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EMPIRICAL PRIORS AND POSTERIOR CONCENTRATION
IN A PIECEWISE POLYNOMIAL SEQUENCE MODEL

Chang Liu', Ryan Martin' and Weining Shen*?

L North Carolina State University and % University of California, Irvine

Abstract: Inference on high-dimensional parameters in structured linear models is
an important statistical problem. Focusing on the case of a piecewise polynomial
Gaussian sequence model, we develop a new empirical Bayes solution that enjoys
adaptive minimax posterior concentration rates and improved structure learning
properties than existing methods. Moreover, the conjugate form of the empirical
prior means the posterior computations are fast and easy. Numerical examples
highlight the method’s strong finite-sample performance compared with that of
existing methods in various scenarios.
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1. Introduction

Consider a Gaussian sequence model

Y; ~N(0;,0%), i=1,...,n, (1.1)

2 > 0 is known, and

where Y = (Y},...,Y,)" are independent, the variance o
we desire to conduct inference on the unknown mean vector 6 = (0y,...,6,)".
It is common to assume that 6 satisfies a sparsity structure, that is, most 6; are
zero. Works on these problems include that of Donoho and Johnstone| (1994,
and more recently those of Johnstone and Silverman (2004), |Jiang and Zhang
(2009), Castillo and van der Vaart| (2012), [Martin and Walker| (2014), van der
Pas, Szab6 and van der Vaart| (2017), and Martin and Ning| (2020).

There has also been recent interest in imposing low-dimensional structures
on high-dimensional parameters, namely, piecewise constant and, more generally,
piecewise polynomial structures. For a fixed positive integer K, we say that
the n-vector 6 has a piecewise degree-K polynomial structure if there exists a
simple partition B of the index set into consecutive blocks B(s) C {1,...,n},
with s = 1,...,|B]|, such that, for each block B(s), the corresponding sub-vector
{0; : 7 € B(s)} can be expressed as a degree-K polynomial of the indices j € B(s).
This piecewise polynomial form is determined by the degree K and the complexity
| B| of the block, that is, its dimension is (K +1)|B|. When this number is smaller
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than n, then a 6 of this form clearly has a relatively low-dimensional structure.
For example, the piecewise constant case corresponds to K = 0, so the complexity
is determined completely by the number of blocks |B].

Compared with sparse Gaussian signals, few studies examine piecewise con-
stant and piecewise polynomial Gaussian sequence models. Regularization meth-
ods, such as trend filtering (Kim et al., 2009) and locally adaptive regression
splines (Mammen and van de Geer}, 1997), have been proposed to estimate the
signal adaptively and recover the underlying block partitions. For piecewise
constant problems, Tibshirani et al.| (2005) introduce a fused lasso based on
a penalized least squares problem using the total variation penalty. [Rinaldo
(2009) and Qian and Jia, (2016) investigate the convergence rate of the fused
lasso estimator and the asymptotic properties of pattern recovery. For signals
with a more general piecewise polynomial structure, Tibshirani| (2014) proposes
an adaptive piecewise polynomial estimation using trend filtering that minimizes
a penalized least squares criterion, in which the penalty term sums the absolute
Kth-order discrete derivatives over the input points. (Guntuboyina et al.| (2020)
show that, under a strong sparsity setting and a minimum length condition, the

Lrate, up to a logarithmic multiplicative

trend filtering estimator achieves an n~
factor. In the Bayesian domain, methods such as the Bayesian fused lasso (Kyung
et al., |2010) and Bayesian trend filtering (Roualdes, 2015) have been proposed.
However, to the best of our knowledge, no Bayesian studies have examined the
posterior contraction as it relates to adaptive estimation and asymptotic structure
recovery for such piecewise polynomial Gaussian sequence models. Our goal here
is to fill this gap in the literature.

Given the relatively low-dimensional representation of the high-dimensional
0, the now-standard Bayesian approach would be to assign a prior for the
unknown block configuration B, and a conditional prior on the block-specific
(K + 1)-dimensional parameters that determine the polynomial form. For the
prior on B, the goal is to induce “sparsity” in the sense that the prior concentrates
on block configurations B, with |B| relatively small. For this, one can mostly
follow the existing Bayesian literature on sparsity structures, such as|Castillo and
van der Vaart| (2012), |Castillo, Schmidt-Hieber and van der Vaart| (2015)), Martin,
Mess and Walker| (2017)), and |Liu et al.| (2021)), among others. However, for the
quantities that determine the polynomial form on a given block configuration,
the situation is quite different. In classical sparsity settings, it is reasonable
to assume that signals that are not exactly zero are still relatively small, in
which case, a conditional prior centered around zero is effective. In this piecewise
polynomial setting, there is no obvious fixed center around which a prior should
be concentrated. Of course, one option is to choose a fixed center and a
wide spread, but then the tails of the prior distribution become particularly
relevant. In particular, Theorem 2.8 in Castillo and van der Vaart| (2012)) shows
that if the fixed-center prior has tails thinner than Laplace, then the posterior
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contraction rates are sub-optimal, thus excluding the computationally convenient
conjugate Gaussian priors. An alternative is to follow Martin and Walker| (2019),
building on Martin and Walker| (2014) and Martin, Mess and Walker, (2017)),
using an empirical prior that lets the data help with correctly centering the prior
distribution, relieving the computational burden from the restrictions on the tails
of the fixed-center prior.

Details of this empirical prior construction are presented in Section 2. Our
theoretical results in Section 3 demonstrate that the corresponding empirical
Bayes posterior distribution enjoys adaptive concentration at the same rate of
trend filtering, adjusting to phase transitions, but requires weaker conditions
than those in Guntuboyina et al.| (2020)). In addition, we establish structure
learning consistency results that, to the best of our knowledge, are the first for
piecewise polynomial sequence models in the Bayesian literature. Furthermore,
because the proposed empirical priors are conjugate, the posterior is relatively
easy to compute. The numerical simulations in Section 5 compare our method
with trend filtering, showing the advantageous performance of our method in
terms of signal estimation and structure recovery under finite-sample settings.
In Section 6, we apply our method to two real-world applications, where the
underlying truths are considered to be piecewise constant and piecewise linear,
respectively. Finally, Section 7 concludes the paper. All technical details and
proofs are presented in the Supplementary Material.

2. Empirical Bayes Formulation
2.1. Piecewise polynomial model

Before we introduce our proposed prior and corresponding empirical Bayes
model, we precisely formulate the within-block polynomial. Start with the case
|B| = 1, corresponding to there being only one block. A vector § being a degree-
K polynomial with respect to B corresponds to 6§ € S, where

S = span{vg, v1,...,Vk}, (2.1)

and v, = (1%,2% ... . n®)T € R", with k = 0,1,..., K. In other words, if Z €
R (K+1) i 3 matrix with columns that form a basis for S, then 6 can be expressed
as Z[3, for some vector 8 € RET!. More generally, for a generic simple partition
B, if 0 is a piecewise degree-K polynomial on the block configuration B, then it
can be expressed as ZZ B2, where

ZB(l) 0o ... 0

0 Zpay ... O

ZB _ c Rnx|B|(K+1)’ (22)

0 0 -~-ZB(|B\)
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Zp(s) is the sub-matrix of Z with its row indices included in B(s), and

By
BE=| 1 | eRPUHD BEERNT s=1.|B.  (23)
Bz
The following two examples illustrate the piecewise polynomial formulation.

e When K = 0, the vector § formed by ZZ3F is piecewise constant. For a
specific block segment B(s), we can write Zp(,) = I|p(s) and, therefore,

0, =B° €R, i€ B(s).

Note that in this case, the Gaussian sequence model can be rewritten in the
form of a one-way analysis of variance model with |B| treatments and | B(s)|
number of replications in each treatment, for s =1,...,|B].

e When K = 1, the vector # formed by ZZ 3% is piecewise linear. For a specific
block segment B(s), we can write

Yos) = ZpsBY +e, &~ Nip)(0,0°]),

where Yp(s) is a sub-vector of Y with its indices in B(s), and 82 is a two-
dimensional vector. Hence, within each segment, the observed data can be
viewed as a random sample generated from a block-specific simple linear
regression model with intercept and slope ﬁfl and 552, respectively.

To summarize, if 6 is an n-vector that is assumed to have a piecewise degree-
K polynomial structure, then we can reparametrize 6 as (B, 607), where 67 is
expressed as ZPZBE, for some 8% € RIPIE+D and ZP is as in for some
generator matrix Z with columns that form a basis for S in . The matrix
Z is not unique and, therefore, S is not unique either. However, our interest
is in the projection #”, which is independent of the choice of basis, so this non-
uniqueness is not a problem in what follows.

2.2. Empirical prior

Given our representation of a piecewise polynomial mean vector 6 using
(B,0%) or (B, 3B), a hierarchical representation of the prior distribution would
be most convenient. That is, we first specify a prior for B, and then a conditional
prior for BB, given B; this, in turn, induces a conditional prior for §Z. Here, we
follow this general prior specification strategy, but allow the conditional prior for
B2 to depend on the data in a particular way. Then, this empirical prior for
(B, BP) immediately induces a corresponding empirical prior for (B, 0F) and 6.

Intuitively, there is no reason to introduce a piecewise polynomial structure
unless we believe there are not too many blocks, that is, that |B| is relatively



EMPIRICAL BAYESIAN PIECEWISE POLYNOMIAL MODEL 229

small compared to n; see Section 3. This belief can be incorporated into the prior
for B in the following way. Set b = |B|, and introduce a marginal prior

fo(®) ccn™D 0 b=1... n, (2.4)

where A > 0 is a specified constant that controls the severity of the prior’s penalty
against large |B|. Note that this is effectively a truncated geometric distribution
with parameter p = n~", which puts most of its mass on small values of the
block configuration size, hence incorporating the prior information that 8 is not
too complex. Next, if the configuration size b is given, the blocks correspond to
a simple partition of {1,2,...,n} into b consecutive chunks, and there are (’bfll)
such partitions. Therefore, for the conditional prior distribution of B, given |B],
we can use a discrete uniform distribution. Therefore, the prior distribution for
B is given by )
n—1

m(B) = (,B| ) 1) 7.(1B), (25)
where B ranges over all simple partitions of {1,2,...,n} into consecutive blocks.
Next we give the conditional prior for 372, given B. We propose assigning
independent, conjugate normal priors to each 82 corresponding to a segment
B(s). In light of the results of |Castillo and van der Vaart| (2012)), assuming this
thin-tailed prior for 32 has a fixed center risks sub-optimal posterior contraction
rates. To avoid this, we make a notable departure from the traditional Bayesian
formulation by following [Martin, Mess and Walker| (2017)) and letting the data
inform the prior center. Specifically, our conditional prior for 32, given B, is
taken to be

N —1
B2 ~ N (53% (Zg(s)zB(s)) > . s=1,...,|B|, (2.6)

independently, where Bf is the least-squares estimator
B = (ZpwZn) " Zhw Yo,

and v > 0 is a constant controlling the prior spread. Write the conditional density
of B, given B, with respect to the Lebesgue measure on RIZIE+D) g

|B|

7?n(BB | B) = H NK+1(/BSB | Bf?v{zg(s)ZB(s)}_l)v

which is a product of individual (K + 1)-variate normal densities. This induces a
prior on #F through the mapping 67 = ZB3P that defines it. However, because
this is generally not a bijection, there is no density function with respect to the
Lebesgue measure on R". To see this, let Qg(s) denote the sub-vector of 67 with
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indices included in B(s). Then we observe that the induced conditional prior on
Gg(s) is N|B(s)|(PB(s)YB(s)7 Q}PB(S)), where

Ppsy = Zp{Zh 2} Zies) (2.7)

is the matrix that projects onto the space spanned by the columns of Zpg).
Because Pp(s) is a projection, it is not full rank and, therefore, the prior for
Gg(s) is a degenerate normal. Despite this degeneracy, the conditional prior for
08, given B, still exists; it is just more convenient to express in terms of the
conditional prior for 2. That is, we define the conditional empirical prior for
08, given B, as

1,(A | B) :/ #.(8% | B)ds®, ACR"
{8B:2BBBecA}

Note that while the prior for S depends on the particular basis in Z, the prior

for 82 depends only on the projection, which does not depend on the choice of

basis. Finally, our empirical prior for € is defined as

Hn(A) = ZWH(B) Hn(A ‘ B)

— " m(B) /{ #a(8° | B) dB”.

BB:ZBBBcA}

Although we refer to the object II,, defined above as a “prior,” it is of course
not a prior in the traditional Bayesian sense, owing to the data-driven centering.
This also differs from the traditional empirical Bayes formulation, where the prior
depends on the data only through the choice of a few hyperparameters; here, the
“prior” is directly and heavily dependent on the data. Despite these differences,
there is nothing stopping us from treating this formally as a “prior” and combin-
ing it (see below) with the likelihood to get a corresponding “posterior.” There
are significant practical advantages to this unorthodox approach. For example,
we can enjoy the theoretically optimal concentration rate properties using a
computationally simple thin-tailed conjugate prior for 37, whereas an orthodox
Bayesian would require a computationally burdensome heavy-tailed prior for 2.

2.3. Posterior

Let L,(6) denote the likelihood function based on the model (L.1)), that is,
L, (0) < exp{—||Y —0]|>/202}, where ||-|| denotes the f,-norm on R". We propose
combining the empirical data-driven prior II,,, defined above, with the data as
encoded in L,, using (almost) the usual Bayes’s formula. Specifically, we define



EMPIRICAL BAYESIAN PIECEWISE POLYNOMIAL MODEL 231

our corresponding empirical Bayes posterior as

T"(A) o [ L,(0)" 1L, (dD) (2.8)
A

where o € (0,1) is an additional regularizing factor that down-weights the
influence of the data in the likelihood portion of the posterior; see below. (Of
course, because II, is a proper prior, II" is a proper posterior.) This sort
of generalized or pseudo posterior has received considerable attention; see, for
example, Grinwald and Van Ommen| (2017), Miller and Dunson| (2019), Holmes
and Walker| (2017), Syring and Martin (2019), and Bhattacharya, Pati and Yang
(2019), though not specifically for the purpose of regularization. To examine the
role « plays, we consider an equivalent formulation. Define a reqularized empirical
prior

18 (df) o< L,,(0)~ = 1L, (d6),

and then the corresponding more-Bayesian-looking posterior

I(A) o [ L,(6) 7% (a0). (2.9)
A
By comparing the equivalent expressions and , the role of o becomes
clear. The power a on the likelihood in is equivalent to an ordinary-looking
Bayesian update with a regularized prior that effectively down-weights parameter
values with an especially large likelihood, hence discouraging overfitting. The
point is that using a data-driven prior blurs the line between what is the “prior”
part and what is the “likelihood” part of the posterior. We understand that this
might make the reader uncomfortable, but remember the practical motivations
for incorporating the data into the prior. The following sections investigate the
theoretical convergence properties and practical performance of II" in .
Whether o« = 1 is a valid choice for an analysis depends on what, if anything,
we are willing to give up. In general, the asymptotic consistency of posterior
distributions can be established under weaker conditions when using o < 1 than
when using o = 1; this was the motivation behind the results in|Walker and Hjort
(2001). Similarly, in general, faster rates can be achieved with o < 1 than with
a = 1, under the same conditions. It may be that in a particular application,
such as the one considered here, the additional conditions needed to close the
gap between @ < 1 and a = 1 can be checked without introducing any practical
restrictions, but this is not true in all cases. For example, in generalized linear
models, Jeong and Ghosal (2021]) argue that the conditions needed to establish
optimal concentration rates with a = 1 are much stronger than those needed to
get the same rates with o < 1. Our perspective is that

(a) there is nothing to lose by taking o < 1, because it can be taken very close
to one; for example, we take a = 0.99 in our simulation examples (Sec. 5),
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(b) and there is nothing to gain by insisting on a = 1, because our concentration
rates are improvements on the existing Bayesian rates for this problem
(Remark 3) and are optimal in certain cases.

Therefore we embrace the simplicity and flexibility that o < 1 affords, rather
than apologizing for it and/or insisting on a = 1, solely because it makes the
posterior distribution “look more Bayesian.”

A practical benefit of the simplicity of our formulation is that the posterior
distribution is not complicated. Indeed, by combining and -, the
posterior distribution II" for # is given by

| B

=> 7(B) I17.(8%s,B) ¢ ds”, (2.10)

{8B:Z2BBBcA} | 1]

where

P38 5.8) = Nica (821 32, 72020 Zmeo} ™),
and the marginal posterior for B has mass function

v

7(B) o m(B)(1 +5

—(K+1)|B|/2 5
) e~ (@/2) S NU-Pae)Yel? (2.11)

with Pg(s) the projection in . From the latter expression, there are three
major factors contributing to the log-marginal posterior distribution of B: the
prior distribution of block configuration log 7, (B), a penalty term on the model
complexity proportional to —|BJ, and a model-fitting measure proportional to
the negative sum of the squared residuals. Therefore, our posterior distribution
prefers models with fewer blocks and better fitting, given the observed data Y.
Details about how we compute the posterior distribution are given in Section 4
and in the Supplementary Material.

3. Asymptotic Properties
3.1. Setup

For a vector # € R™ that has a piecewise degree-K polynomial structure,
write By for its block configuration, and let | By| denote its cardinality. Then, our
parameter space corresponds to 0,,(K), the set of all n-vectors with a piecewise
degree-K polynomial structure and |By| = o(n). The latter condition on the size
of the block configuration ensures that there are not too many blocks, that is,
that the signal is not too complex.

When K > 1, it is possible that a vector # has multiple block configurations
By. That is, there could be multiple B and 3% such that § = ZZp%. This
does not present a problem when estimating €, but it does create identifiability
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Figure 1. Two examples pertaining to the identifiability of By for a given 6, one where
the non-uniqueness of By can be resolved, and one where it cannot. The two lines on
each plot both pass through the marked points; the small jitter is to help distinguish the
groupings corresponding to the two block configurations.

concerns in the context of structure learning, that is, recovering the underlying
block structure. In some cases, the non-uniqueness can be resolved by defining
By as the “most economical” of the candidate B’s. For example, for an arbitrary
signal, any (K + 1)-tuple of consecutive points can be fit perfectly by a degree-
K polynomial. Therefore, blocks of size K + 1 or smaller are meaningless, and
should be ruled out. Figure 1(a) shows an illustration of this for the case K = 2.
However, there are other cases where the non-uniqueness cannot be resolved by
ruling out blocks that are too small. Figure 1(b) shows an example of this, where
the two candidate block configurations cannot be distinguished by the data. This
is not relevant for the results in Section 3.2 below, so we postpone our discussion
of how to resolve this problem to Section 3.3.

3.2. Posterior concentration rates
For z € R", define the scaled £;-norm ||z||,, = n~'/2||z||, and, for #* € ©,,(K),

define
-1 if | By~
52(0*): n 1 | 0
7’L71’B9* IOgTL if |B9*

=1,

> 9. (3.1)

Note that, in the case |By-| = 1, the best estimator of 6* is PsY, where Ps
is the projection matrix onto § in , and its expected sum-of-squared-error
is O(n"), consistent with (3.1). For the case with |By.| > 2, the rate is
consistent with others obtained in the literature; see Remark 2 below. Theorem 1
states that the II" constructed above attains the rate defined in . Because
the prior can achieve the rates £2(6*) defined above, without knowledge of 6*
or |By-
unknown complexity of 6*.

, it follows that our posterior concentration results are adaptive to the
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Theorem 1. Consider the model with known o > 0 and, assume that 0*
has a piecewise polynomial structure of degree K > 0, with K known. Let 11"
be the corresponding empirical Bayes posterior distribution for 0 € R™ described
above. If €2(6*) is as in , then for any sequence M, with M, — oo, there

exists a constant G > 0 such that
Eo. IT"({6 € R™ : |0 — 6%|]2 > M,e2(0%)}) < e GMnnen (@)

for all large n, uniformly in 0* € ©,,(K). For the latter case in (3.1), the sequence
M, can be replaced by a sufficiently large constant M > 0.

Remark 1. Given data Y ~ N, (6*,02I), an oracle who has access to Bg. would
fit a polynomial of degree K in each of the partitions given by By.. This would
). Note that
the rate achieved in Theorem 1 is comparable to the oracle risk. Indeed, our

be a linear estimator, and its corresponding oracle risk is O(n~!|By-

method adaptively learns the underlying block structure of 8* and, in the case
’Ba*
terms of the rate is only logarithmic.

= 1, we can exactly match the oracle rate; otherwise, the price we pay in

log(en/|By-
assume more control on the complexity of 6*, that is, if | By«
t € [0,1). The only way this extra assumption fails is if the signal is extremely
= O(n/logn). Such cases effectively have no low-
dimensional block structure, and should be rare in practice. This minimax rate

Remark 2. The minimax rate, n~'|By- ), can be achieved if we

= O(n'), for some

complex, for example, if | By«

can be achieved by using trend filtering (see (Guntuboyina et al.l 2020, Cor. 2.3),
but this too requires additional assumptions. Indeed, their result holds only when
their minimum length condition is satisfied and the tuning parameter is properly
chosen within an unspecified “ideal” range. The former—see Equation (13) in
Guntuboyina et al.| (2020)—restricts the length of the minimal block to be no
smaller than O(n|By-
strong sparsity assumption that requires | By-

~1), which cannot be checked in practice. They also make a
to be “much smaller than n.” This
= O(n/logn).
Therefore, our empirical Bayes posterior concentration rate result is no weaker
than the results for trend filtering in |Guntuboyina et al.| (2020)), which the
authors argue are stronger than any existing results in the literature. |Chatterjee

surely excludes extremely high-complexity cases, such as |By-

and Goswami (2021) present some risk-bound results for multivariate piecewise
polynomial estimation based on a dyadic decision tree approach. Their rate (e.g.,
their Cor. 3.2 and Thm. 3.4) agrees with ours in Theorem 1, but also requires
conditions on the tuning parameter and the complexity of the tree partition space.

Remark 3. A similar result to Theorem 1 is presented in [van der Pas and
Rockoval (2017) for the piecewise constant case K = 0, with a rate of
| Bo-| log(n/|Bg+|). However, translating their notation to ours, they assume
bounds on both [|6*||, and |By-

, which we do not require. In addition, from
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Theorem 2.8 of |Castillo and van der Vaart| (2012), we do not expect that optimal
concentration rates can be achieved using their fixed-center normal prior for 07,
given B, without some assumptions on the magnitude of 0*. Another related work
is that of Gao, van der Vaart and Zhou (2020), who consider a structured Bayesian
linear model and establish oracle inequalities based on elliptical Laplace priors
on the coefficients. Their result (e.g., Theorem 4) is applicable to the piecewise
polynomial model considered here, and it implies a posterior concentration rate
of n™{(K + 1)|Bg-| + |Bys-|log(en/|By-
obtained in our Theorem 1. In addition to the concentration rates in terms of @,
we address the structure learning problem in Section 3.3, which is not discussed
by |Gao, van der Vaart and Zhou| (2020). Moreover, because the data-driven
prior formulation allows us to achieve optimal concentration rates while using a

)}, which is virtually the same rate

convenient conjugate prior, we also enjoy straightforward posterior computation,
as shown in Section 4. Although |Gao, van der Vaart and Zhou (2020)) do not
discuss computational considerations, posterior computations based on their non-
conjugate prior are more difficult than using our proposed empirical prior-based
method.

Next, we show that the posterior mean 6 = J0II"(df) is an adaptive
asymptotically minimax estimator.

Theorem 2. Under the setup in Theorem 1,

Eo. |0 — 0% < M,2(6%),

for all large n, uniformly in 0* € ©,,(K). In the latter case of (3.1), the diverging
sequence M, can be replaced by a constant M, which can be absorbed into “<”
above.

3.3. Structure learning

In addition to estimation consistency, it is interesting to consider when the
posterior is able to recover the unknown block structure of the true piecewise
polynomial signal 8*. To the best of our knowledge, this is the first Bayesian (or
empirical Bayesian) investigation into structure learning in the piecewise polyno-
mial Gaussian sequence model. When K = 0, that is, the true signal is piecewise
constant, learning the underlying block structure can be viewed as detecting the
“change points” or “jump points,” which has many real-world applications. In the
non-Bayesian literature, structure recovery for piecewise constant and piecewise
polynomial signals has received some attention. Next we compare our results
with those available for trend filtering and binary segmentation, among others.

As a first result in this direction, Theorem 3 states that the effective dimen-
sion of the posterior is no larger than a multiple of the true block configuration
size; in other words, the posterior is of roughly the correct complexity. Note that
this result pertains only to the size |By| of the block configurations, which can
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be determined uniquely, and thus there are no identifiability issues here. Finally,
for this and the other results of this section, the statements are formulated in
terms of the marginal posterior distribution 7" for the block configuration B, as

defined in (2.11)).

Theorem 3. Under the setup in Theorem 1, for any C > 1+ \~%, where X is as
in (2.4), there exists a constant G > 0 such that

Eg-7m"({B: |B| > C|By-|}) < ¢~GlBox|logn,

for all large n, uniformly in 0* € 6,,(K).

Block configuration size is important, but we need to identify the under-
lying block structure. However, first, we need to address the potential non-
identifiability of Bgy.. As mentioned before, there are no such issues in the
piecewise constant case with K = 0, but non-identifiability is possible for K > 1.
On the one hand, if #* is such that non-uniqueness can be resolved simply
by taking the most economical of the equally well-fitting block configurations,
then that is how By- is defined. On the other hand, if 6* has multiple block
configurations of the same size, as in Figure 1(b), then it is not possible to
distinguish between these. In such cases, the best we can hope for is that the
posterior distribution will concentrate on the set B* = { By« } of equivalent block
configurations corresponding to 6*. We establish that this is the case in the
results below.

The first result concerns the event that B is a refinement of By., denoted by
B 1 By-, for some By. € B*. That is, if B 3 By+, then every block in By+ can be
expressed as a union of blocks in B or, equivalently, no block in B intersects with
more than one block in B*. Because refinements or unnecessary splits of By. are
a sign of inefficiency, we hope the posterior will discourage such cases. Indeed,
Theorem 4 shows that the posterior distribution assigns a vanishing probability to
the event “B 1 By.,” which means that the posterior for B asymptotically avoids
those inefficient refinements. This is analogous to the “no supersets” theorems
in |Castillo, Schmidt-Hieber and van der Vaart| (2015, Thm. 4) and Martin, Mess
and Walker| (2017, Thm. 4) for variable selection in a linear regression context.
The only additional requirement here is that the power A in the prior for |B| in
is not too small; otherwise, the prior does not sufficiently penalize block
configurations that are too complex, leaving open the possibility for overfitting.
Similar conditions appear in the regression setting, for example, the conditions
of Theorem 4 in Castillo, Schmidt-Hieber and van der Vaart, (2015).

Theorem 4. Under the setup of Theorem 1,
Eo-7"({B : B 3 By for some By € B*}) — 0, n — o0,

uniformly in 60* € ©,,(K) N {0 :|By| = o(n*)}, with A > 0 as in (2.4)).
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If A > 1, then the above condition on |By-| is satisfied for all 6* € ©,,(K).
However, for smaller values of A, such as those with good empirical performance
in Section 5, restricting to a proper subset of the parameter space is required,
but is not severe.

Next we discuss how to exactly recover the true block configuration By. or,
more generally, the set B* of equivalent true block configurations. First, we need
some additional notation. Define the 0*'- and 1%*-order difference operators as
Az =z and

1 T
Al = (3 —T1,X3 — Tay ooy Ty — Ty1)

respectively, where z = (z1,...,x,)" € R". For a generic order K > 2, the K''-
order difference, A¥ : R" — R"~Xis defined recursively as A¥z = AY(AK~1z).
Second, a change in the signal 6* from one block to another can only be detected
if the change is sufficiently large, and the definitions of “change” and “sufficiently
large” are related to the properties of the difference operators applied to 6*. In
particular, the set of indices where a change in the (K + 1)*-order occurs is
defined as
Jo- ={j=1,....,n— K —1:(AXT19%), £ 0}.

In the piecewise constant case, with K = 0, the set {j + 1 : 7 € Jp-} consists of
those indices at which the signal jumps from one value to another. Then, both
the minimal change in 6* on Jp« and the minimal spacing between changes are
relevant to determining whether a change is sufficiently large to be detectable.
These are defined, respectively, as
5,(0*) = min [(AXT19*).| and ~,(0*) = min i — 5.
(8) = min |( )il W(07) = min_ i =7
Then, the following theorem states that the block configuration By. can be
recovered exactly if 7, (6%)d2(6*) is sufficiently large, analogous to the so-called

beta-min condition in linear regression (e.g., [Bihlmann and Van De Geer} 2011}
Chap. 2).

Theorem 5. Under the setup in Theorem 1, suppose that

4K+ 52

Vn(0%)52(0%) > w(l—a)

logn, (3.2)

with M > 44+ X and A > 3, where X controls the prior (2.4). Then,
Eg-m"(B*) = 1, n — oo. (3.3)

To the best of our knowledge, only the piecewise constant (K = 0) case,
where the true By is unique, has been considered in the literature, so we focus
on that version here in our discussion of Theorem 5. In that case, v,(6*) and
0,(6%) represent the smallest number of indices between jumps and the smallest
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signal jump in 6*, respectively. To draw a parallel between the piecewise constant
signal problem and a one-way analysis of variance, 7, (6*) is like the minimum
number of replications across all the treatment groups, and 4, (0*) is like the
minimum effect size. In that classical analysis of variance context, where the
number of treatment groups and group memberships are fixed and known, the
F-test has power converging to one if 7, (6%)§2(6*) is bounded away from zero.
The condition 7, (6%)§2(6*) 2 logn in is only slightly stronger, that is, we
pay only a logarithmic price for not knowing the number of groups or group
memberships. Returning to the general piecewise constant case, if the minimum
block size 7, (0*) is fixed as n and |By| go to infinity, the result in Theorem 5
matches the pattern recovery property of the fused lasso in |Qian and Jia| (2016)),
and is stronger than the corresponding results in Lin et al. (2017) and [Dalalyan,
Hebiri and Lederer| (2017). We can also allow the minimum block size ~,,(6*) to
grow. For example, the minimum block length condition in |Guntuboyina et al.
(2020)) states that +,,(6*) can be of order O(n|By-|™!), corresponding to equally
partitioning over blocks. In this case, the minimum jump size simply needs to
satisfy 6%(60*) = n~!|By-
vanishes. This flexibility makes our result preferable to those for the fused lasso,

log n, which is mild, because the right-hand side typically

and comparable to thoese for the wild binary segmentation in Theorem 3.2 of
Fryzlewicz| (2014)), which is the best result available in the literature that we are
aware of. Finally, note that Theorems 4 and 5 are, to the best of our knowledge,
the first results of their kind in the Bayesian literature.

Recently Fang and Ghosh (2024) considered a high-dimensional linear re-
gression model with an inverse gamma prior on 2 and an empirical prior on
the coefficients. They obtained model selection consistency and a posterior
contraction rate for the coefficients. Therefore, we expect our rate convergence
results (e.g., Thm. 1 and 2) can be extended to treat unknown o2. The prior on
the coefficients can be changed to

(B2 ] B,0%) ~ Nk (BEJQU{Z;(S)ZB(S)}_l)a

which allows for easy computation (Lee, Lee and Lin, 2019). Whether the
structure learning results hold with unknown o? remains an open question.

4. Computation

Genuine Bayesian solutions to high-dimensional problems, ones for which
optimal posterior rates are available, tend to be based on non-conjugate, heavy-
tailed priors, making computation nontrivial. Our empirical Bayes solution, on
the other hand, is based on a conjugate prior for 62, making computations
relatively simple.
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Recall that the marginal posterior for B is available in closed form, up to
proportionality, as in ([2.11]). Furthermore, recall from that the conditional
distribution of 2, given B, is determined by a linear transformation of a normal
random variable, which is easy to simulate. Together, these two observations
suggest a Metropolis—Hastings algorithm to draw Markov chain Monte Carlo
(MCMC) samples from the proposed posterior II" for §. We provide more details
in Section S4 of the Supplementary Material.

5. Simulated data examples
5.1. Methods

In this section, we compare the numerical performance of our proposed
method with that of the adaptive piecewise polynomial trend filtering of [Tibshi-
rani (2014). We use the R package genlasso to implement trend filtering, and
choose the tuning parameter using five-fold cross-validation or the “one-standard
error” rule; see |Hastie, Tibshirani and Friedman| (2009, Chap. 7).

In order to implement the above sampling procedures, we need to specify
some additional hyperparameters in . As mentioned before, because o =
0.99 has little practical difference to the @ = 1 case, which corresponds to
the genuine Bayesian model, we plug a = 0.99 into the posterior distribution
functions for practical implementation. Next, for model variance o2, although
the theory in Section 3 assumes it is known, in practice, it may need to be
estimated. Of course, one can take a prior for o and get a corresponding joint
posterior for (6, 0%); see Martin and Tang| (2020). Here, in keeping with the spirit
of our empirical Bayes approach, we opt for a plug-in estimator. Specifically, we
consider |

62 == (Y, =0, (5.1)

n i=1

where 07 is the trend filtering/lasso estimate based on cross-validation. For the
prior variance v, it makes sense to take v to be larger than o2 and, for the examples
below, with relatively small o2, we find that v = 1 works well. Finally, A controls
the penalty against large |B|. In the examples considered here, we conduct a
sensitivity analysis in which A = 0.2,0.5,1 are considered. For every data set,
50,000 iterations of the aforementioned MCMC algorithm, with an additional
50,000 burn-in runs, are used to generate posterior samples.

5.2. Scenarios

For data generation, we consider six models for the true signal 8*. More
details are given in Section S2. For model fitting, we use the true K value
for Models 1-4. For Models 5 and 6, because the data are generated from
trigonometric functions, there is no “true value” of K. Therefore, we use K = 2,
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because it already provides an accurate curve approximation.

5.3. Results

We investigate the numerical performance of the two methods in terms of
their estimation error and block selection accuracy. For Models 1-6, we compute
the squared estimation error loss, |0 — 6* |2,
or the trend filtering estimator obtained using cross-validation; see Table S1 in
the Supplementary Material. In addition, the estimated signal 6 and the true

where 6 is either our posterior mean

0* are plotted in Figures 2 and S7. In these graphical comparisons, the trend
filtering estimator is computed using the “one-standard error” rule, because it is
usually smoother than that chosen using cross-validation, although it typically
suffers from a higher mean squared error; see [Hastie, Tibshirani and Friedman
(2009, Chap. 7) for details.

The estimated block partition B for trend filtering is obtained from the
nonzero entries of DE+14, that is, the K*"-order “knots” of 6; see |Guntuboyina
et al. (2020). For our empirical Bayes method, B is the maximizer of the marginal
posterior probability 7"(B). Because structure recovery is most meaningful for
lower-order polynomials, we focus on the piecewise constants, namely, Models 1
and 2. The results are displayed in Tables S2 and S3 and Figures S8 and S9 in
the Supplementary Material.

To gain a better understanding of the performance of the two methods in
terms of structure learning, we use multiple criteria to measure the change-point
detection/block selection accuracy. From the 100 replications for each model,
we estimate the probability that B is equal to the true B* and covers the true
B*, denoted as P(B = B*) and P(B D B*), respectively. We also estimate
E]B\, the mean size of B. In addition, as discussed in Section 3.3, an equivalent
representation of the block partition is the set of jump locations J, defined in
Theorem 5. We can calculate the Hausdorff distance between J and J* using the
following formula

H(J | J*) = max min |j — 5| + max min |7 — 5*|.

j*eJ* jeJ JjeJ jreJ*
Finally, we consider an (n — K — 1)-dimensional binary vector S, with S; = 1
if and only if i € J. The Hamming distance between S and S* is reported as a
measure of how close J and J* are to each other.

For the estimation accuracy for 6*, in Table S1, our method achieves a smaller
squared error loss than trend filtering, except for Models 3 and 5, which are the
two that are continuous; the Doppler wave function in Model 6 is continuous
too, but the high frequency oscillation in [0,100] makes it “almost discontinu-
ous.” Therefore, our method tends to have an advantage in terms of estimation
performance when the underlying 6* has jump discontinuities, particularly for
the piecewise constant signals. Furthermore, our method demonstrates stronger
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Figure 2. Plots of the empirical Bayes and trend filtering estimates of the signal for
representative cases under Models 1-3.

structure recovery for piecewise constant Models 1 and 2 as shown in Tables S2
and S3 in the Supplementary Material. Compared with trend filtering, which
tends to select more blocks, when A 0.5, our method detects the exact
block number for Model 1. In terms of the Hamming and Hausdorff distances,
our method also outperforms trend filtering for both models. However, the
probabilities of identifying the true block partition are relatively low for both
methods. This is likely because the jump size, §* = §(6*), is borderline too small
to be detected. To investigate this, we redo the simulations for Model 2, but with
0*-values ranging over [0.5,4.0]; see Figure S8 in the Supplementary Material. On
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Figure 3. DNA copy number analysis results

the one hand, trend filtering has a rapidly increasing probability of covering B*,
but the probability of identifying B* is effectively zero. On the other hand, both
probabilities for the empirical Bayes method are increasing at about the same
rate. We conclude that trend filtering is rather conservative in the context of
structure learning, tending to pick too many blocks, whereas the empirical Bayes
method is more aggressive, and hence more efficient. Furthermore, the plots of the
Hamming and Hausdorff distances versus 6* in Figure S9 in the Supplementary
Material confirm that the more aggressive approach of the empirical Bayes
method leads to more accurate structure learning than when using trend filtering.

6. Real-Data Examples
6.1. DNA copy number analysis

We consider a real-data example based on the DNA copy number analysis in
Hutter (2007)). In these applications, it is of biological importance to identify the
change points, so the proposed method is useful. Data on the copy number for
a particular gene are displayed in grey dots in Figure 3(a). We fit the proposed
empirical Bayes model to these data, using the plug-in estimator for the model
variance, which in this case is 6% = 0.093, just like in Table 2 of Hutter (2007)).
A plot of the posterior mean estimate is also shown. The fit here appears to
be reasonably good, perhaps with the exception around 600, where the within-
group variance seems to be much larger than in other regions. Interestingly, the
distribution of |B| in Figure 3(b) is concentrated on much smaller values than
in Hutter| (2007), who estimates about 15 piecewise constant blocks. However, a
simple visual inspection of the data suggests much fewer blocks, perhaps six or
seven, rather than 15.

6.2. Eye movement signal analysis

Another interesting application of our method when K = 1 is eye movement
signal denoising. Eye movement of human and other foveate animals when
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Figure 4. Eye movement signal denoising results

scanning scenes is characterized by a fixate-saccade-fixate pattern. During the
fixation phase, gaze position is stable on the order of 0.2-0.3 seconds; in the
saccadic phase, the eye moves quickly on the order of 0.01-0.1 seconds. The time
series of gaze position in terms of the vertical and horizontal visual angle degree
can be well approximated by piecewise linear functions, assuming the eye moves
at an approximately constant velocity during each phase; see Pekkanen and Lappi
(2017).

Noise in eye-movement recording is usually inevitable, ranging from around
0.01° with laboratory optical equipment to well over 1° in mobile recording
with moving cameras. Here, we consider the gaze position data set in [Vig,
Dorr and Cox (2012), in which participants watch a movie clip. The noise
level is not reported in |Vig, Dorr and Cox| (2012), so we adopt the procedure
in |Pekkanen and Lappi| (2017), who investigate the same dataset, and add a
simulated measurement noise with standard deviation 1°; see the Supplementary
Information in Pekkanen and Lappi (2017). Then, for both vertical and horizontal
gaze position data in a 2.5 second excerpt of the full recording, we fit an empirical
Bayes estimator for the mean gaze trajectory, with A = 1 and 50,000-length
MCMC after burn-in. The posterior mean estimate and the measurements
mimicking mobile recording using a moving camera are plotted in Figure 4. Based
on the fitted vertical gaze position and horizontal gaze position, an estimated
mean gaze path is plotted in Figure 5.

Our method helps to identify and understand the segmentation of the fixate-
saccade-fixate pattern in eye movements. As shown in Figures 4-5, in the fixation
segments (green), the eye moves slowly and steadily, and hence the gaze position
appears to be linear with a slope close to zero. In the saccade segments (magenta),
the gaze position is still linear, but much steeper, showing a jump pattern. In
addition, segmentation of eye movements is consistent between vertical gaze signal
and horizontal gaze signal.
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7. Conclusion

We have considered inference on a piecewise polynomial signal, where the
degree is known, but the block structure is unknown. We have developed an
empirical Bayes posterior that is simple and fast to compute, and exhibits several
desirable theoretical results, including optimal posterior concentration rates and
block selection consistency. Our general results are new and, when applied
to cases that have been investigated previously in the literature, in general,
our assumptions are weaker and/or our conclusions are stronger than those
currently available. In addition, as our numerical results demonstrate, the strong
theoretical properties of the proposed method carry over to real applications,
particularly when the underlying function being estimated is discontinuous, or
approximately so, as in Model 6 above.

There has been recent interest in cases where the signal is both piecewise
constant and monotone; see for example, |Gao, Han and Zhang (2020) and
Guntuboyina and Sen| (2018). Of course, the proposed method can be applied to
such cases, but it is not immediately clear how to incorporate monotonicity into
the prior formulation directly. An alternative strategy is to force the monotonicity
constraint by projecting the posterior samples of 6§ from II” onto the space of
monotone sequences. That is, if § ~ II", then set proj(f) = argmin_ o+ ||z — 0|,
where ©7 C R™ is the set of monotone sequences. This projection operation
is just a function of 6, albeit implicit, so there is a corresponding posterior
distribution for the projection, called a projection posterior. General details
about the projection posterior can be found in |(Chakraborty and Ghosal| (2021)).
Aside from inheriting many of the desirable properties of the original posterior,
the projection posterior is also relatively simple to compute. The R package
“Iso” (Turner, [2015) contains an implementation of the “pool adjacent violators
algorithm,” or PAVA. Thus we would need to generate samples of the piecewise
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constant 6 from the posterior II”, and then apply the pava function to project it
onto the space of monotone sequences. Figure S10 in the Supplementary Material
shows the results of sampling from this projected posterior for a simulated data
set, and the corresponding estimate appears to be quite accurate.

Another interesting possible extension of our work is related to the formula-
tion in Fan and Guan (2018). Consider a graph G = (V, E) and, at each vertex
i € V, there is a response Y; ~ N(67,0%), but only a small number of edges
(i,j) € E have 07 # 0. They derive bounds on the recovery rate analogous
to those achieved here in the chain graph/sequence model. The only obstacle
preventing us from extending our analysis to this more general setting is the
need to assign a prior distribution for the block structure B in this more complex
graph. For example, in a two-dimensional lattice graph, as might be used in
imaging applications, one would need a prior on all possible ways that the lattice
can be carved up into connected chunks, which seems nontrivial. However, given
such a prior, we expect that our theoretical results would hold.

Supplementary Material

Additional technical details, numerical results, and proofs are presented in
the Supplementary Material.
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