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Abstract: Statistical models and inferences are typically based on measurements

made on individual participants in a study (individual-level data). However,

there is growing interest in improving statistical inference by taking advantage

of aggregated summary-level data from other studies, such as statistics used in

meta-analyses. Although the generalized method of moments (GMM) provides a

flexible way of doing so, integrating external summary information does not always

improve efficiency. Here, we provide a necessary and sufficient condition under

which external summary information can be beneficial. We further extend the

GMM to incorporate summary data generated from a population with a covariate

distribution that is different from that of the individual-level data. Lastly, we

compare the GMM with other integration procedures.
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1. Introduction

Statistical inferences are usually conducted on detailed individual-level data

observed on each participant in a study. Including relevant aggregated summary

data from other studies would be preferred, although procedures for achieving

such a goal might be not readily available. One exception is in the setting of

meta-analysis, where estimates from comparable models established by different

studies can be combined to form a more efficient estimate.

We consider a setting in which we use individual-level data (X,Y ) from an

internal study to investigate an underlying conditional model f(Y | X; θ), which

specifies the conditional distribution of the outcome Y given the covariates X,

with θ being the unknown parameter of interest. In addition, we assume we have

summary data, represented by a set of estimates β̃, derived from external studies.

The goal is to obtain a more efficient estimation of θ by combining the raw data

(X,Y ) from the internal study and β̃ from external studies. As in Qin (2000) and

others (Imbens and Lancaster (1994); Qin et al. (2015); Chatterjee et al. (2016);

Han and Lawless (2016); Cheng et al. (2018, 2019); Han and Lawless (2019);

Kundu, Tang and Chatterjee (2019); Huang and Qin (2020); Zhang et al. (2020,
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2022)), we consider a broad class of summary information β̃, the true underlying

value of which β satisfies a set of stochastic constraint equations E{u(X; θ, β)} =

0, with the expectation taken over a fully unspecified distribution of X. For

example, Imbens and Lancaster (1994) consider the case in which β is the mean

value of a known function φ(Y,X), and β̃ is the moment estimate of β based

on an external study. In this case, u(X; θ, β) = E{φ(Y,X) | X} − β, with the

conditional expectation calculated over f(Y | X; θ). Chatterjee et al. (2016)

consider a class of model-based summary data consisting of a set of coefficient

estimates derived from a working parametric model different from f(Y | X; θ).

There are two general strategies for combining summary data with individual-

level data, one based on the generalized method of moments (GMM), and the

other based on the empirical likelihood framework. Imbens and Lancaster (1994)

demonstrated that a GMM offers an effective way of integrating the two types

of data. Kundu, Tang and Chatterjee (2019) use a GMM as a meta-analysis

procedure to integrate summary statistics from different models. Their approach

requires a set of reference samples that are independent of all summary data. Qin

(2000) propose using the empirical likelihood approach to incorporate external

summary information. A similar empirical likelihood procedure was adopted by

Chatterjee et al. (2016) to synthesize general model-based summary statistics.

Zhang et al. (2020) expanded the empirical likelihood approach to integrate

summary data more efficiently by properly accounting for the uncertainty in

β̃.

Under both the GMM and the empirical likelihood frameworks, it can be

shown that adding summary data at least does not decrease the efficiency of

the estimate of θ, compared with the standard maximum likelihood estimate

(MLE) based on the internal study alone. However, in some cases, using external

summary data does not improve the efficiency of estimates of certain components

of θ. In this report, we identify a necessary and sufficient condition under

which external summary information can improve efficiency. We also extend the

GMM to incorporate summary data generated from a population with a different

covariate distribution from that of the individual-level data. This is also called

a covariate shift, a common phenomenon in practice (Sugiyama, Krauledat and

Müller (2007); Moreno-Torres et al. (2012)). Finally, we show that the GMM

and the empirical likelihood procedure of Zhang et al. (2020) are asymptotically

equivalent.

2. Method

2.1. Notation and setup

Assume that we have an internal study consisting of random samples (Xi, Yi),

for i = 1, . . . , n, from a targeted population, with Y being the outcome and X

being the set of covariates. Let f(X) be the distribution of X and f(Y | X; θ)
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be the underlying conditional distribution for Y given X, with θ being the set

of parameters of interest. In addition to the internal study, we assume we have

summary data extracted from an external study, which consists of N random

samples (X
(E)
i , Y

(E)
i ), for i = 1, . . . , N, from the same or a different population.

Without loss of generality, we assume that the summary data β̃ is the solution

of following estimating equations based on the external data:

N∑
i=1

h(X
(E)
i , Y

(E)
i ;α, β) = 0, (2.1)

where h(·) is a vector function defined by the method chosen for analyzing

the external data, with the same dimension as (α, β) to ensure identifiability.

Although (α, β) can be estimated from (2.1), we assume that only β̃, the estimate

of β, can be used as external summary data. The vector α consists of nuisance

parameters, with their estimates inaccessible to the final integrative analysis.

2.2. Integrating summary data from the same study population

Imbens and Lancaster (1994) show how to use the GMM to integrate indivi-

dual-level data with information on moments of the marginal distribution of a

certain variable. Here, we use their framework to integrate the summary data β̃,

in the presence of the nuisance parameter α, by assuming that both the internal

and the external studies are conducted in the same population.

Following the argument by White (1982), under general regularity con-

ditions, (α̃, β̃) resolved from (2.1) are consistent estimates of their popula-

tion values (α0, β0), which jointly satisfy the stochastic constraint equation

E{h(X,Y ;α0, β0)} = 0. Hereafter, unless specified otherwise, we use E{ξ(X,Y )}
and var{ξ(X,Y )} to represent the mean and variance, respectively of a function

ξ(X,Y ) under the true distribution (X,Y ), which is specified as f(X)f(Y |
X; θ0), with θ0 being the true value of θ. By letting

u(X; θ, α, β) =

∫
Y

h(X,Y ;α, β)f(Y | X; θ)dY, (2.2)

we can re-express the stochastic constraint equation E{h(X,Y ;α, β)} = 0 as∫
X

u(X; θ, α, β)dX = 0.

Based on the internal study, we obtain θ̆, ᾰ, and β̆, that is, the intermediate

estimates of θ, α, and β, respectively, using the following estimating equations:
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n∑
i=1

ψ1(Yi, Xi; θ) = 0,
n∑

i=1

ψ2(Xi; θ, α, β) = 0, (2.3)

with

ψ1(Y,X; θ) =
∂ log f(Y | X; θ)

∂θ
, ψ2(X; θ, α, β) = u(X; θ, α, β).

Combining these estimates with the external summary data β̃, we know

n1/2


θ̆ − θ0
ᾰ− α0

β̆ − β0

β̃ − β0

 d−→ N

[
0,

(
H 0

0 Σ/ρ

)]
,

where

H =

E
∂ψ1

∂θ
0 0

E
∂ψ2

∂θ
E
∂ψ2

∂α
E
∂ψ2

∂β


−1(

E(ψ1ψ
T

1 ) 0

0 E(ψ2ψ
T

2 )

)

E
∂ψ1

∂θT
E
∂ψ2

∂θT

0 E
∂ψ2

∂αT

0 E
∂ψ2

∂βT



−1

,

with (θ, α, β) = (θ0, α0, β0) in the calculation of H, cov(β̃) = N−1Σ, and N/n→
ρ. We obtain the estimate of (θ, α, β) as

(θ̂CMD, α̂CMD, β̂CMD) = argmin
(θ,α,β)


θ̆ − θ

ᾰ− α

β̆ − β

β̃ − β


T(

H−1 0

0 ρΣ−1

)
θ̆ − θ

ᾰ− α

β̆ − β

β̃ − β

 . (2.4)

This type of estimate is called the classic minimum distance (CMD)

estimation (Newey and McFadden (1994)). Because of its close relationship

with the GMM, we still consider it as a type of GMM estimate. In practice,

we usually do not know H and Σ. Instead, we can use the standard two-step

estimation procedure. First, the CMD (Newey and McFadden (1994)) estimate

yields a consistent estimate of (θ0, α0, β0) by replacing H and Σ with any positive-

definite matrices in (2.4). Next, we obtain consistent estimates of H and Σ

using the initial estimates, and plug them into (2.4) to obtain the final efficient

estimate (θ̂CMD, α̂CMD, β̂CMD). Based on its asymptotic distribution, given in the

Appendix, the efficiency grows as the external sample size N increases. When N

is much larger than n, so that ρ→ ∞, its asymptotic variance becomes the same

as that when the variability of the summary data is ignored.
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Following Imbens and Lancaster (1994), we estimate θ and α using another

type of GMM estimate. Letting ψ(Y,X; θ, α, β) = (ψ1(Y,X; θ)T, ψ2(X; θ, α, β)T)T,

we obtain the GMM estimate as

(θ̂GMM, α̂GMM) = argmin
(θ,α)

[
1

n

n∑
i=1

ψ(Yi, Xi; θ, α, β̃)

]T

C

[
1

n

n∑
i=1

ψ(Yi, Xi; θ, α, β̃)

]
,

where C = (var{n−1/2
∑n

i=1 ψ(Yi, Xi; θ0, α0, β̃)})−1. Again, a standard two-step

estimation procedure can be used to obtain (θ̂GMM, α̂GMM) by first obtaining a

consistent estimate of C.

We have the following result; the proof is given in the Appendix.

Proposition 1. θ̂GMM is consistent and has the same asymptotic variance-

covaraince matrix as that of θ̂CMD.

Remark 1. This result expands the conclusion of Imbens and Lancaster (1994)

by integrating additional general summary data in the presence of nuisance

parameters. Owing to their equivalence, we mainly consider θ̂GMM in the following

discussion.

Remark 2. Although θ̂CMD and θ̂GMM are asymptotically equivalent, θ̂CMD can

only be used for summary data derived from a misspecified external model that

is not consistent with the true underlying model f(Y | X; θ). In particular,

E(uuT) has to be positive definite for θ̂CMD. If (2.1) is the score equation derived

from f(Y | X; θ), we have u(X; θ0, α0, β0) ≡ 0 when θ0 = (α0, β0), because∫
Y
∂ log f(Y | X; θ)/∂θf(Y | X; θ)dY = 0, leading to E(uuT) = 0. On the

other hand, θ̂GMM has no such restriction, and is equivalent to the meta-analysis

estimate when the summary data are derived from the true underlying model

(see the proof of Proposition 1).

Thus far, we have described the GMM and CMD estimates in the conditional

likelihood setting in which the conditional distribution f(Y | X; θ) is specified.

Similar arguments can be used to define them under a more robust quasi-

likelihood framework. For example, we can consider the generalized linear model

(GLM), where we specify models for the conditional mean and variance of Y

given X as

E(Y | X; θ) = µ(X; θ) and var(Y | X; θ) = ν(X; θ), respectively.

Under the GLM setting, we can let

ψ1(Y,X; θ) =
∂µ(X; θ)

∂θ

1

ν(X; θ)
{Y − µ(X; θ)}.

Assume the summary data are derived from an estimating equation based on

a different GLM model (with the same link function), with µ(E)(X;α, β) and
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ν(E)(X;α, β) as the conditional mean and variance models, respectively. We can

define ψ2(X; θ, α, β) as

ψ2(X;α, β) =
∂µ(E)(X;α, β)

∂(α, β)

1

ν(E)(X;α, β)
{µ(E)(X;α, β)− µ(X; θ)}.

It can be shown that Proposition 1 remains valid under this GLM setting. In

fact, all results presented hereafter apply to both the conditional likelihood and

GLM settings, unless stated otherwise.

Denote θ̂INT as the estimate of θ derived from the estimating equation
∑n

i=1

ψ1(Yi, Xi; θ) = 0 based on the internal study. We call it the internal estimate of

θ. We can show that the GMM estimate θ̂GMM is at least as efficient as θ̂INT.

Therefore, θ̂GMM is at least as efficient as the MLE derived from the internal

study if ψ1(Y,X; θ) = ∂ log f(Y | X; θ)/∂θ.

As mentioned in the Introduction, using external summary data does not

always lead to an efficiency gain. More specifically, let θ = (θ1, θ2), and denote

its corresponding GMM and internal estimates as θ̂GMM = (θ̂GMM,1, θ̂GMM,2) and

θ̂INT = (θ̂INT,1, θ̂INT,2), respectively. Similarly, we denote θ̆ = (θ̆1, θ̆2) as the

intermediate estimate of θ based on (2.3). For certain external summary data,

the variance of θ̂GMM,1 is less than that of θ̂INT,1, but θ̂GMM,2 and θ̂INT,2 have the

same level of variation. The following result provides conditions under which

using summary data can lead to a GMM estimate that is more efficient than the

internal estimate.

Theorem 1. If θ̆2 and β̆ are asymptotically independent, and θ̆1 and β̆ are

asymptotically correlated, then θ̂GMM,1 is more efficient than θ̂INT,1, but θ̂GMM,2

and θ̂INT,2 share the same level of efficiency.

We can use Theorem 1 to check the correlation between the intermediate

estimates β̆ and θ̆ to determine whether using summary data can lead to a more

efficient GMM estimate. We derive another criterion. Note that we can obtain

a consistent estimate of (α0, β0) using the same estimating equation (2.2) fitted

from the internal study, that is,

n∑
i=1

h(Yi, Xi;α, β) = 0.

We denote this estimate as (α̂INT, β̂INT), and call it the internal estimate of (α, β).

We obtain the following result from Theorem 1.

Corollary 1. If θ̂INT,2 and β̂INT are asymptotically independent, and θ̂INT,1 and

β̂INT are asymptotically correlated, then θ̂GMM,1 is more efficient than θ̂INT,1, but

θ̂GMM,2 and θ̂INT,2 have the same level of efficiency.

Both Theorem 1 and Corollary 1 provide a necessary and sufficient condition

under which the GMM estimate is more efficient than the internal estimate.
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Although the summary data we have considered thus far include estimates of

the parameters based on estimating equation (2.1), these conclusions can be

expanded to summary data derived from estimating equations that do not involve

the outcome Y . For example, we can derive summary data from the following

estimating equation:
N∑
i=1

W (X
(E)
i )− β = 0,

where W (·) is a known function of X, and the estimate of β is given by N−1∑N
i=1W (X

(E)
i ). Using Theorem 1, we can easily show that this external

information on the moment of W (X) does not improve the estimate of θ. This

is expected, because θ is related to the conditional distribution of Y given X,

whereas β contains only information about the marginal distribution of X.

Here, we provide examples to show how to use the above results.

Example 1. The internal study assumes the following underlying GLM:

l{E(Y | X1, X2)} = XT

1 θ1 +XT

2 θ2.

External summary data are derived from a nested working model given by

l{E(Y | X1)} = XT

1 β,

where l(·) is a known canonical link function.

Based on the result in Dai et al. (2012), we know that θ̂INT,2 and β̂INT are

asymptotically independent. Therefore, according to Corollary 1, we have the

following conclusion.

Corollary 2. Under the setting of Example 1, θ̂GMM,2 has the same efficiency

level as that of θ̂INT,2.

This result indicates that estimates from a nested external model do not

improve the GMM estimates of other parameters in the full model. A direct

consequence is that external summary data on main effects do not improve the

estimate of the interaction effect.

Example 2. The internal study assumes the following underlying linear

model:

Y = θ0 +XT

1 θ1 +XT

2 θ2 + ε.

External summary data are derived from an unnested working model given by

Y = α+ ST(X1)β + ε′.

With additional assumptions on the distribution of X, we have the following

result.
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Corollary 3. Under the setting of Example 2, if X1 and X2 are independent or

are jointly normal, θ̂GMM,2 has the same efficiency level as that of θ̂INT,2.

This conclusion can be expanded to the logistic regression model if var(Y | X)

remains relatively constant over X. Because var(Y | X) = P (Y = 1 | X){1 −
P (Y = 1 | X)}, it is often quite stable over X. In fact, the results of our

extensive numerical simulations, presented later, demonstrate that Corollary 3 is

(numerically) proper for the logistic regression model.

When X1 and S(X1) are scalars, we can directly compare the contribution

from the summary statistic derived from the external model Y = α+S(X1)β+ε
′,

with different choices of S(X1). We have the following result.

Corollary 4. Under the setting of Example 2 with X1 and S(X1) being scalars,

the efficency of θ̂GMM,1 increases as the correlation between X1 and S(X1)

increases.

2.3. Integrating summary data from a different population

Here, we consider the setting in which the external study is conducted on a

population with a distribution of X that differs from that in the internal study

population.

We assume that the conditional distribution f(Y | X; θ) remains the same

in the two populations, but that the marginal distribution of X differs. Let

f(X) and f∗(X) be distributions of X in the internal and external populations,

respectively. In addition to the summary data, we further assume that we have

a set of random samples from f∗(X), denoted as {X∗
i , i = 1, . . . , n∗}.

This set of reference samples is necessary in order to characterize f∗(X).

Here, we focus on the setting in which the reference set is independent of that

from the external study. In the Appendix, we discuss the setting in which the

reference set is taken from the external study.

We change the stochastic constraint (2.2) to∫
X

u(X; θ0, α0, β0)f
∗(X)dX = 0.

The CMD estimate needs to be modified as follows. From the internal study

and the set of reference samples, we obtain intermediate estimates θ̆∗, ᾰ∗, and β̆∗

based on the following estimating equations:

n∑
i=1

ψ1(Yi, Xi; θ) = 0,
n∗∑
i=1

ψ2(X
∗
i ;α, β) = 0.

We obtain the CMD estimate of (θ, α, β) by minimizing the following

quadratic form:
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(θ̂∗CMD, α̂
∗
CMD, β̂

∗
CMD) = argmin

(θ,α,β)


θ̆∗ − θ

ᾰ∗ − α

β̆∗ − β

β̃ − β


T(

H∗−1 0

0 ρΣ−1

)
θ̆∗ − θ

ᾰ∗ − α

β̆∗ − β

β̃ − β

 ,

where H∗ is the variance of n1/2(θ̆∗, ᾰ∗, β̆∗) and is given in the Appendix.

Similarly, we can modify the GMM by directly estimating θ and α, as follows:

(θ̂∗GMM, α̂
∗
GMM) =

argmin
(θ,α)

(
n−1

∑n
i=1 ψ1(Yi, Xi; θ)

n∗−1
∑n∗

i=1 ψ2(X
∗
i ; θ, α, β̃)

)T

C∗

(
n−1

∑n
i=1 ψ1(Yi, Xi; θ)

n∗−1
∑n∗

i=1 ψ2(X
∗
i ; θ, α, β̃)

)
,

where C∗ = (n1/2var∗{n−1
∑n

i=1 ψ
T

1 (Yi, Xi; θ0), n
∗−1

∑n∗

i=1 ψ
T

2 (X
∗
i ; θ0, α0, β̃)})−1.

Again, a standard two-step estimation procedure can be used to get

(θ̂∗GMM, α̂
∗
GMM) by first obtaining a consistent estimate of C∗.

Corresponding to Proposition 1 and Theorem 1, we have the following two

results.

Proposition 2. θ̂∗CMD and θ̂∗GMM have the same asymptotic variance.

Theorem 2. If θ̆∗2 and β̆∗ are asymptotically independent, and θ̆∗1 and β̆∗ are

asymptotically correlated, then θ̂∗GMM,1 is more efficient than θ̂INT,1, but θ̂
∗
GMM,2

and θ̂INT,2 share the same level of efficiency.

Example 3. Assume the same setting for the linear regression model as that

in Example 2, but here, X1 and X2 are independent in both populations.

We have the following result.

Corollary 5. Under the setting of Example 3, θ̂∗GMM,2 has the same efficiency

level as that of θ̂INT,2.

The results of simulation studies, described later, show that this conclusion

still holds reasonably well under logistic regression models.

2.4. Connection with the generalized integration method

Zhang et al. (2020) recently proposed an empirical likelihood approach called

the generalized integration method (GIM) for synthesizing individual-level and

summary data. They considered a joint likelihood approach by treating data

from both sources as observed random variables. Denote P = (pi
def
= dF (Xi) : i =

1, . . . , n) as the empirical distribution of X supported by the internal data. The

log likelihood of the internal data can be expressed as
∑n

i=1 log pi+
∑n

i=1 log f(Yi |
Xi; θ). The summary data β̃ follows an asymptotic normal distribution, with its

log likelihood function being −N(β̃ − β)TΣ−1(β̃ − β)/2. Because Σ is unknown,

Zhang et al. (2020) propose estimating µ = (θT, αT, βT)T by solving the following
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optimization problem over (P, µ):

(P̂ , µ̂) = argmax
(P,µ)

n∑
i=1

log pi +
n∑

i=1

log f(Yi | Xi; θ)−
N

2
(β̃ − β)TV −1(β̃ − β), (2.5)

subject to ∑
i=1

pi = 1,
∑
i=1

piu(Xi; θ, α, β) = 0, (2.6)

with pi ≥ 0, and V being any given positive-definite matrix with its dimension

equal to that of β. Note that constraint equations (2.6) are the empirical

distribution analogy of (2.2). Zhang et al. (2020) show that the estimate of

θ is always consistent for any given V , and that Σ is the optimal choice of V

under this empirical likelihood framework, leading to the most efficient estimate

of θ. A two-step procedure can be used to obtain this most efficient estimate of θ.

At the initial step, set V as the identity matrix in (2.5) to find the solution for the

optimalization problem. Then, use the estimate from the initial step to obtain

Σ̂, a consistent estimate of Σ, and solve the optimization problem again with

V = Σ̂; for further details, see Zhang et al. (2020). We denote this estimate as

(θ̂EL, α̂EL, β̂EL). When the distributions of X are different between the two study

populations, Zhang et al. (2020) modify their GIM estimate by assuming that a

set of reference samples of X from the external study population are available.

We denote this version of the GIM estimate as (θ̂∗EL, α̂
∗
EL, β̂

∗
EL). Because the

GIM adopts a likelihood approach, it requires that we specify f(Yi | Xi; θ). The

following result shows that the GMM and GIM are asymptotically equivalent

under the conditional likelihood setting.

Theorem 3. When two study populations have the same distribution of X, θ̂GMM

and θ̂EL are asymptotically equivalent. When the distributions of X are different

between the two study populations, θ̂∗GMM and θ̂∗EL are asymptotically equivalent.

3. Simulation Study

3.1. Same study population

We first consider the setting in which the internal and external studies are

carried out on the same source population. We consider an outcome Y to be

either continuous or binary, and assume there are two covariates X = (X1, X2).

The true underlying model (the internal model) for the continuous outcome is

given by

Y = θ0 + θ1X1 + θ2X2 + ε,

where (θ0, θ1, θ2) = (−0.5,−0.1, 0.2) and ε follows the normal distributionN(0, 2).

For the binary outcome, the true model is specified as
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Table 1. Simulation results under linear regression models, with the internal and external
studies conducted in the same population.

Bias SE.emp

Methods θ̂INT θ̂GMM θ̂INT θ̂GMM

External Model (a) (b) (c) (a) (b) (c)

Independent normal, with (σ2, r) = (2, 0)

θ1 0.0004 -0.0004 -0.0005 -0.0004 0.1277 0.0249 0.0270 0.0315

θ2 0.0006 0.0014 0.0014 0.0013 0.1285 0.1290 0.1290 0.1291

Joint normal, with (σ2, r) = (2, 0.6)

θ1 0.0002 -0.0012 -0.0011 -0.0009 0.1599 0.1001 0.1007 0.1020

θ2 0.0006 0.0014 0.0013 0.0013 0.1607 0.1613 0.1613 0.1614

Independent uniform U(−c, c), with c = 2

θ1 0.0013 0.0000 -0.0002 -0.0003 0.1107 0.0224 0.0236 0.0263

θ2 -0.0012 -0.0004 -0.0004 -0.0004 0.1110 0.1114 0.1114 0.1114

θ̂INT: the internal data-based MLE; θ̂GMM: the GMM assuming that the internal and external
data share the same covariate distribution; SE.emp: the empirical standard error of the estimate;
External Model: nested model (a), cubic root model (b), and threshold model (c).

P (Y = 1 | X) =
exp(θ0 + θ1X1 + θ2X2)

1 + exp(θ0 + θ1X1 + θ2X2)
,

with (θ0, θ1, θ2) = (−0.5,−0.1, 0.2). For both types of outcomes, we consider the

distribution of (X1, X2) to be either joint normal N(0,Σ), with Σ11 = Σ22 = σ2

and Σ12 = σ2r, or drawn independently from a uniform distribution U(−c, c).
We consider σ2 = 2 or 100, r = 0 or 0.6, and c = 2 or 20 in the experiments.

We fix the internal study sample size at n = 250 and the external study sample

size at N = 10,000. We choose N to be much larger than n for the purpose

of illustration. Other external sample sizes yield similar conclusions (results not

shown). We further assume that each external working model uses the same

link function (either the identity or the logit link) as the internal model, and

adopts one of the following three model specifications: (a) the nested model with

l{E(Y | X)} = α+X1β; (b) the cubic root model with l{E(Y | X)} = α+X
1/3
1 β;

and (c) the threshold model with l{E(Y | X)} = α + I(X1 > 0)β. We generate

5,000 pairs of internal data and summary data under each scenario, and evaluate

the performance of the considered methods.

The Simulation results presented in Table 1 and in Tables S1 of the

Supplementary Material verify the performance of the GMM under the settings

of Examples 1 and 2, with a continuous outcome. In both tables, we present the

results of the GMM incorporating summary data derived from each of the three

considered external models under different distributions of X. First, Table S1

of the Supplementary Material shows that the GMM estimate is consistent and

its estimated standard error matches well with its empirical version. The GMM-

derived confidence interval also has the proper coverage probability. Second, by

comparing the empirical standard errors presented in Table 1, it is evident that
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Table 2. Simulation results under logistic regression models, with the internal and
external studies conducted in the same population.

Bias SE.emp

Methods θ̂INT θ̂GMM θ̂INT θ̂GMM

External Model (a) (b) (c) (a) (b) (c)

Independent normal, with (σ2, r) = (100, 0)

θ1 -0.0024 -0.0008 -0.0009 -0.0009 0.1339 0.0261 0.0281 0.0324

θ2 0.0059 0.0059 0.0060 0.0060 0.1367 0.1367 0.1368 0.1369

Joint normal, with (σ2, r) = (100, 0.6)

θ1 -0.0026 -0.0034 -0.0034 -0.0034 0.1667 0.1043 0.1046 0.1057

θ2 0.0057 0.0057 0.0058 0.0058 0.1697 0.1697 0.1698 0.1699

Independent uniform U(−c, c), with c = 20

θ1 -0.0004 -0.0005 -0.0005 -0.0005 0.1155 0.0235 0.0245 0.0271

θ2 0.0031 0.0031 0.0031 0.0030 0.1180 0.1180 0.1180 0.1180

θ̂INT : the internal data-based MLE; θ̂GMM : the GMM assuming that the internal and external
data share the same covariate distribution; SE.emp: the empirical standard error of the estimate;
External Model: nested model (a), cubic root model (b), and threshold model (c).

θ̂GMM,1, the GMM estimate of θ1, is more efficient than θ̂INT,1, the estimate based

on the internal study. However, θ̂GMM,2 has the same level of efficiency as that of

θ̂INT,2. These observations are consistent with the conclusions from Corollaries 2

and 3. Third, a comparison of θ̂GMM,1 using summary data from the three external

models shows that using summary data from the nested model is more efficient

than using summary data from the cubic root or threshold models. Furthermore,

the GMM estimate that incorporates summary data from the cubic root model is

more efficient than the one with the threshold model (Table 1). This is expected,

given Corollary 4.

Table 2 and Table S2 of the Supplementary Material summarize simulation

results under the logistic regression model, yielding similar conclusions to those

under the linear regression model. For example, as predicted by Corollary 2, the

GMM estimate of θ2 using summary data from the nested model has the same

level of efficiency as that based on the internal study (Table 2). To evaluate

whether the conclusions from Corollaries 3 and 4, which are proved under the

linear regression model, still hold numerically under the logistic regression model,

we choose distributions of X with large variations to ensure that var(Y | X) has

a relatively wide range. From Table 2, it appears that the conclusions from

Corollaries 3 and 4 hold reasonably well under the logistic regression model, even

when the range of var(Y | X) is large.

3.2. Different study populations

Here, we consider the setting in which the internal and external studies are

performed on two different populations. Data sets from each population are

generated using a similar procedure to that described in Section 3.1, with different
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Table 3. Simulation results under linear regression models, with the internal and external
studies conducted in two different populations.

Bias SE.emp

Methods θ̂INT θ̂∗GMM θ̂INT θ̂∗GMM

External Model (a) (b) (c) (a) (b) (c)

Independent normal, with (σ2, r) = (2, 0) vs. (1,0)

θ1 0.0012 0.0004 0.0003 0.0004 0.0909 0.0246 0.0266 0.0306

θ2 -0.0014 -0.0015 -0.0015 -0.0015 0.0903 0.0903 0.0904 0.0904

Independent normal, with (σ2, r) = (100, 0) vs. (50,0)

θ1 0.0002 0.0001 0.0001 0.0001 0.0129 0.0096 0.0100 0.0106

θ2 -0.0002 -0.0002 -0.0002 -0.0012 0.0128 0.0128 0.0128 0.0128

Independent uniform U(−c, c), with c = 2 vs. 1

θ1 0.0001 0.0004 0.0004 0.0003 0.1104 0.0363 0.0377 0.0412

θ2 0.0008 0.0007 0.0008 0.0008 0.1097 0.1098 0.1098 0.1098

Independent uniform U(−c, c), with c = 20 vs. 10

θ1 0.0000 -0.0001 0.0000 0.0000 0.0110 0.0088 0.0090 0.0094

θ2 0.0001 0.0001 0.0001 0.0001 0.0110 0.0110 0.0110 0.0110

θ̂INT: the internal data-based MLE; θ̂∗GMM: the GMM using a reference set of 250 samples
collected from the external population; SE.emp: the empirical standard error of the estimate;
External Model: nested model (a), cubic root model (b), and threshold model (c).

distributions of X chosen for the two populations. In all simulations, the sample

size of the reference set is fixed at 250.

We focus on verifying Corollary 5 by considering distributions of covariates,

with X1 and X2 independent in both populations. When X1 and X2 are normally

distributed, we set σ2 = 2 (or 100) and 1 (or 50) in the internal and external study

populations, respectively. When X1 and X2 follow a uniform distribution, we set

c = 2 (or 20) and 1 (or 10), respectively, in the two populations. Table 3 and

Tables S3–S4 of the Supplementary Material present simulation results under the

linear regression model. First, Table S3 shows that the GMM estimate assuming

the same study population is not consistent, and its derived confidence interval

does not have the correct coverage probability. On the other hand, Table S4

shows that θ̂∗GMM, that is, the GMM estimate leveraging reference samples from

the external study population, has the desired statistical properties. Second,

using summary data from each of the three considered external models shows

that θ̂∗GMM,1 is more efficient than θ̂INT,1. However, using the summary data does

not lead to a more efficient GMM estimate of θ2, because θ̂
∗
GMM,2 and θ̂INT,2 have

the same level of empirical standard error (Table 3). Those observations are

consistent with Corollary 5.

Table 4 and Tables S5–S6 of the Supplementary Material summarize

simulation results under a logistic regression model. By comparing the empirical

standard errors, it appears that θ̂∗GMM,2 has almost the same level of efficiency

as θ̂INT,2, with the largest percentage difference being around 3%, which occurs
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Table 4. Simulation results under logistic regression models, with the internal and
external studies conducted in two different populations.

Bias SE.emp

Methods θ̂INT θ̂∗GMM θ̂INT θ̂∗GMM

External Model (a) (b) (c) (a) (b) (c)

Independent normal, with (σ2, r) = (2, 0) vs. (1,0)

θ1 -0.0018 0.0001 -0.0001 -0.0003 0.0966 0.0252 0.0273 0.0316

θ2 0.0029 0.0022 0.0022 0.0022 0.0983 0.0979 0.0980 0.0981

Independent normal, with (σ2, r) = (100, 0) vs. (50,0)

θ1 -0.0027 -0.0012 -0.0014 -0.0016 0.0210 0.0143 0.0151 0.0162

θ2 0.0049 0.0041 0.0042 0.0043 0.0281 0.0279 0.0280 0.0280

Independent uniform U(−c, c), with c = 2 vs. 1

θ1 -0.0027 -0.0004 -0.0003 -0.0004 0.1157 0.0370 0.0392 0.0430

θ2 0.0032 0.0025 0.0024 0.0025 0.1181 0.1176 0.1176 0.1177

Independent uniform U(−c, c), with c = 20 vs. 10

θ1 -0.0028 -0.0017 -0.0017 -0.0019 0.0204 0.0144 0.0149 0.0157

θ2 0.0056 0.0046 0.0047 0.0048 0.0265 0.0257 0.0257 0.0259

θ̂INT : the internal data-based MLE; θ̂∗GMM : the GMM using a reference set of 250 samples
collected from the external population; SE.emp: the empirical standard error of the estimate;
External Model: nested model (a), cubic root model (b), and threshold model (c).

when the range of var(Y | X) is relatively large (Table 4).

4. Discussion

We have shown that the GMM can be used as a flexible procedure to

effectively integrate external summary data with individual-level data. We

provide a necessary and sufficient condition under which summary data improved

the GMM estimate. For the purpose of illustration, we consider only summary

data consisting of estimates derived from one external model. The same

procedure can be applied to summary data from different external models.

When the distribution of X differs between the internal and the external

study populations, we consider GMM procedures in which we assume that we have

a set of samples chosen randomly from the distribution of X in the external study

population. This set of reference samples is needed to estimate the empirical

distribution of X. Ignoring the discrepancy in the distribution of X between the

two study populations could lead to a biased estimate of θ. Recent works have

propsed several strategies for dealing with this distribution shift problem, without

relying on a set of reference samples (Chen et al. (2021); Zhai and Han (2022);

Taylor, Choi and Han (2023)). However, these methods assume that the external

summary data exhibit negligible variability. Further research is needed to develop

procedures that are more robust when incorporating external summary data.
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Supplementary Material

All technical details and additional numeric results are relegated to the online

Supplementary Material.
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