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Abstract: The distribution of the grid points at which a response function is ob-

served in longitudinal or functional data applications is often informative and not

independent of the response process. Here, we propose a covariation model for

estimating and making inferences about this interrelation, where we treat the data

as replicated realizations of a marked point process. We derive the maximum like-

lihood estimators and the asymptotic distribution of the estimators. The behavior

of the estimators is examined using simulations. Lastly, we apply the model to an

online auction data set, and show that there is a strong correlation between bidding

patterns and price trajectories.
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1. Introduction

In many statistical applications, the objects of analysis are samples of func-

tions, {gi(x) : i = 1, . . . , n}. In general, these functions are measured at dis-

crete points {xij : j = 1, . . . ,mi}; thus, the observed data are actually given by

{(xij , yij) : j = 1, . . . ,mi, i = 1, . . . , n}, with

yij = gi(xij) + ηij , (1.1)

where ηij is random noise. Longitudinal data often fit this framework (Rice

(2004); Müller (2008)).

Functional data analyses focus on samples of functions gi(x), which are usu-

ally recovered from raw data using some form of smoothing (James, Hastie and

Sugar (2000); Ramsay and Silverman (2005, Chap. 3); Yao, Müller and Wang

(2005)). In general, the distribution of the grid points {xij} is considered nonin-

formative. However, there are situations in which the distribution of xij may be

informative in its own right.

Consider, for example, the bid price trajectories shown in Figure 1. These
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are bid prices for Palm M515 personal digital assistants (PDAs) on week-long

eBay auctions that took place between March and May of 2003. Bidding activity

tends to concentrate at the beginning and at the end of the auctions, in patterns

that have been called “early bidding” and “bid sniping,” respectively. Earlier

analyses of these data (Shmueli and Jank (2005); Jank and Shmueli (2006, 2010))

studied the dynamics of the process using derivatives of the bid price curves.

More recently, Wu, Müller and Zhang (2013) and Arribas-Gil and Müller (2014)

investigated the bid time process itself. However, a joint modeling of the bid

time process and the bid price curves has not yet been attempted, and there

are reasons to believe these processes are not independent. For example, it is

suspected that items with prices below the mean are more likely to experience

bid sniping. To answer such questions, it is necessary to jointly model the bid

time process {xij} and the bid price process {yij}.
The approach we present in this paper considers the data {(xij , yij)} as n

independent realizations of a marked point process. Using common point-process

terminology, for each subject i, xij is viewed as an observation of a point pro-

cess, and yij as a corresponding “mark” (Cox and Isham (1980); Møller and

Waagepetersen (2004); Baddeley (2007); Streit (2010)). Note, however, that not

all marked point processes arise as discretizations of smooth functions, as that

in model (1.1) does. Therefore, the methods we propose here are specifically

intended for functional and longitudinal data applications. To avoid confusion

with terminology, we do not refer to the mi observations for each subject i as

“replications”, as is often done in the point-process literature. Instead, we con-

sider the whole set {(xij , yij) : j = 1, . . . ,mi} for each i as a single realization of

the process, and the n sets as the n replications.

As pointed out by Guan and Afshartous (2007); Møller, Ghorbani and Rubak

(2016), the literature on modeling marked point processes is limited and restricted

to the single-replication scenario, focusing on simple summary statistics of the

processes and on testing broad, generic hypotheses, such as independent marking

(Guan and Afshartous (2007); Myllymäki et al. (2017); see also Baddeley (2010,

Sec. 21.7)). However, the availability of replications allows us to estimate the

correlations between the intensity functions of the point process {xij} and the

Karhunen–Loève components of the response process {yij}, which is not possible

in a single-replication scenario. Regression models in point-process contexts have

been proposed (Barrett et al. (2015); Rathbun and Shiffman (2016)); however,

their goal is to incorporate covariates into intensity function models. Similarly,

Scheike (1997) related longitudinal data to marked point processes, but his goal
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was to model the conditional distribution of the time points given past observa-

tions. None of the aforementioned works jointly model the time points and the

response processes, which is the goal of this study.

2. Latent Variable Model

A point processX is a random countable set in a space S , where S is usually

R for temporal processes, or R2 for spatial processes ( Møller and Waagepetersen

(2004, Chap. 2); Streit (2010, Chap. 2)). When each point x ∈ X is accompanied

by a random feature Yx in some space M , Z = {(x, Yx) : x ∈ X} is called

a marked point process. As mentioned in Section 1, we are interested in the

specific situation where Yx follows the model

Yx = g(x) + ηx, (2.1)

with g : S → M the function of interest, and ηx denoting random noise. We

consider only M = R in this paper, but extensions to the multivariate case

M = Rk are straightforward.

A point process X is locally finite if #(X ∩ B) < ∞ with probability

one, for any bounded B ⊆ S . For a locally finite process the count function

N(B) = #(X ∩ B) can be defined, and ZB := {(x, Yx) : x ∈ X ∩ B} is a finite

set, ZB = {(x1, y1), . . . , (xN(B), yN(B))}. A Poisson process is a locally finite

process, for which there exists a locally integrable function λ : S → [0,∞),

called the intensity function, such that (i) N(B) has a Poisson distribution

with rate
∫
B λ(t)dt, and (ii) for disjoint sets B1, . . . , Bk, the random variables

N(B1), . . . , N(Bk) are independent. A consequence of (i) and (ii) is that the

conditional distribution of the points in X ∩ B given N(B) = m, is the distri-

bution of m independent and identically distributed (i.i.d.) observations with

density λ(t)/
∫
B λ.

For replicated point processes, a single intensity function λ rarely provides

an adequate fit for all replications. It is more reasonable to assume that λ is

subject-specific, and then to treat it as a random effect. Such processes are

called doubly stochastic processes, or Cox processes ( Møller and Waagepetersen

(2004, Chap. 5); Streit (2010, Chap. 8)). A doubly stochastic process is a pair

(X,Λ), where X|Λ = λ is a Poisson process with intensity function λ, and Λ

is a random function that takes values on the space F of nonnegative locally

integrable functions on S . Then, the n replications of the point process can

be seen as i.i.d. realizations of a doubly stochastic process (X,Λ), where X is
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observable, but Λ is not. Similarly, for g in (2.1), we assume there is a process

G, such that Y | (X,G = g) follows model (2.1). Then, the n replications of the

marked point process can be seen as i.i.d. realizations of (X,Y,Λ, G), where X

and Y are observable, but Λ and G are not.

Our main goal is to study the relationship between the intensity process Λ

that generates x and the response process G that generates y. To this end, we

assume that G follows a finite Karhunen–Loève decomposition

G(x) = ν(x) +

p2∑
k=1

vkψk(x), (2.2)

where {ψk} are orthonormal functions in L2(S ), and {vk} are uncorrelated zero-

mean random variables. Any stochastic process in L2(S ) with finite variance

can be decomposed as in (2.2), with a possibly infinite p2 (Ash and Gardner

(1975, Chap. 1.4)). However, because we are interested in smooth processes, for

practical purposes, it is sufficient to consider only finite p2.

A similar decomposition for Λ would be problematic, owing to the nonnega-

tivity constraint. A nonnegative decomposition was proposed by Gervini (2016).

However, for simplicity, we use an alternative approach. We decompose the log-

arithm of Λ, which is unconstrained,

log Λ(x) = µ(x) +

p1∑
k=1

ukφk(x), (2.3)

where {φk} are orthonormal functions in L2(S ), and {uk} are uncorrelated zero-

mean random variables.

The association between Λ and G is then determined by the association

between the component scores u = (u1, . . . , up1) and v = (v1, . . . , vp2) in (2.3)

and (2.2), respectively. As a working model, we assume that (u,v) follows a joint

multivariate normal distribution with mean zero and covariance matrix

Σ =

(
diag(σ2

u) Σuv

ΣT
uv diag(σ2

v)

)
,

where σ2
u and σ2

v are the variances of the elements of u and v, respectively. The

error term η in (2.1) is assumed N(0, σ2
η) and independent of u and v. The

parameter of interest is the cross-covariance matrix Σuv; the others are mostly

nuisance parameters.
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The signs of the component scores are not identifiable, because −uk and

−φk(x) satisfy the same model as uk and φk(x), respectively; similar reasoning

holds for vk and ψk. Consequently, the signs of Σuv,kl = cov(uk, vl) are not

identifiable either, and can be chosen for convenience of interpretation for any

given application.

To facilitate the estimation of the functional parameters µ, φk, ν, and ψk,

we use semiparametric basis-function expansions. As basis functions, we can

use, for instance, B-splines if S = R, or normalized Gaussian radial kernels if

S = R2; other families are possible, and perhaps better in some cases, such as

simplicial bases for bivariate functions on irregular domains. We call this family

B. Let γ(x) be the vector of basis functions {γ1, . . . , γq} of B, with γj : S → R.

We assume, then, that µ(x) = cT0 γ(x), φk(x) = cTk γ(x), ν(x) = dT0 γ(x), and

ψk(x) = dTk γ(x).

The model parameters are collected, for simplicity, in a single vector

θ = (vecΣuv, c0, . . . , cp1 ,d0, . . . ,dp2 , σ
2
u, σ

2
v , σ

2
η). (2.4)

The orthonormality constraints on φk and ψk can be expressed as cTk Jcl =

dTk Jdl = δkl, where δkl is Kronecker’s delta and J =
∫
γ(x)γ(x)Tdx.

3. Penalized Maximum Likelihood Estimation

With a slight abuse of notation, we write {(xij , yij) : j = 1, . . . ,mi} in vector

form as (xi,mi,yi). Then, the joint density of the observations and the latent

variables can be factorized as

fθ(x,m,y,u,v) = fθ(y | x,m,u,v)fθ(x,m | u,v)fθ(u,v).

Because fθ(y | x,m,u,v) does not explicitly depend on u, and fθ(x,m | u,v)

does not explicitly depend on v, we can write

fθ(x,m,y,u,v) = fθ(y | x,m,v)fθ(x,m | u)fθ(u,v).

From (2.1), (2.2), (2.3), and the distributional assumptions in Section 2, we have

fθ(y | x,m,v) =
1

(2πσ2
η)
m/2

exp

{
− 1

2σ2
η

‖y − ν(x)−Ψ(x)v‖2
}
, (3.1)
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with ν(x) = (ν(x1), . . . , ν(xm))T and Ψ(x) = [ψ1(x), . . . , ψp2(x)];

fθ(x,m | u) = exp

{
−
∫
λu(t)dt

}
1

m!

m∏
j=1

λu(xj),

with λu(x) = exp{µ(x) + uTφ(x)}; and

fθ(u,v) =
1

(2π)(p1+p2)/2(det Σ)1/2
exp

{
−1

2
(uT ,vT )Σ−1(uT ,vT )T

}
.

The marginal density of the observations,

fθ(x,m,y) =

∫∫
fθ(x,m,y,u,v) du dv,

has no closed form, and requires numerical integration for its evaluation, for which

we use the Laplace approximation. This and other details of the implementation

are discussed in the Supplementary Material.

The maximum likelihood estimator of θ is the maximizer of
∑n

i=1 log fθ(xi,

mi,yi). However, when a large family of basis functions B is used, it is advis-

able to regularize the functional estimators by adding roughness penalties to the

objective function. Therefore we define the penalized log-likelihood

`n(θ) =
1

n

n∑
i=1

log fθ(xi,mi,yi)− ξ1P (µ)− ξ2

p1∑
k=1

P (φk)− ξ3P (ν)− ξ4

p2∑
k=1

P (ψk),

(3.2)

where ξ1, . . . , ξ4 are nonnegative smoothing parameters, and P (f) is a rough-

ness penalty function, such as P (f) =
∫

(f ′′)2 if f is univariate, or P (f) =∫∫
{(∂2f/∂t21)2 + 2(∂2f/∂t1/∂t2)2 + (∂2f/∂t22)2} if f is bivariate. The estimator

of θ is then defined as

θ̂ = arg max
θ∈Θ

`n(θ),

where Θ is the parameter space

Θ = {θ ∈ Rd : hCkl(θ) = 0, k = 1, . . . , l, l = 1, . . . , p1, (3.3)

hDkl(θ) = 0, k = 1, . . . , l, l = 1, . . . , p2,

σ2
η > 0, Σ > 0},

with d the dimension of θ, hCkl(θ) = cTk Jcl− δkl, hDkl(θ) = dTk Jdl− δkl, and Σ > 0

denoting that Σ is symmetric and positive definite. The estimating equations
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for θ̂ and an expectation–maximization (EM) algorithm (Dempster, Laird and

Rubin (1977)) for its computation are derived in the Supplementary Material.

The programs implementing these algorithms are available on the first author’s

website.

Once θ̂ has been obtained, individual predictors of the latent component

scores, whether for the sample units or for new data, can be obtained as ûi =

Eθ̂(u | xi,mi,yi) and v̂i = Eθ̂(v | xi,mi,yi). These integrals can also be evalu-

ated numerically using a Laplace approximation.

This model has a number of tuning parameters that have to be chosen by

the user: the numbers of functional components p1 and p1, the type of basis

family B and its dimension q, and the smoothing parameters ξ in the penalized

likelihood. The specific type of basis family will not have much of an impact

for most applications, provided that the dimension q is sufficiently large. In this

study, we use cubic B-splines with equally spaced knots for our simulations and

data analyses; higher-order splines should be used if an estimation of derivatives

is of interest. The dimension q is more relevant and should be relatively large

to avoid bias; the variability of the estimators will be taken care of by ξ. As

noted by Ruppert (2002, Sec. 3), although q can be chosen systematically using

cross-validation, there is little change in the goodness of fit after a minimum

dimension q has been reached; for a larger q, the fit is essentially determined by

the smoothing parameters.

The choice of ξ, then, is more important, and can be done objectively using

cross-validation (Hastie, Tibshirani and Friedman (2009, Chap. 7)). Leave-one-

out cross-validation finds ξ that maximizes

CV(ξ1, ξ2, ξ3, ξ4) =

n∑
i=1

log fθ̂[−i](xi,mi,yi), (3.4)

where θ̂[−i] denotes the estimator obtained without observation i. A faster alter-

native is to use k-fold cross-validation, where the data are split into k subsets that

are used as test data; k = 5 is a common choice. A full four-dimensional optimiza-

tion of (3.4) would be too time consuming, even with five-fold cross-validation.

As a workable alternative, we suggest a sequential optimization, where each ξj
is optimized in turn on a grid, and the others are kept fixed at an initial value

chosen by the user.

A more practical alternative is to choose the parameters subjectively by

visual inspection. Plots of the means and components for different ξ on a grid
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can be inspected to determine how new features of the curves appear or disappear

as ξ varies. Then, we can choose ξ that produces curves with features that are well

defined, but not too irregular. In general, because curve shapes change smoothly

with ξ, there is a relatively broad range of ξ that will produce reasonable results;

thus, it is not necessary to specify a precise optimal. We use this method in our

simulations and data analysis.

The choice of the numbers of components p1 and p2 can also be done either

objectively, using cross-validation, or subjectively, by taking into account the

accumulated proportions of variability σ2
u1 + · · · + σ2

up1 and σ2
v1 + · · · + σ2

vp2 .

From a practical perspective, however, the goal of this model is not so much to

find the largest possible p that will best approximate the data, but to capture

the most salient modes of variability of the X and Y processes, and then to

estimate and interpret their correlations. From this perspective, having a few

well-estimated components with significant correlations is preferable to having a

higher-dimensional model without many (or any) significant correlations, even if

some residual systematic variability remains unaccounted for.

4. Asymptotics and Inference

The asymptotic behavior of θ̂ as n → ∞ can be studied using standard

empirical-process techniques (Pollard (1984); Van der Vaar (2000)), because (3.2)

is the average of i.i.d. functions and a nonrandom roughness penalty; for example,

see Knight and Fu (2000).

“Nonparametric” asymptotics, where no assumptions about the functional

parameters (other than degrees of smoothness) are made, and the dimension q of

the basis family B is allowed to grow with n, is perhaps the most theoretically

satisfying, but it is too difficult. A simpler approach is that of “parametric”

asymptotics, where q is held fixed, and the functional parameters are assumed to

belong to B. This approach, in effect, ignores the smoothing bias. However, in

practice, this is not a serious problem, as long as q is reasonably large. We follow

this approach, which others have followed in similar semiparametric contexts

(e.g., Yu and Ruppert (2002); Xun et al. (2013)), and show later by simulation

that the asymptotic variance estimates provide very accurate approximations to

the actual finite-sample variance of the estimators.

The first result in this section, Theorem 1, establishes the consistency of

the estimator θ̂. The proof, given in the Supplementary Material, essentially

follows along the lines of the classical consistency proof of maximum likelihood
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estimators, with the caveat that the indeterminate sign of the functional com-

ponents requires special handling. We further assume that the components have

multiplicity one; thus, we define

Θ = {θ ∈ Rs : hCkl(θ) = 0, k = 1, . . . , l, l = 1, . . . , p1, (4.1)

hDkl(θ) = 0, k = 1, . . . , l, l = 1, . . . , p2,

σ2
η > 0, Σ > 0, σu1 > · · · > σup1 > 0, σv1 > · · · > σvp2 > 0,

ck1 ≥ 0, k = 1, . . . , p1, dk1 ≥ 0, k = 1, . . . , p2},

and make the following assumptions:

A1 The signs of the functional components φ̂k,n and ψ̂k,n are specified so that

the first nonzero basis coefficient of each φ̂k,n and ψ̂k,n is positive (then,

θ̂n ∈ Θ for Θ defined in (4.1).)

A2 The true functional parameters µ0, ν0, φk0, and ψk0 of models (1.1)–(2.2)–

(2.3) belong to the functional space B used for the estimation, and the basis

coefficients ck1,0 and dk1,0 are not zero. The signs of φk0 and ψk0 are then

specified such that ck1,0 > 0 and dk1,0 > 0; therefore, there is a unique θ0

in Θ, such that fθ0(x,m,y) is the true density of the data.

A3 ξn → 0 as n→∞, where ξn = (ξ1n, ξ2n, ξ3n, ξ4n)T is the vector of smoothing

parameters in (3.2).

The requirement in assumption A2 that the first basis coefficients ck1,0 and

dk1,0 of each φk0 and ψk0 be nonzero and, therefore, can be taken as strictly

positive, is somewhat artificial. Clearly, φk0 and ψk0 must have at least one

nonzero basis coefficient; however, it need not be the first, nor any other, in

particular. However, a condition such as this is necessary to uniquely identify

a “true” parameter θ0, which would otherwise be unidentifiable, owing to sign

ambiguity. This condition has to be consistent with the sign-specification rule

for the estimators in assumption A1.

Theorem 1. Under assumptions A1–A3, θ̂n
P→ θ0 as n→∞.

To establish the asymptotic normality of the estimators, we follow the ap-

proach of Geyer (1994), and use the tangent cone of the parameter space. The

definition and properties of tangent cones can be found in Rockafellar and Wets

(1998, Chap. 6). Using Theorem 6.31 of Rockafellar and Wets (1998), the tangent
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cone of Θ at θ0 is

T0 = {δ ∈ Rs : ∇hCkl(θ0)T δ = 0, k = 1, . . . , l, l = 1, . . . , p1,

∇hDkl(θ0)T δ = 0, k = 1, . . . , l, l = 1, . . . , p2}.

The explicit forms of ∇hCkl(θ) and ∇hDkl(θ) are derived in the Supplementary

Material. Let A be the s1× s matrix with rows ∇hCkl(θ0)T and ∇hDkl(θ0)T , where

s1 = {p1(p1 + 1)/2 + p2(p2 + 1)/2}, and let B be an orthogonal complement of

A, that is, an orthogonal (s− s1)× s matrix, such that ABT = O.

The next theorem gives the asymptotic distribution of θ̂n. In addition to B

defined above, it uses Fisher’s information matrix,

F0 = Eθ0{∇ log fθ0(x,m,y)∇ log fθ0(x,m,y)T }
= −Eθ0{∇2 log fθ0(x,m,y)},

where ∇ and ∇2 are taken with respect to the parameter θ, and DP(θ), the

Jacobian matrix of the smoothness penalty vector P(θ) = (P (µ),
∑p1

k=1 P (φk),

P (ν),
∑p2

k=1 P (ψk))
T of (3.2). Explicit expressions for these derivatives are given

in the Supplementary Material. We make one additional assumption:

A4
√
nξn → κ as n→∞, for a finite κ.

Theorem 2. Under assumptions A1–A4,
√
n(θ̂n − θ0)

D→ N(−VDP(θ0)Tκ,V)

as n→∞, with V = BT (BF0B
T )−1B.

Fisher’s information matrix F0 can be estimated by

F̂0 =
1

n

n∑
i=1

∇ log fθ̂(xi,mi,yi)∇ log fθ̂(xi,mi,yi)
T

and V by V̂ = BT (BF̂0B
T )−1B. The accuracy of the approximation of V̂ to

the actual finite-sample variance of the estimators depends on the ratio n/s. We

found in our simulations (Section 5) that ratios of n/s ≥ 3 offer very accurate

approximations. However, this does impose some limitations on how large the

basis family dimension q and the number of components p1 and p2 can be, for

any given n.

5. Simulations

We examine the finite-sample behavior of the estimators by simulation, to

assess their consistency as the sample size increases and the accuracy of the
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approximation of the asymptotic variances.

We generated data from models (2.1)–(2.3) with p1 = p2 = 2. We considered

a temporal process on S = [0, 1], with µ(x) ≡ sinπx− log 1.98+log r, ν(x) = 5x,

φ1(x) =
√

2 sinπx, φ2(x) =
√

2 sin 2πx, ψ1(x) = φ1(x), and ψ2(x) = φ2(x). The

baseline intensity function λ0(x) = expµ(x) integrates to r; we chose two differ-

ent values, namely, r = 10 and r = 30, giving expected numbers of observations

per curve of 10.5 and 31.3, respectively. The lower rate r = 10 corresponds to

the sparse situation where most individual trajectories cannot be recovered by

smoothing. The first components φ1 and ψ1 are essentially size components, ex-

plaining the variation in the overall level above or below the mean. The second

components φ2 and ψ2 are contrasts, where, for example, a positive score corre-

sponds to curves that are above the mean on the first half of S , and below the

mean on the second half.

The component variances are of the form σ2
u1 = 0.32α, σ2

u2 = 0.32(1 − α),

σ2
v1 = 0.72α, and σ2

v2 = 0.72(1− α). Two choices of α were considered: α = 0.60

and α = 0.75. The cross-covariance matrix Σuv was diagonal with elements

Σuv,11 = 0.7σu1σv1 and Σuv,22 = 0.7σu2σv2. The random-noise variance was

σ2
η = 0.32. We considered four sample sizes n: 50, 100, 200, and 400. The

combinations of r, α, and n, yield 16 sampling models.

For the estimation, we considered cubic B-spline families with five and 10

equally spaced knots. The smoothing parameters were chosen visually, as ex-

plained in Section 3, from a few trial samples from each of the six models, with

r = 10, and each of the two knot sequences; the same smoothing parameters were

used for the respective models with r = 30. These are listed in the Supplemen-

tary Material. The Monte Carlo study, then, considered a total of 32 scenarios,

with two families of estimators per sampling model. Each scenario was replicated

300 times.

As a measure of the estimation error, we considered the root mean squared

error. For scalar parameters, for example, ση, these errors are defined in the usual

way: E1/2{(σ̂η−ση)2}. For functional parameters, for example, µ(x), these errors

are defined in terms of the L2-norm: E1/2(‖µ̂ − µ‖2)1/2. For the random-effect

predictors, for example, {ûi1}, the errors are defined as E1/2{
∑n

i=1(ûi1−ui1)2/n}.
The signs of φ̂k(x) and ψ̂k(x), which in principle are indeterminate, were chosen

as the signs of the inner products 〈φ̂k, φk〉 and 〈ψ̂k, ψk〉; the signs of ûik, v̂ik, and

the elements of Σ̂uv were changed accordingly. For brevity, we only report here

the results for the six sampling models with α = 0.75, n ≤ 200, and estimators

obtained using five-knot splines (Table 1). The rest of the results can be found
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Table 1. Simulation Results. Root mean squared errors of estimators based on five-knot
B-splines under different baseline rates r and sample sizes n.

r = 10 r = 30
Parameter n = 50 n = 100 n = 200 n = 50 n = 100 n = 200

Σuv,11 0.054 0.031 0.025 0.038 0.026 0.019
Σuv,21 0.057 0.038 0.024 0.028 0.017 0.011
Σuv,12 0.036 0.023 0.015 0.021 0.014 0.010
Σuv,22 0.023 0.017 0.012 0.014 0.009 0.006
µ 0.121 0.102 0.090 0.096 0.082 0.072
ν 0.124 0.099 0.087 0.163 0.144 0.136
φ1 0.738 0.515 0.376 0.436 0.261 0.188
φ2 0.882 0.726 0.558 0.588 0.389 0.290
ψ1 0.243 0.249 0.206 0.138 0.090 0.061
ψ2 0.216 0.216 0.176 0.145 0.097 0.068
σu1 0.065 0.057 0.029 0.039 0.027 0.020
σu2 0.065 0.069 0.038 0.033 0.024 0.018
σv1 0.070 0.058 0.096 0.062 0.047 0.036
σv2 0.071 0.082 0.065 0.037 0.027 0.018
ση 0.067 0.081 0.062 0.012 0.011 0.010
ui1 0.217 0.184 0.170 0.154 0.140 0.134
ui2 0.163 0.141 0.121 0.118 0.104 0.097
vi1 0.167 0.159 0.162 0.168 0.151 0.143
vi2 0.153 0.148 0.138 0.105 0.083 0.072

in the Supplementary Material, and are largely in line with those reported here.

Also given in the Supplementary Material are plots of the functional estimators,

which help assess the relative weights of the bias and variance in the overall mean

squared error.

We see in Table 1 that the estimation errors decrease as n increases, as

expected, for both baseline rates r. However, the latter has a significant impact

on the accuracy of the estimators, particularly for the components φ1 and φ2.

The plots in the Supplementary Material show that most of the errors of φ̂1 and

φ̂2 come from the bias, rather than the variance and, for a given n, the bias

decreases rapidly as r increases. Part of the bias of φ̂1 and φ̂2 can be attributed

to a component reversal, which is more frequent for the models with α = 0.60

than it is for α = 0.75. This is also the case, but to a lesser degree, for ψ̂1

and ψ̂2, which, for each (n, r) combination, are more accurate estimators of their

respective parameters than are φ̂1 and φ̂2.

Table 2 compares the true finite-sample standard deviations of the elements

of Σ̂uv with their median asymptotic approximations, as well as median absolute

errors of these approximations, for the estimators based on five-knot splines and
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Table 2. Simulation Results. True standard deviations and median and median absolute
errors of estimated asymptotic standard deviations (×10) of estimators under different
baseline rates r and sample sizes n, for estimators based on five-knot B-splines and
variance proportion α = 0.75.

r = 10
n = 100 n = 200 n = 400

Parameter True Med MAE True Med MAE True Med MAE
Σuv,11 0.31 0.63 0.32 0.24 0.28 0.04 0.16 0.16 0.01
Σuv,21 0.38 0.73 0.35 0.24 0.36 0.12 0.15 0.21 0.06
Σuv,12 0.23 0.42 0.19 0.15 0.21 0.06 0.11 0.12 0.02
Σuv,22 0.17 0.30 0.13 0.12 0.14 0.02 0.13 0.09 0.05

r = 30
Σuv,11 0.25 0.45 0.20 0.18 0.21 0.03 0.12 0.13 0.01
Σuv,21 0.17 0.32 0.15 0.11 0.16 0.04 0.08 0.10 0.02
Σuv,12 0.14 0.24 0.10 0.10 0.12 0.02 0.06 0.07 0.01
Σuv,22 0.09 0.18 0.09 0.06 0.09 0.02 0.04 0.05 0.01

the models with variance proportion α = 0.75; for α = 0.60 and for 10-knot

splines, the results are given in the Supplementary Material. The dimension of

θ for five-knot splines is s = 63; thus, Fisher’s information matrix estimator F̂0

is singular for n = 50; therefore, we only report the results for n ≥ 100. Overall,

we see that the asymptotic standard deviations are very accurate estimators

of the true standard deviations for n ≥ 200. For 10-knot splines, where the

dimension of θ is s = 93, the tables in the Supplementary Material show that

the approximation is accurate for n ≥ 400. This suggests ratios of n/s ≥ 3 are

sufficient for accurate asymptotic approximations of the variances.

6. Application: Online Auction Data

The eBay auction data mentioned in Section 1 were downloaded from the

companion website of Jank and Shmueli (2010). In this sample, there were 194

items sold at auction, and each auction lasted seven days. A subsample of 20 bid-

price trajectories is shown in Figure 1. The dots are the actual bids; the solid lines

were drawn for better visualization. Figure 1 shows that bidding activity tends to

concentrate at the beginning and at the end of the auctions, in patterns known

as early bidding and bid sniping, respectively. The bid sniping phenomenon

has been observed in dynamic studies of auction prices in the form of slopes of

derivatives of bid prices (Jank and Shmueli (2005); Wang et al. (2008)). Some

articles (e.g., Backus et al. (2015)) have pointed out that bid sniping is annoying

for bidders, and partly as a consequence of this, the number of items auctioned
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Figure 1. Online Auction Data. Price trajectories of Palm digital assistants auctioned
at eBay (first 20 trajectories in a sample of 194).

at eBay has steadily decreased over the years, compared with the number of

items sold at fixed prices (Einav et al. (2015)). It has been hypothesized that bid

sniping is triggered by the perception that an item’s current bid price is low. We

do not establish causation here, because our models are not intended for that;

however, the results obtained below are in line with this hypothesis.

To estimate the functional means and components, we used cubic B-splines

with five equally spaced knots. We found the smoothing parameters graphically

(the plots can be found in the Supplementary Material), obtaining ξ1 = ξ2 =

ξ4 = 10−4 and ξ3 = 10−6. From preliminary trial fits with five components

for each process, we found that the first two components of X explain 77% of

the variability, and the first three components of Y explain essentially 100%

of the variability (the other two eigenvalues are negligible); therefore, we chose

p1 = 2 and p2 = 3. The estimated mean and components are shown in Figure 2.

Figure 2(a) shows the baseline intensity function λ0(t) = expµ(t) of the bidding

process. Here, we see that most of the bidding activity tends to occur toward the

end of an auction. Some items attract, overall, more bids than others, and this is

explained by the first component (Fig. 2(c)): a positive score on φ1 corresponds

to an intensity function λ above the baseline. The second component is related

to bid sniping: for items with positive scores on φ2, the number of bids in the

final two days of the auction will be above the mean. With regard to the bid

price, Fig. 2(b) shows the mean price trajectory ν(t), and Fig. 2(d) shows the

components. The first component is associated with the price level: items with

positive scores on ψ1 show prices above the mean over the whole auction period.
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Figure 2. Online Auction Data. (a) Baseline intensity function of bidding time process.
(b) Mean price trajectory. (c) Components of bidding time process, φ1 (dashed line) and
φ2 (dash-dot line). (d) Components of price trajectories, ψ1 (dashed line), ψ2 (dash-dot
line), and ψ3 (dotted line).

The second component is a contrast: items with positive scores on ψ2 tend to

show prices below the mean at the beginning of the auction, and above the mean

toward the end.

The estimated cross-covariance and cross-correlation matrices are

Σ̂uv =

(
−256.9 48.1 22.6

−83.1 −36.9 −1.5

)
and ρ̂uv =

(
−0.69 0.41 0.28

−0.54 −0.77 −0.05

)
,

respectively. The asymptotic standard deviations of the elements of Σ̂uv ob-

tained from Theorem 2, and the bootstrap standard deviations based on 100

wild bootstrap replications are

sdasymp(Σ̂uv) =

(
73.3 17.7 9.9

20.5 6.8 5.7

)
and sdboot(Σ̂uv) =

(
76.7 18.3 13.4

22.3 7.5 5.3

)
,

respectively, which are very similar to one another. We conclude that all corre-
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Figure 3. Online Auction Data. Scatter plots of component scores of the bidding time
process versus component scores of the price trajectories.

lations involving the first two components of each process are statistically signif-

icant, but none of the correlations involving ψ3 are.

Figure 3 shows scatter plots of the estimated random effects ûik versus v̂ik
for the significant components. Normal probability plots of the component scores

and the residuals η̂ij are shown in the Supplementary Material. The component

scores appear to be largely Gaussian; only ûi1 shows a mild departure from

normality. The residuals η̂ij show tails somewhat heavier than normal, but no

gross outliers are evident.

These results are in line with our intuition. The negative correlations be-

tween v1 and both u1 and u2 show that items with perceived low prices tend to

attract more bidders and trigger bid sniping. The strong negative correlation

between u2 and v2 shows that bid sniping is particularly associated with price

trajectories that are found to be well below the mean on the fifth day of the

auction.

To illustrate with a few specific cases, Figure 4 shows the price trajectories

of items with the largest and smallest scores v1 and v2, respectively. Figure
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Figure 4. Online Auction Data. Estimated price trajectories (solid line) and mean
price trajectory (dashed line), along with actual bids (asterisks) for items with (a) the
largest score on the first Y -component, (b) the lowest score on the first Y -component,
(c) the largest score on the second Y -component, and (d) the lowest score on the second
Y -component.

4(a) shows the item with largest v1 score and, consequently, low u1 score: an

expensive item that attracted only two bids. Figure 4(b) shows the opposite,

the item with the lowest v1 score and, consequently, large u1 and u2 scores: an

underpriced item that attracted many bids toward the end of the auction, which

is a typical case of bid sniping. Figure 4(c) shows the item with the largest v2

score and, consequently, a large u1 score, but a low u2 score: this was an item

that started off with a low price and attracted many bids at the beginning of

the auction; this sent the price above the mean early in the auction period, and

then did not attract many late bidders. Figure 4(d), the item with the lowest v2

score, shows the opposite situation: the few bids placed at the beginning of the

auction period were well above the mean, but toward the end, some lower bids

are placed (an unusual, but possible situation) which triggered bid sniping.
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7. Discussion

We have presented a unified model for the joint statistical analysis of a

functional response variable and the distribution of the grid points at which the

variable is measured. Although the problems of estimating sparse functional data

and intensity functions of point processes have been considered in the literature,

to date, this has been done separately.

Our model allows statistical inferences for the correlations between the com-

ponents of the grid-point process and the response variable. For this, we have

developed a parametric asymptotic theory in Section 4, where
√
n-consistency is

obtained, but at the price of ignoring the asymptotic bias. When the latter is

negligible, for example, when the target functions are smooth and the basis family

used for the estimation is sufficiently large, the asymptotic approximation is very

accurate, as shown in the simulations and example in Sections 5 and 6, respec-

tively. However, if the target functions are more irregular, and the asymptotic

bias is more significant, truly nonparametric asymptotics with the dimension of

the basis family growing with n would be more appropriate, although the rate of

convergence would be lower than
√
n. This is still an open problem.

The model in Section 2 uses latent variables with distributions that are

assumed normal. Of course, this is always going to be an approximation, at best.

While mild departures from normality may not affect the validity of the results,

more serious deviations, such as gross outliers or very heavy-tailed distributions,

most likely will. For the sake of brevity, we do not include a thorough robustness

analysis in this paper. However, the model and the proposed maximum likelihood

estimators can be modified easily to accommodate heavier-tailed distributions,

such as Student’s t distributions, for the latent variables. This is left to future

research.

Supplementary Material

The online supplementary material contains proofs, technical derivations,

and additional simulation results.
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