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Abstract: We address the regression problem with a new form of data that arises

from data privacy applications. Instead of point values, the observed explanatory

variables are subsets containing each individual’s original value. In such cases, we

cannot apply classical regression analyses, such as the least squares, because the

set-valued predictors carry only partial information about the original values. We

propose a computationally efficient subset least squares method for performing a

regression on such data. We establish upper bounds of the prediction loss and risk

in terms of the subset structure, model structure, and data dimension. The error

rates are shown to be optimal in some common situations. Furthermore, we develop

a model-selection method to identify the most appropriate model for prediction.

Experiment results on both simulated and real-world data sets demonstrate the

promising performance of the proposed method.
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1. Introduction

Data privacy is an emerging societal concern (Enserink and Chin (2015);

Cohen and Nissim (2020)). For example, Rocher, Hendrickx and De Montjoye

(2019) showed that even after removing common identifiers for each individual,

99.98% of Americans could be correctly re-identified using only 15 demographic

attributes such as family size and vehicle type. As a result, privacy-preserving

methods that protect individual identification and sensitive data values are re-

ceiving increasing attention. A popular choice is for the data owner to no longer

release the exact value X of each individual. Instead, a quantity Z relevant to

X is used to enhance individual privacy. Several such privacy-preserving meth-

ods have been proposed, including differential privacy (Dwork et al. (2006)),

which uses a randomized response technique (Warner (1965)) or adds noise to X,

k-anonymity (Aggarwal (2005)), which groups X with similar values to a repre-

sentative value, and secure multi-party computing (Yao (1982); Chaum, Crépeau

and Damgard (1988)), which encrypts X using cryptography techniques.
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When developing data privacy techniques, a critical use scenario concerns the

data collection procedure. A mechanism called subset privacy (Wang and Ding

(2021)) was recently proposed to address the challenge of private data collection.

Specifically, the data collector, such as a service provider, collects only a set A

that contains the original value X held by the subject, such as an individual

user. For example, in a study of income with respect to race using the Adult

data set (Dua and Graff (2017)), a data collector might perform a survey that

collects only a set of races, instead of the exact race from each participant. Here,

A can be generated by a survey-based system, such as the independent design

introduced in Subsection 2.2.

Subset privacy provides a privacy guarantee against de-identification. Nev-

ertheless, regression and predictions using this new data format are highly non-

trivial. We consider a general regression problem involving a real-valued response

variable Y and set-valued predictor variables A1, . . . , Ad. Specifically, we study

the regression model Y = f(X1, . . . , Xd)+ ε, where ε is a random noise. The goal

is to estimate the underlying function f from n observations of (Y,A1, . . . , Ad).

This is a nontrivial problem, even when f is linear, because the predictors are

no longer point-valued data. For example, we cannot apply the standard least

squares method.

In this paper, we propose a computationally efficient subset least squares

method. The main idea is to minimize the empirical modified mean squared er-

ror, given set-valued data. We derive a closed-form solution for this optimization

problem above, and establish an upper bound for the prediction risk and show

that it is rate-optimal in some circumstances. Examples include additive models,

in which the effect of each variable is independent of the others, and saturated

models, in which all variables interact with one another. We also discuss some

practical strategies to improve the numerical stability and leverage fast matrix

operations. Furthermore, we propose a method for selecting a model from dif-

ferent combinations of variables or interaction orders, and prove its asymptotic

efficiency under some conditions. Finally, we perform experiments on simulated

and real data to verify the proposed method.

2. Problem Formulation

2.1. Model

Notation. For a positive integer p, let [p] and 2[p] denote the set {1, 2, . . . , p}
and its power set, respectively. For a set A, let |A| and Ac denote its cardinality

and complement, respectively. Let 1 and Ip denote the indicator function and
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the p× p identity matrix, respectively. The Kronecker product is denoted by ⊗.

The trace of a matrix M is tr(M). The largest eigenvalue, smallest eigenvalue,

and condition number of a positive-definite matrix M are denoted as σmax(M),

σmin(M), and κ(M) = σmax(M)σ−1min(M), respectively. We sometimes represent

a finite set A ⊆ [p] using a vector 1A ∈ {0, 1}p, the jth coordinate of which is one

if j ∈ A, and zero otherwise. In addition, 1X is understood as 1{X} for a single

element X ∈ [p].

We consider the regression model Y = f(X)+ε, where Y ∈ R is the response,

X = (X1, . . . , Xd)
T, with Xj ∈ [pj ] and j ∈ [d], is a d-dimensional categorical

predictor, pj is a positive integer, and ε is a noise term independent of X with

mean zero and variance σ2 > 0. We do not make other specific assumptions

on the distribution of ε. We consider only categorical predictors. Continuous

predictors (Ding and Ding (2020)) could be discretized in order to use our ap-

proach. For example, age can be divided into several groups. We parameterize

f(X) with Γ(X)Tβ, where Γ(X) ∈ Rq represents the postulated model structure,

consisting of dummy encodings of the original variables and interactions between

two or more variables, and β ∈ Rq is the corresponding vector of unknown coeffi-

cients. We show how to encode the model structure using Γ(·) by means of three

examples.

Example 1 (Additive model). In an additive model, also known as a main-

effect model, the regression function is decomposed as f(X) =
∑d

j=1 fj(Xj),

and fj(Xj) is called the main effect for the variable Xj . To avoid collinearity, we

reparameterize the model by adding a grand mean effect β0 ∈ R and the constraint

that for any j,
∑

k∈[pj ] fj(k) = 0. In other words, f(X) = β0 +
∑d

j=1 fj(Xj), and

β = (β0, f1(1), . . . , f1(p1 − 1), . . . , fd(1), . . . , fd(pd − 1))T,

q = 1 +
∑

1≤j≤d
(pj − 1), Γ(X) = (1,γ1(X1), . . . ,γd(Xd))

T,

where γj(Xj) = (1Xj=1 − 1Xj=pj , . . . ,1Xj=pj−1 − 1Xj=pj ).

Example 2 (Quadratic model). In addition to the main effects, a quadratic

model considers pairwise interaction effects. In other words, f(X) =
∑d

j=1 fj(Xj)

+
∑

1≤k<l≤d hk,l(Xk, Xl), and hk,l is the interaction effect between Xk and Xl.

In addition to the parameterization of the additive model above, we add the

constraints
∑

s∈[pl] hk,l(Xk, s) = 0 and
∑

s∈[pk] hk,l(s,Xl) = 0, for any Xk ∈ [pk],

Xl ∈ [pl], and k, l ∈ [d]. The corresponding model structure is

Γ(X) = (1,γ1(X1), . . . ,γd(Xd),γ1(X1)⊗ γ2(X2), . . . ,γd−1(Xd−1)⊗ γd(Xd))
T.
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The number of free parameters q = 1 +
∑

1≤k<l≤d(pkpl − 1). The parameter

β consists of the grand mean β0, the main effects fj(1), . . . , fj(pj − 1) for each

variable Xj , and the interaction effects hk,l(1, 1), . . . , hk,l(1, pl − 1), . . . , hk,l(pk −
1, 1), . . . , hk,l(pk − 1, pl − 1) for any two variables Xk and Xl.

Example 3 (Saturated model). In a saturated model, also known as a fully

interactive model, every level of X corresponds to a free parameter. We have

β = (f(X1 = 1, . . . , Xd = 1), . . . , f(X1 = p1, . . . , Xd = pd))
T,

q =
∏

1≤j≤d
pj , Γ(X) =

⊗
1≤j≤d

1Xj
.

Let pw denote the population distribution of X, with pr(X = x) = wx
for any outcome x of X. Furthermore w is the collection of wx, which is not

required to be known in practice. We assume that the original data {Xi, Yi, i =

1, . . . , n} are independently and identically distributed, and we obtain set-valued

data {Ai, Yi, i = 1, . . . , n}. Here, each observation of A = (A1, . . . , Ad) ∈ A is a

subset associated with X, where A = {A : Aj ∈ 2[pj ], j ∈ [d]}. The transition

law X → A is explained in Subsection 2.2. The goal is to estimate the regression

function f , or equivalently, the model parameters β.

2.2. Subset-generating process

Here, we describe the transition law X → A and give some examples. In

the data privacy literature, a desirable property is that a privatized observation

A does not introduce selective bias related to X. That is, we hope that the

only information about X from A is that X ∈ A. That is also called the

noninformative property. Here, we assume that the transitionX → A is specified

by the following mechanisms (Wang and Ding (2021)). First, we consider a one-

dimensional variable X ∈ [p].

Definition 1 (Conditional mechanism). A conditional mechanism determines

the transition law X → A by

pr(A = a | X = j) = µa1j∈a, a ⊆ [p], j ∈ [p],

where µa satisfies
∑

a:j∈a µa = 1, for all j ∈ [p].

A particular choice {µa, a ∈ A} of the conditional mechanism is referred to

as a conditional design, which we denote as {µa, a ∈ A}.

For the multi-dimensional case, we introduce the following mechanism.
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Definition 2 (Product mechanism). A product mechanism determines the

transition law of X → A by

pr(A = (a1, . . . , ad) |X = (j1, . . . , jd))

=

d∏
l=1

pr(Al = al | Xl = jl) =

d∏
l=1

µal
1jl∈al

, al ⊆ [pl], jl ∈ [pl], l ∈ [d],

where {µal
, al ⊆ [pl]} is a conditional design for l ∈ [d].

Unless mentioned otherwise, we assume pl ≥ 4 to avoid sampling trivial

subsets that contain all categories. There are ways of addressing the cases of

pl = 2 and 3. First, we can combine two or more predictors into a single predictor

so that all have sufficient categories. Second, we can generate dummy categories.

For example, when the alphabet of X is {1, 2}, we independently generate some

additional X ∈ {3, 4} from a prespecified distribution. Hence, the alphabet is

enlarged to {1, 2, 3, 4}, and the aforementioned mechanisms can be applied; see

Wang and Ding (2021).

A particular case of a product mechanism is that, for a given X, any subset

A that contains X, except for the trivial cases A = {X} and A = [p], has equal

probability of being observed. This corresponds to the following design.

Design 1 (Uniform independence design). A uniform independence design

{µa, a ∈ A} satisfies

µa =

0, if |a| = 0, 1, p− 1, p
1

2p−1 − p− 1
, otherwise.

Another case is that only subsets that have cardinality k and contain X are

chosen with equal probability.

Design 2 (Uniform k-card design.). A uniform k-card design {µa, a ∈ A}
satisfies

µa =


(k − 1)!(p− k)!

(p− 1)!
, if |a| = k

0, otherwise.

3. Proposed Method

For technical convenience, the predictor variableX is represented by X ∈ [p],

where p =
∏d
j=1 pj , using the mapping X → X : (x1, . . . , xd)→ xd+

∑d−1
j=1{(xj−
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1)
∏d
k=j+1 pk}, also known as the dictionary order of X. For a subset A, its

corresponding mapping to 1A is 1A =
⊗d

j=1 1Aj
. We use one-dimensional X

from now on, unless otherwise specified.

We propose an estimator for the parameter β in the model Y = Γ(X)Tβ+ ε.

The population distribution w is assumed to be known, otherwise, we replace

it with a root-n consistent estimator ŵ, as described at the end of this section.

Let P = (Γ(X = 1), . . . ,Γ(X = p))T ∈ Rp×q, W ∈ Rp×p be the diagonal matrix

expanded from w, qi = 1Ai
/1T

Ai
w, Q = (q1, . . . , qn)T, and y = (Y1, . . . , Yn)T. We

propose the following estimator:

β̂ = argmin
β∈Rq

∑
1≤i≤n

{Yi − E(Y | Ai)}2 = argmin
β∈Rq

‖y −QWPβ‖22. (3.1)

Here, the second equality follows from the noninformative property that

E(Y | Ai) =
∑
j∈[p]

pr(X = j | Ai)E(Y | X = j)

=
∑
j∈[p]

1j∈Ai

wj
1T

Ai
w

Γ(j)β = qT

iWPβ.

The solution of Equation (3.1) exists and is unique when QWP ∈ Rn×q has

full column rank; otherwise, we simply take β̂ as zeros. In practice, if QWP is

near-singular, we suggest adding a regularization term involving β to improve

the numerical stability, which we elaborate on at the end of this section.

Next, we provide an upper bound for the estimation risk E{f(X)− f̂(X)}2,
where f̂(X) is the estimated value of f(X), and the expectation is taken over

the training data {Yi, Ai, i = 1, . . . , n} and a new predictor X. We make the

following technical assumption.

Assumption 1 (Boundedness). There exist positive values K, L, C, and δ

such that

max
1≤X≤p

|f(X)| ≤ K, max
a:µa>0

|a| ≤ L, max1≤j≤pwj
min1≤j≤pwj

≤ C, and min
a:µa>0

1T

aw ≥ δ.

The requirements of Assumption 1 are reasonable. First, we assume that

f(X) is bounded, so that the variance of the response given a set-valued ob-

servation is not too large. Second, the maximum cardinality of a set-valued

observation is upper bounded. If the cardinality of a subset is too large, there

will be little information about the original value it contains. Third, we assume
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that X has a balanced distribution so that there is no dominating or dominated

category. Finally, the condition mina:µa>0 1T

aw ≥ δ means that the subset design

guarantees the privacy level is at least δ, which is a reasonable setting for privacy

purposes (Wang and Ding (2021)).

Let Q̃ =
∑

a∈A µa1a1
T

a be a matrix that depends only on the subset design,

and κ = κ(P TP ) be the condition number of P TP . The (i, j)th element of Q̃

is the probability that the subset A contains j when X = i. Intuitively, Q̃ is a

measurement of the ambiguity of the subset design. A design with less ambiguity

will have Q̃ closer to an identity matrix. We first introduce Theorem 1, which

bounds E[{f(X) − f̂(X)}2 | A1, . . . , An], the expected loss conditional on the

observed set values. Here, X is a new predictor variable, independent of the

observations. This quantity differs from a conventional loss or risk, because it

averages the noise terms {ε1, . . . , εn} in both the training data and the predictor

variables {X1, . . . , Xn}, given the sets {A1, . . . , An}.

Theorem 1. Under Assumption 1, for any τ ∈ (0, 1/2], with probability at least

1− exp[−2n{(LC)−1σmin(Q̃)τδ}2], we have

E[{f(X)− f̂(X)}2 | A1, . . . , An] ≤ n−1qκLC2(σ2 +K2)σ−1min(Q̃)(1 + 2τ),

for any conditional design {µa, a ∈ A}.

Theorem 2. Under Assumption 1, the prediction risk satisfies

E[{f(X)− f̂(X)}2] ≤ 3n−1qκLC2(σ2 +K2), σ−1min(Q̃)

for all sufficiently large n and any conditional design {µa, a ∈ A}.

Corollary 1. Under Assumption 1, if κ is upper bounded by a constant and

σmin(Q̃) is lower bounded away from zero, we have

E[{f(X)− f̂(X)}2] = O

(
q

n

)
.

The proofs of Theorem 1 and 2 are given in the Supplementary Material.

Theorem 2 directly implies Corollary 1, which is at the optimal rate of the pre-

diction risk using the original data Xi, Yi, for i = 1, . . . , n. Recall that σmin(Q̃)

is only associated with the subset design, and the condition number κ represents

the inherent property of the model structure Γ(·). We show that the conditions

of Corollary 1 hold in many common situations with a proper subset design and

model structure. We first give the following result.
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Proposition 1. For the uniform independence design (Design 1) and uniform

k-card design (Design 2), we have

σ−1min(Q̃) =
∏

1≤j≤d

aj
aj − 1

,

where aj = 2 for the uniform independence design, and aj = (pj − 1)/(k − 1) for

the uniform k-card design.

Proposition 1 implies that σ−1min(Q̃) is at most 2d, and almost a constant for

the uniform two-card design. For example, if we use the uniform 2-card design

to privatize a 10 digit phone number, then σ−1min(Q̃) = (9/8)10 < 4. The proof

of Proposition 1 is provided in the Supplementary Material. Next, we show that

Corollary 1 holds for two widely used model structures.

Example 1: Additive model, continued. It can be shown that for the

additive model parameterized as in Example 1, the condition number of the

matrix P TP satisfies κ = max1≤j≤d pj . Thus, when the maximum value of pj is

bounded by a constant, the risk bound is rate optimal. The proof is included in

the Supplementary Material.

Example 3: Saturated model, continued. For the saturated model, P is an

identity matrix, so κ = 1 and the risk bound is rate optimal.

Regularized subset least squares estimator. In practice, the matrix QWP

is not necessarily a full-column rank matrix. To improve the estimation stability,

we suggest using the penalized estimator

β̂ = argmin
β∈Rq

‖y −QWPβ‖22 + λJ(β),

where λ is a tuning parameter and J(·) is a regularization function, such as

J(β) = ‖β‖22 (ridge-type regression) or J(β) = ‖β‖1 (lasso-type regression).

Estimation of population distribution. If the population distribution w is

unknown, we can estimate it using the method of moments with the following

equation:

E(1A) =
∑
a∈A

pr(A = a)1a =
∑
a∈A

1aµa1
T

aw = Q̃w.

In other words, given the set observations {A1, . . . , An}, the estimator ŵ is solved

from
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Q̃ŵ = n−1
n∑
i=1

1Ai
.

It can be shown that this moment-based estimator is consistent and root-n asymp-

totically normal under some regularity conditions (Wang and Ding (2021)).

Maximum likelihood method. The proposed subset least squares estimator

does not require that we know the distribution of the noise ε. If we assume the

noise distribution is parameterized, an alternative way is to calculate the maxi-

mum likelihood estimator. In their pioneering work, Dempster, Laird and Rubin

(1977) studied a general class of incomplete data and proposed the expectation-

maximization algorithm to find the maximum likelihood estimator. We extend

the concept of incomplete data to our problem, reviewing {Y,A} as the incomplete

data and {Y,X,A} as the complete data. Nevertheless, we do not recommend

this method for our problem because of its computational cost and empirical

performance, even if the noise distribution assumption is justifiable. The total

computational cost of the earlier proposed estimator is O(nq2). In contrast, the

cost of the expectation-maximization algorithm is at least O(knq2) per itera-

tion, where k is the average cardinality of the observed sets. We implement the

expectation-maximization algorithm with Gaussian noise, and find that its em-

pirical performance is undesirable compared with that of the subset least squares

method. Details about the algorithm derivation and time complexity are provided

in the Supplementary Material.

4. Model Selection

In practice, it is rare that we know the structure Γ(·) of the underlying

model f(X) = Γ(X)Tβ. This section focuses on the selection of an appropriate

model, such as the additive or quadratic model, and the selection of variables

in the models. Suppose that we have a set of candidate models Mn = {α :

Γα(·)}, indexed by α. Let X 7→ f̂α(X) denote the model α estimated using

the subset least squares method. Because the observed data are set-valued, we

consider the following modified squared error loss:

Ln(α) = n−1
∑

1≤i≤n
{f(Xi)− f̂α(Ai)}2, (4.1)

where f̂α(Ai) is the estimated mean of Y conditional on Ai. The model with the

smallest loss is

α∗n = argmin
α∈Mn

Ln(α).
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Note that Ln(α) is not available, because it involves the unknown f . Therefore,

we propose selecting the model as follows:

α̂n = argmin
α∈Mn

Sn(α), where Sn(α) = n−1
∑

1≤i≤n
{yi − f̂α(Ai)}2 + 2n−1σ̂2pn(α),

pn(α) is the number of free parameters of model α, and σ̂ is an estimator of the

noise level σ. The above selection method is called the modified Mallows’s Cp
criterion (Mallows (2000)), and is denoted by mCp.

Theorem 3. Assume that E[{E(Y | X) − E(Y | A)}2] is bounded away from

zero, |Mn|/n → 0 and p/n → 0 as n → ∞, and σ̂ is a consistent estimator

of σ. The model selected by mCp is asymptotically loss efficient, meaning that

Ln(α∗n)/Ln(α̂n)→ 1 in probability as n→∞.

When p is fixed, the condition of Theorem 3 is automatically satisfied, and

thus mCp is asymptotically loss efficient. A consistent estimator σ̂ can be ob-

tained by solving an equation based on the law of total variance of var(Y ). More

details are included in the Supplementary Material.

5. Experiments

5.1. Simulated data experiments

We first verify the proposed method using four simulated data experiments

by showing the estimation error under different model structures and subset de-

signs. We compare six methods: the least squares (“LS-Full”), which uses the

complete dataX, Y for the estimation; grand mean (“Mean”), which uses only Y ;

subset least squares (“SLS”); ridge-type subset least squares (“SLS-R”); lasso-

type subset least squares (“SLS-L”); and maximum likelihood estimator based on

the expectation-maximization algorithm (“MLE”). The lasso-type and ridge-type

subset least squares estimators are tuned using five-fold cross-validation with the

parameter λ ∈ {0, 0.1, 1, 10}.

Saturated model. First, we consider a saturated model (Example 3) with

dimension d = 3, pj = 5, j = 1, 2, 3, Gaussian noise with standard deviation

σ = 1, and the maximum of |f(X)| being smaller than K = 3. The popula-

tion distribution w and parameters β are drawn element-wisely from a uniform

distribution on [0, 1]; w is re-scaled to sum to one, and β is re-scaled to satisfy

|f(X)| ≤ K. We generate n = 5,000 observations of X,A, Y using the product

uniform two-card design (Design 2). For each method, we evaluate the estima-

tion loss E[{f(X) − f̂(X)}2 | Ai, Yi, i = 1, . . . , n]. The procedure is replicated
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Figure 1. Box plot showing the estimation loss of five methods defined in Subsection 5.1,
from 100 replications under the saturated model. The left and right columns of each
method correspond to known and unknown population distributions, respectively.
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Figure 2. Loss efficiency using mCp under different sample sizes for the model selection
experiment in Subsection 5.1.

k = 100 times, with w unknown or known. Because the QWP matrix is highly

ill-conditioned, “SLS” is not included in this experiment. A box plot of the loss

is reported in Figure 1. We find that “MLE” performs worse than the proposed

subset least squares estimators. The estimation loss using the set-valued data

(“SLS-L,” “SLS-R,” or “MLE”) is larger than the loss using the original data

(“LS-Full’), but smaller than when all predictor information is lacking (“Mean”),

as expected. Moreover, the prediction performance of the subset least squares

estimators is better when the population distribution is known.
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Table 1. Mean estimation loss of six methods under the additive model in Subsection 5.1.
Standard errors are all within 0.01 from 100 replications.

w LS-Full SLS SLS-L SLS-R MLE Mean

Unknown 0.01 0.11 0.12 0.11 0.55 2.00

Known 0.01 0.07 0.08 0.07 0.57 2.00

Table 2. Mean estimation loss under the additive model in Subsection 5.1, for different
average subset cardinalities k. Standard errors are all within 0.03 from 100 replications.

k SLS SLS-L SLS-R MLE

2 0.07 0.07 0.06 0.57

3 0.21 0.25 0.21 1.12

4 0.74 0.71 0.69 1.73

Additive model. A suitable model can greatly reduce the number of parame-

ters, hence improving the prediction accuracy. Using the same setting as above,

we study the performance of subset least squares estimators when the underlying

model is additive and the sample size n = 1,000. The results are summarized in

Table 1. Even though the sample size is significantly smaller than that of the

saturated model, we find that the estimation loss of the subset least squares es-

timators is greatly reduced, and is comparable to the loss based on the complete

data. However, “MLE” still exhibits a relatively large loss.

Influence of the subset design. We compare the mean estimation loss of 100

replications on the previous additive model for the subset least square estimators

and the maximum likelihood estimator, using a uniform k-card design with k =

2, 3, 4. The results in Table 2 show that the average cardinality of the subset A

influences the estimation accuracy. This aligns with our intuitive understanding

that the higher the mean cardinality is, the less information we can learn from

each subset observation, and hence the worse the estimation is. It also matches

the error bound given by Theorem 2, which is proportional to σ−1min(Q̃), and

Proposition 1 tells us σ−1min(Q̃) is increasing with k under a uniform k-card design.

Model selection. With all other settings remaining unchanged, we now have

a collection of models M, instead of a given true model. Suppose M includes

the grand mean model Y ∼ 1, main-effect models for each variable Y ∼ Xj ,

j = 1, 2, 3, quadratic models for any two variables Y ∼ Xk ×Xl, 1 ≤ k < l ≤ 3,

and the saturated model. Let the true model be Y ∼ X1 × X2. We use the

proposed mCp to perform the model selection. We apply the uniform two-card

design to generate the subsets. The average loss efficiency Ln(α∗n)/Ln(α̂n) of 100
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Table 3. The mCp values Sn(α) of five models on the Student Oerformance data set.

“G1∼1” “G1∼School” “G1∼Failure” “G1∼School×Failure” “G1∼School+Failure”

7.55 6.62 7.19 6.59 6.44

replications against the sample size is presented in Figure 2. Here, the loss is the

modified squared error loss defined in Equation (4.1). The loss efficiency is close

to one.

5.2. Student performance data

This data set contains information on 649 secondary education students

(Cortez and Silva (2008)). We use the students’ first-period grades (“G1”) in

the Portuguese language as the response variable. The data set includes demo-

graphic, social, and school-related attributes, among which we choose “School”

and “Failure” as the variables of interest. Both variables have four levels. Here,

“School” represents the place of a student, and “Failure” is the number of failed

courses in the past. An interesting problem is whether the Portuguese language

grade is associated with past study performance and potential differences among

schools. The original data set collected the exact values of “School” and “Fail-

ure.” However, historical records of student grades are highly sensitive informa-

tion, and may be used to identify a particular student. To promote individual

privacy, we instead use the subset privacy mechanism to collect them, and apply

the proposed subset least squares method for the regression. In this illustrative

experiment, we adopt the uniform independence design (Design 1) to generate

subsets, and show that the prediction error using the set-valued observations is

comparable with that of the regression using the original data.

First, we illustrate the proposed mCp method for selecting a regression model

from the model class {“G1∼1,” “G1∼School,” “G1∼Failure,” “G1∼School×
Failure,”“G1∼School+Failure”} using a ridge-type subset least squares estima-

tor. Table 3 summarizes the mCp values of the different models. The additive

model “G1∼School+Failure” has the smallest value, and is thus selected. The

mCp values also suggest that both predictors are associated with the response.

Under the selected additive model, we compare the performance of all six

methods. We split the whole data set into training and test data sets with a

ratio of two to one. The uniform independence design (Design 1) is chosen to

generate subsets on the training data set. The evaluation criterion is the mean

squared error of the response on the test data set. The average test errors are

summarized in Table 4, with k = 100 replications. All methods that actively use
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Table 4. Mean test error on the Student Performance data set. Permutation standard
errors are all within 0.06 from 100 replications.

Method LS-Full SLS SLS-L SLS-R MLE Mean

Loss 5.85 6.21 6.10 5.99 6.01 7.54

the complete or incomplete data have significantly smaller test errors than that

of the grand mean method. In addition, we observe that the subset-valued data

using the proposed method have a similar test error to that of the complete data.

This is because the test error involves noise in the response. Such noise can be

large compared with the estimation error from using incomplete data. Thus, we

may not need to collect exact sensitive individual information, such as the history

of failed classes, to study statistical relationships.

6. Conclusion

Motivated by set-valued predictors obtained from privacy-oriented data col-

lection mechanisms, we propose a subset least squares method for regression. We

derive an upper bound of the prediction risk for the proposed estimator, and show

that it is rate-optimal under mild conditions. In addition, we develop an asymp-

totically loss-efficient method mCp for model selection. The subset least squares

method shows promising performance compared with that of the MLE in our nu-

merical studies. Our numerical results indicate that when the regression model is

complex relative to the sample size, the subset least square estimator may perform

poorly, owing to the ill-conditioned design matrix. In contrast, the regularized

subset least squares stabilizes the estimation, and hence has a much smaller pre-

diction risk. Moreover, the set-valued data using the proposed method tend to

have similar estimation risks to those observed from the original data, which

justifies the use of subset privacy.

Some interesting problems are left for future work. First, the asymptotic

distributions for the regularized subset least squares estimators remain unclear.

Second, we would like to explore an inference on the parameters β, which seems

highly nontrivial.

Supplementary Material

The online Supplementary Material includes detailed proofs, additional ex-

periments, extended discussions, and the code for the experiments.
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