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Abstract: Inference on high-dimensional parameters in structured linear models is

an important statistical problem. Focusing on the case of a piecewise polynomial

Gaussian sequence model, we develop a new empirical Bayes solution that enjoys

adaptive minimax posterior concentration rates and improved structure learning

properties than existing methods. Moreover, the conjugate form of the empirical

prior means the posterior computations are fast and easy. Numerical examples

highlight the method’s strong finite-sample performance compared with that of

existing methods in various scenarios.
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1. Introduction

Consider a Gaussian sequence model

Yi ∼ N(θi, σ
2), i = 1, . . . , n, (1.1)

where Y = (Y1, . . . , Yn)
⊤ are independent, the variance σ2 > 0 is known, and

we desire to conduct inference on the unknown mean vector θ = (θ1, . . . , θn)
⊤.

It is common to assume that θ satisfies a sparsity structure, that is, most θi are

zero. Works on these problems include that of Donoho and Johnstone (1994),

and more recently those of Johnstone and Silverman (2004), Jiang and Zhang

(2009), Castillo and van der Vaart (2012), Martin and Walker (2014), van der

Pas, Szabó and van der Vaart (2017), and Martin and Ning (2020).

There has also been recent interest in imposing low-dimensional structures

on high-dimensional parameters, namely, piecewise constant and, more generally,

piecewise polynomial structures. For a fixed positive integer K, we say that

the n-vector θ has a piecewise degree-K polynomial structure if there exists a

simple partition B of the index set into consecutive blocks B(s) ⊆ {1, . . . , n},
with s = 1, . . . , |B|, such that, for each block B(s), the corresponding sub-vector

{θj : j ∈ B(s)} can be expressed as a degree-K polynomial of the indices j ∈ B(s).

This piecewise polynomial form is determined by the degreeK and the complexity

|B| of the block, that is, its dimension is (K+1)|B|. When this number is smaller
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than n, then a θ of this form clearly has a relatively low-dimensional structure.

For example, the piecewise constant case corresponds toK = 0, so the complexity

is determined completely by the number of blocks |B|.
Compared with sparse Gaussian signals, few studies examine piecewise con-

stant and piecewise polynomial Gaussian sequence models. Regularization meth-

ods, such as trend filtering (Kim et al., 2009) and locally adaptive regression

splines (Mammen and van de Geer, 1997), have been proposed to estimate the

signal adaptively and recover the underlying block partitions. For piecewise

constant problems, Tibshirani et al. (2005) introduce a fused lasso based on

a penalized least squares problem using the total variation penalty. Rinaldo

(2009) and Qian and Jia (2016) investigate the convergence rate of the fused

lasso estimator and the asymptotic properties of pattern recovery. For signals

with a more general piecewise polynomial structure, Tibshirani (2014) proposes

an adaptive piecewise polynomial estimation using trend filtering that minimizes

a penalized least squares criterion, in which the penalty term sums the absolute

Kth-order discrete derivatives over the input points. Guntuboyina et al. (2020)

show that, under a strong sparsity setting and a minimum length condition, the

trend filtering estimator achieves an n−1-rate, up to a logarithmic multiplicative

factor. In the Bayesian domain, methods such as the Bayesian fused lasso (Kyung

et al., 2010) and Bayesian trend filtering (Roualdes, 2015) have been proposed.

However, to the best of our knowledge, no Bayesian studies have examined the

posterior contraction as it relates to adaptive estimation and asymptotic structure

recovery for such piecewise polynomial Gaussian sequence models. Our goal here

is to fill this gap in the literature.

Given the relatively low-dimensional representation of the high-dimensional

θ, the now-standard Bayesian approach would be to assign a prior for the

unknown block configuration B, and a conditional prior on the block-specific

(K + 1)-dimensional parameters that determine the polynomial form. For the

prior on B, the goal is to induce “sparsity” in the sense that the prior concentrates

on block configurations B, with |B| relatively small. For this, one can mostly

follow the existing Bayesian literature on sparsity structures, such as Castillo and

van der Vaart (2012), Castillo, Schmidt-Hieber and van der Vaart (2015), Martin,

Mess and Walker (2017), and Liu et al. (2021), among others. However, for the

quantities that determine the polynomial form on a given block configuration,

the situation is quite different. In classical sparsity settings, it is reasonable

to assume that signals that are not exactly zero are still relatively small, in

which case, a conditional prior centered around zero is effective. In this piecewise

polynomial setting, there is no obvious fixed center around which a prior should

be concentrated. Of course, one option is to choose a fixed center and a

wide spread, but then the tails of the prior distribution become particularly

relevant. In particular, Theorem 2.8 in Castillo and van der Vaart (2012) shows

that if the fixed-center prior has tails thinner than Laplace, then the posterior
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contraction rates are sub-optimal, thus excluding the computationally convenient

conjugate Gaussian priors. An alternative is to follow Martin and Walker (2019),

building on Martin and Walker (2014) and Martin, Mess and Walker (2017),

using an empirical prior that lets the data help with correctly centering the prior

distribution, relieving the computational burden from the restrictions on the tails

of the fixed-center prior.

Details of this empirical prior construction are presented in Section 2. Our

theoretical results in Section 3 demonstrate that the corresponding empirical

Bayes posterior distribution enjoys adaptive concentration at the same rate of

trend filtering, adjusting to phase transitions, but requires weaker conditions

than those in Guntuboyina et al. (2020). In addition, we establish structure

learning consistency results that, to the best of our knowledge, are the first for

piecewise polynomial sequence models in the Bayesian literature. Furthermore,

because the proposed empirical priors are conjugate, the posterior is relatively

easy to compute. The numerical simulations in Section 5 compare our method

with trend filtering, showing the advantageous performance of our method in

terms of signal estimation and structure recovery under finite-sample settings.

In Section 6, we apply our method to two real-world applications, where the

underlying truths are considered to be piecewise constant and piecewise linear,

respectively. Finally, Section 7 concludes the paper. All technical details and

proofs are presented in the Supplementary Material.

2. Empirical Bayes Formulation

2.1. Piecewise polynomial model

Before we introduce our proposed prior and corresponding empirical Bayes

model, we precisely formulate the within-block polynomial. Start with the case

|B| = 1, corresponding to there being only one block. A vector θ being a degree-

K polynomial with respect to B corresponds to θ ∈ S, where

S = span{v0, v1, . . . , vK}, (2.1)

and vk = (1k, 2k, . . . , nk)⊤ ∈ Rn, with k = 0, 1, . . . ,K. In other words, if Z ∈
Rn×(K+1) is a matrix with columns that form a basis for S, then θ can be expressed

as Zβ, for some vector β ∈ RK+1. More generally, for a generic simple partition

B, if θ is a piecewise degree-K polynomial on the block configuration B, then it

can be expressed as ZBβB, where

ZB =


ZB(1) 0 . . . 0

0 ZB(2) . . . 0
...

... . . .
...

0 0 . . . ZB(|B|)

 ∈ Rn×|B|(K+1), (2.2)
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ZB(s) is the sub-matrix of Z with its row indices included in B(s), and

βB =

 βB
1
...

βB
|B|

 ∈ R|B|(K+1), βB
s ∈ RK+1, s = 1, . . . , |B|. (2.3)

The following two examples illustrate the piecewise polynomial formulation.

• When K = 0, the vector θ formed by ZBβB is piecewise constant. For a

specific block segment B(s), we can write ZB(s) = I|B(s)| and, therefore,

θi ≡ βB
s ∈ R, i ∈ B(s).

Note that in this case, the Gaussian sequence model can be rewritten in the

form of a one-way analysis of variance model with |B| treatments and |B(s)|
number of replications in each treatment, for s = 1, . . . , |B|.

• WhenK = 1, the vector θ formed by ZBβB is piecewise linear. For a specific

block segment B(s), we can write

YB(s) = ZB(s)β
B
s + ε, ε ∼ N|B(s)|(0, σ

2I),

where YB(s) is a sub-vector of Y with its indices in B(s), and βB
s is a two-

dimensional vector. Hence, within each segment, the observed data can be

viewed as a random sample generated from a block-specific simple linear

regression model with intercept and slope βB
s,1 and βB

s,2, respectively.

To summarize, if θ is an n-vector that is assumed to have a piecewise degree-

K polynomial structure, then we can reparametrize θ as (B, θB), where θB is

expressed as ZBβB, for some βB ∈ R|B|(K+1), and ZB is as in (2.2) for some

generator matrix Z with columns that form a basis for S in (2.1). The matrix

Z is not unique and, therefore, βB is not unique either. However, our interest

is in the projection θB, which is independent of the choice of basis, so this non-

uniqueness is not a problem in what follows.

2.2. Empirical prior

Given our representation of a piecewise polynomial mean vector θ using

(B, θB) or (B, βB), a hierarchical representation of the prior distribution would

be most convenient. That is, we first specify a prior for B, and then a conditional

prior for βB, given B; this, in turn, induces a conditional prior for θB. Here, we

follow this general prior specification strategy, but allow the conditional prior for

βB to depend on the data in a particular way. Then, this empirical prior for

(B, βB) immediately induces a corresponding empirical prior for (B, θB) and θ.

Intuitively, there is no reason to introduce a piecewise polynomial structure

unless we believe there are not too many blocks, that is, that |B| is relatively
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small compared to n; see Section 3. This belief can be incorporated into the prior

for B in the following way. Set b = |B|, and introduce a marginal prior

fn(b) ∝ n−λ(b−1), b = 1, . . . , n, (2.4)

where λ > 0 is a specified constant that controls the severity of the prior’s penalty

against large |B|. Note that this is effectively a truncated geometric distribution

with parameter p = n−λ, which puts most of its mass on small values of the

block configuration size, hence incorporating the prior information that θ is not

too complex. Next, if the configuration size b is given, the blocks correspond to

a simple partition of {1, 2, . . . , n} into b consecutive chunks, and there are
(
n−1
b−1

)
such partitions. Therefore, for the conditional prior distribution of B, given |B|,
we can use a discrete uniform distribution. Therefore, the prior distribution for

B is given by

πn(B) =

(
n− 1

|B| − 1

)−1

fn(|B|), (2.5)

where B ranges over all simple partitions of {1, 2, . . . , n} into consecutive blocks.

Next we give the conditional prior for βB, given B. We propose assigning

independent, conjugate normal priors to each βB
s corresponding to a segment

B(s). In light of the results of Castillo and van der Vaart (2012), assuming this

thin-tailed prior for βB
s has a fixed center risks sub-optimal posterior contraction

rates. To avoid this, we make a notable departure from the traditional Bayesian

formulation by following Martin, Mess and Walker (2017) and letting the data

inform the prior center. Specifically, our conditional prior for βB, given B, is

taken to be

βB
s ∼ NK+1

(
β̂B
s , v

(
Z⊤

B(s)ZB(s)

)−1
)
, s = 1, . . . , |B|, (2.6)

independently, where β̂B
s is the least-squares estimator

β̂B
s = (Z⊤

B(s)ZB(s))
−1Z⊤

B(s)YB(s),

and v > 0 is a constant controlling the prior spread. Write the conditional density

of βB, given B, with respect to the Lebesgue measure on R|B|(K+1), as

π̃n(β
B | B) =

|B|∏
s=1

NK+1(β
B
s | β̂B

s , v{Z⊤
B(s)ZB(s)}−1),

which is a product of individual (K+1)-variate normal densities. This induces a

prior on θB through the mapping θB = ZBβB that defines it. However, because

this is generally not a bijection, there is no density function with respect to the

Lebesgue measure on Rn. To see this, let θBB(s) denote the sub-vector of θB with
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indices included in B(s). Then we observe that the induced conditional prior on

θBB(s) is N|B(s)|(PB(s)YB(s), vPB(s)), where

PB(s) = ZB(s){Z⊤
B(s)ZB(s)}−1Z⊤

B(s) (2.7)

is the matrix that projects onto the space spanned by the columns of ZB(s).

Because PB(s) is a projection, it is not full rank and, therefore, the prior for

θBB(s) is a degenerate normal. Despite this degeneracy, the conditional prior for

θB, given B, still exists; it is just more convenient to express in terms of the

conditional prior for βB. That is, we define the conditional empirical prior for

θB, given B, as

Πn(A | B) =

∫
{βB :ZBβB∈A}

π̃n(β
B | B) dβB, A ⊆ Rn.

Note that while the prior for βB depends on the particular basis in Z, the prior

for θB depends only on the projection, which does not depend on the choice of

basis. Finally, our empirical prior for θ is defined as

Πn(A) =
∑
B

πn(B)Πn(A | B)

=
∑
B

πn(B)

∫
{βB :ZBβB∈A}

π̃n(β
B | B) dβB.

Although we refer to the object Πn defined above as a “prior,” it is of course

not a prior in the traditional Bayesian sense, owing to the data-driven centering.

This also differs from the traditional empirical Bayes formulation, where the prior

depends on the data only through the choice of a few hyperparameters; here, the

“prior” is directly and heavily dependent on the data. Despite these differences,

there is nothing stopping us from treating this formally as a “prior” and combin-

ing it (see below) with the likelihood to get a corresponding “posterior.” There

are significant practical advantages to this unorthodox approach. For example,

we can enjoy the theoretically optimal concentration rate properties using a

computationally simple thin-tailed conjugate prior for βB, whereas an orthodox

Bayesian would require a computationally burdensome heavy-tailed prior for βB.

2.3. Posterior

Let Ln(θ) denote the likelihood function based on the model (1.1), that is,

Ln(θ) ∝ exp{−∥Y −θ∥2/2σ2}, where ∥·∥ denotes the ℓ2-norm on Rn. We propose

combining the empirical data-driven prior Πn, defined above, with the data as

encoded in Ln using (almost) the usual Bayes’s formula. Specifically, we define
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our corresponding empirical Bayes posterior as

Πn(A) ∝
∫
A
Ln(θ)

α Πn(dθ), (2.8)

where α ∈ (0, 1) is an additional regularizing factor that down-weights the

influence of the data in the likelihood portion of the posterior; see below. (Of

course, because Πn is a proper prior, Πn is a proper posterior.) This sort

of generalized or pseudo posterior has received considerable attention; see, for

example, Grünwald and Van Ommen (2017), Miller and Dunson (2019), Holmes

and Walker (2017), Syring and Martin (2019), and Bhattacharya, Pati and Yang

(2019), though not specifically for the purpose of regularization. To examine the

role α plays, we consider an equivalent formulation. Define a regularized empirical

prior

Πreg
n (dθ) ∝ Ln(θ)

−(1−α) Πn(dθ),

and then the corresponding more-Bayesian-looking posterior

Πn(A) ∝
∫
A
Ln(θ)Π

reg
n (dθ). (2.9)

By comparing the equivalent expressions (2.8) and (2.9), the role of α becomes

clear. The power α on the likelihood in (2.8) is equivalent to an ordinary-looking

Bayesian update with a regularized prior that effectively down-weights parameter

values with an especially large likelihood, hence discouraging overfitting. The

point is that using a data-driven prior blurs the line between what is the “prior”

part and what is the “likelihood” part of the posterior. We understand that this

might make the reader uncomfortable, but remember the practical motivations

for incorporating the data into the prior. The following sections investigate the

theoretical convergence properties and practical performance of Πn in (2.8).

Whether α = 1 is a valid choice for an analysis depends on what, if anything,

we are willing to give up. In general, the asymptotic consistency of posterior

distributions can be established under weaker conditions when using α < 1 than

when using α = 1; this was the motivation behind the results in Walker and Hjort

(2001). Similarly, in general, faster rates can be achieved with α < 1 than with

α = 1, under the same conditions. It may be that in a particular application,

such as the one considered here, the additional conditions needed to close the

gap between α < 1 and α = 1 can be checked without introducing any practical

restrictions, but this is not true in all cases. For example, in generalized linear

models, Jeong and Ghosal (2021) argue that the conditions needed to establish

optimal concentration rates with α = 1 are much stronger than those needed to

get the same rates with α < 1. Our perspective is that

(a) there is nothing to lose by taking α < 1, because it can be taken very close

to one; for example, we take α = 0.99 in our simulation examples (Sec. 5),
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(b) and there is nothing to gain by insisting on α = 1, because our concentration

rates are improvements on the existing Bayesian rates for this problem

(Remark 3) and are optimal in certain cases.

Therefore we embrace the simplicity and flexibility that α < 1 affords, rather

than apologizing for it and/or insisting on α = 1, solely because it makes the

posterior distribution “look more Bayesian.”

A practical benefit of the simplicity of our formulation is that the posterior

distribution is not complicated. Indeed, by combining (2.6) and (2.8), the

posterior distribution Πn for θ is given by

Πn(A) =
∑
B

πn(B)

∫
{βB :ZBβB∈A}


|B|∏
s=1

fn(β
B
s ; s,B)

 dβB, (2.10)

where

fn(β
B
s ; s,B) = NK+1

(
βB
s | β̂B

s ,
σ2v

σ2 + αv
{Z⊤

B(s)ZB(s)}−1

)
,

and the marginal posterior for B has mass function

πn(B) ∝ πn(B)

(
1 +

vα

σ2

)−(K+1)|B|/2

e−(α/2σ2)
∑|B|

s=1 ∥(I−PB(s))YB(s)∥2

, (2.11)

with PB(s) the projection in (2.7). From the latter expression, there are three

major factors contributing to the log-marginal posterior distribution of B: the

prior distribution of block configuration log πn(B), a penalty term on the model

complexity proportional to −|B|, and a model-fitting measure proportional to

the negative sum of the squared residuals. Therefore, our posterior distribution

prefers models with fewer blocks and better fitting, given the observed data Y .

Details about how we compute the posterior distribution are given in Section 4

and in the Supplementary Material.

3. Asymptotic Properties

3.1. Setup

For a vector θ ∈ Rn that has a piecewise degree-K polynomial structure,

write Bθ for its block configuration, and let |Bθ| denote its cardinality. Then, our
parameter space corresponds to Θn(K), the set of all n-vectors with a piecewise

degree-K polynomial structure and |Bθ| = o(n). The latter condition on the size

of the block configuration ensures that there are not too many blocks, that is,

that the signal is not too complex.

When K ≥ 1, it is possible that a vector θ has multiple block configurations

Bθ. That is, there could be multiple B and βB such that θ = ZBβB. This

does not present a problem when estimating θ, but it does create identifiability
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(a) Can be resolved (b) Cannot be resolved

Figure 1. Two examples pertaining to the identifiability of Bθ for a given θ, one where
the non-uniqueness of Bθ can be resolved, and one where it cannot. The two lines on
each plot both pass through the marked points; the small jitter is to help distinguish the
groupings corresponding to the two block configurations.

concerns in the context of structure learning, that is, recovering the underlying

block structure. In some cases, the non-uniqueness can be resolved by defining

Bθ as the “most economical” of the candidate B’s. For example, for an arbitrary

signal, any (K + 1)-tuple of consecutive points can be fit perfectly by a degree-

K polynomial. Therefore, blocks of size K + 1 or smaller are meaningless, and

should be ruled out. Figure 1(a) shows an illustration of this for the case K = 2.

However, there are other cases where the non-uniqueness cannot be resolved by

ruling out blocks that are too small. Figure 1(b) shows an example of this, where

the two candidate block configurations cannot be distinguished by the data. This

is not relevant for the results in Section 3.2 below, so we postpone our discussion

of how to resolve this problem to Section 3.3.

3.2. Posterior concentration rates

For x ∈ Rn, define the scaled ℓ2-norm ∥x∥n = n−1/2∥x∥2 and, for θ⋆ ∈ Θn(K),

define

ε2n(θ
⋆) =

{
n−1 if |Bθ⋆ | = 1,

n−1|Bθ⋆ | log n if |Bθ⋆ | ≥ 2.
(3.1)

Note that, in the case |Bθ⋆ | = 1, the best estimator of θ⋆ is PSY , where PS

is the projection matrix onto S in (2.1), and its expected sum-of-squared-error

is O(n−1), consistent with (3.1). For the case with |Bθ⋆ | ≥ 2, the rate (3.1) is

consistent with others obtained in the literature; see Remark 2 below. Theorem 1

states that the Πn constructed above attains the rate defined in (3.1). Because

the prior can achieve the rates ε2n(θ
⋆) defined above, without knowledge of θ⋆

or |Bθ⋆ |, it follows that our posterior concentration results are adaptive to the

unknown complexity of θ⋆.
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Theorem 1. Consider the model (1.1) with known σ2 > 0 and, assume that θ⋆

has a piecewise polynomial structure of degree K ≥ 0, with K known. Let Πn

be the corresponding empirical Bayes posterior distribution for θ ∈ Rn described

above. If ε2n(θ
⋆) is as in (3.1), then for any sequence Mn with Mn → ∞, there

exists a constant G > 0 such that

Eθ⋆Πn({θ ∈ Rn : ∥θ − θ⋆∥2n > Mnε
2
n(θ

⋆)}) ≲ e−GMnnε
2
n(θ

⋆),

for all large n, uniformly in θ⋆ ∈ Θn(K). For the latter case in (3.1), the sequence

Mn can be replaced by a sufficiently large constant M > 0.

Remark 1. Given data Y ∼ Nn(θ
⋆, σ2I), an oracle who has access to Bθ⋆ would

fit a polynomial of degree K in each of the partitions given by Bθ⋆ . This would

be a linear estimator, and its corresponding oracle risk is O(n−1|Bθ⋆ |). Note that
the rate achieved in Theorem 1 is comparable to the oracle risk. Indeed, our

method adaptively learns the underlying block structure of θ⋆ and, in the case

|Bθ⋆ | = 1, we can exactly match the oracle rate; otherwise, the price we pay in

terms of the rate is only logarithmic.

Remark 2. The minimax rate, n−1|Bθ⋆ | log(en/|Bθ⋆ |), can be achieved if we

assume more control on the complexity of θ⋆, that is, if |Bθ⋆ | = O(nt), for some

t ∈ [0, 1). The only way this extra assumption fails is if the signal is extremely

complex, for example, if |Bθ⋆ | = O(n/ log n). Such cases effectively have no low-

dimensional block structure, and should be rare in practice. This minimax rate

can be achieved by using trend filtering (see Guntuboyina et al., 2020, Cor. 2.3),

but this too requires additional assumptions. Indeed, their result holds only when

their minimum length condition is satisfied and the tuning parameter is properly

chosen within an unspecified “ideal” range. The former—see Equation (13) in

Guntuboyina et al. (2020)—restricts the length of the minimal block to be no

smaller than O(n|Bθ⋆ |−1), which cannot be checked in practice. They also make a

strong sparsity assumption that requires |Bθ⋆ | to be “much smaller than n.” This

surely excludes extremely high-complexity cases, such as |Bθ⋆ | = O(n/ log n).

Therefore, our empirical Bayes posterior concentration rate result is no weaker

than the results for trend filtering in Guntuboyina et al. (2020), which the

authors argue are stronger than any existing results in the literature. Chatterjee

and Goswami (2021) present some risk-bound results for multivariate piecewise

polynomial estimation based on a dyadic decision tree approach. Their rate (e.g.,

their Cor. 3.2 and Thm. 3.4) agrees with ours in Theorem 1, but also requires

conditions on the tuning parameter and the complexity of the tree partition space.

Remark 3. A similar result to Theorem 1 is presented in van der Pas and

Ročková (2017) for the piecewise constant case K = 0, with a rate of

|Bθ⋆ | log(n/|Bθ⋆ |). However, translating their notation to ours, they assume

bounds on both ∥θ⋆∥∞ and |Bθ⋆ |, which we do not require. In addition, from
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Theorem 2.8 of Castillo and van der Vaart (2012), we do not expect that optimal

concentration rates can be achieved using their fixed-center normal prior for θB,

given B, without some assumptions on the magnitude of θ⋆. Another related work

is that of Gao, van der Vaart and Zhou (2020), who consider a structured Bayesian

linear model and establish oracle inequalities based on elliptical Laplace priors

on the coefficients. Their result (e.g., Theorem 4) is applicable to the piecewise

polynomial model considered here, and it implies a posterior concentration rate

of n−1{(K + 1)|Bθ⋆ | + |Bθ⋆ | log(en/|Bθ⋆ |)}, which is virtually the same rate

obtained in our Theorem 1. In addition to the concentration rates in terms of θ,

we address the structure learning problem in Section 3.3, which is not discussed

by Gao, van der Vaart and Zhou (2020). Moreover, because the data-driven

prior formulation allows us to achieve optimal concentration rates while using a

convenient conjugate prior, we also enjoy straightforward posterior computation,

as shown in Section 4. Although Gao, van der Vaart and Zhou (2020) do not

discuss computational considerations, posterior computations based on their non-

conjugate prior are more difficult than using our proposed empirical prior-based

method.

Next, we show that the posterior mean θ̂ =
∫
θΠn(dθ) is an adaptive

asymptotically minimax estimator.

Theorem 2. Under the setup in Theorem 1,

Eθ⋆∥θ̂ − θ⋆∥2n ≲ Mnε
2
n(θ

⋆),

for all large n, uniformly in θ⋆ ∈ Θn(K). In the latter case of (3.1), the diverging

sequence Mn can be replaced by a constant M , which can be absorbed into “≲”

above.

3.3. Structure learning

In addition to estimation consistency, it is interesting to consider when the

posterior is able to recover the unknown block structure of the true piecewise

polynomial signal θ⋆. To the best of our knowledge, this is the first Bayesian (or

empirical Bayesian) investigation into structure learning in the piecewise polyno-

mial Gaussian sequence model. When K = 0, that is, the true signal is piecewise

constant, learning the underlying block structure can be viewed as detecting the

“change points” or “jump points,” which has many real-world applications. In the

non-Bayesian literature, structure recovery for piecewise constant and piecewise

polynomial signals has received some attention. Next we compare our results

with those available for trend filtering and binary segmentation, among others.

As a first result in this direction, Theorem 3 states that the effective dimen-

sion of the posterior is no larger than a multiple of the true block configuration

size; in other words, the posterior is of roughly the correct complexity. Note that

this result pertains only to the size |Bθ| of the block configurations, which can
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be determined uniquely, and thus there are no identifiability issues here. Finally,

for this and the other results of this section, the statements are formulated in

terms of the marginal posterior distribution πn for the block configuration B, as

defined in (2.11).

Theorem 3. Under the setup in Theorem 1, for any C > 1+ λ−1, where λ is as

in (2.4), there exists a constant G > 0 such that

Eθ⋆πn({B : |B| > C|Bθ⋆ |}) ≲ e−G|Bθ⋆ | logn,

for all large n, uniformly in θ⋆ ∈ Θn(K).

Block configuration size is important, but we need to identify the under-

lying block structure. However, first, we need to address the potential non-

identifiability of Bθ⋆ . As mentioned before, there are no such issues in the

piecewise constant case with K = 0, but non-identifiability is possible for K ≥ 1.

On the one hand, if θ⋆ is such that non-uniqueness can be resolved simply

by taking the most economical of the equally well-fitting block configurations,

then that is how Bθ⋆ is defined. On the other hand, if θ⋆ has multiple block

configurations of the same size, as in Figure 1(b), then it is not possible to

distinguish between these. In such cases, the best we can hope for is that the

posterior distribution will concentrate on the set B⋆ = {Bθ⋆} of equivalent block

configurations corresponding to θ⋆. We establish that this is the case in the

results below.

The first result concerns the event that B is a refinement of Bθ⋆ , denoted by

B ⊐ Bθ⋆ , for some Bθ⋆ ∈ B⋆. That is, if B ⊐ Bθ⋆ , then every block in Bθ⋆ can be

expressed as a union of blocks in B or, equivalently, no block in B intersects with

more than one block in B⋆. Because refinements or unnecessary splits of Bθ⋆ are

a sign of inefficiency, we hope the posterior will discourage such cases. Indeed,

Theorem 4 shows that the posterior distribution assigns a vanishing probability to

the event “B ⊐ Bθ⋆ ,” which means that the posterior for B asymptotically avoids

those inefficient refinements. This is analogous to the “no supersets” theorems

in Castillo, Schmidt-Hieber and van der Vaart (2015, Thm. 4) and Martin, Mess

and Walker (2017, Thm. 4) for variable selection in a linear regression context.

The only additional requirement here is that the power λ in the prior for |B| in
(2.4) is not too small; otherwise, the prior does not sufficiently penalize block

configurations that are too complex, leaving open the possibility for overfitting.

Similar conditions appear in the regression setting, for example, the conditions

of Theorem 4 in Castillo, Schmidt-Hieber and van der Vaart (2015).

Theorem 4. Under the setup of Theorem 1,

Eθ⋆πn({B : B ⊐ Bθ⋆ for some Bθ⋆ ∈ B⋆}) → 0, n → ∞,

uniformly in θ⋆ ∈ Θn(K) ∩ {θ : |Bθ| = o(nλ)}, with λ > 0 as in (2.4).
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If λ ≥ 1, then the above condition on |Bθ⋆ | is satisfied for all θ⋆ ∈ Θn(K).

However, for smaller values of λ, such as those with good empirical performance

in Section 5, restricting to a proper subset of the parameter space is required,

but is not severe.

Next we discuss how to exactly recover the true block configuration Bθ⋆ or,

more generally, the set B⋆ of equivalent true block configurations. First, we need

some additional notation. Define the 0th- and 1st-order difference operators as

∆0x = x and

∆1x = (x2 − x1, x3 − x2, . . . , xn − xn−1)
⊤,

respectively, where x = (x1, . . . , xn)
⊤ ∈ Rn. For a generic order K ≥ 2, the Kth-

order difference, ∆K : Rn → Rn−K , is defined recursively as ∆Kx = ∆1(∆K−1x).

Second, a change in the signal θ⋆ from one block to another can only be detected

if the change is sufficiently large, and the definitions of “change” and “sufficiently

large” are related to the properties of the difference operators applied to θ⋆. In

particular, the set of indices where a change in the (K + 1)st-order occurs is

defined as

Jθ⋆ = {j = 1, . . . , n−K − 1 : (∆K+1θ⋆)j ̸= 0}.

In the piecewise constant case, with K = 0, the set {j + 1 : j ∈ Jθ⋆} consists of

those indices at which the signal jumps from one value to another. Then, both

the minimal change in θ⋆ on Jθ⋆ and the minimal spacing between changes are

relevant to determining whether a change is sufficiently large to be detectable.

These are defined, respectively, as

δn(θ
⋆) = min

j∈Jθ⋆

|(∆K+1θ⋆)j| and γn(θ
⋆) = min

j,j′∈Jθ⋆ ,j ̸=j′
|j − j′|.

Then, the following theorem states that the block configuration Bθ⋆ can be

recovered exactly if γn(θ
⋆)δ2n(θ

⋆) is sufficiently large, analogous to the so-called

beta-min condition in linear regression (e.g., Bühlmann and Van De Geer, 2011,

Chap. 2).

Theorem 5. Under the setup in Theorem 1, suppose that

γn(θ
⋆)δ2n(θ

⋆) ≥ 4K+1Mσ2

α(1− α)
log n, (3.2)

with M > 4 + λ and λ ≥ 3, where λ controls the prior (2.4). Then,

Eθ⋆πn(B⋆) → 1, n → ∞. (3.3)

To the best of our knowledge, only the piecewise constant (K = 0) case,

where the true Bθ⋆ is unique, has been considered in the literature, so we focus

on that version here in our discussion of Theorem 5. In that case, γn(θ
⋆) and

δn(θ
⋆) represent the smallest number of indices between jumps and the smallest



238 RYAN, MARTIN AND SHEN

signal jump in θ⋆, respectively. To draw a parallel between the piecewise constant

signal problem and a one-way analysis of variance, γn(θ
⋆) is like the minimum

number of replications across all the treatment groups, and δn(θ
⋆) is like the

minimum effect size. In that classical analysis of variance context, where the

number of treatment groups and group memberships are fixed and known, the

F-test has power converging to one if γn(θ
⋆)δ2n(θ

⋆) is bounded away from zero.

The condition γn(θ
⋆)δ2n(θ

⋆) ≳ log n in (3.2) is only slightly stronger, that is, we

pay only a logarithmic price for not knowing the number of groups or group

memberships. Returning to the general piecewise constant case, if the minimum

block size γn(θ
⋆) is fixed as n and |Bθ⋆ | go to infinity, the result in Theorem 5

matches the pattern recovery property of the fused lasso in Qian and Jia (2016),

and is stronger than the corresponding results in Lin et al. (2017) and Dalalyan,

Hebiri and Lederer (2017). We can also allow the minimum block size γn(θ
⋆) to

grow. For example, the minimum block length condition in Guntuboyina et al.

(2020) states that γn(θ
⋆) can be of order O(n|Bθ⋆ |−1), corresponding to equally

partitioning over blocks. In this case, the minimum jump size simply needs to

satisfy δ2(θ⋆) ≳ n−1|Bθ⋆ | log n, which is mild, because the right-hand side typically

vanishes. This flexibility makes our result preferable to those for the fused lasso,

and comparable to thoese for the wild binary segmentation in Theorem 3.2 of

Fryzlewicz (2014), which is the best result available in the literature that we are

aware of. Finally, note that Theorems 4 and 5 are, to the best of our knowledge,

the first results of their kind in the Bayesian literature.

Recently Fang and Ghosh (2024) considered a high-dimensional linear re-

gression model with an inverse gamma prior on σ2 and an empirical prior on

the coefficients. They obtained model selection consistency and a posterior

contraction rate for the coefficients. Therefore, we expect our rate convergence

results (e.g., Thm. 1 and 2) can be extended to treat unknown σ2. The prior on

the coefficients can be changed to

(βB
s | B, σ2) ∼ NK+1

(
β̂B
s , σ

2v{Z⊤
B(s)ZB(s)}−1

)
,

which allows for easy computation (Lee, Lee and Lin, 2019). Whether the

structure learning results hold with unknown σ2 remains an open question.

4. Computation

Genuine Bayesian solutions to high-dimensional problems, ones for which

optimal posterior rates are available, tend to be based on non-conjugate, heavy-

tailed priors, making computation nontrivial. Our empirical Bayes solution, on

the other hand, is based on a conjugate prior for θB, making computations

relatively simple.
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Recall that the marginal posterior for B is available in closed form, up to

proportionality, as in (2.11). Furthermore, recall from (2.10) that the conditional

distribution of θB, given B, is determined by a linear transformation of a normal

random variable, which is easy to simulate. Together, these two observations

suggest a Metropolis–Hastings algorithm to draw Markov chain Monte Carlo

(MCMC) samples from the proposed posterior Πn for θ. We provide more details

in Section S4 of the Supplementary Material.

5. Simulated data examples

5.1. Methods

In this section, we compare the numerical performance of our proposed

method with that of the adaptive piecewise polynomial trend filtering of Tibshi-

rani (2014). We use the R package genlasso to implement trend filtering, and

choose the tuning parameter using five-fold cross-validation or the “one-standard

error” rule; see Hastie, Tibshirani and Friedman (2009, Chap. 7).

In order to implement the above sampling procedures, we need to specify

some additional hyperparameters in (2.11). As mentioned before, because α =

0.99 has little practical difference to the α = 1 case, which corresponds to

the genuine Bayesian model, we plug α = 0.99 into the posterior distribution

functions for practical implementation. Next, for model variance σ2, although

the theory in Section 3 assumes it is known, in practice, it may need to be

estimated. Of course, one can take a prior for σ2 and get a corresponding joint

posterior for (θ, σ2); see Martin and Tang (2020). Here, in keeping with the spirit

of our empirical Bayes approach, we opt for a plug-in estimator. Specifically, we

consider

σ̂2 =
1

n

n∑
i=1

(Yi − θ̂tfi )2, (5.1)

where θ̂tf is the trend filtering/lasso estimate based on cross-validation. For the

prior variance v, it makes sense to take v to be larger than σ2 and, for the examples

below, with relatively small σ2, we find that v = 1 works well. Finally, λ controls

the penalty against large |B|. In the examples considered here, we conduct a

sensitivity analysis in which λ = 0.2, 0.5, 1 are considered. For every data set,

50,000 iterations of the aforementioned MCMC algorithm, with an additional

50,000 burn-in runs, are used to generate posterior samples.

5.2. Scenarios

For data generation, we consider six models for the true signal θ⋆. More

details are given in Section S2. For model fitting, we use the true K value

for Models 1–4. For Models 5 and 6, because the data are generated from

trigonometric functions, there is no “true value” of K. Therefore, we use K = 2,
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because it already provides an accurate curve approximation.

5.3. Results

We investigate the numerical performance of the two methods in terms of

their estimation error and block selection accuracy. For Models 1–6, we compute

the squared estimation error loss, ∥θ̂− θ⋆∥2, where θ̂ is either our posterior mean

or the trend filtering estimator obtained using cross-validation; see Table S1 in

the Supplementary Material. In addition, the estimated signal θ̂ and the true

θ⋆ are plotted in Figures 2 and S7. In these graphical comparisons, the trend

filtering estimator is computed using the “one-standard error” rule, because it is

usually smoother than that chosen using cross-validation, although it typically

suffers from a higher mean squared error; see Hastie, Tibshirani and Friedman

(2009, Chap. 7) for details.

The estimated block partition B̂ for trend filtering is obtained from the

nonzero entries of D(K+1)θ̂, that is, the Kth-order “knots” of θ̂; see Guntuboyina

et al. (2020). For our empirical Bayes method, B̂ is the maximizer of the marginal

posterior probability πn(B). Because structure recovery is most meaningful for

lower-order polynomials, we focus on the piecewise constants, namely, Models 1

and 2. The results are displayed in Tables S2 and S3 and Figures S8 and S9 in

the Supplementary Material.

To gain a better understanding of the performance of the two methods in

terms of structure learning, we use multiple criteria to measure the change-point

detection/block selection accuracy. From the 100 replications for each model,

we estimate the probability that B̂ is equal to the true B⋆ and covers the true

B⋆, denoted as P(B̂ = B⋆) and P(B̂ ⊃ B⋆), respectively. We also estimate

E|B̂|, the mean size of B̂. In addition, as discussed in Section 3.3, an equivalent

representation of the block partition is the set of jump locations J , defined in

Theorem 5. We can calculate the Hausdorff distance between J and J⋆ using the

following formula

H(J | J⋆) = max
j⋆∈J⋆

min
j∈J

|j − j⋆|+max
j∈J

min
j⋆∈J⋆

|j − j⋆|.

Finally, we consider an (n − K − 1)-dimensional binary vector S, with Si = 1

if and only if i ∈ J . The Hamming distance between Ŝ and S⋆ is reported as a

measure of how close Ĵ and J⋆ are to each other.

For the estimation accuracy for θ⋆, in Table S1, our method achieves a smaller

squared error loss than trend filtering, except for Models 3 and 5, which are the

two that are continuous; the Doppler wave function in Model 6 is continuous

too, but the high frequency oscillation in [0, 100] makes it “almost discontinu-

ous.” Therefore, our method tends to have an advantage in terms of estimation

performance when the underlying θ⋆ has jump discontinuities, particularly for

the piecewise constant signals. Furthermore, our method demonstrates stronger
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Figure 2. Plots of the empirical Bayes and trend filtering estimates of the signal for
representative cases under Models 1–3.

structure recovery for piecewise constant Models 1 and 2 as shown in Tables S2

and S3 in the Supplementary Material. Compared with trend filtering, which

tends to select more blocks, when λ = 0.5, our method detects the exact

block number for Model 1. In terms of the Hamming and Hausdorff distances,

our method also outperforms trend filtering for both models. However, the

probabilities of identifying the true block partition are relatively low for both

methods. This is likely because the jump size, δ⋆ = δ(θ⋆), is borderline too small

to be detected. To investigate this, we redo the simulations for Model 2, but with

δ⋆-values ranging over [0.5, 4.0]; see Figure S8 in the Supplementary Material. On
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(a) Posterior mean for θ (b) Posterior distribution for |B|

Figure 3. DNA copy number analysis results

the one hand, trend filtering has a rapidly increasing probability of covering B⋆,

but the probability of identifying B⋆ is effectively zero. On the other hand, both

probabilities for the empirical Bayes method are increasing at about the same

rate. We conclude that trend filtering is rather conservative in the context of

structure learning, tending to pick too many blocks, whereas the empirical Bayes

method is more aggressive, and hence more efficient. Furthermore, the plots of the

Hamming and Hausdorff distances versus δ⋆ in Figure S9 in the Supplementary

Material confirm that the more aggressive approach of the empirical Bayes

method leads to more accurate structure learning than when using trend filtering.

6. Real-Data Examples

6.1. DNA copy number analysis

We consider a real-data example based on the DNA copy number analysis in

Hutter (2007). In these applications, it is of biological importance to identify the

change points, so the proposed method is useful. Data on the copy number for

a particular gene are displayed in grey dots in Figure 3(a). We fit the proposed

empirical Bayes model to these data, using the plug-in estimator for the model

variance, which in this case is σ̂2 = 0.093, just like in Table 2 of Hutter (2007).

A plot of the posterior mean estimate is also shown. The fit here appears to

be reasonably good, perhaps with the exception around 600, where the within-

group variance seems to be much larger than in other regions. Interestingly, the

distribution of |B| in Figure 3(b) is concentrated on much smaller values than

in Hutter (2007), who estimates about 15 piecewise constant blocks. However, a

simple visual inspection of the data suggests much fewer blocks, perhaps six or

seven, rather than 15.

6.2. Eye movement signal analysis

Another interesting application of our method when K = 1 is eye movement

signal denoising. Eye movement of human and other foveate animals when
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(a) Vertical gaze position (b) Horizontal gaze position

Figure 4. Eye movement signal denoising results

scanning scenes is characterized by a fixate-saccade-fixate pattern. During the

fixation phase, gaze position is stable on the order of 0.2–0.3 seconds; in the

saccadic phase, the eye moves quickly on the order of 0.01–0.1 seconds. The time

series of gaze position in terms of the vertical and horizontal visual angle degree

can be well approximated by piecewise linear functions, assuming the eye moves

at an approximately constant velocity during each phase; see Pekkanen and Lappi

(2017).

Noise in eye-movement recording is usually inevitable, ranging from around

0.01◦ with laboratory optical equipment to well over 1◦ in mobile recording

with moving cameras. Here, we consider the gaze position data set in Vig,

Dorr and Cox (2012), in which participants watch a movie clip. The noise

level is not reported in Vig, Dorr and Cox (2012), so we adopt the procedure

in Pekkanen and Lappi (2017), who investigate the same dataset, and add a

simulated measurement noise with standard deviation 1◦; see the Supplementary

Information in Pekkanen and Lappi (2017). Then, for both vertical and horizontal

gaze position data in a 2.5 second excerpt of the full recording, we fit an empirical

Bayes estimator for the mean gaze trajectory, with λ = 1 and 50,000-length

MCMC after burn-in. The posterior mean estimate and the measurements

mimicking mobile recording using a moving camera are plotted in Figure 4. Based

on the fitted vertical gaze position and horizontal gaze position, an estimated

mean gaze path is plotted in Figure 5.

Our method helps to identify and understand the segmentation of the fixate-

saccade-fixate pattern in eye movements. As shown in Figures 4–5, in the fixation

segments (green), the eye moves slowly and steadily, and hence the gaze position

appears to be linear with a slope close to zero. In the saccade segments (magenta),

the gaze position is still linear, but much steeper, showing a jump pattern. In

addition, segmentation of eye movements is consistent between vertical gaze signal

and horizontal gaze signal.
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Figure 5. Estimated gaze path

7. Conclusion

We have considered inference on a piecewise polynomial signal, where the

degree is known, but the block structure is unknown. We have developed an

empirical Bayes posterior that is simple and fast to compute, and exhibits several

desirable theoretical results, including optimal posterior concentration rates and

block selection consistency. Our general results are new and, when applied

to cases that have been investigated previously in the literature, in general,

our assumptions are weaker and/or our conclusions are stronger than those

currently available. In addition, as our numerical results demonstrate, the strong

theoretical properties of the proposed method carry over to real applications,

particularly when the underlying function being estimated is discontinuous, or

approximately so, as in Model 6 above.

There has been recent interest in cases where the signal is both piecewise

constant and monotone; see for example, Gao, Han and Zhang (2020) and

Guntuboyina and Sen (2018). Of course, the proposed method can be applied to

such cases, but it is not immediately clear how to incorporate monotonicity into

the prior formulation directly. An alternative strategy is to force the monotonicity

constraint by projecting the posterior samples of θ from Πn onto the space of

monotone sequences. That is, if θ ∼ Πn, then set proj(θ) = argminz∈Θ↑∥z − θ∥,
where Θ↑ ⊂ Rn is the set of monotone sequences. This projection operation

is just a function of θ, albeit implicit, so there is a corresponding posterior

distribution for the projection, called a projection posterior. General details

about the projection posterior can be found in Chakraborty and Ghosal (2021).

Aside from inheriting many of the desirable properties of the original posterior,

the projection posterior is also relatively simple to compute. The R package

“Iso” (Turner, 2015) contains an implementation of the “pool adjacent violators

algorithm,” or PAVA. Thus we would need to generate samples of the piecewise
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constant θ from the posterior Πn, and then apply the pava function to project it

onto the space of monotone sequences. Figure S10 in the Supplementary Material

shows the results of sampling from this projected posterior for a simulated data

set, and the corresponding estimate appears to be quite accurate.

Another interesting possible extension of our work is related to the formula-

tion in Fan and Guan (2018). Consider a graph G = (V,E) and, at each vertex

i ∈ V , there is a response Yi ∼ N(θ⋆i , σ
2), but only a small number of edges

(i, j) ∈ E have θ⋆i ̸= θ⋆j . They derive bounds on the recovery rate analogous

to those achieved here in the chain graph/sequence model. The only obstacle

preventing us from extending our analysis to this more general setting is the

need to assign a prior distribution for the block structure B in this more complex

graph. For example, in a two-dimensional lattice graph, as might be used in

imaging applications, one would need a prior on all possible ways that the lattice

can be carved up into connected chunks, which seems nontrivial. However, given

such a prior, we expect that our theoretical results would hold.

Supplementary Material

Additional technical details, numerical results, and proofs are presented in

the Supplementary Material.
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Bühlmann, P. and Van De Geer, S. (2011). Statistics for High-Dimensional Data: Methods,

Theory and Applications. Springer Science & Business Media.

Castillo, I., Schmidt-Hieber, J. and van der Vaart, A. (2015). Bayesian linear regression with

sparse priors. The Annals of Statistics 43, 1986–2018.

Castillo, I. and van der Vaart, A. (2012). Needles and straw in a haystack: Posterior

concentration for possibly sparse sequences. The Annals of Statistics 40, 2069–2101.

Chakraborty, M. and Ghosal, S. (2021). Coverage of Bayesian credible intervals in monotone

regression. The Annals of Statistics 49, 1011–1028.

Chatterjee, S. and Goswami, S. (2021). Adaptive estimation of multivariate piecewise polyno-

mials and bounded variation functions by optimal decision trees. The Annals of Statistics

49, 2531–2551.

Dalalyan, A. S., Hebiri, M. and Lederer, J. (2017). On the prediction performance of the Lasso.

Bernoulli 23, 552–581.



246 RYAN, MARTIN AND SHEN

Donoho, D. L. and Johnstone, I. M. (1994). Minimax risk over lq-balls for lp-error. Probability

Theory and Related Fields 99, 277–303.

Fan, Z. and Guan, L. (2018). Approximate ℓ0-penalized estimation of piecewise-constant signals

on graphs. The Annals of Statistics 46, 3217–3245.

Fang, X. and Ghosh, M. (2024). High-dimensional properties for empirical priors in linear

regression with unknown error variance. Statistical Papers 65, 237–262.

Fryzlewicz, P. (2014). Wild binary segmentation for multiple change-point detection. The Annals

of Statistics 42, 2243–2281.

Gao, C., Han, F. and Zhang, C.-H. (2020). On estimation of isotonic piecewise constant signals.

The Annals of Statistics 48, 629–654.

Gao, C., van der Vaart, A. W. and Zhou, H. H. (2020). A general framework for Bayes structured

linear models. The Annals of Statistics 48, 2848–2878.

Grünwald, P. and Van Ommen, T. (2017). Inconsistency of Bayesian inference for misspecified

linear models, and a proposal for repairing it. Bayesian Analysis 12, 1069–1103.

Guntuboyina, A., Lieu, D., Chatterjee, S. and Sen, B. (2020). Adaptive risk bounds in univariate

total variation denoising and trend filtering. The Annals of Statistics 48, 205–229.

Guntuboyina, A. and Sen, B. (2018). Nonparametric shape-restricted regression. Statistical

Science 33, 568–594.

Hastie, T., Tibshirani, R. and Friedman, J. (2009). The Elements of Statistical Learning.

Springer Science & Business Media.

Holmes, C. C. and Walker, S. G. (2017). Assigning a value to a power likelihood in a general

Bayesian model. Biometrika 104, 497–503.

Hutter, M. (2007). Exact Bayesian regression of piecewise constant functions. Bayesian Analysis

2, 635–664.

Jeong, S. and Ghosal, S. (2021). Posterior contraction in sparse generalized linear models.

Biometrika 108, 367–379.

Jiang, W. and Zhang, C.-H. (2009). General maximum likelihood empirical Bayes estimation of

normal means. The Annals of Statistics 37, 1647–1684.

Johnstone, I. M. and Silverman, B. W. (2004). Needles and straw in haystacks: Empirical Bayes

estimates of possibly sparse sequences. The Annals of Statistics 32, 1594–1649.

Kim, S.-J., Koh, K., Boyd, S. and Gorinevsky, D. (2009). ℓ1 trend filtering. SIAM Review 51,

339–360.

Kyung, M., Gill, J., Ghosh, M. and Casella, G. (2010). Penalized regression, standard errors,

and Bayesian Lassos. Bayesian Analysis 5, 369–411.

Lee, K., Lee, J. and Lin, L. (2019). Minimax posterior convergence rates and model selection

consistency in high-dimensional dag models based on sparse Cholesky factors. The Annals

of Statistics 47, 3413–3437.

Lin, K., Sharpnack, J. L., Rinaldo, A. and Tibshirani, R. J. (2017). A sharp error analysis for

the fused Lasso, with application to approximate changepoint screening. In Advances in

Neural Information Processing Systems, 6884–6893.

Liu, C., Yang, Y., Bondell, H. and Martin, R. (2021). Bayesian inference in high-dimensional

linear models using an empirical correlation-adaptive prior. Statistica Sinica 31, 2051–2072.

Mammen, E. and van de Geer, S. (1997). Locally adaptive regression splines. The Annals of

Statistics 25, 387–413.

Martin, R., Mess, R. and Walker, S. G. (2017). Empirical Bayes posterior concentration in sparse

high-dimensional linear models. Bernoulli 23, 1822–1847.

Martin, R. and Ning, B. (2020). Empirical priors and coverage of posterior credible sets in a

sparse normal mean model. Sankhya A 87, 477–498.



EMPIRICAL BAYESIAN PIECEWISE POLYNOMIAL MODEL 247

Martin, R. and Tang, Y. (2020). Empirical priors for prediction in sparse high-dimensional linear

regression. Journal of Machine Learning Research 21, 1–30.

Martin, R. and Walker, S. G. (2014). Asymptotically minimax empirical Bayes estimation of a

sparse normal mean vector. Electronic Journal of Statistics 8, 2188–2206.

Martin, R. and Walker, S. G. (2019). Data-driven priors and their posterior concentration rates.

Electronic Journal of Statistics 13, 3049–3081.

Miller, J. W. and Dunson, D. B. (2019). Robust Bayesian inference via coarsening. Journal of

the American Statistical Association 114, 1113–1125.

Pekkanen, J. and Lappi, O. (2017). A new and general approach to signal denoising and eye

movement classification based on segmented linear regression. Scientific Reports 7, 1–13.

Qian, J. and Jia, J. (2016). On stepwise pattern recovery of the fused Lasso. Computational

Statistics & Data Analysis 94, 221–237.

Rinaldo, A. (2009). Properties and refinements of the fused Lasso. The Annals of Statistics 37,

2922–2952.

Roualdes, E. A. (2015). Bayesian trend filtering. arXiv:1505.07710.

Syring, N. and Martin, R. (2019). Calibrating general posterior credible regions. Biometrika

106, 479–486.

Tibshirani, R., Saunders, M., Rosset, S., Zhu, J. and Knight, K. (2005). Sparsity and

smoothness via the fused Lasso. Journal of the Royal Statistical Society. Series B (Statistical

Methodology) 67, 91–108.

Tibshirani, R. J. (2014). Adaptive piecewise polynomial estimation via trend filtering. The

Annals of Statistics 42, 285–323.

Turner, R. (2015). Iso: Functions to Perform Isotonic Regression. R package version 0.0-17.
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