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Abstract: This paper proposes a conditional heteroscedastic model with a new piece-

wise linear structure such that the regime-switching mechanism has a buffer zone

where regime-switching is delayed. Gaussian quasi-maximum likelihood estimation

(QMLE) is considered, and its asymptotic behaviors, including strong consistency

and the asymptotic distribution, are derived. Its finite sample performance is evalu-

ated by Monte Carlo simulation experiments, and an empirical example is reported

to give further support to the new model.
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1. Introduction

The threshold time series model has become a very successful type of non-

linear model since its introduction by Tong (1978) and Tong and Lim (1980).

See also Chan (1993), Tsay (1998), Ling and Tong (2005), etc. Meanwhile, the

generalized autoregressive conditional heteroscedastic (GARCH) model (Engle

(1982); Bollerslev (1986)) is another classical nonlinear time series model in in-

terpreting the clustering phenomenon in volatilities of many asset prices. It was

then natural for Li and Li (1996) to introduce the threshold autoregressive condi-

tional heteroscedastic (ARCH) model by combining these two useful ideas. Liu,

Li, and Li (1997) further extended the threshold ARCH model to a more general

threshold GARCH model. These two models have been shown to be very useful

in modeling and interpreting the asymmetry in volatilities of asset prices (Brooks

(2001)).

While threshold models have achieved a huge success, they have also been

observed to have bad performance near the boundaries between different regimes

(Wu and Chen (2007)). The smooth-transition threshold autoregressive (AR)

model (Chan and Tong (1986); van Dijk, Terasvirta, and Franses (2002)) can

reduce this problem to some extent, but it usually requires more observations

in estimating the transition function, and may not perform well for the kind

of changes resembling quantum jumps. Moreover, the model does not have the

simple structure of a piecewise linear specification. The discrete-state Markov

switching AR model (Hamilton (1989); McCulloch and Tsay (1994)) does not
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encounter this problem since its regime switching is completely controlled by a

latent random variable. However, it may not be easy to find a physical interpreta-

tion of the fitted model although it enjoys certain flexibility in switching regimes.

Wu and Chen (2007) considered a threshold AR model with the switching mech-

anism jointly driven by observable variables and a latent variable; however, it

still lacks a physical interpretation due to the unobservable latent variable.

For a threshold model, say with two regimes, there is a single threshold where

the model switches its probabilistic structure. However, this may not be the case

in reality. As an illustrative example, consider the asymmetry in volatilities

of asset prices: empirical evidence has shown that asset prices have different

volatility structures for good news and bad news (Bekaert and Wu (2000)). When

the return of an asset price up-crosses a certain positive threshold rU , the market

can assert the coming of a good news. While bad news is not confirmed until the

return down-crosses another negative threshold rL. The interval (rL, rU ] acts as

a buffer zone. There is no news coming when the return stays in the buffer zone,

and the volatility structure is also supposed to keep unchanged. To capture this

type of pattern, Li et al. (2015) discussed a threshold autoregressive model and

a new regime-switching mechanism. Specifically, the time series is at the “lower”

regime when threshold variable zt ≤ rL; at the “upper” regime when zt > rU ,

and it keeps the regime unchanged as long as zt falls in (rL, rU ].

We adopt the idea in Li et al. (2015) to propose a threshold conditional

heteroscedastic model with a more flexible regime-switching mechanism. The

model is introduced in Section 2; it is called the buffered threshold GARCH

model for simplicity. We derive the asymptotic behavior of its Gaussian quasi-

maximum likelihood estimation (QMLE), including strong consistency and the

asymptotic distribution, in Section 3. Section 4 considers several Monte Carlo

simulation experiments to evaluate the finite sample performance of the Gaussian

QMLE, and an empirical example is reported in Section 5 to give further support

to the new model. Section 6 gives a short conclusion.

2. Buffered Threshold GARCH Models

Consider a two-regime buffered threshold GARCH model,

yt = εtσt, σ2
t =


ω(1) +

q∑
i=1

α
(1)
i y2t−i +

p∑
j=1

β
(1)
j σ2

t−j , if Rt = 1,

ω(2) +

q∑
i=1

α
(2)
i y2t−i +

p∑
j=1

β
(2)
j σ2

t−j , if Rt = 0,

(2.1)
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with the regime indicator

Rt =


1, if yt−d ≤ rL,

Rt−1, if rL < yt−d ≤ rU ,

0, if yt−d > rU ,

(2.2)

where ω(l) > 0, α
(l)
i ≥ 0 and β

(l)
j ≥ 0 with l = 1 and 2, {εt} are independently

and identically distributed (i.i.d.) random variables with mean zero and variance

one, rL and rU are the boundary (or threshold) parameters of the buffer zone

(rL, rU ], and the positive integer d is the delay parameter. When rL = rU , models

(2.1) and (2.2) reduce to the traditional threshold GARCH model (Liu, Li, and

Li (1997)).

It is implied by (2.2) that

Rt = I(yt−d ≤ rL) + I(rL < yt−d ≤ rU )Rt−1

= I(yt−d ≤ rL) +
∞∑
j=0

j∏
i=0

I(rL < yt−d−i ≤ rU )I(yt−d−j−1 ≤ rL)

in the almost sure sense; see also Li et al. (2015). When rL < rU , the regime

indicator Rt depends on past observations infinitely far away. This makes the

buffered threshold model different from the traditional ones (Tong (1990); Hansen

(2000)).

For the special case of (2.1) and (2.2) with p = q = d = 1, we have that

Rt = I(σt−1εt−1 ≤ rL) + I(rL < σt−1εt−1 ≤ rU )Rt−1 := g2(σ
2
t−1, Rt−1, εt−1),

σ2
t = (ω(1)+α(1)σ2

t−1ε
2
t−1+β(1)σ2

t−1)Rt+(ω(2)+α(2)σ2
t−1ε

2
t−1+β(2)σ2

t−1)(1−Rt)

:= g1(σ
2
t−1, Rt−1, εt−1),

where the subscripts of α
(i)
1 and β

(i)
1 are suppressed without confusion; see Francq

and Zaköıan (2006) and Meitz and Saikkonen (2008). If σ2
t = (σ2

t , Rt)
′, it holds

that σ2
t = g(σ2

t−1, εt−1) = (g1(σ
2
t−1, Rt−1, εt−1), g2(σ

2
t−1, Rt−1, εt−1))

′. As a re-

sult, {σ2
t } is a homogenous Markov chain.

Theorem 1. Suppose εt has a density function positive everywhere on R. If

max{α(1), α(2)}+max{β(1), β(2)} < 1, then {σ2
t } is geometrically ergodic, hence

the geometric ergodicity of {σ2
t }.

The condition max{α(1), α(2)}+max{β(1), β(2)} < 1 may rule out some com-

monly used cases, and we can relax it by revising the derivation for Claim (iii) in

the proof of the theorem. However, the resulting condition have a complicated

form since the distribution of εt is usually involved.
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From Theorem 1, we can expect the geometric ergodicity of the buffered

threshold GARCH process {yt}. In the meanwhile, like all threshold models,

strictly stationary solutions of the model defined in (2.1) and (2.2) have no closed

form. We may want to extend the results of Theorem 1 to a more general buffered

threshold model, but it seems impossible to define a suitable Markov chain related

to the sequence of conditional variances {σ2
t } when max{p, q, d} > 1.

Consider a general s-regime buffered threshold GARCH model with s > 2,

yt = εtσt, σ2
t = ω(l) +

q∑
i=1

α
(l)
i y2t−i +

p∑
j=1

β
(l)
j σ2

t−j if Rt = l,

where l = 1, . . . , s. There is more than one buffer zone, and this makes the defini-

tion of the regime-switching mechanism not unique. For example, there is more

than one way to determine the regime of yt when the threshold variable yt−d

jumps from one buffer zone into another. To make regime switching unambigu-

ous, we proceed as follows. Let −∞ = r0 < rL1 ≤ rU1 < rL2 ≤ rU2 < · · · < rLs−1 ≤
rUs−1 < rs = ∞, so there are s−1 buffer zones, (rLi , r

U
i ] with i = 1, . . . , s−1. The

regime indicator Rt is equal to j if rUj−1 < yt−d ≤ rLj , and the stochastic process

stays in the same regime at time t+1 if the threshold variable yt−d+1 increases to

the buffer zone (rLj , r
U
j ] or decreases to (rLj−1, r

U
j−1]. When the threshold variable

yt−d+1 falls into the buffer zone (rLi , r
U
i ] with i > j or i < j − 1, the regime

indicator Rt+1 is set to i or i+ 1, respectively. By a method similar to Theorem

1, we can discuss the geometric ergodicity of its conditional variances for the case

with p = q = d = 1.

3. Quasi-maximum Likelihood Estimation

This section considers the Gaussian quasi-maximum likelihood estimation

(QMLE) for the two-regime buffered threshold GARCH model defined at (2.1)

and (2.2).

Denote by λ = (θ′, rL, rU , d)
′ the parameter vector of models (2.1) and (2.2),

where θ(1) = (ω(1), α
(1)
1 , . . . , α

(1)
q , β

(1)
1 , . . . , β

(1)
p )′, θ(2) = (ω(2), α

(2)
1 , . . . , α

(2)
q , β

(2)
1 ,

. . . , β
(2)
p )′, and θ = (θ(1)′,θ(2)′)′. Let Θ be a compact subset of R2p+2q+2,

[a, b] be a predetermined interval, and dmax be a predetermined positive inte-

ger. It is assumed that θ ∈ Θ, a ≤ rL ≤ rU ≤ b, and d ∈ D = {1, . . . , dmax}.
The true parameter vector is denoted by λ0 = (θ′

0, r0L, r0U , d0)
′, where θ

(1)
0 =

(ω
(1)
0 , α

(1)
01 , . . . , α

(1)
0q , β

(1)
01 , . . . , β

(1)
0p )

′, θ
(2)
0 = (ω

(2)
0 , α

(2)
01 , . . . , α

(2)
0q , β

(2)
01 , . . . , β

(2)
0p )

′, and

θ0 = (θ
(1)′
0 ,θ

(2)′
0 )′.

Define the regime indicator function as

Rt(rL, rU , d) = I(yt−d ≤ rL) + I(rL < yt−d ≤ rU )Rt−1(rL, rU , d),
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and the conditional variance function as

σ2
t (λ) =

[
ω(1) +

q∑
i=1

α
(1)
i y2t−i +

p∑
j=1

β
(1)
j σ2

t−j(λ)
]
Rt(rL, rU , d)

+
[
ω(2) +

q∑
i=1

α
(2)
i y2t−i +

p∑
j=1

β
(2)
j σ2

t−j(λ)
]
[1−Rt(rL, rU , d)]. (3.1)

Then Rt = Rt(r0L, r0U , d0) and σ2
t = σ2

t (λ0). By temporarily assuming that εt is

standard normal, we have the conditional log likelihood function of models (2.1)

and (2.2), −0.5Ln(λ)− log
√
2π, where

Ln(λ) =

n∑
t=1

lt(λ) and lt(λ) =
y2t

σ2
t (λ)

+ log[σ2
t (λ)].

Let n0 = max{q, dmax}. For the observed time series {yt,−n0 + 1 ≤ t ≤ n}
generated by (2.1) and (2.2), the likelihood functions in the above depend on

past observations infinitely far away, and hence initial values are needed.

For fixed rL, rU , and d, the first few observations of the threshold variable

yt−d, say 1 ≤ t ≤ t0, may fall into the buffer zone (rL, rU ] such that we fail to

identify their regimes. These t0 observations belong to the same regime since the

threshold variable keeps staying at the buffer zone. We can simply assign them to

regime one, and denote the resulting regime indicator function by R̃t(rL, rU , d).

We know the exact value of Rt0+1(rL, rU , d) since yt0+1−d is outside the buffer

zone, and then it can be verified that R̃t(rL, rU , d) = Rt(rL, rU , d) as t0 < t ≤ n.

To evaluate the function σ2
t (λ), in addition to R̃t(rL, rU , d) with 1 ≤ t ≤ t0,

we also need initial values for σ2
1−p(λ), . . . , σ

2
0(λ); they can be set to n−1

∑n
t=1 y

2
t

for simplicity. Accordingly, we denote by σ̃2
t (λ), l̃t(λ), and L̃n(λ) the correspond-

ing functions with these initial values, respectively. As a result, the Gaussian

QMLE can be defined as

λ̃n = (θ̃′
n, r̃L, r̃U , d̃)

′ = argmin
θ∈Θ,d∈D,a≤rL≤rU≤b

L̃n(θ, rL, rU , d),

where λ = (θ′, rL, rU , d)
′.

Assumption 1. For l = 1 and 2, ω(l) > 0, α
(l)
i ≥ 0 with 1 ≤ i ≤ q and∑q

i=1 α
(l)
i > 0, β

(l)
j ≥ 0 with 1 ≤ j ≤ p and

∑p
j=1 β

(l)
j < 1, and polynomials

1−
∑p

j=1 β
(l)
j xj and

∑q
i=1 α

(l)
i xi have no common root.

Assumption 2. θ
(1)
0 ̸= θ

(2)
0 , P (yt < a) · P (yt > b) > 0, and εt has a bounded,

continuous and positive density on R.
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Theorem 2. Suppose that the strictly stationary and ergodic time series {yt} is

generated by the model at (2.1) and (2.2), with E|yt|4+δ < ∞ for a small δ > 0.

If Assumptions 1 and 2 hold, then λ̃n → λ0 with probability one as n → ∞.

The moment condition E|yt|4+δ < ∞ is mainly involved in deriving Claim

(iii) in the proof of the theorem, and can be reduced to E|yt|2+δ < ∞ if we

further assume that the α
(l)
i s and β

(l)
j are bounded away from zero.

From Theorem 2, when the sample size n is large enough, the estimated

delay parameter d̃ is the true value d0 since it only takes on integer values.

Moreover, the estimated threshold parameters are usually super-consistent for

the traditional threshold models as well as the buffered threshold models (Tong

(1990); Li et al. (2015)), and it is then expected to hold for the buffered threshold

GARCH model defined as in (2.1) and (2.2), n(r̃L − r0L) = Op(1) and n(r̃U −
r0U ) = Op(1). We leave the proofs of the super-consistency and the asymptotic

distribution of the estimated threshold parameters r̃L and r̃U for future research.

Without loss of generality, we assume that the values of (r0L, r0U , d0) are known

in deriving the asymptotic distribution of the QMLE, and then the parameter

vector is θ.

Theorem 3. Suppose the conditions in Theorem 2 hold. If E(ε4t ) < ∞ and

the true parameter vector θ0 is an interior point of Θ, then
√
n(θ̃n − θ0) →d

N{0, [E(ε4t )− 1]Ω−1}, where

Ω = E

(
1

σ4
t (θ0)

∂σ2
t (θ0)

∂θ

∂σ2
t (θ0)

∂θ′

)
.

This result can be proved by following the standard arguments for the asymp-

totic normality, and its proof is hence omitted. In practice, we can estimate the

quantities E(ε4t ) and Ω respectively by

1

n

n∑
t=1

y4t

σ̃4
t (λ̃n)

and Ω̂n =
1

n

n∑
t=1

1

σ̃4
t (λ̃n)

∂σ̃2
t (λ̃n)

∂θ

∂σ̃2
t (λ̃n)

∂θ′ ,

and hence the asymptotic variance in Theorem 3. It can be verified that they

are all consistent. The initial values of the indicator function R̃t(rL, rU , d) are

equal to one. We can alternatively consider using zero for these initial values,

and denote the corresponding functions by R̃∗
t (rL, rU , d) and L̃∗

n(λ), respectively.

From proofs of Theorems 2 and 3, the effect of these initial values can be ignored

asymptotically. As a result, we can define the QMLE λ̃n as argmin λ L̃∗
n(λ) or,

even more precisely, argmin λ{L̃n(λ), L̃
∗
n(λ)}.

When searching for the QMLE λ̃n, we can first maximize L̃n(λ) for each

fixed (rL, rU , d),

θ̂n(rL, rU , d) = argmin
θ∈Θ

L̃n(θ, rL, rU , d),
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and some commonly used computing algorithms such as Newton-Raphson can

be employed to do the optimization. As in traditional threshold models (Li and

Li (2011)), for an observed time series, the function L̃n(θ̂n(rL, rU , d), rL, rU , d)

is piecewise constant with respect to rL, rU , and d, and has possible jumps at

{y1−d, . . . , yn−d}. Then we can further search for the estimators of (rL, rU , d) as,

(r̃L, r̃U , d̃) = argmin
d∈D,a≤rL≤rU≤b

L̃n(θ̂n(rL, rU , d), rL, rU , d),

where rL and rU take values on {y1−d, . . . , yn−d} ∩ [a, b]. In practice, we can

choose the values of a and b to be some empirical percentiles of {yt}; see Ling

and Tong (2005), Li and Li (2008), and Zhu, Yu, and Li (2014). It can be verified

that θ̃n = θ̂n(r̃L, r̃U , d̃). When the sample size n is large, searching for (r̃L, r̃U , d̃)

is time-consuming, and we can alternatively consider a grid searching algorithm

for rL and rU .

4. Simulation Studies

This section reports on two simulation experiments to study the finite sample

performance of the Gaussian QMLE in the previous section. For each generated

sequence, the range of boundary parameters rL and rU was set to from the 25th

to the 75th empirical percentiles, and the maximum of the delay parameter d

was six.

The data generating process in the first simulation experiment was a buffered

threshold ARCH process,

yt = εtσt, σ2
t =

{
ω(1) +

∑7
i=1 α

(1)
i y2t−i, if Rt = 1,

ω(2) +
∑7

i=1 α
(2)
i y2t−i, if Rt = 0,

with the regime indicator

Rt =


1, if yt−4 ≤ −0.05,

Rt−1, if − 0.05 < yt−4 ≤ 0.08,

0, if yt−4 > 0.08,

where {εt} were independent and normally distributed with mean zero and vari-

ance one. The sample size was set to n =4,000, and the grid searching algorithm

was employed for rL and rU to save computation time. There were 350 repli-

cations calculated. The QMLE λ̃n is summarized in Table 1, and the delay

parameter d is correctly identified for 340 out of 350 replications. We tried larger

sample sizes, and could observe decrease of the bias and the empirical standard

deviations. Figure 1 gives the histograms of
√
n(ω̃

(l)
n −ω

(l)
0 ) with l = 1 and 2, and

the large sample normality result is then confirmed. A similar finding is observed

from histograms of the other parameters in θ, and hence they are omitted to save
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Table 1. Simulation results for buffered threshold ARCH models.

Lower regime Upper regime Other parameters
λ0 Bias ESD λ0 Bias ESD λ0 Bias ESD

ω 0.02 0.0003 0.0022 0.01 -0.0004 0.0018 rL -0.05 -0.0004 0.0286
α1 0.20 0.0009 0.0387 0.25 0.0031 0.0461 rU 0.08 0.0058 0.0328
α2 0.30 0.0010 0.0446 0.20 -0.0001 0.0430 d 4 -0.0225 0.3181
α3 0.04 0.0036 0.0290 0.10 -0.0016 0.0295
α4 0.08 -0.0036 0.0300 0.08 0.0038 0.0302
α5 0.05 -0.0029 0.0284 0.09 -0.0002 0.0314
α6 0.07 -0.0025 0.0311 0.10 -0.0022 0.0291
α7 0.03 0.0005 0.0224 0.01 0.0055 0.0170
λ0: true parameters; ESD: empirical standard deviation.

Figure 1. Histograms of
√
n(ω̃

(1)
n − ω

(1)
0 ),

√
n(ω̃

(2)
n − ω

(2)
0 ), n(r̃L − r0L) and

n(r̃U − r0U ) for buffered threshold ARCH models (from left to right).

space. Histograms of n(r̃L− r0L) and n(r̃U − r0U ) are also presented in Figure 1.

It can be seen that their shapes are much more peaked than that of the normal

distribution, and resemble those of the two-sided compound poisson processes in

Li, Ling, and Li (2013).

In the second experiment, we generated time series by the buffered threshold

GARCH model,

yt = εtσt, σ2
t =

ω(1) + α
(1)
1 y2t−1 + β

(1)
1 σ2

t−1, if Rt = 1,

ω(2) + α
(2)
1 y2t−1 + β

(2)
1 σ2

t−1, if Rt = 0,

where {εt} and regime indicators {Rt} were the same as that in the first ex-

periment except that d0 = 3. We set the sample size to n =3,600. The grid

searching algorithm was employed again for rL and rU , and there were 200 repli-

cations. The QMLE λ̃n is summarized in Table 2, and the delay parameter d

is correctly identified for 124 out of 200 replications. Figure 2 gives the his-

tograms of
√
n(α̃

(l)
1n − α

(l)
01 ) with l = 1 and 2, and normality can be expected

again. Histograms of the other parameters in θ have similar patterns, and hence
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Table 2. Simulation results for buffered threshold GARCH models.

Lower regime Upper regime Other parameters
λ0 Bias ESD λ0 Bias ESD λ0 Bias ESD

ω 0.02 0.0028 0.0224 0.05 0.0017 0.0256 rL -0.05 -0.0195 0.1177
α1 0.06 0.0038 0.0298 0.10 0.0080 0.0333 rU 0.08 0.0063 0.1111
β1 0.80 0.0227 0.1170 0.70 0.0040 0.1308 d 3 0.0493 1.0889
λ0: true parameters; ESD: empirical standard deviation.

Figure 2. Histograms of
√
n(α̃

(1)
1n − α

(1)
01 ),

√
n(α̃

(2)
1n − α

(2)
01 ), n(r̃L − r0L) and

n(r̃U − r0U ) for buffered threshold GARCH models (from left to right).

are omitted here. Histograms of n(r̃L − r0L) and n(r̃U − r0U ) are presented in

Figure 2. These are similar to those of the buffered ARCH models in Figure

1. As in the classical case, it appears that the buffered GARCH model is more

difficult to fit than the pure buffered ARCH models.

5. An Empirical Example

This section considers the daily closing prices, adjusted for dividends and

splits, of Honeywell International Inc (HON), one of the components of the Dow

Jones Industrial Average index. We focus on the sequence of log returns in

percentage from June 11, 1990 to September 12, 2006, and there are 4,099 obser-

vations in total. This time series has been studied by Caiado and Crato (2010),

and was shown by the Ljung-Box test to have no significant serial correlation

effect. Figure 3 gives the sample autocorrelation functions (ACFs) of log returns

and squared log returns, and a pure volatility model is then suggested.

We first applied the buffered GARCH model to the sequence, and the es-

timating procedure in Section 3 was employed to search for the estimates with

orders p and q being fixed at one. The range of boundary parameters rL and

rU was from the 15th to the 85th empirical percentiles of observations, and the
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Figure 3. Sample ACFs of log returns and squared log returns for daily
closing prices of HON (upper panel), and sample ACFs of residuals and
squared residuals from the fitted buffered threshold GARCH model (lower
panel).

delay parameter was from one to six. The fitted model had the form

yt = εtσt, σ2
t =

0.28400.1294 + 0.16470.0374y
2
t−1 + 0.83530.0504σ

2
t−1, if Rt = 1,

0.13840.0735 + 0.07720.0242y
2
t−1 + 0.83660.0377σ

2
t−1, if Rt = 0,

with the regime indicator

Rt =


1, if yt−1 ≤ −1.3209,

Rt−1, if − 1.3209 < yt−1 ≤ 1.3212,

0, if yt−1 > 1.3212,

where the subscripts of parameter estimates are their associated standard errors,
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with the Bayesian information criterion (BIC) of 16,816. The ACFs of residuals

and squared residuals are presented in Figure 3, and they slightly stand out

from the 95% confidence limits at only a few lags. As a result, we conclude

the adequacy of the fitted model. To further evaluate adequacy, the ad hoc

McLeod-Li test statistic (McLeod and Li (1983)) was calculated for the squared

standardized residuals, with Q(20) = 18.53, Q(50) = 47.99 and Q(70) = 84.61,

and corresponding p-values all greater than 0.10.

The three-regime threshold GARCH model also has two threshold parame-

ters, and the buffered threshold model includes the two-regime threshold model

as a special case. As a comparison, it is of interest to further fit the three-regime

threshold GARCH model to the data. The settings were the same as those for

the aforementioned buffered threshold model, and the fitted model was

yt = εtσt,

σ2
t =


0.37960.2931+0.18380.0455y

2
t−1+0.81620.0939σ

2
t−1, if yt−1 ≤ −1.3209,

0.04610.0867+0.09250.1228y
2
t−1+0.90750.0363σ

2
t−1, if −1.3209<yt−1≤1.3812,

0.13460.2722+0.09050.0279y
2
t−1+0.72910.0803σ

2
t−1, if yt−1>1.3812,

with a BIC of 16,835, somewhat larger than that of the fitted buffered thresh-

old model. The McLeod-Li test statistic had the value of Q(20) = 21.58,

Q(50) = 54.92 and Q(70) = 89.79, are all greater than the corresponding values

for the fitted buffered threshold model. As the McLeod-Li test is based on the

autocorrelations of squared residuals, we conclude that the buffered threshold

model has a better performance in interpreting the squared log returns, or sim-

ply its volatility. Especially, the p-value of Q(70) is even smaller than 0.10, and

the fitted three-regime threshold model may not be adequate.

The fitted buffer zone is almost the same as the middle regime of the fitted

three-regime threshold model, and the zone includes roughly 60% of the obser-

vations. We can argue that these observations have the same structure as in the

lower or upper regime rather than following a separate one. Moreover, in the

fitted buffered threshold model, the time series exhibits a stronger persistence at

the lower regime, and it can be interpreted as that bad news may have longer

influence to the volatility.

6. Conclusions

This paper proposes a new type of threshold conditional heteroscedastic

model with the regime-switching mechanism possessing a buffered region so that

the regime-switching is delayed. This is illustrated with a US stock example. This

nonlinear model can provide some new insight into the asymmetric behavior of

volatilities of financial time series.



1566 PAK HANG LO, WAI KEUNG LI, PHILIP L.H. YU AND GUODONG LI

This paper also derives some basic results of Gaussian maximum likelihood

estimation, including strong consistency and asymptotic normality. However,

like the beginning of many statistical models, there remain many open problems,

such as how to construct tests to check whether the buffered GARCH model can

provide a better fit compared with the common GARCH model or even with the

traditional threshold GARCH model. We look to these technical problems in

future research.
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