the constraints in (3.2).

Theorem 1 (Existence). Assume that the set {1, . . . , n} contains a sequence

{i1, . . . , ik} with the following properties:

i) for each ` = 1, . . . , k, KDi` (x) is strictly positive and continuous on an open

set Oi` ⊂ Rr, and vanishes on Rr \Oi`;

ii) every x ∈ J is contained in at least one open set Oik ;

iii) for 1 ≤ ` ≤ n, KDi` (x) is continuous on (−∞,∞)r.

Then, there exists a vector p = (p1, . . . , pn) such that the constraints are

satisfied for all x ∈ J .

Conditions i) and ii) of Theorem 1 ensure the existence of an open cover

of the domain J by the open sets Oi` on which KDi` is positively supported

for some i`. Note that the above conditions are sufficient, but not necessary

for the existence of a set of weights that satisfy the constraints for all x ∈ J .

For example, if signKDjn(x) = 1 ∀x ∈ J for some sequence jn in {1, . . . , n},
and signKDln(x) = −1 ∀x ∈ J for another sequence ln in {1, . . . , n}, then for

those observations that switch signs, pi may be set equal to zero, and pjn > 0

and pln < 0 are sufficient to ensure the existence of a set of p satisfying the

constraints. The proof of Theorem 1 is provided in the Supplemental Material.

3.2. Consistency of the constrained PDF estimator

Here, we discuss the consistency of our constrained estimator. To begin,

define a hyperplane subset of J as a subset of the form S = {x0k ×
∏
i 6=k[mi, bi]},

for some 1 ≤ k ≤ r and some x0k ∈ [mk, bk]. We call S an interior hyperplane

subset if x0k ∈ (mk, bk). In the following, f(·) (or fD(·)) is the true density (or

its derivative), p̂ is the optimal weight vector satisfying the constraints, f̂(·|p̂) (or

f̂D(·|p̂)) is the constrained estimator defined in (2.3), and f̃(·) (or f̃D(·)) is the

unconstrained estimator defined in (2.3).
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Assumption A1.

i) The sample Xi either forms a regularly spaced grid on a compact set

I ≡ [c, e] =
∏r
i=1[ci, ei], or constitutes independent random draws from

a distribution with a density f that is continuous and nonvanishing on I;

the kernel function K(·) is a symmetric, compactly supported density such

that KD is Hölder-continuous on J ⊂ I.

ii) fD is continuous on J .

iii) The bandwidth associated with each variable, hj, satisfies hj ∝ n−1/(3r+2|d|),

for 1 ≤ j ≤ r, where |d| is the maximum order of the derivative vector d.

iv) The true density f is bounded away from zero, say, f(x) > τ , for some fixed

constant τ > 0.

Assumption A1 i) is standard in the kernel density literature; at the expense

of a more tedious proof, the same results can be demonstrated if the density is

assumed to exist on an r-dimensional ball instead of on a hypercube. Assumption

A1 ii) ensures the requisite smoothness of fD. Note that the bandwidth rate

in Assumption A1 iii) is, in general, higher than the standard optimal rate

n−1/(r+4). However, this is not surprising for our restricted problem. The optimal

rate only guarantees the convergence of our unrestricted function estimator f̃ .

However, the restricted problem also requires the convergence of the derivative

f̃D, which often needs a higher bandwidth rate. In the single-predictor monotone

regression problem considered in Hall et al. (2001), this rate happens to coincide

with the optimal rate n−1/5. Furthermore, when the bandwidths all share the

same rate, one can rescale each component of x to ensure a uniform bandwidth

h ∝ n−1/(3r+2|d|) for all components. This simplification is made without loss

of generality. Thus, we use hr rather than
∏r
j=1 hj, for notational simplicity. If

we consider densities on a compact interval, then Assumption A1 iv) is not so

restrictive. However, it may not work for common densities, such as the normal

and exponential densities.

Theorem 2 (Consistency). Suppose that Assumption A1 1.–4. holds.

i) If fD > 0 on J , then, with probability one, p̂ = 1/n for all sufficiently large

n, and f̂D(·|p̂) = f̃D on J for all sufficiently large n. Hence, f̂(·|p̂) = f̃ on

J for all sufficiently large n.

ii) Suppose that fD > 0, except on an interior hyperplane subset X0 ⊂ J , where

we have fD(x0) = 0,∀x0 ∈ X0. In addition, for any x0 ∈ X0, suppose that

fD has second-order continuous derivatives in the neighborhood of x0, with

∂fD/∂x(x0) = 0 and ∂2fD/∂x∂xT (x0) nonsingular; then, |f̂(·|p̂) − f̃ | =

Op
(
h|d|+(r+1)/2

)
uniformly on J .
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iii) Under the conditions in ii), there exist random variables Θ = Θ(n) and

Z1 = Z1(n) ≥ 0 satisfying Θ = Op
(
h|d|+r+1

)
and Z1 = Op(1), such that

1−Θ ≤ f̂(x|p̂)/f̃(x) ≤ 1 + Θ uniformly for x ∈ J , with infx0∈X0
|x− x0| >

Z1h
(r+1)/4.

In Theorem 2, part i) suggests that when the constraint is strictly satisfied

by the true function, the constrained estimator f̂(·|p̂) and the unconstrained

estimator f̃ are essentially the same, and thus share the same rate of convergence.

Part ii) gives the order of difference between f̂(·|p̂) and f̃ when fD = 0 on an

interior hyperplane. Note that the order in ii) indicates a different convergence

rate of f̂(·|p̂) from that of f̃ in such a case. Part iii) is concerned with the

asymptotic behavior of the weights p̂ in such a case. Note that these results are

easily extendable to the case of fD ≤ 0 with a switch of sign in f .

The proof of Theorem 2 appears in the online Supplementary Material.

Theorem 2 is a multivariate, multi-constraint, hyperplane subset adaptation of

Du, Parmeter and Racine (2013) to density estimation using the metric in (2.6).

3.3. Theoretical properties of the constrained PMF estimator

Theorems 1 and 2 can be extended to the ordered discrete support setting

under similar assumptions, though with some important modifications required.

Assumption B1.

i) Assume that the set {1, . . . , n} contains a sequence {i1, . . . , ik} with the

following properties:

(i) for each k, `Dik(x) is strictly positive on a nonempty set Oik ⊂ D, and

vanishes on D \ Oik ; (ii) every x ∈ D is contained in at least one

nonempty set Oik .

ii) Assume that the kernel function l(·) in (2.7) is an ordered kernel function,

and that the smoothing parameter λ in (2.7) is of order λ = Op(n
−1), which

is a standard result in the literature.

Assumption B1 i) is similar to the sufficient conditions in Theorem 1 for the

continuous case. For the smoothing parameter condition in Assumption B1 ii),

Ouyang, Li and Racine (2006) show that a smoothing parameter λ selected using

cross-validation can have order Op(n
−1), as long as the marginal distributions of

X are not all uniform.

Theorem 3 (PMF Estimator). Suppose that Assumption B1 holds. Then, we

have the following properties for the constrained PMF estimate P̂D(·|p̂). Our

use here of the differential is with respect to the difference order, as opposed to

differentiation.
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i) There exists a vector p = (p1, . . . , pn) such that the constraints are satisfied

for all x ∈ D.

ii) If PD > 0 on D then, with probability one, p̂ = 1/n for all sufficiently large

n, and P̂D(·|p̂) = P̃D on D for all sufficiently large n. Hence, P̂ (·|p̂) = P̃

on D for all sufficiently large n.

The proof of existence requires only minor changes to the proof for the

continuous data setting, and is thus omitted. The proof for consistency still

requires taking differences across the cells of the discrete random variable, which

suggests that our constraints correspond to an ordered discrete random variable

(Li and Racine (2002)).

For the proof of the consistency, note that parts ii) and iii) cannot be

generalized. This result has a straightforward intuitive explanation. In the

continuous-only setting, these parts focus on the case where the constraint is

violated on a set of measure zero. The argument is that, even if the constraint

is violated, as long as it occurs on an interior subset hyperplane, the constrained

estimator is still a consistent estimator for the unknown density (except on a set of

measure zero). In the discrete data setting, these results no longer hold, because

for a discretely supported random variable, a measure-zero event is equivalent

to an outcome not in the support; thus, a violation of the constraint is more

troubling when considering discrete data.

3.4. Asymptotic properties of D(p̂) asymptotic properties of D(p̂)

Our discussion on inference of the smoothness constraints follows the same

setup as in Du, Parmeter and Racine (2013). We focus on using the L2-

norm rather than CM, because a closed-form solution for the optimal weights

is mathematically more tedious, owing to the cross-products of the weights in the

objective function. Note that the asymptotic expansions of the weights between

L2 and CM are of the same order, but will obviously be of a slightly different

form. Let ψi(x) = KDi (x), for i = 1, . . . , n.

Recall that our minimization problem is

min
p1,...,pn

n∑
i=1

(n−1 − pi)2, s.t.
n∑
i=1

pi = 1,
n∑
i=1

piψi(x) ≥ 0,∀x.

In practice, this minimization is carried out by taking a fine grid (x1, . . . ,xN),

where N is large, and solving

min
pi,...,pn

n∑
i=1

(n−1 − pi)2, s.t.
n∑
i=1

pi = 1,
n∑
i=1

piψi(xj) ≥ 0, 1 ≤ j ≤ N. (3.3)

We place the same assumption on the grid points (x1, . . . ,xN) as in Du, Parmeter

and Racine (2013).
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Assumption B2.

i) N →∞ as n→∞ and N = O(n).

ii) Let dN = inf1≤j1,j2≤N |xj1 − xj2 | be the minimum distance between grid

points. We require dN → 0 and h−1dN →∞.

Assumption B2 essentially dictates how the grid points behave. We need to

ensure that the grid becomes effectively dense as n increases (Assumption B2

i)), while also needing the speed at which the smallest distance between the grid

points decays to be slower than the rate of decay of the smoothing parameters

(Assumption B2 ii)). The latter assumption is necessary to eliminate correlation

across ψi(x) as n grows (Chacón, Duong and Wand (2011)).

Let p̂i, for i = 1, . . . , n, be the solution to the quadratic programming problem

in (3.3). Then, the asymptotic distribution of D(p̂) is given in the following

theorem, with the proof given in the Supplementary Material.

Theorem 4. Suppose that assumptions A1 i)–iv) and B1 i)–iv) hold. Then, as

n→∞, we have
n2σ2

K(d)

h2|d|+r
(∑M

j=1 f
D(x∗j )

)2D(p̂) ∼ χ2(n), (3.4)

where σ2
K(d) =

∫
[K(d)(y)]2dy, and {x∗1, . . . ,x∗M} ⊂ {x1, . . . ,xN} are the slack

points defined in the Supplementary Material.

Theorem 4 is the density equivalent of the regression-based test proposed

by Du, Parmeter and Racine (2013). Aside from several structural details, the

main result follows from their initial theory. The diverging degrees of freedom

is expected, because H0 and H1 are both evaluated on infinite-dimensional

parameter spaces (see also Fan, Zhang and Zhang (2001)). Note too that,

similarly to the generalized likelihood ratio test statistic of Fan, Zhang and Zhang

(2001), the distributional convergence in (3.4) is equivalent to
√

2n(Tn − n)
L→

N(0, 1), where Tn is the statistic on the left-hand side of (3.4).

Given the well-known issues with the speed of convergence of nonparametric

tests, we recommend using a bootstrap algorithm instead. Another reason to

prefer the bootstrap is that the normalizing constant in (3.4) requires that we

determine slack points, which may be difficult in practice. Du, Parmeter and

Racine (2013) show the consistency of the hypothesis test using D(p̂) as the test

statistic, which implies that the bootstrap version is consistent. In the constrained

density setting, the test consists of two steps:

i) If the true density f satisfies the shape constraints, then as n→∞,

P{D(p̂) ≤ nε} → 1, for all ε > 0.



282 DU, PARMETER AND RACINE

ii) If the true function f does not satisfy the shape constraints on J , then

lim
ε→0

lim inf
n→∞

P{D(p̂) ≥ nε} = 1.

This result has a simple intuitive explanation. If the unconstrained estimator

satisfies the constraints, then D(p̂) = 0, and clearly there is no need to construct

the constrained estimator, because the constraints are most likely true. However,

if the constraints are not initially satisfied, then D(p̂) can be used to test their

validity.

One might consider generalizing the above result to admit different metrics

such as, for example, those strictly tailored to probability weights (i.e., pi ≥ 0

and
∑

i pi = 1). Although our theory for consistency (Theorem 3) is developed

for the Cramér–von Mises statistic, it can instead be developed using a power-

divergence metric by following Hall et al. (2001) or by using the L2-norm,

following Du, Parmeter and Racine (2013). The main difference lies in the

algebraic manipulations required for the different metrics. For our theory on the

limiting distribution of our test statistic (Theorem 4), we rely on the L2-norm,

in part because it delivers a tractable solution from the Karush–Kuhn–Tucker

conditions. A similar result for, say, the power-divergence metric is possible,

though some degree of approximation is still necessary in order to obtain suitable

expressions for the weights underlying the corresponding test statistic.

4. Monte Carlo Finite-Sample Performance

In this section, we assess the finite-sample performance of the proposed

estimator, and compare it with that of its competitors implemented in currently

supported R packages available through CRAN. Note that the proposed estimator

is extremely flexible in terms of the type of constraint and the number of

simultaneous constraints that can be imposed. For the sake of brevity, we focus

on a few test cases, and restrict the group of competitors to the most popular

and promising methods of which we are currently aware. The test cases we

consider involve two popular constraints, namely the log-concavity constraint

and the monotonicity constraint (i.e., monotonically increasing). Although

our approach supports both smooth constrained PDFs and PMFs, we focus

on constrained PDF estimation, because of the lack of competing options for

smooth constrained PMFs. However, we do provide an illustrative example

involving the PMF; the R code for the constrained PDF and PMF estimations

is available upon request. The proposed approach can be found in the R

package np (Hayfield and Racine (2008)), which is available on CRAN. See,

in particular, the functions npuniden.sc() and npuniden.boundary(), which

support the constraints monotonically increasing (constraint="mono.incr"),

decreasing (constraint="mono.incr"), convex (constraint="convex"), con-
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cave (constraint="concave"), log-convex (constraint="log-convex"), or log-

concave (constraint="log-concave"), in additional to general inequality con-

straints placed directly on the density function itself (constraint="density"

and the upper and lower bound arguments lb= and ub=). The Cramér–von Mises

(function.distance="TRUE") or the L2-norm (function.distance="FALSE")

can be used to enforce the weights.

For comparison purposes, in the log-concave constraint setting, we compare

the proposed approach with those of Cule, Samworth and Stewart (2010), who

study a nonsmooth log-concave PDF MLE, and Chen and Samworth (2013),

who study the associated smoothed log-concave estimator; these methods can

be found in the R package LogConcDEAD (Cule, Gramacy and Samworth (2009))

in the functions mlelcd() and dslcd(). Note that we obtained similar results

with the comparable functions in the R package logcondens (Dümbgen and

Rufibach (2011)), and so do not include these in the analysis below. For an

informative overview, see Samworth (2017) for a recent survey of log-concave

estimation and its importance in statistical analysis. For comparison purposes,

in the monotonically increasing constraint setting, we compare the proposed

approach with the monotone rearrangement approach of Birke (2009), which

can be found in the R package Rearrangement (Graybill et al. (2016)) (see the

function rearrangement()).

As noted in the introduction, the constrained MLE estimates have a rather

nonstandard n−1/3 rate of convergence, compared with the n−2/5 rate for the

kernel estimator. One strength of the MLE approaches is the ease with which

they can handle log-concavity in higher dimensions. From a practical perspective,

the kernel approach is limited to perhaps d = 3 or d = 4 dimensions. These

approaches are also fre of tuning parameters, whereas the kernel approach requires

the selection of bandwidths. In the log-concave constraint simulations that follow,

we use cross-validation to select the bandwidths for the proposed kernel-based

methods, and we optimize the distance from the unconstrained to the constrained

function, as discussed previously. However, in order to assess the degree to which

being free of tuning parameters matters, we begin by comparing the proposed

approach based on infeasible optimal bandwidths (which are essentially free of

tuning parameters) with data-driven smoothing parameter selection. Naturally,

the optimal bandwidths present the method in the best possible light, albeit an

unrealistic one, which is why we use the data-driven bandwidth-based results as a

reference in the tables that follow, and not the infeasible optimal bandwidth-based

results. The difference between using the infeasible optimal versus the feasible

data-driven tuning parameter (i.e., the bandwidth) is most apparent in small

sample settings (e.g., n = 100), though this becomes asymptotically negligible as

the sample size increases.

In what follows, we consider a modest number of DGPs and, as noted above,

restrict our attention to log-concave and monotonically increasing constraints
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(the DGPs are presented in Figure 6). The DGPs and a brief description are as

follows:

1. The data are drawn from the standard smooth unbounded support N(0, 1)

univariate Gaussian distribution (X ∈ [−∞,∞]), which is log-concave. We

report the results based on the (unknown) optimal bandwidth and the

data-driven bandwidth, and compare them those of the nonsmooth MLE

estimator and the smooth MLE estimator under the log-concavity constraint

(Section S1.1).

2. The data are drawn from a smooth unbounded support N(0,Σ) bivariate

Gaussian distribution (X ∈ [−∞,∞]2), which is log-concave, and we

compare the results with those of the nonsmooth and the smooth MLE

estimators under the log-concavity constraint (Section S1.2).

3. The data are drawn from a smooth left-bounded support univariate

exponential distribution (X ∈ [0,∞]), which is log-concave, and we compare

the results with those of the nonsmooth MLE estimator and the smooth

MLE estimator under the log-concavity constraint (Section S1.3).

4. The data are drawn from a smooth bounded support univariate Beta(3,3)

distribution (X ∈ [0, 1]), which is log-concave, and we compare the results

with those of the nonsmooth MLE estimator and the smooth MLE estimator

under the log-concavity constraint (Section S1.4).

5. The data are drawn from a nonsmooth bounded support univariate tri-

angular distribution (X ∈ [0, 1]), which is log-concave but nonsmooth,

and we compare the results with those of the nonsmooth MLE estimator

and the smooth MLE estimator under the log-concavity constraint. Note

that we include this DGP in order to gauge its robustness, becaues it

violates assumptions invoked when using kernel smoothing methods (i.e.,

the continuous differentiability of the density up to some particular order

> 2) (Section S1.5).

6. The data are drawn from a smooth bounded support univariate uniform

distribution (X ∈ [0, 1]), which is log-concave, and we compare the results

with those of the nonsmooth MLE estimator and the smooth MLE estimator

under the log-concavity constraint (Section S1.6);

7. The data are drawn from a smooth bounded support univariate Beta(3,1)

distribution (X ∈ [0, 1]), which is monotonically increasing, and we compare

the results with those of the monotone-rearrangement estimator under the

monotonic increasing constraint (Section S1.7).

Note that in each of these scenarios, we report the mean squared error (MSE,

computed as n−1
∑n

i=1(f(Xi)− f̂(Xi)
2), where f(·) is the true simulation density
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Figure 6. Monte Carlo Densities.

and f̂(·) is an estimate thereof) for the smooth unconstrained version of our

estimator (SU) (which is simply the standard kernel density estimation), smooth

constrained version of our estimator (SC), nonsmooth MLE estimator (LNS),

smooth MLE estimator (LS), and monotone rearrangement estimator (MR). We

report the results in both tables (mean/median relative MSE over M Monte

Carlo replications) and figures (box plots of the MSE for the M Monte Carlo

replications). We present the relative MSE values for the mean and median to

provide a complete impression of the performance, because the relative mean

values may not be robust in the presence of outlying values. Such values occur

if, say, data-driven bandwidth selection performs poorly for some fraction of the

resamples, and the relative median is naturally less affected by outlying values.

The proposed kernel approach admits known finite boundary points (i.e.,

the boundary points of ±∞ have no effect on the estimate), which are used

for the exponential (which uses (a, b) = (0,∞)), beta and triangular (each of

which use (a, b) = (0, 1)) simulations (all other cases use (a, b) = (−∞,∞)). The

peer function mlelcd() in the LogConcDEAD package does not support known

boundary points. Although one might consider modifying the peer function

using standard correction methods, it is unclear whether log-concavity is always

preserved. Regardless, any such extension of the peer method lies beyond the

scope of this study.

In order to meet the page length constraints, the particulars of the Monte

Carlo simulations have been moved to the Supplementary Material, which also

contains the technical proofs (see Section S1). Briefly, the proposed method

is shown to be competitive with its nonsmooth and smooth peers and, most
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importantly, provides an extensible and general approach to constraining kernel-

based density estimates in a unified framework.

5. Conclusion

We have presented a versatile procedure designed to impose a variety of

shape constraints on a smooth nonparametric kernel density estimator. We use

simulations and real-world data to show that the method can deliver practical

and useful estimates of an unknown density, satisfying a range of constraints, and

provide the theoretical underpinnings thereof. Additionally, for the constraint of

log-concavity, our proposed approach convincingly outperforms popular existing

approaches. Furthermore, for the constraint of monotonicity, our approach is

competitive with its peers, perhaps even performing somewhat better. However,

unlike many of its peers that are tailored for a single constraint, our approach

is far more flexible and can encompass each of its peers within a unified

framework. Moreover, these constraints can be applied to settings involving both

continuous and ordered discrete data settings. An R implementation is available

on CRAN (see the R package np (Hayfield and Racine (2008)), and the functions

npuniden.sc() and npuniden.boundary() contained therein).

There are many exciting and important directions in which the proposed

methods can be extended. For example, we can use the insights of Mammen

(1991) (in the regression setting) to consider higher-order asymptotic compar-

isons between the unconstrained and constrained estimators. Given that the

constrained density estimator that we propose here is expected to equal the

unconstrained estimator if the constraints imposed are valid, then for sufficiently

large n, these two coincide (to the first order). Hence, one would not expect large

sample gains. However, a more nuanced and detailed asymptotic analysis may

reveal important higher-order gains that could prove useful for constructing of

confidence intervals in small sample settings. Another possible extension is to

consider functions supported on a ball, rather than on a hypercube, as considered

here. This would require changing existing tools, such as considering kernel

functions supported on a ball. Both of these extensions are left to future work.

Supplementary Material

This material contains all of the proofs for the theorems introduced in the

paper and the full set of tables and figures for the Monte Carlo simulations.
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