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Abstract: We propose novel one-sided omnibus tests for independence between two
multivariate stationary time series. These new tests apply the Hilbert—Schmidt
independence criterion (HSIC) to test the independence between the innovations of
the time series. We establish the limiting null distributions of our HSIC-based tests
under regular conditions. Next, our HSIC-based tests are shown to be consistent.
A residual bootstrap method is used to obtain the critical values for the tests,
and its validity is justified. Existing cross-correlation-based tests examine linear
dependence. In contrast, our tests examine general dependence (including linear
and non-linear), providing researchers with information that is more complete on
the causal relationship between two multivariate time series. The merits of our
tests are illustrated using simulations and a real-data example.
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1. Introduction

Before applying a sophisticated method to describe the relationship between
two time series, it is important to first determine whether they are independent. If
the dependence exists, causal analysis techniques, such as copula and multivariate
modeling, can be used to investigate the relationship between them, potentially
leading to interesting insights or effective predictive models. However, if two time
series are independent, one should use two independent parsimonious models;
see, for example, |Pierce (1977); Schwert| (1979); Hong| (2001al); Lee and Long
(2009); [Shao (2009); [Tchahou and Duchesne, (2013) for empirical examples in
this context.

Most existing methods used to test independence between two multivari-
ate time series models apply a measure based on cross-correlations. Specifically,
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they check whether the sample cross-correlations of the model residuals are sig-
nificantly different from zero, up to a fixed lag or all valid lags. The former in-
cludes the portmanteau tests (Cheung and Ngj (1996)); E1 Himdi and Roy| (1997));
Pham, Roy and Cédras| (2003); Hallin and Saidi| (2005, [2007)); Robbins and Fisher|
(2015)), and the latter (with the aid of kernel smoothing) is a type of spectral
test (Hong| (2001alb); Bouhaddioui and Roy| (2006)). Note that the idea of us-
ing cross-correlations in this way is a natural extension of the seminal studies of

(1976) and (1996) for univariate time series models. However, in

many circumstances, this conveys uncorrelatedness, rather than independence.

In general, the aforementioned tests are designed to investigate linear de-
pendence (i.e., the cross-correlation in the mean, variance, or higher moments)
between two model residuals, and hence may lack power in detecting a non-linear
dependence structure. A significant body of research has documented non-linear
dependence relationships between various economic fundamentals; see, for ex-
ample, Hiemstra and Jones| (1994); Wang, Wu and Yang| (2013); |Choudhry, Pa-|
ipadimitriou and Shabil (2016); Diks and Wolski| (2016, among others. However,
few studies attempt to account for both linear and non-linear dependence, both

of which are important characteristics.

To examine the general dependence structure, a test needs a direct measure
of independence. In the last decade, the Hilbert—Schmidt independence criterion
(HSIC) of |Gretton et al. (2005)) has been used extensively in many fields. Works
that provide one- or two-sample independence tests based on the HSIC include
those of \Gretton et al.|(2008]) and |Gretton and Gyorfi (2010) for observable inde-
pendent and identically distributed (i.i.d.) data, and Zhang et al.| (2009)); Zhoul
(2012)); Fokianos and Pitsillou (2017) for observable dependent or time series
data. The latter two studies applied the distance covariance (DC) of
Rizzoand Bakirov| (2007), whereas Sejdinovic et al. (2013) showed that the HSIC
and DC are equivalent. When the data are unobservable and are derived from

a fitted statistical model (e.g., the estimated model innovations), the estimation
effect has to be considered. The original procedure based on the HSIC or DC
is no longer valid; thus, we need to modify the procedure for testing purposes.
However, very little work has been done in this context. Two exceptions are
land Sen| (2014) and Davis et al.| (2018) for one-sample independence tests. The
former focused on a regression model with independent covariates, and the latter

considered vector AR models, but without providing a rigorous way to obtain
the critical values of the related test.
This paper proposes novel one-sided tests for the independence of two sta-
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tionary multivariate time series. These new tests apply the HSIC to examine
the independence between the unobservable innovation vectors of both time se-
ries. Of these tests, the single HSIC-based test is tailored to detect general
dependence between these two innovation vectors at a specific lag m, and the
joint HSIC-based test is designed for this purpose up to certain lag M. Under
regular conditions, the limiting null distributions of our HSIC-based tests are
established. Next, our HSIC-based tests are shown to be consistent. Moreover, a
residual bootstrap method is used to obtain the critical values for our tests, and
its validity is justified. Our methodologies are applicable for general specifications
of time series models driven by i.i.d. innovations. By choosing different lags, our
tests provide investigators with information that is more complete on the gen-
eral dependence (including both linear and non-linear) relationship between two
time series. Finally, the importance of our HSIC-based tests is illustrated using
simulations and a real-data example.

This paper is organized as follows. Section 2 introduces our HSIC-based
test statistics. Section 3 studies the asymptotic properties of our HSIC-based
tests. A residual bootstrap method is provided in Section 4. Simulation results
are reported in Section 5. A real-data example is presented in Section 6, and
concluding remarks are offered in Section 7. Additional simulations and the
proofs are provided in the online Supplementary Material.

Throughout the paper, R = (—o0,0), C' is a generic constant, I is the s x s
identity matrix, 1, is the s x 1 vector of ones, ® is the Kronecker product, A7 is
the transpose of matrix A, ||A|| is the Euclidean norm of matrix A, vec(A) is the
vectorization of A, vech(A) is the half vectorization of A, D(A) is the diagonal
matrix whose main diagonal is the main diagonal of matrix A, 0,h denotes the
partial derivative with respect to x, for any function h(z,y,...), 0,(1)(Op(1))
denotes a sequence of random numbers converging to zero (bounded) in proba-
bility, “—4” denotes convergence in distribution, and “—,” denotes convergence
in probability.

2. The HSIC-based Test Statistics

2.1. Review of the HSIC

In this subsection, we briefly review the HSIC, which tests the independence
of two random vectors; see, for example, |Gretton et al. (2005) and |Gretton et al.
(2008)) for more detail.

Let U be a metric space, and let k : U xUU — R be a symmetric and positive-
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definite (i.e., >, ; cicjk(z;, ;) > 0 for all ¢; € R) kernel function. There exists a

Hilbert space H (called a Reproducing Kernel Hilbert Space (RKHS)) of functions
f:U — R with inner product (-,-), such that

(¢) k(u,-) €M, for Vu e U, (2.1)
(i) (f,k(u,-)) = f(u), for Vf € H and Yu € U. (2.2)

For any Borel probability measure P defined on U, its mean element u[P] € H
is defined as follows:

E[f(U)] = (f,ulP]), VfeH, (2.3)

where the random variable U ~ P. From (2.2)-(2.3), we have p[P](u) =
(k(-,u), u[P]) = E[k(U,u)]. Furthermore, we say that H is characteristic if and
only if the map P — p[P] is injective on the space P := {P : [, k(u,u)dP(u) <

Likewise, let G be a second RKHS on a metric space V with kernel [. Let
P, be a Borel probability measure defined on i/ x V, and let P, and P, denote
the marginal distributions on U and V), respectively. Assume that

Ek(UU)] <o and E[I(V,V)] < oo, (2.4)
where the random variable (U, V) ~ P,,. The HSIC of P,, is defined as
(U, V) : = EyyEy v k(U UV, V"] + EyEy EvEv [k(U,U)(V,V")]
—2Ey v Ey By [k(U, U’)Z(V, V’)],

where (U, V') is an i.i.d. copy of (U, V), and E¢ ¢ (or E¢) denotes the expectation
over (&,() (or &). Following |Sejdinovic et al. (2013), if (2.4) holds and both #H
and G are characteristic, then

II(U,V)=0 if and only if P,, = P, x P,.

Therefore, we can test the independence of U and V by examining whether
II(U, V) is significantly different from zero.

Suppose the samples {(U;, V;)}I~, are from P,,. Following |Gretton et al.
(2005)), the empirical estimator of II(U, V) is

1 1 2
0, = - Z kijlij + —y Z Kijlgr — 3 Z kijliq (2.5)
2

4,J,4,T ,J,9
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1
= ﬁtrace(KHLH), (2.6)

where ki; = k(U;, Uj); i = Vi, V;); K = (kij) and L = (1;;) are n X n matrices,
with entries k;; and l;;, respectively; and H = I,, — (1,11 /n. Here, each index
of the summation ) is taken from 1 to n. If {(U;, V;)}~, are i.i.d. samples,
Gretton et al.| (2005) showed that II,, is a consistent estimator of II(U, V).

In order to compute II,, we need to choose the kernel functions k& and [. In
what follows, we assume U = R and V = R"*2, for two positive integers k1 and
k2. Then, the following are some well-known choices (see Peters| (2008); Zhang
et al.| (2018)) for k& (or I):

12
[Gaussian kernel] : k(u,u’) = exp (_HUQ(;;H) ’

for some o > 0;

o

o
[Laplace kernel] : k(u,u’) = exp <_||““||) ’
for some o > 0;
1

(B + llu— )’
for some «, 8 > 0;

[Inverse multi-quadratics kernel] : k(u,u’) =

1
[Fractional Brownian motion kernel] : k(u,u') = §(||u||2h + |l )PP = = ),

for some 0 < h < 1.

Note that the HSIC is easy to implement in multivariate cases, because the
computation cost of II,, is O(n?), regardless of the dimensions of U and V, and
many software packages can calculate (2.6)) very quickly.

2.2. Test statistics

Consider two multivariate time series Yj; and Ya;, where Y, € R% and
Yo € R%. Assume that each Yy (s = 1 or 2, hereafter) admits the following
specification:

}/st = fs(fst—17950,773t), (27)

where Iy, = (Y2, VI | ..)T € R™ is the information set at time ¢; 059 € RP* is
the true, but unknown parameter value of model ; nst € R% is a sequence
of i.i.d. innovations, such that ns and Fs—1 are independent; Fg := o(Is) is a
sigma-field; and fy : R™ x RP* x R% — R% is a known measurable function.

Model ({2.7) is rich enough to include many often-used models, such as the vector
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AR model of [Sims| (1980), BEKK model of Engle and Kroner| (1995), dynamic
correlation model of Tse (2002), and vector ARMA-GARCH model of Ling and
McAleer| (2003), among others; see also Lutkepohl| (2005); Bauwens, Laurent
and Rombouts| (2006)); Silvennoinen and Terasvirta (2009)); Francq and ZakoTan
(2010); Tsay| (2014) for surveys.

Model ensures that each Yy admits a dynamical system generated by
the innovation sequence {7s}. A practical question is whether either one of the
dynamical systems should include information on the other, which is equivalent
to testing the following null hypothesis:

Hy : {m:} and {n2} are independent. (2.8)

If Hy is accepted, we can separately study these two systems; otherwise, we may
use the information of one system to obtain a better prediction of the other
system. Let m be a given integer. Most conventional testing methods for Hy
in aim to detect linear dependence between 1y, and 7241, (or their higher
moments) using their cross-correlations. Below, we apply the HSIC to examine
the general dependence between 7n1; and 12¢4y,.

To introduce our HSIC-based tests, we need some additional notation. Let
0s = (051,052, ...,0sp,) € ©5 C RP: be the unknown parameter of model ,
where O, is a compact parametric space. Assume that 4y is an interior point of
O, and Y, admits a causal representation:

Nst = gs(sztaIst—lyesO% (29)

where g, : R% x R® x RP+ — R% is a measurable function. Moreover, based on
the observations {Ys}}; and (possibly) some assumed initial values, we let

~ ~

ﬁst = gs(}/;tajst—laesn) (210)

be the residual of model 1} where QAsn is an estimator of Ay, and fst is the
observed information set up to time t.
As in (2.5)—(2.6]), our single HSIC-based test statistic on 71¢ and 7a¢ry, is

~ o~ 1 ~ ~ 1 ~ ~ 2 ~ ~
Sin(m) == e, Not+m) = N2 Z kijli; + Ni Z kijlgr — N3 Z kijliq
i?j

4,J,9,T 4,9,4

1 SN
= Wtrace(KHLH), (2.11)
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iig)r m > 0, where Ej = k(Mi, M;), l] = l(7721+m,772J+m) and K = (EZJ) and
L = (lw) are N x N matrices with entries kw and l”, respectively. Here, the
effective sample size N = n —m, and each index of the summation is taken from
1 to N. Likewise, our single HSIC-based test statistic on 71z, and 7y is

Szn(m) = H(ﬁ1t+m7ﬁ2t)7 (2-12)

for m > 0. Clearly, S1,(0) = S2,(0).
Using the single HSIC-based test statistics, we can further define the joint
HSIC-based test statistics as follows:

Jln Z Sln and Jgn Z SQn (2.13)

for some specified integer M > 0. The joint test statistic, Ji,(M) or Jo, (M),
can detect the general dependence structure of two innovations up to certain lag
M; in contrast, the single test statistic, Si,(m) or Sa,(m), is used to examine
the general dependence structure of two innovations at a specific lag m.

3. Asymptotic Theory

This section studies the asymptotics of our HSIC-based test statistics S1,,(m)
and Ji,(M). The asymptotics of Sa,(m) and Jo, (M) can be derived similarly,
and hence the details are omitted for simplicity.

3.1. Technical conditions

To derive our asymptotic theory, the following assumptions are needed.
Assumption 1. Yy is strictly stationary and ergodic.

Assumption 2. (i) The function gs(0s) := gs(Yst, Ist—1,0s) satisfies that

0gs1(65) |[1° 9%g.1(05)|1*
E[S(;tp o0 <oo, E Sup 06200, < 00,
83.gst( ) 2
E _Z JIst\Ts)
and [sup ‘8931395389&1 } < 00,

forany i, j, g € {1,...,ps}, where gs is defined as in (2.9)).
(i) > 520 Bl )e/(2Fe) < oo, for some ¢ > 0, where B,(j) is the B-mizing

coefficient of {(771157 772t)T}
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Assumption 3. The estimator am given in l} satisfies that

~ 1
\/ﬁ(esn - 930) = % zt: Ws(Ysty I 1, 930) + Op(l)

- \}HZWS,:—FOP(I), (3.1)

where T : R% x R® x RPs — RP+ is a measurable function, E(my|Fs_1) = 0,
and E||7g|? < oco.

Assumption 4. For ﬁst(es) = gst(0s) — gse(6s),

D sup [ R (6:)[* = 0p(1),
t s

where Got(0s) = g5 (Yat, L1, 05), and Iy is defined as in (2.10).

Assumption 5. The kernel functions k and | are symmetric. Furthermore, both
of them and their partial derivatives up to the second order are uniformly bounded
and Lipschitz continuous, that is,

(@) sup |lp(z, y)|| < Cs (id) lp(z1,y1) — p(x2, y2)|l < Cl[(z1,91) — (22, 92) I,
Z‘7y
for p = k7ka:akyaka:a:yk:ﬂy:kyyalylanlyvla:a:,l:cy:la:y; where k; = azk(x7y)7 kzy =
0x0yk(x,y), lo = 0:l(x,y), and lyy = 0.0yl(x,y).

A few remarks are in order related to the above assumptions. Assump-
tion 1 is standard for time series models. Assumption 2(i) requires technical
moment conditions for the partial derivatives of gs. Assumption 2(ii) gives a
sufficient technical condition to prove Theorem 2, for which the result of part (c)
of Theorem 1 in [Denker and Keller| (1983)) can be applied directly. Assumption
3 is satisfied under mild conditions for most estimators, including the (quasi)
maximum likelihood estimator (MLE), least squares estimator (LSE), nonlinear
least squares estimator (NLSE), and their robust modifications; see, for exam-
ple, |Comte and Lieberman, (2003); |Liitkepohl (2005) and [Hafner and Preminger
(2009) for further detail. Assumption 4 is a condition on the truncation of the
information set fst,l, and is similar to Assumption A5 in Escanciano| (2006). As-
sumption 5 provides restrictive conditions for the kernel functions k& and . These
conditions may exclude some kernel functions, such as the fractional Brownian
motion kernel, but they are usually satisfied by the often-used Gaussian kernel,
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Laplace kernel, and inverse multi-quadratics kernel. The conditions in Assump-
tions 1-5 may be relaxed further, but they are convenient for presenting our
proofs in a simple way.

3.2. Lemmas

This subsection provides several lemmas, that are important to derive the
asymptotics of our test statistics.
Before introducing these lemmas, we present some additional notation. Let

— 0g1i(0 0g15(0

kij = 1859110)]%(77”’ mj) + g;lm)ky(mi,mj), (3.2)
5 092q+m (020 0gor4m (0

lq?‘ = qge;)laﬁ(anﬂ-ma 772r+m) + 2502(20)ly(772q+m, "727"+m)7 (33)

o <3g1¢(910) 391]'(910)) kyw (M, M) Kay (013, m15)
“ 20, T 06, kay(niismy) kyy(ma, m; )

8g1i(010) 9g1;(610)\ "
3.4
Vo 992q+m(020) 0g2r+m(620)
qr 005 ’ 005
% laa (772q+ma N2r+m) l:vy(772q+m7 N2r+m.)
lry(772q+ma N2r+m) Lyy (772q+ma M2r+m)
o 892q+m(020) Ogarm(B20)\ " (3.5)
005 ’ 005 ’ '
for i,j,q,7 € {1,2,..., N}. With these notation, define
0
S (m = 13 Z kijli; + N4 S kijlgr — < Z kijliq, (3.6)
0,457 1,9,
ab) (ab ab) ab ab) (ab)
Sin szk ij N4 Zk qT N3Zk l , (3.7)
605457 07,9

for a € {1,2} and b € {1,...,a+ 1}, where k") = &y, 1 = 1, k) = ki,
9 = 1y 0 = By T Y S Y

ij
l1(323) = l Then, Sg)l) (m) can be expressed as a V-statistic of the form (see
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Gretton et al.| (2005))):
1 m m m m
St (m) = 57 > W™ ™ ),
%,J,4,T
(0)

for some symmetric kernel hy;,’, given by

(/[:7j7q7r)

1
hgr(’)b) (nz(m)v n](m)a n((;m)a 777(,7%)) = E Z (ktultu + ktulvw - Qk'tult'u) ’
(tyu,v,w)
where the sum is taken over all 4! permutations of (i,7,¢,7), and ngm) = (M,

Notim) € R4 x R%. Likewise, all szb) (m) can be expressed as V-statistics for

the symmetric kernel h%‘ib), given by
(m) (m) LR o (ab)  (ab)
hq(ﬁb) (" 7§jm &Sm), gr(m)) =1 Z (ktu liy "+ Epy lz()%)) — 2Ky gy ) )

(t,u,v,w)
where the sum is taken over all 4! permutations of (i, j, ¢, ), and

(m) _ ( 091t(010) 092t+m(020)

1t Tmzt—s—m, 20 > € Ré x RP>d Rz RP2Xd2,
1 D)

Now, we are ready to introduce three lemmas. The first lemma gives an
important expansion of Sy, (m).

Lemma 1. Sy,,(m) admits the following expansion:

Sin(m) = 8 (m) + L5400 (m) + (2,502 (m)

1 1
3G (MGt + 5681 (M) Gan + CESE (m)Gan + Ran(m),
where S{?l) (m) and Siib) (m) are defined as in 1) and 1) respectively, Ri,(m)
is the remainder term, and Csp = Osp — Os0.

The second lemma is crucial to derive the asymptotics of Si?l) (m) and S%Zb) (m)

under Hy.

Lemma 2. Suppose Assumptions 1, 2(i), and 5 hold. Then, under Hy,

(i) B [h) (@ nd™ 0™ ™) = o,
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for all z; € R% x R%;
(i6) B[ @r, ™, ™ ™) =0,
for all x; € RY x RP ¥4 x RE x RP2*% gnd each a,b=1,2;
(iii) E [n50 (@1, ™ 5™, o™ = 1,

for all x; € RN x RPr ¥4 x R x RP2X2  yphere

dg12(010) 0g22(020) 0g23(020)

T =4F [ 20, kx("?1277711):| E {892&(7722,7721)—%lx(n23,7721)]

0g22(020)

o 0
Mlx(nxn 1) — T%lx(n% 7721)] '

15) 0
+4E 9913(610) lo)kx(m:’)ﬂ?n) E
005

001

By standard arguments for V-statistics (see, e.g., Lee (1990)), we have
N[Si,! ()] = NIVL (m)] + 0(1), where

1n

0 1 0 m m
Vi m) = <5 SRS ™) (33)
,J

is the V-statistic with the kernel function
o) (21, 22) = E [hﬁﬁ) (3717372,77:(;m)7774(1m))] , (3.9)

for z1, zo € R% x R%. Under Hy, {nt(m)} is a sequence of 1.i.d. random variables.

Hence, Lemma 2(i) implies that Vl(g)(m) is a degenerate V-statistic of order 1,
: (0)

from which hs, can be expressed as

W) (21,09) = 3 A i@ (21) @i (2), (3.10)
=0

where {®,,(-)} is an orthonormal function in the Lo-norm, and Ajy, is the eigen-
value corresponding to the eigenfunction ®;,,(-). That is, {\j;,} is a finite enu-
meration of the nonzero eigenvalues of the equation

E | (@1, 0™ (™) = Xjin®jm (1),
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where Eéjm(nﬁm)) =0 for all j > 1, and

0, j#j'

(see, e.g., [Dunford and Schwartz (1963 p.1087)). From (3.8)) and (3.10f), under
Hy, we have

m m 17 j :jlv
E [(I)jm(n§ ))(I)j’m(ng ))} :{

fe'e) N
NS (m)] = > Ajm [1 Z (™) |+ 0p(1). (3.11)

(ab)

in

Hy, slab) (m) (for a,b = 1,2) is a degenerate V-statistic of order 1 by Lemma

1n

2(ii). Hence, N [S(ab) (m)] = Oy(1), and its related estimation effect is thus

1n

Next, we consider S}, (m), which results from the estimation effect. Under

negligible, given that ¢, N [Sﬁb) (m)] = 0p(1). However, under Hy, the estimation
effect related to Sﬁg) (m) is negligible only when Y = 0. This is because when
T #0, S{ig) (m) = Op(1) by the law of large numbers for V-statistics. Thus, its
related estimation effect is not negligible in this case, based on the ground that
23
NICE, S0 (m)Gan] = Op(1).
Our third lemma provides a useful central limit theorem.

Lemma 3. Suppose Assumptions 1, 2(i), and 3-5 hold. Then, under H,

N n T
1 1
Ty, = <\/N ; L, 7 ; 7}?) —a T = ((Zjm)j>1.0ememr; W) 1<s<a)”

as n — oo, where Ti; = ((q)jm(nfm)))szongM)T; Toi = (WlTi,WZTi)T; T is a
multivariate normal distribution with mean zero and covariance matriz T =
E(TTY), with T; = (TE, TE)T; {Zjm}j>1 is a sequence of i.i.d. N(0,1) ran-
dom variables; and Wy is a ps-variate normal random variable.

3.3. Asymptotics of test statistics

Based on Lemmas 1-3, this subsection studies the asymptotics of our test
statistics. Let
AZD = B [ (™, o™, ™ o™ (3.12)

) )

First, we give the limiting null distributions of Si,,(m) and Jy,(M).
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Theorem 1. Suppose Assumptions 1, 2(i), and 3-5 hold. Then, under Hy,

(1) n[Sin(m)] =4 Xm for 0 <m < M;
(i) n[Jin(M)] =4 Z Xm;
as n — 0o, where X, is defined by
Xm = Z AjmZ 3, + WEAZIW,,

Here, \jy, is defined as in (3.10)), and Zj,, and W are defined as in Lemma 3.

Theorem 1 shows that Si,(m) and Ji,(M) have convergence rate n~! under
Hjy. Based on this theorem, we reject Hy at the significance level « if

n[S1n(m)] > ¢ma  or n[Jin(M)] > cq,

where ¢, and ¢, are the ath upper quantiles of x,, and Z _o Xm, respectively.
Because the distribution of x,, depends on {Ys} and {7}, a residual bootstrap
method is proposed in Section 4 to obtain the values of ¢, and cq,.

Second, we study the behavior of S, (m) under the following fixed alterna-
tive:

H : {m} and {ny} are dependent such that E[h( )(:1:1,175 ))] # 0,

2m

for some x; € R4 x R%.

Under Hl(m), B0

om 15 not a degenerate kernel of order 1. Hence, the V-statistic

1 as suggested in Lemma 2(i),

leading to the consistency of Si,(m) in detecting H. fm)

Sf?l)(m) cannot have the convergence rate n~

. Similarly, we can show

the consistency of Jy,(M) in detecting the following fixed alternative:
HfM) : Hfm) holds for some m € {0,1,..., M}.
Theorem 2. Suppose Assumptions 1-5 hold. Then,

(7) lim P(n[Sin(m)] > cma) = 1 under H{m);

n—oo

(i)  lim P(n[Jin(M)] > cq) =1 under H{M).

n—o0

Note that similar results to those of Theorems 1-2 hold for Sa,(m) and
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Jon (M), which can be implemented in a similar way to Si,(m) and Jy,(M),
respectively.

4. Residual Bootstrap Approximations

In this section, we introduce a residual bootstrap method to approximate
the limiting null distributions in Theorem 1. The residual bootstrap method
is popular in the time series literature; see, for example, |Berkowitz and Kilian
(2000); |Paparoditis and Politis| (2003); [Politis (2003), and many others. The
residual bootstrap procedure we use to approximate the critical values ¢, and

Cq 18 as follows:

Step 1 Estimate the original model (2.7, and obtain the residuals {7s:}7 ;.

Step 2 Generate bootstrap innovations {75 }}; (after standardization) by re-
sampling with replacement from the empirical residuals {7 }7 ;-

Step 3 Given 0, and {n% 37—, generate the bootstrap data set {Y;}7,, ac-
cording to

;;S = fs(I:t_lv Osn, 77/\*515)7
where f;‘t is the bootstrap observable information set up to time ¢, condi-

tional on some assumed initial values.

Step 4 Based on {Y;}}" |, compute é\;kn in the same way as é;n, and then calcu-
late the corresponding bootstrap residuals {73 }7_;, with 7%} = ¢5(Yy5, %,
05n)-

Step 5 Calculate the bootstrap test statistic S} (m) and J;:(M) in the same
way as (2.11) and (2.13)), respectively, where 7% replaces 7.

Step 6 Repeat steps 1-5 B times to obtain {n[S7:,(m)];b = 1,2,..., B} and
{n[J{x, (M)];0 =1,2,...,B}. Then, choose their ath upper quantiles, de-
noted by ¢}, and c},, as the approximations of ¢, and c,, respectively.

In order to prove the validity of the bootstrap procedure in steps 1-6, we
need some further notation. Let

2m m

W) (21, 29) = B [h(o) (x1,x2,ﬁ§m*),ﬁ§m*))] 7 (4.1)
E\ém*), Eém*)’ @Em*))}

m I

A23%) _ g [hsrzf) (ém*)
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where 7™ = (7, W) and o™ = (i, 091 (010) /001, 314 > Ogo1 1 (Bon)

/003). Furthermore, let %, = 9* 95n, and wy, := {Y11,Y12,..., Y1, Y1, Y20, ...,
Yo, } be the given sample. Denote by E* the expectation conditional on w,,, and
let 07(1)(0;(1)) be a sequence of random variables converging to zero (bounded)
in probability, conditional on w,,.

Because {77, }1¥, is an i.i.d sequence conditional on @, a similar argument
to that in Lemma 1 implies

Six(m) = 80 (m) + TS (m) + TS0 (m) + » S St (m)Gi,

(22x%)

+@% (Mﬁﬁ%%(Mmem (4.3)

where Sg*)(m), nglb*) (m), and Rf,(m) are defined in the same way as S§O) (m),
szb) (m), and Rin(m), respectively, with nt(m) and gt(m) replaced by ﬁgm* and

g™, respectively. Moreover, by a similar argument to that in Lemma 1(i), we

0*) Z A\ [ Z (I) A(m*

where E*®%, (7)) = 0 for all j > 1, and E*[®%,, (/") @5, (5"))] = 1 if
j=j,and 0if j # 5.
Next, we give two technical assumptions.

obtain

+o3(1), (4.4)

Assumption 6. The bootstrap estimator gjn satisfies that

\/>(9* A ZWS st7 t 17 )+0;;<1)

= % Z 7T;kt + 0;(1)
t=1

where s is defined as in Assumption 3, and E* (Tr;kt]f;tfl) =0.

Assumption 7. The following convergence results hold:

ZE* 7TszTrs’z p B [7T517T§1] ;

N
@U%ZEW(W%]WH%MWmm

=1
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asn — oo, for s, =1,2,j>1, and m=0,1,..., M.

Assumptions 6 and 7 are standard in proving the validity of bootstrap procedures,
and they are similar to those in Assumption A7 of |[Escanciano (2006]). For the
(quasi) MLE, LSE, and NLSE or, more generally, estimators resulting from a
martingale estimating equation (see Heyde (1997))), the function 7s(-) required
in Assumption 6 can be expressed as ms(Yst, Isi—1,0s) = 01(nst(0s)) X 02(Lst—1,0s),
for some functions p;(-) and g2(-) with E(01(nst(fs0))) = 0. Then, in those cases,
Assumptions 6 and 7 are satisfied under some mild conditions on the function
02(-). Note that the calculation of the bootstrap estimator gzn in step 4 may
be time-consuming for some times series models (e.g., multivariate ARCH-type
models) when n is large. In view of Assumption 6, we suggest generating gj;n as
follows:

~
X

~ —~ 1 . ~
esn = 98” + E ;WS( sty Lst—1» 0871)

This saves a significant amount of computation time. In Section 5, we will apply
this method to conditional variance models, and find that it generates precise
critical values ¢y, and ¢, for the proposed HSIC-based tests.

The following theorem gives the asymptotics of our bootstrapped test statis-
tics.

Theorem 3. Suppose Assumptions 1-5 and 6-7 hold. Then, conditional on wy,,
(i) n[STp(m)] = O, (1) for 0 < m < M; (i) n[J7;(M)] = Oy(1); moreover, under
H07

(#11) n[Sin(m)] —a Xm for 0 <m < M,
M

() n[J55 (M) =4 Y Xm
m=0

in probability as n — oo, where X, is defined as in Theorem 1.

By Theorem 3(i), we know that conditional on w,, our bootstrapped critical

values ¢, and c, are always bounded in probability. Under the alternative

Q
hypothesis, the proof of Theorem 2 shows that n[S,(m)] and n[Jy,(M)] converge
to infinity. Therefore, the events {n[Si,(m)] > ¢}, } and {n[J1,(M)] > .}
happen with probability one for large n. This implies that our bootstrapped

critical values c},,, and ¢, are valid under the alternative hypothesis, although

mo
the explicit distributions of the bootstrapped test statistics are absent, and might

be derived under some higher-order conditions in future.
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As shown in Theorem 3(ii), the explicit distributions of the bootstrapped
test statistics are the same as those of the related limiting null distributions.
Hence, our bootstrapped critical values c};,, and ¢}, are also valid under the null
hypothesis.

5. Simulation Studies

In this section, we compare the performance of our HSIC-based tests Sy, (m)
and Js, (M) (s = 1,2 hereafter) with some well-known existing tests in finite sam-
ples. Below, we compute S, (m) and Jg, (M), where k and [ are the Gaussian
kernels and o = 1. Additional simulation results can be found in the Supplemen-
tary Material, where k and [ are chosen as inverse multi-quadratics kernels.

5.1. Conditional mean models

We generate 1,000 replications of sample size n from the following conditional
mean models:

0 0
Yy = 1,10 71,20 Yie1 + e,

61,30 01,40

0 (5.1)
Yo = 210 72,20 Yor—1 + n2t,

62,30 62,40

where 0;0 = (6; 10, 6 20, 6 30, 0i.40) (for i = 1,2) contains all unknown parameters,
and {n1;} and {no} are sequences of i.i.d. random vectors. To generate {n;}
and {72}, we need an auxiliary sequence of i.i.d. multivariate normal random
vectors {u;} with mean zero, where u; = (uis, ugs, uby, u},)', with uyg, ugr € R
and usg, ug € R?*!, and covariance matrix given by

Q1 O2x2 0242
Q=1 02x2 Q2 U |,
O2x2 Q) Q3

1
Q, = Pm for 7 = 1,2,3, and Q4 = papa)
pr 1 P4 P4

Here, we take 619 = (0.4,0.1,—1,0.5), 039 = (—1.5,1.2,—-0.9,0.5), p2 = 0.5, and
p3 = 0.75, as in |[El Himdi and Roy| (1997)), who considered the same models as
those in (5.1]).

with
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Based on {u:}, we consider six error-generating processes (EGPs):

EGP 1 : 11y = us¢, m2¢ = uge and pg = 0;

EGP 2 : 11y = ugg, n2r = uge and py = 0.3;

u%t +1
V6

2
ui, +1
EGP 4:m = li/é ugt, M2t = |u143|uay and pg = 0;

EGP 3:m1; = ugt, M2t = |uit|uar and pg = 0;

u%t—kl

V6

EGP 6 : 1y = uipuse, oy = ugrug, p1 = 0.8 and pg = 0.

EGP 5: me =

use, Mot = |uat|uat, pr = 0.8 and pyg = 0;

Clearly, each entry of 11, or 7o; has mean zero and variance one. Let p,, »,(d) be
the cross-correlation matrix between 77, and 79¢14. EGP 1 is designed for the null
hypothesis, because py, n,(d) = 0242 for all d in this case. EGPs 2-6 are set for
the alternative hypotheses, because they pose a linear or non-linear dependence
structure between 71; and 79;. Specifically, a linear dependence structure between
nie and 7 exists in EGP 2, with py, 5, (d) = 0.315 for d = 0, and 0 otherwise. A
non-linear dependence structure between 74 and 79 is induced by the co-factor
uy; in EGP 3, the lagged co-factors uiy and ujg43 in EGP 4, and two correlated
co-factors w1y and ug; in EGPs 5—6. In EGPs 3-6, 11 and 79; are dependent, but
uncorrelated.

For each replication, we fit two models in (5.1)) using the LSE method. De-
note by {71} and {72} the residuals of the respective fitted models. Based on
{M+} and {n2}, we compute Ss,(m) and Js, (M) (S, and Js, in short). The
critical values of all HSIC-based tests are obtained using the residual bootstrap
method with B = 1,000 in Section 4.

We also compute the test statistics Gg,(M) (Gsp in short) in [El Himdi and
Roy| (1997), and the test statistics W, (h) (W, in short) in Bouhaddioui and
Roy (2006), where

M R M n R
Gl = Y Zufm). GaulM) = 30 [ Zutm),

m=—M m=—M

S /W2 (m) — dady A (1)

Wln(h) — mzl—n ,
2dyds Biy,(h)

S B (m/ R Z,(m) — hddy Ay

Wn h) = m=1—n
n(h) V2hd,ds B,
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Here, Zy (m) = nlvee(Riz(m))|" [R5 (0) © Ry (0)][vec(Riz(m)),
Rij(m) = D[(7(0))~ /2|7 (m) D[(7,(0)) /%],

7ij(m) is the sample cross-covariance matrix between {7;;} and {7)j¢ym}, Zn(m)
is defined in the same way as Z,,(m), with 75 replaced by 7s, 75 is the residual

from a fitted VAR(p) model for Yy, K(-) is a kernel function, h denotes the
bandwidth, A; = [* [K(z)]*dz, By = [~ _[K(2)]*dz, and

= 5 (-2 R
matn= 5 (1-50) (-2 R G

Note that Gy, is to test the cross-correlation between 7y, and ng; Gap is its
modified version for small n; W1y, has the same goal as G1,,, but with the ability
to detect the cross-correlation beyond lag M; Wy, is the modified version of
Win. Under certain conditions, the limiting null distribution of G, or Ga, is
X%2M+1)d1d2’ and that of Wy, or Wy, is N(0,1).

In all simulation studies, we set m = 0 and 3 for the single HSIC-based tests
Ssn(m), and set M = 3 and 6 for the joint HSIC-based test Js,(M). Because
S11,(0) = S2,(0), the results of Sa,(0) are absent. For G, (M), we choose M =
3,6, and 9. For W, (h), we follow Hong (1996) to choose p = 3 (or 6) when
n = 100 (or 200), and use the kernel function K(z) = sin(rz)/(7z) (Daniel
kernel) with bandwidth h = hq, hg, or hs, where hy = [log(n)], ha = [3n%2], and
hs = [3n%3]. The significance level « is set to 1%, 5%, or 10%.

Table 1 reports the power of the tests based on the two models in . The
sizes of all tests correspond to those in EGP 1. From this table, our findings are
as follows.

(i) The sizes of all single HSIC-based tests Ssy, are close to their nominal values
in most cases, whereas the sizes of other tests are a little unsatisfactory. For
instance, Jg, are slightly oversized, especially at « = 5% and 10%, and W1,
(or Wa,,) is slightly oversized (or undersized) when n = 200 (or 100), at all
levels. The size performance of Gg, depends on M: a larger value of M
leads to a more undersized behavior, especially at a = 10%, although, in
general, Go, performs better than G1,,.
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(i)

(iii)

(iv)

WANG, LI AND ZHU

In all examined cases, the single HSIC-based test S1,,(0) is the most powerful
of the tests in EGPs 2-3 and 5-6, and the single HSIC-based test Sa,(3) has
a significant power advantage in EGP 4. These results are expected, because
S1,(0) and S2,(3) are designed to examine the dependence specifically at
lags 0 and 3, respectively, reflecting the setup of each EGP. Note that our
HSIC-based tests in EGP 3 are more powerful than those in EGP 5. This
is consistent with our setting that the dependence between 714 and 1y in
EGP 3 is stronger than that in EGP 5.

For the linear dependence case (i.e., EGP 2), the joint HSIC-based tests Jgy,
have a comparable power performance as Ggy,. In addition, they are much
less powerful than Wiy, (h1), but are much more powerful than Wy, (hs3)
when n = 100. For the non-linear dependence case (i.e., EGPs 3-6), the
joint HSIC-based tests Jg, are, in general, much more powerful than the
tests G, and Wy, especially when n = 200. The only exception is Ji, in
EGP 4, which cannot detect the dependence between 7144, and 7o at lag
m = 3. In contrast, Jo, performs very well here.

In all examined cases, the power of J,, and Gy, decreases as the value of
M increases; this tendency is vague for W,.

Overall, our single HSIC-based tests are powerful in detecting dependence at

specific lags, and our joint HSIC-based tests exhibit a significant power advantage

in detecting non-linear dependence, which cannot be examined easily using other

tests.

5.2.

Conditional variance models

We generate 1,000 replications of sample size n from the following conditional

variance models:

e V11t/2771t and Vi = (Vigi5)i,j=1,2

Yo = V21t/27]2t and Vo = (varij)ij=1,2,

with
V1,11 01,10 + 0120016111 + 0130Y5 14
vig22 | = | 01,40 + 01,50010—1,22 + 91,60Y12t_1,2 , (5.2)
V1,12 01,70\/01t—1,11V1t—1,22
V211 02,10 + 02.20v2¢—1,11 + 92,30Y22t_1,1
var22 | = | 02,40 + 025002¢—1,22 + 92,60Y22t,1,2 ;
V24,12 02,70/V2t—1,1102t—1,22
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Table 1. Empirical sizes and power (x 100) of all tests based on the models in 1)

EGP 1 EGP 2 EGP 3
n = 100 n = 200 n = 100 n =200 n =100 n = 200

Tests 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
S1n(0) 0.7 51 11.7 16 52 11.7 471 69.1 799 855 952 974 80.2 94.5 979 99.3 100 100
Sin(3) 06 54 114 07 43 109 11 55 130 06 49 99 08 51 106 1.1 59 10.0
San(3) 1.2 5.6 12.1 1.3 4.6 9.9 1.0 51 114 1.5 53 9.9 1.0 55 11.2 038 4.1 9.1
Jin(3) 0.7 53 123 1.2 52 11.5 194 44,5 584 551 784 854 30.7 644 799 88.0 96.8 988
J1n(6) 0.9 6.2 14.6 1.1 6.1 13.6 12,5 324 482 40.3 66.1 76.8 11.6 37.0 55.7 66.4 89.0 95.1
Jan(3) 14 71 125 1.8 6.7 139 193 422 574 548 783 87.0 31.9 61.7 77.6 86.7 96.8 98.3
Jan (6) 1.1 68 132 1.7 6.5 121 132 329 473 383 62.7 76.6 104 369 56.0 66.0 87.5 94.1
G1,(3) 05 36 76 07 50 101 173 41.5 571 69.1 884 93.0 109 239 334 147 293 394
G1,(6) 04 28 78 06 42 9.6 17.3 41.5 571 435 709 835 53 146 249 85 21.6 328
G1,(9) 04 15 49 02 33 6.8 81 25.0 39.1 294 551 693 29 100 166 63 17.0 252
G2, (3) 09 42 86 07 55 105 183 433 594 69.5 89.0 93.6 11.9 252 355 152 299 40.7
G2, (6) 06 46 104 1.0 54 109 12,5 30.3 450 458 728 844 6.6 184 296 102 244 348
G2n(9) 07 41 91 06 45 95 7.9 254 366 341 602 747 50 157 238 83 199 288
Win(h1) 09 52 94 22 69 128 456 649 752 875 93.9 969 242 374 469 272 424 511
Win(he) 0.8 43 84 1.7 63 124 303 53.0 65.7 783 894 934 188 30.3 394 214 369 46.0
Win(hg) 1.0 54 94 16 54 125 19.6 44,5 573 59.6 80.2 88.0 126 253 355 151 294 39.6
Wan(hy) 0.6 42 76 21 6.2 11.7 41.1 624 729 86.1 93.2 965 21.6 35.6 44.3 257 409 50.0
Wan(he) 04 32 56 14 5.0 9.8 23.1 46.4 594 743 87.7 921 14.7 262 343 192 33.5 435
Wan(hs) 03 1.7 49 09 33 6.8 11.0 285 433 495 738 830 82 179 249 103 228 31.7

EGP 4 EGP 5 EGP 6
=100 n =200 n =100 n = 200 n =100 n = 200

Tests 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
S1n(0) 04 44 101 06 4.1 9.5 23.7 50.5 652 587 84.0 91.9 368 643 763 772 919 95.7
S1n(3) 04 37 79 04 39 95 05 42 92 07 43 94 05 3.1 78 0.8 4.7 9.8
San(3) 755 92.0 96.3 99.2 99.9 100 07 10 35 30 45 91 04 30 76 0.6 4.4 8.4
Jin(3) 03 26 65 04 27 7.8 4.5 23.6 344 20.7 46.3 604 7.6 253 419 358 63.8 75.7
J1n(6) 0.3 1.7 5. 0.2 21 5.3 1.3 9.5 19.3 9.0 28.8 454 1.7 124 255 179 40.5 575
Jon(3) 284 57.2 86.7 96.5 985 4.7 21.5 324 193 457 59.7 5.6 23.6 388 354 63.0 759
Jan (6) 9.7 343 53.7 644 8.1 946 19 85 194 88 275 459 1.8 103 234 11.3 229 319
Gin(3) 104 214 319 128 27.1 384 55 14.7 237 81 196 28.0 3.9 127 203 49 142 248
G1,(6) 46 13.7 214 84 198 302 20 9.6 167 39 142 246 28 88 152 29 106 16.3
G1,(9) 29 83 154 54 156 245 14 53 123 27 106 175 1.7 69 11.2 21 79 139
Gon(3) 123 247 355 13.8 28.6 39.7 6.1 159 253 83 202 294 42 137 229 50 146 25.5
G2, (6) 7.0 178 268 9.0 229 326 3.2 128 213 4.6 165 261 3.7 11.6 193 33 11.6 19.0
G2n(9) 48 146 258 7.0 196 279 26 11.1 195 45 13.0 225 3.1 104 187 2.7 9.8 17.6
Win(h1) 28 9.6 165 6.6 157 248 141 20.5 341 16.0 283 357 11.6 21.7 30.8 11.3 229 319
Win(he) 7.9 169 251 109 23.6 341 10.5 19.2 294 129 235 342 81 174 270 88 183 276
Win(hg) 87 182 271 10.7 259 357 6.9 182 262 9.2 199 296 6.7 159 241 55 151 218
Wan(hy) 23 82 141 6.3 148 234 132 199 321 155 269 342 100 19.7 226 105 219 30.2
Wan(he) 6.3 13.6 201 9.2 206 304 82 16,5 236 11.7 207 316 6.5 139 206 7.2 165 24.0
Wan(hs) 5.6 11.8 175 83 182 291 40 108 175 6.5 151 21.3 32 93 154 3.6 103 169

t For Wen, h1 = [log(n)], he = [3n°2] and hs = [3n°-?]
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where 0;0 = (0;10,620,-..,6i70) (for i = 1,2) contains all unknown parame-
ters, and {n1;} and {n} are sequences of i.i.d. random vectors generated as
in (5.1). In (5.2), two CC-MGARCH models are studied, as in [Tse (2002).
Following (Tse| (2002)), we set 610 = (0.2,0.5,0.1,0.2,0.5,0.1,0.5) and 0y =
(0.3,0.4,0.2,0.3,0.4,0.2,0.6). For each replication, we fit the models in
using the Gaussian-QMLE method. Denote by {71;} and {72} the residuals
from the respective fitted models. Based on {71;} and {72}, we compute Sy, (m)
and Jg, (M), and their critical values as before.

We also compute the test statistics Lg, (M) and Ty, (M) (Lsy and Ty, in
short) of [Tchahou and Duchesne| (2013), where

M M n2
D) = 3w, m) L) = 3 |2 )
m=—M m=—M
M
(M) = Y n-tr(Chm)CR O)Cin(m)Cz0)),
m=—M
M Tl2
T = 30 |2 mC 0)Cra(m) 5 0),
m=—M

Here, pg,, ,,(m) is the sample cross-correlation between {1} and {G2i4m }, Ci;j(m)
is the sample cross-covariance matrix between {@;;} and {@ji4m}, Gst = nLnst,
and Py = vech(7sn,). Note that Ly, (or Ti,) is used to test the cross-correlation
between two transformed (or original) residuals, and Lg,, (or T5,) is its modified
version for small n. Under certain conditions, the limiting null distribution of Ly,
or Lo, is X%2M+1)’ and that of Ty,, or 15, is X%2M+1)dfd§’ where d¥ = ds(ds+1)/2
for s =1,2.

In all simulation studies, we choose the values of m and M as in the previous
subsection. The significance level « is set to 1%, 5%, or 10%. Table 2 summa-
rizes the power results based on the two models in (5.2)). The sizes of all tests
correspond to those in EGP 1. From this table, our findings are as follows.

(i) The sizes of all tests are close to their nominal values, although most Ty,
are slightly oversized.

(ii) Similarly to the results shown in Table 1, the single HSIC-based test S1,,(0)
or S1,(3), as expected, is the most powerful of the tests, and the HSIC-based
tests in EGP 3 are more powerful than those in EGP 5.

(iii) For the linear dependence case (i.e., EGP 2), all joint HSIC-based tests Jgy,
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are more powerful than L, and T,,. For the non-linear dependence case
(i.e., EGP 3-6), all J,, have larger power than L, and Ty, in most cases,
but this advantage is small, especially for J,(6). There are two exceptions
in which some Js,, exhibit low power: first, Ji,,(3) and J1,,(6) have no power
in EGP 4 (see also Table 1); second, J2,(6) is less powerful than most L),
and Ty, especially for n = 200. Because the cross-correlation between n3,
and 73, is high in EGPs 2-6, the relatively good power performance of L,
and Ty, in some cases is not unexpected.

(iv) The power of the tests Jg,, Lsn, and Ty, decreases as the value of M

increases in all examined cases.

Overall, our single HSIC-based tests exhibit good power in detecting depen-
dence at specific lags, and our joint HSIC-based tests could be more powerful
than other tests in detecting either linear or non-linear dependence. Moreover,
our additional simulation results in the Supplementary Material indicate that the
selection of the kernel function could affect the performance of our HSIC-based
tests, although the overall patterns of performance are similar. Hence, choosing
kernel functions optimally based on some criteria is important in practice and
deserves future investigation.

6. A Real Example

In this section, we study two bivariate time series. The first consists of in-
dex series from the Russian market and the Indian market: the Russia Trading
System Index (RTSI) and the Bombay Stock Exchange Sensitive Index (BSESI),
respectively. The second includes two Chinese indices: the ShangHai Securities
Composite index (SHSCI) and the ShenZhen Index (SZI). The data were mea-
sured each day (Monday to Friday), from October 8, 2014 to September 29, 2017.
The final sample comprised 1,088 days. Missing data due to holidays were re-
moved before the analysis, after which the final data set includes n = 672 daily
observations. The resulting four time series are denoted by {RTSI;; ¢t = 1,...,n},
{BSESI;; t =1,...,n}, {SHSCI; t =1,...,n}, and {SZL;; t = 1,...,n}, respec-
tively.

As usual, we consider the log-return of each data set:

v, — Yiea _ log(RTSI;) — log(RTSIL;_1)
t log(BSESL,) — log(BSESL,_1) |’
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Table 2. Empirical sizes and power (x100) of all tests based on the models in (5.2)

EGP 1 EGP 2 EGP 3

n = 200 n = 300 n = 200 n = 300 n = 200 n = 300

Tests 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

S1n(0) 0.7 4.3 105 1.6 5.4 9.2 100 100 100 100 100 100 100 100 100 100 100 100

S1n(3) 1.2 52 110 0.5 51 101 13 58 108 1.5 5.8 9.6 0.8 4.1 8.9 0.8 5.4 108
San(3) 1.1 4.5 9.3 0.6 4.6 9.7 0.9 5.1 9.3 0.9 4.6 9.3 1.2 4.9 9.5 1.2 4.5 8.6
Jin(3) 0.7 4.5 10.7 0.8 4.7 9.0 99.2 999 999 100 100 100 97.7 99.6 99.8 100 100 100

Jin(6) 0.7 3.7 9.1 0.4 4.1 88 913 985 994 998 100 100 859 96,5 98.6 99.2 100 100

Jon(3) 0.8 41 9.2 1.0 55 11.6 986 998 999 100 100 100 97.8 99.6 100 100 100 100

Jon (6) 0.6 4.0 9.0 1.0 49 103 91.0 978 991 99.9 100 100 83.8 964 98.8 955 959 96.0
Lin(3) 1.2 3.9 9.9 1.3 6.1 100 157 348 463 322 543 654 876 91.2 927 924 944 950
Ly, (6) 11 4.3 9.2 0.9 56 113 85 252 377 220 415 548 820 884 90.7 90.0 924 932
L1,(9) 0.9 3.6 9.2 1.1 4.5 9.5 9.5 188 30.8 158 353 479 782 852 882 884 915 923
L2, (3) 1.2 4.1 10.1 1.3 6.2 103 16.0 352 466 324 545 655 876 91.2 927 924 944 95.0
L2 (6) 15 52 105 1.0 58 121 9.0 26.0 387 226 420 555 824 885 90.8 90.0 924 932
L2, (9) 0.9 44 115 1.3 4.8 10.5 6.1 205 323 169 36.7 492 786 85.8 836 834 916 924
T1,(3) 2.1 6.7 119 2.2 64 116 395 604 701 61.7 774 845 795 85.6 874 87.0 904 921
T1n(6) 1.7 6.5 11.6 1.6 62 114 263 415 543 459 63.1 727 683 765 793 779 835 86.5
T1,(9) 1.3 58 108 1.2 4.8 9.9 148 312 41.6 323 53.7 644 60.7 707 749 722 784 8l4
Ton(3) 2.2 74 128 2.3 6.7 12.7 41.0 60.8 709 615 780 845 799 8.7 878 872 91.0 921
T5,(6) 2.2 7.8 134 2.0 7.5 125 251 459 577 475 645 743 693 774 803 786 839 87.2
T5,,(9) 2.6 75 135 15 70 125 184 36.7 483 353 580 68.0 636 732 764 738 794 821

EGP 4 EGP 5 EGP 6
n = 200 n = 300 n = 200 n = 300 n = 200 n = 300

Tests 1% 5%  10% 1% 5%  10% 1% 5% 10% 1% 5%  10% 1% 5% 10% 1% 5%  10%
S1n(0) 0.5 3.7 7.7 0.5 4.4 9.7 763 894 944 921 985 993 924 978 99.1 988 99.8 99.8
Sin(3) 1.0 4.3 8.9 1.0 4.1 101 0.6 3.9 9.0 0.7 4.9 9.1 0.8 4.5 10.3 1.0 4.5 10.1
Son(3) 100 100 100 100 100 100 0.7 4.7 9.2 0.6 5.2 9.2 0.7 3.5 7.8 0.6 4.6 9.5
Jin(3) 0.3 2.5 6.5 0.7 3.9 8.6 339 612 735 61.8 820 89 564 802 8.0 863 953 979
Jin(6) 0.3 1.3 4.1 0.3 3.4 7.0 136 402 56.6 381 640 766 30.5 578 722 66.8 853 93.0
Jon(3) 971 994 99.8 100 100 100 30.1 613 747 620 8L2 890 56.6 788 875 859 951 98.1
Jon(6) 831 97.0 984 99.8 100 100 128 382 553 36.7 635 77.1 278 578 717 647 846 919
Li,(3) 86.6 912 921 932 944 951 519 611 702 66.7 764 809 496 648 734 681 795 853
L, (6) 80.7 872 894 90.7 932 943 427 573 643 573 695 756 41.0 571 641 584 729 79.0
L,(9) 751 841 861 879 91.8 928 376 522 591 51.6 638 70.0 318 51.8 591 527 678 749
Lyn(3) 87.0 914 923 932 944 951 520 61.2 713 66.7 765 815 49.7 650 73.5 681 79.6 85.5
Ly, (6) 81.3 874 89.7 90.7 932 943 433 583 650 57.6 69.7 758 41.6 57.1 645 585 73.0 79.1
Ly, (9) 76.6 84.8 874 83.0 919 93.0 381 529 603 520 641 707 331 531 605 534 685 755
Ti,(3) 805 856 881 881 90.5 922 51.7 598 644 581 675 722 438 551 612 56.2 655 70.1
Ti,(6) 672 756 79.3 798 854 87.8 43.2 523 571 482 60.1 653 347 458 52.7 445 557 618
Ti,(9) 604 690 72,6 71.7 785 821 377 46.7 521 41.7 51.8 573 293 404 462 40.1 504 55.8
T»,(3) 86.6 91.2 921 881 90.7 923 520 592 652 589 67.7 726 444 551 628 56.7 657 704
Ton(6) 68.7 772 812 81.0 863 882 449 533 578 495 609 664 369 474 543 457 573 625
T5,(9) 63.6 708 76.0 733 79.9 829 40.1 49.0 553 435 53.8 589 322 43.7 496 420 525 59.0
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Table 3. Estimation results for both fitted BEKK models

Parameters Estimates Parameters Estimates

Ay arqn - 0.2832x1073 Ay asa11 0.2528x107°
&1’12 0.0050%x 103 &2712 0.3856x 10~
ar120  0.0022x1073 ag99  0.6714x1075°

B b1 0.4662 Ba b1 11 0.3098
b11.92 -0.0619 ba1.22 0.3195

Bia bia.11 -0.1149 Ba bao 11 -0.1264
b12.92 0.3357 bao 20 -0.0692

011 611711 0.3569 021 621711 0.6808
11,22 0.2222 é1,92 0.6783

Cia é12.11 0.5370 Cao o211 0.6431
¢12.22 0.9027 ¢92.92 0.6455

t Note that A is a symmetric matrix, and all Bs; and Cy; are diagonal matrixes.

Yo, — Y72t71 . log(SHSCIt) — log(SHSCIt,l)
e - log(SZ1;) — log(SZI;—1) '

An analysis of the ACF and PACF of Y11, Y12, Yor,1, Yor,2, and their squares
indicates they have no conditional mean structure, but they do have a conditional
variance structure. Motivated by this, we use the following BEKK model with
the Gaussian-QMLE method to fit Y7; and Yo;:

1/2
Yo = Est/ Nst,

Sg = As+ BLY1u 1Y), 1 Ba+ -+ BLYu Y, B

+C£Zst—lcsl + -+ Csjl;zst—qcsqa

for s = 1,2, where Ay = C’ST(’)CS(), with Cyy being a triangular 2 x 2 matrix,
and Bsi,...,Bgp,Cs1,...,Cs are 2 x 2 diagonal matrices. Table 3 reports the
estimates for both fitted models. The respective p-values of portmanteau tests
Q(3), Q(6), and Q(9) of |Ling and Li (1997) are 0.7698,0.5179, and 0.5967 for
Y1+, and 0.5048,0.7328, and 0.8746 for Y5;. This implies that both fitted BEKK
models are adequate.

Next, we apply our joint HSIC-based tests Jg, (M) to check whether Y7, and
Y5 behave independently of each other. As a comparison, we also consider the
tests Lgp, (M) and Ty, (M). Table 4 reports the p-values for all six tests. Here,
except for Jon (M), with M > 7, all examined joint HSIC-based tests Js, (M)
convey strong evidence that Y71; and Ys; are not independent. However, neither
Lsp(M) nor Ts, (M) achieves this for M > 2.
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Table 4. The p-value for all six joint tests up to lag M =0,1,...,10.

Tests
Jln J2n Lln L2n Tln T2n
0.0000 0.0000 0.0134 0.0134  0.0000  0.0000
0.0000 0.0000 0.0428 0.0428 0.0125 0.0124
0.0000 0.0000 0.0881 0.0879 0.1965 0.1956
0.0000 0.0260 0.0610 0.0605 0.1055 0.1035
0.0000 0.0040 0.1137 0.1128 0.2979 0.2927
0.0090 0.0240 0.2111 0.2095 0.4640 0.4557
0.0230 0.0280 0.2762 0.2739 0.5958 0.5851
0.0220 0.0720 0.3315 0.3282 0.7093 0.6972
0.0280 0.0730 0.4079 0.4037 0.6708 0.6540
0.0450 0.0830 0.4491 0.4437 0.7645 0.7475
0.0230 0.1040 0.5761 0.5706 0.8359 0.8199

t A p-value larger than 5% is in boldface.

—
=N-T S = VO S e

To get more information, we further plot the values of the single version of
Jen, Lin, and T, in Fig 1. That is, Fig 1 plots the values of Sg,(m), L1y s(m),
and Ty, s(m), for m > 0, where

Lina(m) =npZ, 5 (m), Lina(m)=npz o (—m),
Tipn1(m) = n - tr(Cly(m)Cr;' (0)Cra(m)Cyy' (0)),
Tin2(m) = n - tr(Cly(—m)Cr' (0)Cra(—m)Coy' (0)),

and all notation is inherited from Section 5.2. The limiting null distribution of
Lins(m) is x2, and that of Ty, s(m) is x3. Similarly to Sg,(m), Li,s(m) and
Tip,s(m) capture the linear dependence between 7y, and 1144, at specific lag m.
The corresponding single version results for Lo, and T5,, are similar to those for
L1, and T1,; hence, they are not displayed here.

From Fig 1, we first find that all single tests indicate a strong contempo-
raneously causal relationship between the Chinese market and the Russian and
Indian (R&I) market. Second, Si, (1) implies that the R&I market has a signif-
icant affect on the Chinese market one day later. However, according to Sa,(3)
(or S2,(10)), the impact of the Chinese market on the R&I market appears after
three (or ten) days. These findings demonstrate an asymmetric causal relation-
ship between two markets. Because none of the examined Ly, s(m) and 11, s(m)
can detect a causal relationship for m > 1, the contemporaneous causal rela-
tionship mainly causes the significance of L, (1) and T, (1) in Table 4, and the
lagged causal relationship may be non-linear. Because the R&I market has a
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Figure 1. The values of single tests S1,,(m), L1,,1(m), and T3, 1(m) (right panel) across
m, and the values of single tests Sa,,(m), L1,,2(m), and Ty, 2(m) (left panel) across m.
The solid lines are 95% one-sided confidence bounds of the tests.
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higher degree of globalization and marketization, it may have a faster impact
on other economies. In contrast, the Chinese market is more localized, and its
influence on other economies tends to be slower, but can last much longer. This
long-term effect may be caused by “the Belt and Road Initiatives” of the Chinese
government, implemented in 2015. Hence, the asymmetric phenomenon between
two markets seems reasonable, and may help the government to formulate effi-
cient policy, and investors to design more useful investment strategies.

7. Conclusion

We have applied the HSIC principle to derive novel one-sided omnibus tests
for detecting independence between two multivariate stationary time series. The
resulting HSIC-based tests have a non-degenerate asymptotical representation
under the null hypothesis, and are shown to be consistent. A residual bootstrap
method is used to obtain the critical values for our HSIC-based tests, and its valid-
ity is justified. Unlike existing cross-correlation-based tests for linear dependence,
our HSIC-based tests look for general dependence between two unobservable in-
novation vectors. Hence, they can provide researchers with information that is
more complete on the causal relationship between two time series. The impor-
tance of our HSIC-based tests is illustrated by simulation results and a real-data
analysis. The generality of the HSIC method means that our methodology may
be applied to many other important testing problems, such as testing for model
adequacy (Davis et al. (2018))), testing for independence among multi-dynamic
systems (Pfister et al.| (2018)), and testing for independence in high-dimensional
systems (Yao, Zhang and Shao (2018)). We leave these interesting topics to
future study.

Supplementary Material

The online Supplementary Material contains additional simulation results
and the proofs of all lemmas and theorems.
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