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Abstract: This study considers a least absolute shrinkage and selection operator

(Lasso)-based approach to variable selection of ARMA models. We first show that

the Lasso estimator follows the Knight-Fu’s limit distribution under a general tun-

ing parameter assumption. With a special restriction on the tuning parameters,

we show that the Lasso estimator achieves the “oracle” properties: zero parame-

ters are estimated to be zero exactly, and other estimators are as efficient as those

under the true model. The results are extended further for nonstationary ARMA

models, and an algorithm is presented. In particular, we propose a data-driven

information criterion to select the tuning parameter that is shown to be consistent

with probability approaching one. A simulation study is carried out to assess the

performance of the proposed procedure, and an example is provided to demonstrate

its applicability.
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1. Introduction

It is well known that identifying an ARMA (p, q) model for a given data

set is always a challenging task. The main difficulty lies in selecting the order

(p, q). Because Akaike (1977) criterion (AIC) is not weakly consistent, researchers

usually use the BIC criterion to select (p, q); see Rissanen (1978) and Schwarz

(1978). The consistency of the BIC criterion was proved by Hannan (1980).

This criterion requires the prior determination of two constants P and Q, such

that p ≤ P and q ≤ Q, and uses a sequential procedure to estimate all possible

ARMA(k1, k2) models, for k1 = 1, . . . , p and k2 = 1, . . . , q. Furthermore, the

criterion needs to be combined with checks for the adequacy of the fitted models

and with tests used to select the variables for a final model; see Pötscher (1983)

and Pötscher and Srinivasan (1994). This classical approach incurs a significant

computational burden, particularly, when p or q is large.

This study considers a least absolute shrinkage and selection operator (Lasso)-
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based approach to select variables for ARMA (p, q) models and to simultaneously

determine the order p (or q). The Lasso method was developed by Tibshirani

(1996) for selecting variables and estimating parameters. It has since been stud-

ied extensively, and many variants have been proposed, including those of Fan

and Li (2001) for a nonconcave penalized likelihood, Fan and Li (2002) for Cox’s

proportional hazards model, Knight and Fu (2002) and Wang, Li and Tsai (2007)

for Lasso-type estimators of regression models, Yuan and Lin (2006) for model

selection with grouped variables, Zou (2006) for the adaptive Lasso, and Huang,

Ma and Zhang (2008) for the adaptive Lasso for a high-dimensional regression.

In time series settings, the Lasso approach is applied mainly to the autoregressive

(AR) models. For example, Nardi and Rinaldo (2011) employed a Lasso estimator

to fit AR models; see also Wang, Li and Tsai (2007) and Song and Bicke (2011)

for large-vector AR models. Then, Liao and Phillips (2015) studied a general

Lasso-type estimator for vector error correction models, and Kock (2016) con-

sidered an adaptive Lasso for autoregressions. Chen and Chan (2011) considered

an adaptive Lasso for ARMA model selection, and obtained asymptotic normal-

ity for the estimated parameters. However, to the best of our knowledge, this

approach has not been considered for nonstationary ARMA models with a unit

root. For stationary ARMA processes, this approach serves the same purpose

as that of the three-stage procedure suggested by Hannan and Kavalieris (1984).

However, unlike the latter procedure, the proposed approach does not need to

specify max(p,q).

The remainder of the paper proceeds as follows. We present the Lasso-type

estimation in Section 2. Here, we first show that the Lasso estimator follows

the Knight-Fu limit distribution under a general tuning parameter assumption.

With a special restriction on the tuning parameters, we show that the Lasso

estimator achieves the “oracle” properties: zero parameters are estimated to be

zero exactly, and other estimators are as efficient as those under the true model.

The parameter estimators are shown to converge weakly to the Knight-Fu dis-

tribution, which extends the asymptotic normality results in Chen and Chan

(2011). The results are extended to nonstationary ARMA models in Section 3.

An algorithm is discussed in Section 4. Here, we also propose a data-driven in-

formation criterion to select the tuning parameter, that is shown to be consistent

with probability approaching one. Simulation results are reported in Section 5,

and an example is given in Section 6. Section 7 concludes the paper. All proofs

are relegated to the Appendix.
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2. Lasso-Type Estimation

Assume that the time series {yt} is generated by the following ARMA (p, q)

model:

yt =

p∑
i=1

φiyt−i +

q∑
i=1

ψiεt−i + εt, (2.1)

where εt is a sequence of independent and identically distributed (i.i.d.) random

variables with mean zero and variance σ2. The unknown parameters are θ ≡
(φ1, . . . , φp, ψ1, . . . , ψq)

′, and its true value is denoted by θ0. The parameter

subspace, Θ ⊂ Rp+q, is a compact set, and θ0 is an interior point in Θ, where

R = (−∞,∞). We make the following assumption.

Assumption 1. φ(z) ≡ 1−
∑p

i=1 φiz
i 6= 0 and ψ(z) ≡ 1 +

∑q
i=1 ψiz

i 6= 0 when

|z| ≤ 1, and φ(z) and ψ(z) have no common root with φp 6= 0 or ψq 6= 0.

This is the usual stationarity and invertibility condition of model (2.1). If

both φp = 0 and ψq = 0, then model (2.1) is not identifiable. Hannan (1980) notes

that the estimator based on the quasi-maximum likelihood estimator (MLE) does

not converge, in any reasonable sense. The unknown order p can be any integer

larger than the true order (say p0) when ψq 6= 0. In this case, the Lasso approach

will overestimate the model and identify the order p0 by shrinking φi to zero, for

i = p0 + 1, . . . , p.

Given the observations {yn, . . . , y1} and initial values {y0, y−1, y−2, . . .}, gen-

erated by model (2.1), we can write the parametric model as

εt(θ) = yt −
p∑
i=1

φiyt−i −
q∑
i=1

ψiεt−i(θ) , (2.2)

where εt(θ0) = εt. The minus conditional log-quasi-Gaussian likelihood function

based on {εt(θ) : t = 1, . . . , n} plus a penalty is

Ln(θ) =

n∑
t=1

ε2
t (θ) +

p̃∑
i=1

λin|θi|, (2.3)

where p̃ = p + q, and {λin : i = 1, . . . , p̃} are the nonnegative tuning parame-

ters. The minimizer of Ln(θ) on Θ is called the Lasso estimator of θ0, and is

denoted by θ̂n. When λin = λn for all i, θ̂n reduces to the classical Lasso estimator
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of Tibshirani (1996)), and may also suffer from significant bias; see Fan and

Li (2001). Here, θ̂n based on (2.3) is the modified Lasso-type estimator of Wang,

Li and Tsai (2007). Let

an = max{λin|i = 1, . . . , p̃}.

This yields the first result.

Theorem 1. Suppose that Assumption 1 holds for each θ ∈ Θ. Then,

(a) If an/n→ 0, then θ̂n → θ0 almost surely (a.s.);

(b) Furthermore, if λin/
√
n→ λi0 ≥ 0, for i = 1, . . . , p̃, then,

√
n(θ̂n − θ0)→L arg min

u∈Rp

{V (u)}

as n→∞, where →L denotes convergence in distribution,

V (u) = −2u′N + u′Ωu+

p̃∑
i=1

λi0[uisgn(θi0)I(θi0 6= 0) + |ui|I(θi0 = 0)] ,

where N ∼ N(0, σ2Ω), I(·) is the indicator function, and Ω = E[
`
εt(θ0)

`′ εt(θ0)].

This is the Knight-Fu-style asymptotic property; see Knight and Fu (2000).

When all λi0 = 0, for i = 1, . . . , p̃, we have
√
n(θ̂n−θ0)→L N(0, σ2Ω−1), which is

the same as the limit distribution of the usual conditional least squares estimator

(LSE). However, when some θi0 = 0, the Lasso estimator θ̂in cannot shrink to

zero exactly, and the estimators of other parameters cannot achieve the same

efficiency as that of the LSE with a restriction on θi0 = 0. According to the

“oracle” properties, zero coefficients are estimated as zero exactly, and nonzero

coefficients are estimated as efficiently as they are by conditional LSE with the

restriction that zero coefficients are zero. To achieve these properties, we consider

the following tuning parameters:

λin =
λn√
n|θ̃in|

, (2.4)

where λn > 0,
√
n(θ̃in − θi0) →L ξi as n → ∞, and ξi is a random variable,

with P (ξi = 0) = 0. Obviously, we can take θ̃n = θ̂OLSn , the ordinary least

squares estimator, which minimizes (2.3) with λin = 0, for all i. Furthermore,
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because consistent estimators are available, we restrict our parametric space to

Θn = {θ : ‖θ‖ ≤ δn}, where ‖ · ‖ is the Euclidean norm and δn → 0 as n → ∞,

and define

θ̂on = arg min
θ∈Θn

Ln(θ) .

Equation (2.4) reduces the n tuning parameters in (2.3) to one tuning param-

eter, making the computational implementation of the minimization problem

straightforward. This kind of tuning parameter was suggested by Wang, Li and

Tsai (2007) and Zou (2006), with the latter referring to as the adaptive Lasso

penalty.

Let θ10 be the subset of θ0 with nonzero elements and θ20 be the subset with

zero elements, with their corresponding estimators in θ̂on denoted by θ̂o1n and θ̂o2n,

respectively. This yields the following result.

Theorem 2. Suppose that Assumption 1 holds for each θ ∈ Θn, λin is defined

as in (2.4), λn/
√
n→ λ0, and λn →∞. Then, it follows that

(a) P (θ̂o2n = 0)→ 1 if λ0 = 0;

(b)
√
n(θ̂o1n − θ10)→L N(B1, σ

2Ω−1
1 )

as n→∞, where Ω1 and B1 are the submatrix of Ω and the subvector of Ω−1/2λ0(

|φ10|−1, . . . , |φp0|−1, |ψ10|−1, . . . , |ψq0|−1)′, respectively, corresponding to θ10.

When λ0 = 0, the Lasso estimator θ̂n achieves the “oracle” properties. The

penalty function in (2.3) and the tuning parameters in (2.4) can be replaced

by others, for example, λin = (λn/
√
n|θ̃in|)ω, with ω > 0. As long as similar

conditions on the tuning parameters to those in Liao and Phillips (2015) are

satisfied, Theorem 1 and 2 still hold. In the AR model, Nardi and Rinaldo

(2011)) and Song and Bicke (2011) allowed the order, p, to approach ∞ as the

sample size n → ∞. In the ARMA model, this issue seems to be challenging.

The main difficulties are that the Lasso estimator θ̂n may not be consistent, and

the objective function does not have a quadratic approximating form. We were

not able to find a current technique in “large p small n”, that can be applied to

ARMA models. This remains an open problem for future research.

3. Extension to Nonstationary ARMA Models

This section considers the nonstationary ARMA(p, q) model with AR poly-

nomial φ(z) and MA polynomial ψ(z). The notation used in this section should
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not be confused with that used in Section 2. Assume that the true AR poly-

nomial φ0(z) = 1 −
∑p

i=1 φi0z
i has a unit root +1 (i.e., φ0(1) = 0), and that

other roots lie outside the unit circle. Denote c = −φ(1), φ∗i = −
∑p

k=i+1 φk, and

wt = yt − yt−1. Then, we can rewrite model (2.1) as

wt = cyt−1 +

p−1∑
i=1

φ∗iwt−i +

q∑
j=1

ψjεt−j + εt. (3.1)

Assume the following condition is satisfied.

Assumption 2. φ∗(z) ≡ 1−
∑p−1

i=1 φ
∗
i z
i 6= 0 and ψ(z) = 1 +

∑q
i=1 ψiz

i 6= 0 when

|z| ≤ 1, and φ∗(z) and ψ(z) have no common root with φ∗p−1 6= 0 and ψq 6= 0.

Let θ = (φ∗1, . . . , φ
∗
p−1, ψ1, . . . , ψq)

′. The unknown parameter vector is (c, θ′)′,

and its true value is denoted by (0, θ′0)′. Assume θ lies in a compact set Θ ⊂
Rp+q−1, and that its true value θ0 is an interior point. The full parameter space

is now Θn = [−δ/n, δ/n] × Θ, where δ is a small positive number. The residual

from model (3.1) is as follows:

εt(c, θ) = wt − cyt−1 −
p−1∑
i=1

φ∗iwt−i −
q∑
j=1

ψjεt−j(c, θ). (3.2)

The minus conditional log-quasi-Gaussian likelihood function based on {εt(c, θ) :

t = 1, . . . , n} plus a penalty is

L̃n(c, θ) =

n∑
t=1

ε2
t (c, θ) +

p+q−1∑
i=1

λin|θi|. (3.3)

The Lasso estimator of (0, θ0) is the minimizer of L̃n(c, θ) on Θn:

(ĉn, γ̂n) = arg min
Θn

L̃n(c, θ).

Note that ĉn is only the local minimizer of L̃n(c, θ) and its global minimizer is

not clear. This phenomenon has been well observed in the literature on the unit

root problem. The LSE of c in Phillips (1987) can serve as its initial value. The

following theorem gives the asymptotic properties of (ĉn, γ̂n).

Theorem 3. Suppose that Assumption 2 holds for each θ ∈ Θ.

(a) If max{λin : i = 1, . . . , p+ q − 1}/n→ 0 as n→∞, then θ̂n →p θ0.
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(b) Furthermore, if λin/
√
n→ λi0 ≥ 0, for i = 1, . . . , p+ q − 1, then

(i) nĉn →L φ
∗(1)[

∫ 1
0 B

2(τ) dτ ]−1
∫ 1

0 B(τ) dB(τ) and

(ii)
√
n(θ̂n − θ0)→L argminu∈Rp{V (u)}

as n→∞, where B(τ) is a standard Brownian motion,

V (u) = −2u′N + u′Ωu+

p+q−1∑
i=1

λi0[uisgn(θi0)I(θi0 6= 0) + |ui|I(θi0 = 0)],

N ∼ N(0, σ2Ω), and Ω = E[∂εt(0, θ0)/∂θ′∂εt(0, θ0)/∂θ].

For the stationary case, to achieve the “oracle” properties of the Lasso esti-

mator, we consider the following tuning parameters:

λin =
λn√
n|θ̃in|

, (3.4)

where λn > 0,
√
n(θ̃in − θi0) →L ξi as n → ∞, and ξi is a random variable,

with P (ξi = 0) = 0. Furthermore, we restrict the parameter space of θ to

Θ1n = {θ : ‖θ‖ ≤ δn}, where δn → 0 as n→∞. The Lasso estimator of (c, θ) is

as follows:

(ĉn, θ̂
o
n) = arg min

(c,θ)∈[−δ/n,δ/n]×Θ1n

Ln(c, θ). (3.5)

Let θ10 be the subset of θ0 with nonzero elements, and θ20 be the subset with

zero elements, with their corresponding estimators in θ̂on denoted by θ̂o1n and θ̂o2n,

respectively.

Theorem 4. Suppose that Assumption 2 holds for each θ ∈ Θn, λin is defined

as in (3.4), λn/
√
n→ λ0, and λn →∞. Then,

(a) P (θ̂o2n = 0)→ 1 if λ0 = 0,

(b)
√
n(θ̂o1n − θ10)→L N(B1, σ

2Ω−1
1 )

as n → ∞, where Ω1 and B1 are the submatrix of Ω and the subvector of

Ω−1/2λ0(|φ∗10|−1, . . . , |φ∗p−1,0|−1, |ψ10|−1, . . . , |ψq0|−1)′, respectively, corresponding

to θ10.

Because our main objective is variable selection in the ARIMA model, we

do not impose a penalty on the parameter c. If a penalty is imposed on c, some

“oracle” properties should be similar to those of Kock (2016) for model (3.1) with
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q = 0. Kock (2016) also obtained some “oracle” properties when c ∈ (−2, 0) for

model (3.1) with q = 0. These results should be able to be extended for model

(3.1).

4. Algorithm

In the empirical implementation, the tuning parameter λn in (2.3) is impor-

tant. If we take

λn = h log n or h log logn,

then the conditions of λn in Theorem 3 are satisfied with λ0 = 0, where h > 0

is a constant. Here, we use the data-driven information criterion (IC) to select

the tuning parameter h; see Liao and Phillips (2015). For each h, denote θ̂on as

θ̂on(h) and

Sn(h) =

n∑
t=1

ε2
t [θ̂

o
n(h)].

Let d(h) and d0 be the nonzero number of components in θ̂on(h) and θ0, respec-

tively. Define

IC(h) = Sn(h) + d(h) log n.

The tuning parameter is selected by

hn = arg min
h∈[0,hmax]

IC(h), (4.1)

where hmax is a positive constant. By Theorem 3, d(h) = d0 for any h > 0, with

probability approaching one. If d(hn) > d0, then

Sn(hn)− Sn(h) = Op(1) ,

by Theorem 3. It follows that

IC(hn)− IC(h) = Op(1) + [d(hn)− d0] log n→∞,

with probability approaching one as n → ∞. Thus, the model based on the

tuning parameter hn cannot be overfitted; that is, we must have d(hn) ≤ d0.

Note that
Sn(0)

n
→
p
σ2
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as n→∞. If the model is underfitted (i.e., d(hn) < d0), then

Sn(h)

n
→
p
C > σ2

as n → ∞, where C is a positive constant. Because [d(h) − d(hn)] log n/n → 0,

we have IC(hn) ≤ IC(0) < IC(h) as n → ∞. Thus, the tuning parameter

selected by (4.1) will not underfit the model. It follows that P (d(hn) = d0)→ 1

as n → ∞. Thus, our estimator based on the tuning parameter hn achieves the

“oracle” properties.

Because the objective function (2.3), with λin defined by (2.4), is a nonconvex

function, we need to use an iterative approach to search for its minimizer. First,

we use the usual conditional LSE of θ0 as the initial value θ̃n. Here, note that

εt(θ) can be approximated as follows:

εt(θ) ≈
[
εt(θ0)− θ′0

∂εt(θ0)

∂θ

]
+ θ′

∂εt(θ0)

∂θ
.

Let

ỹt(θ) = εt(θ)− θ′
∂εt(θ)

∂θ
and x̃t(θ) = −∂εt(θ)

∂θ
.

Then, we use the following local quadratic function to approximate (2.3):

Q(θ) = ‖Y (θ(m)
n )−X(θ(m)

n )θ‖2 + λn

p+q∑
i=1

|θi|
√
n|θ(m)

in |
,

where θ
(m)
n is the minimizer of Q(θ) at the mth iteration, starting from θ

(0)
n =

θ̃n, Y (θ
(m)
n ) = (ỹ1(θ

(m)
n ), . . . , ỹn(θ

(m)
n ))′, and X(θ

(m)
n ) = (x̃1(θ

(m)
n ), . . . , x̃n(θ

(m)
n ))′.

The minimizer of Q(θ) is denoted by θ
(m+1)
n . Because Q(θ) is a convex function

in terms of θ, the usual Lasso algorithm can be applied in each iteration; for

example, see Tibshirani (1996); Fu (1998); Fan and Li (2001); Cai et al. (2005),

among others. In this iteration, we need to set up a threshold for the accuracy of

the estimators. When the estimator is less than this threshold, it will be shrunk

to zero exactly, and the sparse solution is achieved.

5. Simulation Study

In this section, we investigate the finite-sample performance of the proposed

Lasso procedure for model identification. In all simulation experiments, the al-

gorithm described in Section 4 is applied with hmax = 50, and 500 replications
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Table 1. The proportion of correct model identification (Corr.), averages (ave), and
empirical standard deviations (e.s.d.) of the parameter estimates.

n Corr. φ1 φ2 φ6
True 0.600 -0.400 -0.300

500 0.932 ave. 0.592 -0.394 -0.288
e.s.d. 0.038 0.040 0.037
True 0.600 -0.400 -0.300

1,000 0.960 ave. 0.597 -0.396 -0.295
e.s.d. 0.027 0.027 0.025

are used.

5.1. AR model

We first consider the AR(6) model,

Xt = 0.6Xt−1 − 0.4Xt−2 − 0.3Xt−6 + εt , (5.1)

where εt
i.i.d.∼ N(0, 1). The Lasso procedure is applied using an AR model with

a maximum lag of 10. The results are provided in Table 1. The true model

is correctly identified in over 90% of the replications. Moreover, the parameter

estimates are very accurate.

5.2. MA model

Next, we consider the MA(5) model,

Xt = εt + 0.5εt−1 + 0.3εt−3 − 0.4εt−5 , (5.2)

where εt
i.i.d.∼ N(0, 1). The Lasso procedure is applied to an MA model with a

maximum lag of 10. The results are provided in Table 2. Note that estimating an

MA model is more difficult than estimating an AR model, because the regressors

of the Lasso procedure are not directly observable and, thus, are obtained using

the iterative procedure in Section 2. Nevertheless, the true model is correctly

identified in almost 90% of the replications. Once again, the parameter estimates

are very accurate.

5.3. ARMA model

In this subsection, we investigate the ARMA(5,4) model,

Xt = 0.5Xt−1 + 0.3Xt−2 − 0.3Xt−5 + εt + 0.5εt−1 − 0.4εt−2 + 0.4εt−4 , (5.3)
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Table 2. The proportion of correct model identification (Corr.), averages (ave), and
empirical standard deviations (e.s.d.) of the parameter estimates.

n Corr. θ1 θ3 θ5
True 0.500 0.300 -0.400

500 0.896 ave. 0.487 0.283 -0.381
e.s.d. 0.044 0.047 0.050
True 0.500 0.300 -0.400

1,000 0.908 ave. 0.494 0.291 -0.391
e.s.d. 0.030 0.034 0.031

Table 3. The proportion of correct model identification (Corr.), averages (ave), and
empirical standard deviations (e.s.d.) of the parameter estimates.

n Corr. φ1 φ2 φ5 θ1 θ2 θ4
True 0.500 0.300 -0.300 0.500 -0.400 0.400

500 0.518 ave. 0.608 0.185 -0.251 0.363 -0.383 0.353
e.s.d. 0.253 0.170 0.089 0.263 0.155 0.098
True 0.500 0.300 -0.300 0.500 -0.400 0.400

1,000 0.784 ave. 0.544 0.255 -0.276 0.444 -0.398 0.385
e.s.d. 0.162 0.119 0.060 0.169 0.083 0.055
True 0.500 0.300 -0.300 0.500 -0.400 0.400

2,000 0.906 ave. 0.515 0.283 -0.292 0.481 -0.399 0.391
e.s.d. 0.085 0.069 0.028 0.085 0.037 0.027

where εt
i.i.d.∼ N(0, 1). The Lasso procedure is applied using an ARMA model

with maximum lags of (5,5). The results are provided in Table 3. Identifying

an ARMA model is more difficult than identifying pure AR or pure MA models.

Although the ARMA(5,4) model with exactly six nonzero coefficients is identi-

fied correctly in only around 50% of cases for small n, the percentage increases

significantly as the sample size grows. In particular, the percentage is close to

90% when n = 2, 000. The accuracy of the parameter estimates also improves as

the sample size grows.

Note that when the true order of the ARMA process is (p0, q0), then the

Lasso procedure cannot be applied with both p > p0 and q > q0. The reason

is as follows. The initial value of the Lasso procedure is obtained by fitting an

ARMA(p, q) model to a ARMA(p0, q0) process. When p > p0 and q > q0, there

will be at least one pair of redundant factors in the AR and MA polynomials,

which cancel each other out. For example, if the true model is (1 − φ0B)Xt =

(1 − θ0B)εt, that is, p0 = q0 = 1, but p = q = 2 is used in the Lasso procedure,
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then the resulting ARMA(p, q) model is typically of the form

(1− φ̂1B)(1− φ̂2B)Xt = (1− θ̂1B)(1− θ̂2B)εt ,

where φ̂1 and θ̂1 are close to the true parameters φ0 and θ0, respectively, and

φ̂2 ≈ θ̂2 nearly cancel each other out. With these redundant factors, the initial

estimates are not consistent estimates of the true ARMA coefficients and, thus,

the Lasso procedure is not applicable. This is an identification issue similar to

that mentioned by Hannan (1980). Nevertheless, using the sequential estimation

procedure in Pötscher (1990), the quantity r0 = max(p0, q0) can be consistently

estimated from the data. Thus, the Lasso procedure can be applied with the

model ARMA(r0, r0), which avoids the problem of redundant factors.

The following simulation experiment illustrates the practicality of combin-

ing the sequential estimation procedure and the proposed Lasso procedure. For

completeness, we briefly outline the sequential procedure of Pötscher (1990):

1. Given a time series (x1, . . . , xn), an integer r, and a function C(n) satisfying

limn→∞C(n)/n = 0 and lim infn→∞C(n)/ log logn > 2, define the model

selection criterion

ψ(r) = log σ̂2
n(r) +

2rC(n)

n
,

where σ̂2
n(r) is the estimator of the white noise variance σ2 obtained by

maximizing the Gaussian likelihood from fitting an ARMA(r, r) model to

the data. In our implementation, the BIC with C(n) = logn is used.

2. The estimator r̂ of r0 = max(p0, q0) is given by the first local minimum of

ψ(r), that is, the integer r̂ that satisfies

ψ(r) > ψ(r + 1) for 0 ≤ r ≤ r̂ , and ψ(r̂) ≤ ψ(r̂ + 1) .

We repeat the simulation study using the ARMA(5,4) model in (5.3), with

the Lasso procedure applied using an ARMA model with maximum lags of (r̂, r̂)

instead of (5,5). The results are provided in Table 4, and show that the sequential

procedure for estimating r0 is highly accurate when n reaches 1,000. Therefore,

the Lasso procedure is highly likely to be applied with the true r0 = 5 and, thus,

the results in Table 3 and Table 4 give equally good results for n = 1, 000 and

2, 000.
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Table 4. The proportion of correct r0 estimation (Corr.r0), proportion of correct model
identification (Corr.), averages (ave), and empirical standard deviations (e.s.d.) of the
parameter estimates.

n Corr.r0 Corr. φ1 φ2 φ5 θ1 θ2 θ4
True 0.500 0.300 -0.300 0.500 -0.400 0.400

500 0.678 0.412 ave. 0.637 0.127 -0.191 0.334 -0.360 0.400
e.s.d. 0.247 0.189 0.137 0.258 0.178 0.134
True 0.500 0.300 -0.300 0.500 -0.400 0.400

1,000 0.968 0.8 ave. 0.547 0.249 -0.273 0.441 -0.392 0.384
e.s.d. 0.160 0.141 0.07 0.163 0.086 0.059
True 0.500 0.300 -0.300 0.500 -0.400 0.400

2,000 0.996 0.902 ave. 0.510 0.288 -0.294 0.485 -0.397 0.390
e.s.d. 0.088 0.068 0.030 0.088 0.044 0.027

Table 5. The proportion of correct model identification (Corr.), averages (ave), and
empirical standard deviations (e.s.d.) of the parameter estimates.

n Corr. φ1 φ2 φ5 θ1 θ2 θ4 c
True 0.500 0.300 -0.300 0.500 -0.400 0.400 0

500 0.530 ave. 0.612 0.182 -0.247 0.363 -0.382 0.358 0
e.s.d. 0.247 0.179 0.091 0.257 0.152 0.094 0
True 0.500 0.300 -0.300 0.500 -0.400 0.400 0

1,000 0.776 ave. 0.546 0.254 -0.275 0.442 -0.397 0.383 0
e.s.d. 0.161 0.122 0.057 0.166 0.074 0.047 0
True 0.500 0.300 -0.300 0.500 -0.400 0.400 0

2,000 0.900 ave. 0.507 0.293 -0.294 0.488 -0.398 0.392 0
e.s.d. 0.081 0.064 0.031 0.082 0.039 0.028 0

5.4. Nonstationary ARMA model

Finally, we investigate the nonstationary ARIMA(5,1,4) model,

(1− 0.5B − 0.3B2 + 0.3B5)(1−B)Xt = εt + 0.5εt−1 − 0.4εt−2 + 0.4εt−4, (5.4)

where εt
i.i.d.∼ N(0, 1). The Lasso procedure discussed in Section 3 for nonsta-

tionary ARIMA models is applied with maximum lags of (5,5). The results are

provided in Table 5. Note that the AR and MA coefficients of Model (5.4) are the

same as those of Model (5.3). Moreover, the Lasso procedure successfully shrinks

the estimate of c to zero. Therefore, the fitting of Model (5.4) is essentially a fit-

ting of Model (5.3), using the differenced data. Hence, the proportions of correct

model identification, estimated coefficients, and empirical standard deviations in

Table 5 and Table 3 are very similar.
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6. Real-Data Examples

Chan (2010) analyzed the monthly interest rate on three-month government

Treasury bills for the period 1950 to 1988; see Figure 1. The series is of length

n = 461. Based on a preliminary analysis of the ACF and PACF graphs, several

ARMA models with lag 6 are fitted to the differenced log-series. In particular,

the AR(6), MA(6), and ARMA(6,6) models are compared. The results show that

the AR(6) models perform best in terms of the AIC. However, given that three

models are considered, it is likely that certain ARMA models within lag (6,6)

may yield a better fitting.

We revisit this data set by applying the Lasso procedure with an ARMA

model with a maximum lag of (6,6). Similarly to Section 4, the tuning parameter

hmax = 50 is used. The computation is conducted using R on a laptop with a 1.44

GHz processor with 4 GB RAM. The computation time for the Lasso procedure

is 43.37 seconds. The procedure yields the following ARMA(6,6) model:

Xt = −0.429Xt−6 + εt + 0.432εt−1 + 0.232εt−6 , (6.1)

where Xt is the difference log-interest rate, and εt is white noise. This model has

only three parameters, and is more parsimonious than the AR(6) model selected

in Chan (2010). The tuning parameter selected according to (4.1) is hn = 2.5,

corresponding to λn = hn log(n) = 15.3. Indeed, the same model is selected over

the range λn ∈ [15.3, 27.6]. Outside this range, for λn ∈ [3.1, 15.3), only the

additional parameter φ3 is selected; for λn ∈ (27.6, 58.3], only the parameter ψ6

is deleted. Thus, the effect of the tuning parameter λn on the Lasso procedure

is reasonably stable.

Because there are 12 parameters in an ARMA(6,6) model, there are 212 =

4, 096 possible models. We evaluated the BIC for all 4,096 models, incurring a

computation time used for the estimation of 2,240.66 seconds. The ARMA(6,6)

model (6.1) achieves the lowest BIC among all models. In conclusion, the shrink-

age effect of the proposed Lasso procedure successfully selects a parsimonious

ARMA that best describes the Treasury bills series.

7. Conclusion

This study proposes a Lasso-based approach to determine the order of sta-

tionary and nonstationary ARMA models. As discussed in Liao and Phillips

(2015), it is possible to extend the results to the vector error correction ARMA
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−

Figure 1. Monthly interest rate on three-month government Treasury bills, 1950–1988.

model and to the partially nonstationary ARMA model of Yap and Reinsel

(1995a).
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A. Appendix

Appendix: Proofs

Proof of Theorem 1. By the ergodic theorem and a piece-wise argument, see

Ling and McAleer (2010), it is readily shown that

max
Θ

∣∣∣∣∣ 1n
n∑
t=1

ε2
t (θ)− Eε2

t (θ)

∣∣∣∣∣ = o(1), a.s..

Furthermore, since an/n→ 0, we have

max
Θ

∣∣∣∣ 1nLn(θ)− Eε2
t (θ)

∣∣∣∣ = o(1), a.s..

Note from (2.2) that we can express εt(θ) = εt+κt(θ) where κt only depends

on yks and εks for k < t, and κt(θ) = 0 if and only if θ = θ0. Therefore,

E(ε2
t (θ)) = E(ε2

t ) + E(κ2
t (θ)) has a unique minimizer at θ = θ0. Using a similar

approach as for Theorem 2.1 (a) in Ling and McAleer (2010), we can show that

(a) holds.

By (a) of this theorem, we have θ̂n → θ0 a.s. when n → ∞. Denote

ûn =
√
n(θ̂n − θ0).

From Theorem 8.11.1 of Brockwell and Davis (1991), we have

(1/n)
∑n

t=1 ∂εt(θ0)/∂θ∂εt(θ0)/∂θ′ →p Ω ,
∑n

t=1[∂εt(θ0)/∂θ]εt/
√
n→L N(0, σ2Ω),

and Ω is positive definite. Moreover, as ∂2εt(θ0)/∂θ∂θ′ involves information up to

time t− 1, we have (1/n)
∑n

t=1 ∂
2εt(θ0)/(∂θ∂θ′)εt →p E(∂2εt(θ0)/(∂θ∂θ′)εt) = 0

by ergodic theorem. Hence, by Taylor’s expansion and ergodic theorem, we have

Ln(θ̂n)− Ln(θ0) = 2û′nDn + û′n[Ω + op(1)]ûn

+

p̃∑
i=1

λin√
n

[ûinsgn(θi0)I(θi0 6= 0) + |ûin|I(θi0 = 0)] , (A.1)

where Dn =
∑n

t=1[∂εt(θ0)/∂θ]εt/
√
n →L N(0, σ2Ω) as n → ∞. Note that Ω

is positive definite and λin/
√
n → λi0, when n → ∞. From (8.1), we see that

ûn = Op(1); Otherwise, if ûn is unbounded in probability, we will have P (Ln(θ̂n)−
Ln(θ0) > η) > 1−ε for some η and any ε, which is a contradiction to the definition

of θ̂n. Thus, (8.1) reduces to

Ln(θ̂n)− Ln(θ0) = Vn(ûn) + op(1), (A.2)
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where

Vn(u) = 2u′Dn + u′Ωu+

p̃∑
i=1

λi0[uisgn(θi0)I(θi0 6= 0) + |ui|I(θi0 = 0)].

Since θ̂n minimizes the left hand side of (8.2), ûn =
√
n(θ̂n − θ0) minimizes the

right hand side of (8.2). As Vn(u) is convex in u, it follows that

ûn = arg min
u∈Rp

{Vn(u)}+ op(1). (A.3)

It is easy to see that the finite dimensional distributions of Vn(u) converge to

those of V (u). Since both Vn(u) and V (u) are convex functions in terms of u,

we claim that argminu∈Rp{Vn(u)} →L argminu∈Rp{V (u)} as n → ∞. Hence, by

(8.3), the conclusion holds. This completes the proof.

Proof of Theorem 2. Note that the existence of θ̂on is guaranteed since θ̂on is

the minimizer of the continuous function Ln(θ) over the compact subset. Denote

ûn =
√
n(θ̂on − θ0). Then

ûn = arg min
u∈Rp

Ln

(
θ0 +

u√
n

)
.

By Taylor’s expansion and ergodic theorem, we have

Ln

(
θ0 +

ûn√
n

)
− Ln(θ0) = 2û′nDn + û′n[Ω + op(1)]ûn

+
λn√
n

p̃∑
i=1

ûin
θi0 + op(1)

sgn(θi0)I(θi0 6= 0)

+λn

p̃∑
i=1

∣∣∣∣ ûin√
nθ̃in

∣∣∣∣ I(θi0 = 0) , (A.4)

where Dn =
∑n

t=1[∂εt(θ0)/∂θ]εt/
√
n →L D ≡ N(0, σ2Ω) as n → ∞. Since Ω is

positive definite, we see that ûn = Op(1). Otherwise, we will have P (Ln(θ̂on) −
Ln(θ0) > η) > 1−ε for some η and any ε, which is a contradiction to the definition

of θ̂on. Thus,

Ln

(
θo +

ûn√
n

)
− Ln(θ0) = Vn(ûn) + op(1),
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where

Vn(u) = 2u′Dn + u′Ωu+
λn√
n

p̃∑
i=1

ui
θi0

sign(θi0)I(θi0 6= 0)

+λn

p̃∑
i=1

∣∣∣∣ ui√
nθ̃in

∣∣∣∣ I(θi0 = 0) . (A.5)

Since λn →∞, λn/
√
n→ λ0 and

√
nθ̃inI(θi0 = 0)→L ξiI(θi0 = 0) when n→∞,

we can show that Vn(u) −→d V (u) for every u, where

V (u) =


2u′D + u′Ωu+ λ0

∑p̃
i=1

ui

θi0
sign(θi0)I(θi0 6= 0) ,

if
∑p̃

i=1 uiI(θi0 = 0) = 0 ,

∞, otherwise .

Vn(u) is convex, and the unique minimum of V (u) is u∗, where the subvector of

u∗ consisting of the component corresponding to θi0 6= 0 is Ω−1
1 D1 + B1, while

the component of u∗ corresponding to θi0 = 0 is 0. Note that

ûn = argminu∈RpVn(u) + op(1).

Using the argmax theorem as in Knight and Fu (2000), we conclude that (b) of

Theorem 2 holds and ûin =
√
nθ̂in →d 0 if θi0 = 0.

To show (a) of Theorem 2, by the first-order optimality conditions, if θi0 = 0

and θ̂in 6= 0, then

Tn ≡ 2

n∑
t=1

∂εt(θ̂n)

∂θi
εt(θ̂n) +

λnsign(θ̂in)

|
√
nθ̃in|

= 0 . (A.6)

Note that, if θi0 = 0, then

2√
n

n∑
t=1

∂εt(θ̂n)

∂θi
εt(θ̂n) =

2√
n

n∑
t=1

∂εt(θ0)

∂θi
εt(θ0)

+2E

[
∂εt(θ0)

∂θi

∂εt(θ0)

∂θ′

]√
n(θ̂n − θ0) + op(1)

=
2√
n

n∑
t=1

∂εt(θ0)

∂θi
εt(θ0)

+2E

[
∂εt(θ0)

∂θi

∂εt(θ0)

∂θ′11

]√
n(θ̂1n − θ10) + op(1)
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→
d

some normal distribution ,

and λn/
√
n/(
√
nθ̃in) →p 0, where θ11 is the unknown parameter vector of θ10.

Thus,

P (θ̂inI{θi0 = 0} 6= 0) ≤ P
(

1√
n
Tn = 0

)
→ 0 ,

as n→∞, that is, (a) holds. This completes the proof.

Proof of Theorem 3. Denote

εt(θ) = wt −
p−1∑
i=1

φ∗iwt−i +

q∑
j=1

ψjεt−j(θ). (A.7)

Then, εt(0, θ0) = εt(θ0) = εt. First, εt(c, θ) has the following expansion:

εt(c, θ) = c

t∑
i=1

βi−1yt−i +

∞∑
i=0

βiwt−i = c

t∑
i=1

βi−1yt−i + εt(θ), (A.8)

where βi is the coefficient in the representation: ψ−1(z) =
∑∞

i=0 βiz
i with βi =

O(ρi) and ρ ∈ (0, 1). Thus,

ε2
t (c, θ) = ε2

t (θ) + 2c

(
t∑
i=1

βi−1yt−i

)
εt(θ) + c2

[
t∑
i=1

βi−1yt−i

]2

. (A.9)

By Taylor’s expansion,

εt(θ) = εt + (θ − θ0)′
∂εt(θ0)

∂θ
+

1

2
(θ − θ0)′

∂2εt(θ
∗)

∂θ∂θ′
(θ − θ0)

= εt + (θ − θ0)′
∂εt(θ0)

∂θ
+O(1)‖θ − θ0‖2ξt,

where θ∗ is between θ and θ0, and ξt =
∑∞

i=1 ρ
i|wt−i| with ρ ∈ (0, 1). By Lemma

1 of Yap and Reinsel (1995a),

t∑
i=1

βi−1yt−i = ψ−1(1)yt−1 + rt−1, (A.10)

where rt−1 is a function in terms of random variables {εt−1, εt−2, . . . , ε1} and
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Er2
t−1 is uniformly bounded in t. Since c ∈ [−δ/n, δ/n], we have

c

n∑
t=1

rt−1εt(θ) = Op(1)‖θ − θ0‖. (A.11)

By Lemma 3.4.3 of Chan and Wei (1988), we have
∑n

t=1 yt−1∂εt(θ0)/∂θ =

op(n
−3/2). Thus, we can show that

c

n∑
t=1

yt−1εt(θ) = c

n∑
t=1

yt−1εt +
√
n‖θ − θ0‖op(1) +Op(1)

√
n‖θ − θ0‖2 . (A.12)

By (8.10)-(8.12), we have

c

n∑
t=1

(
t∑
i=1

βi−1yt−i

)
εt(θ) =ψ−1(1)c

n∑
t=1

yt−1εt +
√
n‖θ − θ0‖op(1)

+Op(1)[‖θ − θ0‖+
√
n‖θ − θ0‖2].

(A.13)

As explained below Lemma 1 of Yap and Reinsel (1995a),
∑n

t=1 r
2
t−1 and∑n

t=1 yt−1rt−1 are of order smaller than
∑n

t=1 y
2
t−1. Thus, by (8.10), we have

c2
n∑
t=1

(
t∑
i=1

βi−1yt−1

)2

= ψ−2(1)c2
n∑
t=1

y2
t−1 + op(1). (A.14)

By (8.9) and (8.13)-(8.14), it follows that

n∑
t=1

ε2
t (c, θ) =

n∑
t=1

ε2
t (θ) + 2ψ−1(1)c

n∑
t=1

yt−1εt + ψ−2(1)c2
n∑
t=1

y2
t−1

+ op(1) +
√
n‖θ − θ0‖op(1) +Op(1)[‖θ − θ0‖+

√
n‖θ − θ0‖2].

(A.15)

It is known that

1

n2

n∑
t=1

y2
t−1 →

L
φ∗−2(1)ψ2(1)σ2

∫ 1

0
B2(τ) dτ , (A.16)

1

n2

n∑
t=1

yt−1εt →
L
φ∗−1(1)ψ(1)σ2

∫ 1

0
B(τ) dB(τ) , (A.17)
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see, e.g., Yap and Reinsel (1995b). Denote

Ln(θ) =

n∑
t=1

ε2
t (θ) +

p+q−1∑
i=1

λin|θi|. (A.18)

By (8.15)-(8.18), we have

1

n
sup

(c,θ)∈Θn

∣∣∣L̃n(c, θ)− Ln(θ)
∣∣∣ = op(1).

Furthermore, as for Theorem 1, we have θ̂n →p θ0. Thus, (a) holds.

Note that L̃n(0, θ0) = Ln(θ0). Denote ûn =
√
n(θ̂n − θ0). As for Theorem 2,

using (8.15) and (8.18), we have the following expansion

L̃n(ĉn, θ̂n)− L̃n(0, θ0) = Ln(θ̂n)− Ln(θ0) +

n∑
t=1

[ε2
t (ĉn, θ̂n)− ε2

t (θ̂n)]

= 2û′nDn + û′n[Ω + op(1)]ûn

+2ψ−1(1)ĉn

n∑
t=1

yt−1εt + ψ−2(1)ĉ2
n

n∑
t=1

y2
t−1

+op(ûn) +
Op(1)(‖ûn‖+ ‖ûn‖2)√

n

+

p+q−1∑
i=1

λin√
n

[ûinsgn(θi0)I(θi0 6= 0) + |ûin|I(θi0 = 0)] .

From the previous equation, as for Theorem 2, we have ûn = Op(1) and hence

L̃n(ĉn, θ̂n)− L̃n(0, θ0) = 2ψ−1(1)ĉn

n∑
t=1

yt−1εt + ψ−2(1)ĉ2
n

n∑
t=1

y2
t−1

+2û′nDn + û′nΩûn + op(1) +

p+q−1∑
i=1

λi0

·[ûinsgn(θi0)I(θi0 6= 0) + |ûin|I(θi0 = 0)] . (A.19)

Since ûn and ĉn are the minimizer of Ln(c, θ), from the previous equation, we

can see that

ĉn = ψ(1)

(
n∑
t=1

y2
t−1

)−1 n∑
t=1

yt−1εt + op(1), (A.20)
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ûn = arg min
u∈Rp

{Vn(u)}+ op(1) , (A.21)

where

Vn(u) = 2u′Dn + u′Ωu

+

p+q−1∑
i=1

λi0[uisgn(θi0)I(θi0 6= 0) + |ui|I(θi0 = 0)] .

By (8.16)-(8.17), (8.20)-(8.21) and the continuous mapping theorem, the conclu-

sion (b)-(i) holds. Similar to Theorem 2, it can be shown that the conclusion (b

)-(ii) holds. This completes the proof.

Proof of Theorem 4. Denote ûn =
√
n(θ̂on − θ0). As for Theorem 3, we can

show that

Ln(ĉn, θ̂
o
n)− Ln(0, θ0) = 2ψ−1(1)ĉn

n∑
t=1

yt−1εt + ψ−2(1)ĉ2
n

n∑
t=1

y2
t−1

+2û′nDn + û′n[Ω + op(1)]ûn

+
λn√
n

p̃∑
i=1

ûin
θ0 + op(1)

sgn(θi0)I(θi0 6= 0)

+λn

p̃∑
i=1

∣∣∣∣ ûin√
nθ̃in

∣∣∣∣ I(θi0 = 0) , (A.22)

where Dn =
∑n

t=1[∂εt(0, θ0)/∂θ]εt/
√
n→L N(0, σ2Ω) as n→∞. Similar to the

argument for Theorem 3, we can show that the conclusion holds and the details

are omitted. This completes the proof.
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