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Abstract: As an important part of modern health care, medical imaging data, which

can be regarded as densely sampled functional data, have been widely used for diag-

nosis, screening, treatment, and prognosis, such as for finding breast cancer through

mammograms. The aim of this paper is to propose a functional linear regression

model for using functional (or imaging) predictors to predict clinical outcomes (e.g.,

disease status), while addressing missing clinical outcomes. We introduce an expo-

nential tilting semiparametric model to account for the nonignorable missing data

mechanism. We develop a set of estimating equations and the associated compu-

tational methods for both parameter estimation and the selection of the tuning

parameters. We also propose a bootstrap resampling procedure for carrying out

statistical inference. We systematically establish the asymptotic properties (e.g.,

consistency and convergence rate) of the estimates calculated from the proposed

estimating equations. Simulation studies and a data analysis are used to illustrate

the finite sample performance of the proposed methods.
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1. Introduction

Medical imaging data, such as Magnetic Resonance Imaging (MRI), have

been widely used to extract useful biomarkers that could potentially aid detec-

tion, diagnosis, assessment of prognosis, and prediction of response to treatment,

among many others, since imaging data may contain important information as-

sociated with the pathophysiology of various diseases, such as breast cancer. A

critical clinical question is how to translate medical images into clinically useful

information that can facilitate better clinical decision making (Gillies, Kinahan

and Hricak (2016)). Addressing it requires the development of statistical mod-

els that use medical imaging data to predict clinical scalar responses. Standard
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functional linear model belongs to this type of statistical models (Ramsay and

Silverman (2006)). There is an extensive literature on the development of var-

ious estimation and prediction methods for functional linear models. See, for

example, Cardot, Ferraty and Sarda (2003), Yao, Müller and Wang (2005), Hall

and Horowitz (2007), Crambes, Kneip and Sarda (2009), Cai and Yuan (2012),

Crambes and Mas (2013), and Hall and Giles (2015), among many others. The

aim of this paper is to propose a new functional linear regression model to deal

with an important scenario in clinical practice, when some clinical responses are

missing.

Missing data is common in surveys, clinical trials, and longitudinal stud-

ies, and statistical methods for handling it often depend on the mechanism that

generated the missing values. Three types of missing-data mechanism—missing

completely at random (MCAR), missing at random (MAR), and missing not at

random (MNAR)—have been extensively studied in the literature (Baker and

Laird (1988); Ibrahim, Lipsitz and Chen (1999); Wang and Chen (2009); Zhou,

Wan and Wang (2008); Kang and Schafer (2007); Rotnitzky et al. (2012); Little

and Rubin (2002); Shi, Zhu and Ibrahim (2009); Ibrahim et al. (2005); Ibrahim

and Molenberghs (2009)). Among these mechanisms, MNAR is not only more

technically challenging, but also more sensitive to model misspecification. Under

MNAR, it is well known that common practices such as a complete case anal-

ysis or ad-hoc imputation of missing data can lead to seriously biased results

in both estimation and prediction (Molenberghs and Kenward (2007); Ibrahim

and Molenberghs (2009)). To deal with MNAR, Kim and Yu (2011) developed

a novel exponential tilting semiparametric model for the missing data mecha-

nism and proposed some nonparametric regression techniques to estimate the

conditional expectation. Tang, Zhao and Zhu (2014) developed general estimat-

ing equations by using the empirical likelihood, whereas Zhao and Shao (2014)

studied the identifiability issue for generalized linear models with nonignorable

missing responses and covariates. These methods are limited to the joint model-

ing of scalar predictors and scalar responses under MNAR.

Little has been done on the joint modeling of functional predictors and miss-

ing scalar variables. Recently, Preda, Saporta and Hadj (2010) defined the miss-

ingness of functional data and proposed a method based on nonlinear iterative

partial least squares (NIPALS). Ferraty, Sued and Vieu (2013) studied mean esti-

mation for the functional predictors under MAR. Chiou et al. (2014) proposed a

missing value imputation and an outlier detection approach for traffic monitoring

data. All these methods are limited to functional linear models for MAR and
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one-dimensional functional predictors.

The aim of this paper is to propose a new functional linear regression frame-

work by integrating the exponential tilting model for MNAR and the standard

functional linear model. We call it ETFLR hereafter. We derive estimating equa-

tions (EEs) for ETFLR by combining the nonparametric kernel approach and

the Functional Principle Component Analysis (FPCA) approach. We further

derive an explicit formula for the computational solution to EEs and a method

for choosing the tuning parameters. Theoretically, we investigate the consistency

and convergence rate of the proposed estimates under some regularity conditions.

We also propose a bootstrap procedure for carrying out statistical inference. We

have used simulations and data sets to demonstrate the advantage of the pro-

posed approach over competing methods under MCAR and MAR. Finally, we

will develop companion software for ETFLR and release it to the public through

http://www.nitrc.org/ and http://odin.mdacc.tmc.edu/bigs2/.

The rest of the paper is organized as follows. Section 2 introduces the model

setting for ETFLR and presents the estimation procedure. Section 3 establishes

asymptotic properties of the proposed parameter estimates. Section 4 includes

simulation studies to examine the finite sample performance of the proposed

estimates. In Section 5, we apply ETFLR to investigate the predictability of

brain images at baseline on learning ability scores at 18 months after baseline

obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) data.

2. Functional Linear Regression for Missing Responses

2.1. Model setup

Let (δi, Zi,Wi, Yi), i = 1, 2, . . . , n, be n independently and identically dis-

tributed realizations of the random vector (δ, Z,W, Y ), where δ is an indicator,

Z is a functional predictor (e.g., MRI data) belonging to a specific functional

space H endowed with an inner product 〈·, ·〉, W is a p × 1 random vector, and

Y is a random scalar subject to missingness. Define δi = 1 if Yi is observed

and δi = 0 if Yi is missing for i = 1, . . . , n. It is assumed that δi and δj are

independent for any i 6= j, and that δi only depends on Zi,Wi and Yi. Let

Oi = (δi, δiYi, Zi,Wi) denote the i−th observation. For notational simplicity, we

focus on one-dimensional functional data throughout. Without loss of generality,

we assume

H =

{
f : [0, 1]→ R|f is continuous and 〈f, f〉 ,

∫
t
f2(t)dt <∞

}
.

http://www.nitrc.org/
http://odin.mdacc.tmc.edu/bigs2/
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For identification, it is assumed that the Zi’s satisfy E(Z) = 0 (Crambes and

Mas (2013)).

Our ETFLR consists of a functional linear model and an exponential tilting

semiparametric model for the propensity score:

Y = 〈θ, Z〉+ βT1W + ε, ε ∼ N(0, σ2), (2.1)

logit{π(Z,W, Y )} = G(Z,W ) + φY, (2.2)

where π(Z,W, Y ) , Pr(δ = 1|Z,W, Y ) is called the propensity score, φ ∈ R is an

unknown parameter that determines the amount of departure from the ignora-

bility of the response mechanism, θ(·) ∈ H is an unknown functional coefficient

function, and β1 ∈ Rp is a p×1 vector of unknown coefficients. Moreover, G ∈ G
is a nonparametric function, where G = {all continuous functions H×Rp 7→ R}.
To include an intercept in (2.1), the first element of Wi is set to 1.

The inclusion of G(Z,W ) in the propensity score extends the so-called expo-

nential tilting (ET) model proposed by Kim and Yu (2011). Such an assumption

is quite reasonable, since patients with severe or weak disease symptoms are more

likely to be missing, and imaging data may be strongly correlated with clinical

symptoms. If the domain of Z is limited to a set of d grid points, then Z is

reduced to a d-dimensional vector and the logarithm of the propensity score in

(2.2) reduces to the ET model. Therefore, ETFLR is a generalization of ET

from a vector space to a functional space. Similar to ET, the nonparametric

form G(Z,W ) in the model is expected to be more robust to possible model mis-

specification compared with such parametric forms as G(Z,W ) = 〈g, Z〉+W Tβ2

with a functional coefficient function g(·) ∈ H and a vector β2 ∈ Rp.
For method development, we introduce the operators:

Γu = E(〈Z, u〉Z), Γ̂nu =
1

n

n∑
i=1

〈Zi, u〉Zi,

∆u = E{〈Z, u〉(Y − βT1W )} and ∆̂nu =
1

n

n∑
i=1

〈Zi, u〉(Yi − βT1Wi)

for any u(·) ∈ H. Due to the Hilbert-Schmidt theorem, it is commonly assumed

that Γ and Γ̂n have the sequences of eigenvalues {λj}j≥1 and {λ̂j}j≥1, with

corresponding sequences of eigenfunctions {vj(·)}j≥1 and {v̂j(·)}j≥1, respectively.

Such a condition has been widely used in the FPCA literature.
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2.2. Estimation method

2.2.1. Estimating equations

First, we consider the case when all responses are fully observed. In this

case, parameter estimation is equivalent to solving a least squares (LS) problem.

For ETFLR, we minimize the objective function given by

1

n

n∑
i=1

(Yi − 〈θ, Zi〉 − βT1Wi)
2

= 〈Γ̂nθ,θ〉 − 2∆̂nθ +
1

n

n∑
i=1

{(βT1Wi)
2 − 2Yiβ

T
1Wi}+ constant. (2.3)

Using FPCA, we can estimate θ̂ by minimizing (2.3) with respect to θ over the

linear span of {v̂1(·), . . . , v̂kn(·)}, where kn is a positive integer. Therefore, by

setting θ =
∑kn

j=1 rj v̂j , θ̂ can be solved by minimizing

〈Γ̂nθ,θ〉 − 2∆̂n

kn∑
j=1

rj v̂j +
1

n

n∑
i=1

{(βT1Wi)
2 − 2Yiβ

T
1Wi}

with respect to r = (r1, . . . , rkn)T . Furthermore, it follows from the Hilbert-

Schmidt theorem that we have

〈Γ̂nθ,θ〉 ≈
kn∑
j=1

λ̂j [〈v̂j ,θ〉]2 =
∑
j

λ̂jr
2
j , r

T Λ̂r.

Finally, minimizing (2.3) is equivalent to solving the estimating equation (EE)

given by
− 1

n

n∑
i=1

〈Zi, v̂j〉(Yi − βT1Wi) + λ̂jrj = 0 for j = 1, . . . , kn,

− 1

n

n∑
i=1

(Yi − βT1Wi)Wi +
1

n

kn∑
j=1

rj

n∑
i=1

〈Zi, v̂j〉Wi = 0.

(2.4)

Second, we consider the case when some responses are missing not at random.

We take γ = −φ and for j = 1, . . . , kn,

ψ1,j(Yi, Zi,Wi, vj , λj ; r,β1) = n−1
n∑
i=1

〈Zi, vj〉(Yi − βT1Wi)− λjrj ,

ψ(Yi, Zi,Wi, {v̂j}j≤kn , {λ̂j}j≤kn ; r,β1) = {ψT1 (· · · ),ψT2 (· · · )}T ,
ψ1(· · · ) = {ψ1,1(Yi, Zi,Wi, v1, λ1; r,β1), . . . , ψ1,kn(Yi, Zi,Wi, vkn , λkn ; r,β1)}T ,
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ψ2(· · · ) =

{
Yi − βT1Wi −

kn∑
j=1

rj〈Zi, vj〉

}
Wi.

Then, (2.4) is equivalent to

n−1
n∑
i=1

ψ(Yi, Zi,Wi, {v̂j}j≤kn , {λ̂j}j≤kn ; r,β1) = 0. (2.5)

The law of large numbers ensures that the expectation of the left side of (2.5)

converges to zero as kn →∞, but this EE depends on missing data. By following

the reasoning in Tang, Zhao and Zhu (2014), we have

E{ψ(Yi, Zi,Wi, . . . )}
= Pr(δi = 1)E{ψ(Yi, Zi,Wi, . . . )|δi = 1}+ Pr(δi = 0)E{ψ(Yi, Zi,Wi, . . . )|δi = 0}
= E[δiψ(Yi, Zi,Wi, . . . ) + (1− δi)E{ψ(Yi, Zi,Wi, . . . )|δi = 0, Zi,Wi}]

E{ψ(Yi, Zi,Wi, . . . )|δi = 0, Zi,Wi}

=
E{(1− δi)ψ(Yi, Zi,Wi, . . . )|Zi,Wi}

E{(1− δi)|Zi,Wi}

=
E{Pr(δi = 0|Yi, Zi,Wi)ψ(Yi, Zi,Wi, . . . )|Zi,Wi}

E{Pr(δi = 0|Yi, Zi,Wi)|Zi,Wi}

=
E{exp(γYi) Pr(δi = 1|Yi, Zi,Wi)ψ(Yi, Zi,Wi, . . . )|Zi,Wi}

E{exp(γYi) Pr(δi = 1|Yi, Zi,Wi)|Zi,Wi}

=
E{δiψ(Yi, Zi,Wi, . . . ) exp(γYi)|Zi,Wi}

E{δi exp(γYi)|Zi,Wi}
.

Therefore, the original EE ψ(Yi, Zi,Wi, . . . ) shares the same expectation with

δiψ(Yi, Zi,Wi, . . . ) + (1− δi)
E{δiψ(Yi, Zi,Wi, . . . ) exp(γYi)|Zi,Wi}

E{δi exp(γYi)|Zi,Wi}
.

Finally, we propose to solve the equation

1

n

n∑
i=1

{δiψ(Yi, Zi,Wi, {v̂j}j≤kn , {λ̂j}j≤kn ; r,β1)

+(1− δi)m0
ψ,i,γ(Yi, Zi,Wi, {v̂j}j≤kn , {λ̂j}j≤kn ; r,β1)} = 0, (2.6)

where for any f(·), i and γ, m0
f,i,γ(·) is defined by

m0
f,i,γ(·) =

E{δif(·) exp(γYi)|Zi,Wi}
E{δi exp(γYi)|Zi,Wi}

. (2.7)

To calculate (2.6), we need to know both φ and kn and then approximate

the conditional expectations in m0
ψ,i,γ . We now discuss how to calculate them.

We introduce a kernel function K(·) and let Kh(u) = K(u/h), where h is a
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bandwidth. We use

m̂ψ,i,γ(· · · ) =

n∑
l=1

wl,0(Zi,Wi; γ)ψ(Yl, Zl,Wl, {v̂j}j≤kn , {λ̂j}j≤kn ; r,β1)

as a nonparametric estimate of m0
ψ,i,γ(· · · ), where

wl,0(Zi,Wi; γ) =
δl exp(γYl)Kh{Dl(Zi,Wi)}∑n

k=1 δk exp(γYk)Kh{Dk(Zi,Wi)}
,

in which Dl(Z,W ) is equal to the sum of w0

√∑kn
j=1〈Z − Zl, v̂j〉2 and (1 −

w0)‖W − Wl‖. The notation ‖v‖ is used to denote the l2 norm of a vector v

or the L2 norm of a function v(·). Moreover, w0 is a scalar introduced to balance

the functional and nonfunctional parts of Dl(·, ·).

2.2.2. Computational method

We develop a computational method for our proposed estimating equation as

follows. Let D = diag{δ1, δ2, . . . , δn}, W = [W1, . . . ,Wn]T , Y = (Y1, . . . , Yn)T ,

1n be an n×1 vector of ones, and Ξ = (wi,j) with wi,j = wi,0(Zj ,Wj ; γ). We then

discretize the observed function Zi to a fine grid ofK equally spaced values tk that

span the interval [0, 1] (Ramsay and Silverman (2006)). Denote the K equally-

spaced discrete points by t = (t0 = 0, t1, . . . , tK = 1), and then approximate

the inner product 〈Z,θ〉 by
∑K

k=1 θ(tk)Z(tk)(tk − tk−1). We introduce an n×K
matrix Z̄ = (Z̄i,k), a K × kn matrix V̄kn = (V̂1, . . . , V̂kn), and θ = V̄knr such that

Z∗ = Z̄V̄kn is an n × kn matrix, where Z̄i,k = Zi(tk)(tk − tk−1). Then solving

(2.6) is equivalent to minimizing

(Y − Z∗r −Wβ)TΣ(Y − Z∗r −Wβ) + (Z∗r)T (In − Σ)Z∗r, (2.8)

where Σ =
[
D + diag

{
Ξ(In −D)1n

}]
. If φ and kn, w0 and h are given, the

solution to (2.8) has the explicit form(
r̂

β̂

)
= {(Z̄∗)TΣ(Z̄∗) + (Z̃∗)T (In − Σ)(Z̃∗)}−1(Z̄∗)TΣY, (2.9)

where Z̄∗ = (Z̄,W) and Z̃∗ = (Z̄, 0).

2.2.3. Selection of smoothing and tilting parameters

When φ is given, similar to Crambes and Henchiri (2015), the smoothing tun-

ing parameters can be achieved by using the generalized cross-validation (GCV)

criterion given by

GCV(kn) =
1

n

‖Y − Σ∗Y‖2

{trace
(
(I − Σ∗) ◦D

)
/n}2

, (2.10)
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where Σ∗ = Z̄∗{(Z̄∗)TΣ(Z̄∗) + (Z̃∗)T (In −Σ)(Z̃∗)}−1(Z̄∗)TΣ depends on kn and

‘◦’ denotes the element-wise product. To select h and w0, we generate L random

divisions and denote T` as the test set of the `−th random division for ` =

1, . . . , L. See the detailed algorithm in Section 4. Then, we use Repeated Random

Sub-sampling Validation (RRSV) by minimizing

RRSV(h,w0) =
1

L

L∑
`=1

Loss(YT` , ŶT`), (2.11)

where Loss(·, ·) is the negative Pearson correlation between the true responses

YT` and the predicted responses ŶT` .

Following Kim and Yu (2011), we use an external validation sample, a follow-

up subset of nonrespondents, chosen for further investigation to retrieve missing

responses. We propose two approaches. The first is the Missing Not At Random

for Nonparametric (MNARN) method. Here the validation sample is assumed to

be randomly selected. Similar to Kim and Yu (2011), φ = −γ can be determined

by the estimating equation
n∑
i=1

(1− δi)δ∗i {Yi −m0
e,i,γ(Yi)} = 0, (2.12)

where m0
e,i,γ(Yi) is defined in (2.7) for the identity function e(y) = y and δ∗i = 1

if the ith subject belongs to the follow-up sample and 0 otherwise. It is easy to

show that the expectation of the left-hand side of (2.12) is zero. Specifically, it

follows from m0
e,i,γ(Yi) = E(Yi|δi = 0, Zi,Wi) that

E[(1− δi)δ∗i {Yi −m0
e,i,γ(Yi)}] = Eδ∗i E(1− δi){Yi −m0

e,i,γ(Yi)}
= Eδ∗i E[{Yi − E(Yi|δi = 0, Zi,Wi)}|δi = 0] = 0.

Computationally, we approximatem0
e,i,γ(Yi) by m̂e,i,γ(Yi) =

∑n
l=1wl,0(Zi,Wi; γ)Yl.

The second approach is the Missing Not At Random for Parametric (MNARP)

method. In it, if G is specified to be a linear function of Z and W by G(Z,W ) =

〈Z, g〉 + βT2W for g(·) ∈ H and β2 ∈ Rp, we estimate φ by maximizing the

likelihood function of the logistic model (2.2) given by

n∏
i=1

{
exp

(∑k∗
n

j=1〈Zi, v̂j〉sj +W T
i β2 + φyi

)
1 + exp

(∑k∗
n

j=1〈Zi, v̂j〉sj +W T
i β2 + φyi

)}δi

×

 exp
(∑k∗

n

j=1〈Zi, v̂j〉sj +W T
i β2 + φyi

)
1 + exp

(∑k∗
n

j=1〈Zi, v̂j〉sj +W T
i β2 + φyi

)


(1−δi)δ∗i

(2.13)

with respect to (φ,β2, sj : j = 1, . . . , k∗n). The tuning parameter k∗n denotes the
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number of eigenfunctions used for estimating φ. When the validation set is not

large, we also add a penalty term, such as the LASSO, to the likelihood function.

For a fixed k∗n, this optimization procedure can be directly implemented by the

‘glmnet’ R package (Friedman, Hastie and Tibshirani (2009)). The optimal k∗n
can be further determined by minimizing its corresponding cross-validation error.

3. Theoretical Results

To facilitate the theoretical development, some assumptions are needed.

Prior to presenting assumptions, we list some notation. True values of β1, β2,

and θ(·) are denoted by β1,0, β2,0, and θ0(·), respectively. Let a⊗2 = aTa for

any vector or matrix a and ‖Σ‖ =
√

tr(ΣTΣ) be the Frobenius norm of a matrix

Σ.

Define M̃(Yi,Wi;β1) = (Yi−βT1Wi)Wi, Mj(Yi, Zi,Wi, vj ;β1) = 〈Zi, vj〉(Yi−
βT1Wi), and

rj =

n∑
i=1

{δiMj(Yi, Zi,Wi, v̂j ;β1) + (1− δi)m0
Mj ,i,γ

(Yi, Zi,Wi, v̂j ;β1)}

(nλ̂j)
.

Solving (2.6) is equivalent to solving U(β1) = 0, where U(β1) is given by

1

n

n∑
i=1

kn∑
j=1

rj

[
δiWi〈Zi, v̂j〉+ (1− δi)

E{δi〈Zi, vj〉Wi exp(γYi)|Zi,Wi}
E{δi exp(γYi)|Zi,Wi}

|vj=v̂j
]

− 1

n

n∑
i=1

{δiM̃(Yi,Wi;β1) + (1− δi)m0
M̃,i,γ

(Yi,Wi;β1)}.

Then, we have the theorem, whose assumptions and proofs can be found in the

supplementary document.

Theorem 1. Suppose Assumptions (A.1)–(A.9) hold. Then, as n → ∞, there

exists a unique solution β̂1 of U(β1) = 0, which converges to β1,0 in probability,

and θ̂ =
∑kn

j=1 rj(β̂1)v̂j satisfies ‖θ̂ − θ0‖L2
→ 0 in probability, where

rj(β1) , (nλ̂j)
−1

n∑
i=1

{δiMj(Yi, Zi,Wi, v̂j ;β1) + (1− δi)m0
Mj ,i,γ(Yi, Zi,Wi, v̂j ;β1)}.

Moreover, we have ‖β̂1 − β1,0‖ = Op(k
2a+1
n n−1/2 + k

1/2−b
n ) and ‖θ̂ − θ0‖L2

=

Op(k
5/2a+3/2
n n−1/2 + k

1+a/2−b
n ).

Remark 1. Assumptions (A.1)–(A.9) have been widely used in the literature.

Specifically, we can find assumptions similar to (A.1) and (A.2) in Crambes and

Mas (2013), those similar to (A.3) and (A.4) in Hall and Horowitz (2007), those
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similar to (A.5) in Hall and Hosseini-Nasab (2006), those similar to (A.7) in

Kong et al. (2015), and those similar to Condition (A.9) in Tang, Zhao and

Zhu (2014). Assumptions (A.6) and (A.8) are very weak since they require

some mild conditions on E(‖W‖2) and E[W −
∑∞

j=1 E(Wξj)ξj ]
⊗2 = EWW T −∑∞

j=1 E(Wξj)E(W T ξj). In Assumption (A.7), kn → ∞ and k5a+3
n n−1 → 0 en-

sure that both the bias and variance of θ̂ asymptotically converge to 0. For the

selection of kn, a small kn may incur substantial information loss and cause bias,

whereas a large kn can increase variance due to insufficient number of observa-

tions.

Remark 2. Denote M = {(yi, Zi,Wi), i = n+ 1, . . . , n+N0} as a test set with

N0 new observations. For i ≤ n + N0, by using ŷi = 〈Zi, θ̂〉 + β̂T1W as the

predicted response of the ith observation, the squared prediction error can be

bounded by

1

N0

n+N0∑
i=n+1

|ŷi − yi|2

=
1

N0

n+N0∑
i=n+1

|(〈θ̂, Zi〉+ β̂T1Wi)− (〈θ0, Zi〉+ βT1,0Wi + εi)|2

≤ 1

N0

N0∑
i=n+1

(‖Zi‖2‖θ̂ − θ‖2 +WiW
T
i ‖β̂1 − β1,0‖2) + σ2 +Op

(
1√
N0

)
= σ2 +Op

(
ka+2−2b
n +

k5a+3
n

n
+

1√
N0

)
.

In this case, we can obtain the optimal convergence rate Op(n
(a+2−2b)/(4a+1+2b)+

1/
√
N0) by minimizing ka+2−2b

n + k5a+3
n /n, which leads to kn = O(n1/(4a+1+2b))

and ‖θ̂ − θ0‖ = O(n(a/2+1−b)/(4a+2b+1)). Although these convergence rates are

slower than those in Tang, Zhao and Zhu (2014) and Hall and Horowitz (2007),

our ETFLR is much more complex due to the inclusion of G(Z,W ) in model

(2.2).

We consider some approximations to the terms in (2.6) discussed in Subsec-

tion 2.2.1 and then solve Ũ(β1) = 0, where Ũ(β1) is given by

1

n

n∑
i=1

kn∑
j=1

r̂j{δiWi〈Zi, v̂j〉+ (1− δi)
n∑
l=1

wl,0(Zi,Wi; γ)δl〈Zl, v̂j〉Wl}

− 1

n

n∑
i=1

{δiM̃(Yi,Wi;β1) + (1− δi)m̂M̃,i,γ(Yi,Wi;β1)},
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in which r̂j is equal to

(nλ̂j)
−1

n∑
i=1

{δiMj(Yi, Zi,Wi, v̂j ;β1) + (1− δi)m̂Mj ,i,γ(Yi, Zi,Wi, v̂j ;β1)}.

Additional assumptions (B.1)–(B.6) are listed in the Appendix.

Theorem 2. Suppose that Assumptions (A.1)–(A.9) and (B.1)–(B.6) hold. Then,

as n → ∞, there exists a unique solution β̃1 of Ũ(β1) = 0, which converges to

β1,0 in probability and θ̃ =
∑kn

j=1 r̂j(β̂1)v̂j satisfies ‖θ̃−θ0‖L2
→ 0 in probability,

where r̂j(β1) is equal to
n∑
i=1

{δiMj(Yi, Zi,Wi, v̂j ;β1) + (1− δi)m̂Mj ,i,γ(Yi, Zi,Wi, v̂j ;β1)}
(nλ̂j)

.

Moreover, we have ‖β̃1−β1,0‖=Op(k
1/2−b
n +k2a+1

n n−1/2+k
(a+1)/2
n {h+1/

√
nψ(h)})

and ‖θ̃ − θ0‖ = Op(k
1+a/2−b
n + k

5a/2+3/2
n n−1/2 + k

(a+1)
n {h+ 1/

√
nψ(h)}).

Remark 3. Assumption (B.2) holds if G(Z,W ) is a bounded linear operator

of (Z,W ) such that ‖G‖ = |G(Z,W )|/(‖Z‖+ ‖W‖) ≤ C holds for a constant

C. Assumption (B.3) is similar to Condition (C.2.19) of Martinez (2013). As-

sumption (B.4) is similar to and weaker than Condition (C.2.23) of Martinez

(2013), and is equivalent to that the infimum inf(z,x)∈H0
ψz,x(·) , ψ(·) exists and

is uniformly positive in its domain, where ψz,x is usually called the small ball

probability. More details about the small ball probability and ψx,z(h) can be

found in Li and Shao (2001) and Ferraty and Vieu (2006, 2011). Compared with

m0
ψ,i,γ , the nonparametric kernel estimate m̂ψ,i,γ brings in additional bias and

variance associated with the tuning parameter h. Assumption B.5 ensures that

such additional bias and variance are asymptotically negligible.

Corollary 1. Assume that either (w0,β1,0) = (1,0) or (w0,θ0) = (0,0) holds,

and ψ(h) is equal to inf(z,x)∈H0
ψz,x(h), where ψz,x(τ) = Pr[(Z,W ) ∈ {(z̃, x̃)| w0‖z̃

−z‖+ (1−w0)‖x̃− x‖ ≤ τ}]. Under Assumptions (A.1)–(A.9) and (B.1)–(B.5),

the conclusions in Theorem 2 remain valid.

We have a result that justifies the computational method in Subsection 2.2.2.

Theorem 3. If the tuning parameters h,w0, and kn and the tilting parameter φ

are fixed, and for any f1 and f2 ∈ H, 〈f1, f2〉 is defined as
∑K

k=1 f1(tk)f2(tk)(tk−
tk−1), then the solution to (2.6) is equal to the minimizer that minimizes (2.8).

4. Simulation Studies

Simulation results are given in the Appendix due to space limitations.
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5. Application to the ADNI Dataset

Alzheimer’s disease (AD) is the most common form of dementia and is an

escalating national epidemic and a genetically complex, progressive, and fatal

neurodegenetive disease. The ADNI study is a large scale multi-site study which

has collected clinical, imaging, and laboratory data at multiple time points from

cognitively normal controls (CN), individuals with significant memory concern

(SMC), early mild cognitive impairment (EMCI), late mild cognitive impairment

(LMCI), and subjects with AD. One of the goals of ADNI is to develop prediction

methods to predict the longitudinal course of clinical outcomes (e.g., learning

ability) based on imaging and biomarker data. More information about data

acquisition can be found at the ADNI website (www.loni.usc.edu/ADNI).

To illustrate the empirical utility of our methods in imaging classification,

we use a subset of the ADNI data that consists of 682 subjects (208 CN con-

trols, 153 AD patients, and 321 LMCI patients), after removing missing or low

quality imaging data. Among them, there are 395 males with average age 75.38

years old and standard deviation 6.48 years old, and 287 females with average

age 74.81 years old and standard deviation 6.81 years old. The T1-weighted im-

ages for all subjects at baseline were preprocessed by standard steps including

AC (anterior commissure) and PC (posterior commissure) correction, N2 bias

field correction, skull-stripping, intensity inhomogeneity correction, cerebellum

removal, segmentation, and registration (Wang et al. (2011)). Afterwards, we

generated RAVENS-maps (Davatzikos et al. (2001)) for the whole brain using the

deformation field obtained during registration. We obtained the 256×256×256

RAVENS-maps and then down-sampled them to 128×128×128 for data analysis.

The development of ETFLR is motivated by using imaging and clinical vari-

ables at baseline to predict clinical outcomes after baseline. The covariates of

interest at baseline include age, gender, education, marriage status (married, di-

vorced, or widowed), APOE4 (risk from variations of the APOE gene), DX-bl

(CN, SMC, EMCI, LMCI, and AD), as well as the RAVENS map. The learning

ability of each subject was scored (the so-called Rey Auditory Verbal Learning

Test Score) at 6, 12, 18, 24, and 30 months after baseline. The missingness

rates of the test scores at the 18th, 24th and 30th month are very high, e.g., the

missingness rate at the 18th month is 53.1%. We are interested in examining

the learning ability at the 18th month, at which all LMCI and AD patients were

tested for learning ability. We have 682 individuals in total, among which 362

individuals have missing data. It is necessary to model the missing responses

www.loni.usc.edu/ADNI
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given the high missingness rate.

We applied ETFLR to this ADNI data set as follows. First, to determine the

tilting parameter φ, we obtained a validation set by investigating the responses at

months other than the 18th month for those observations with missing responses.

We interpolated the responses at the 18th month by using those at other months

by a linear regression, and then we calculated the p-value associated with month.

The interpolations with p-values less than 0.05 were considered as the validation

set, and their corresponding interpolated responses were approximately taken as

the missing true responses. By using both MNARN and MNARP (named in

Subsection 2.2.3), we calculated two estimates of φ. Second, given φ̂, the first

kn components (columns) of the functional covariate Z, together with the non-

functional covariates W (age, gender, etc.), we calculated the estimates of all

coefficients by optimizing the quadratic form (2.8). We used GCV to choose kn
as in (2.10).

Third, we used RRSV to choose the optimal (h,w0) as in (2.11). Given a

grid of (h,w0) values, we used the average prediction on the test set to choose

the optimal (h,w0). The criterion used is the Pearson correlation between the

true and predicted responses. Specifically, we divided the dataset into half the

test set and half the training set 500 times randomly, ensuring that both the

missingness rate and the proportion of the validation set between the training

set and the test set are the same. At each division, for every given h and w0,

we calculated Cortr and Cortest for all approaches, where Cortr is the correlation

between the predicted responses and the true responses on the training dataset,

and Cortest is the correlation between the predicted responses and the true re-

sponses on the test dataset. After 500 divisions, we calculated their averages in

comparison with MCAR and MAR approaches. See Table 1 for such results. We

found that both MNARP and MNARN outperform in almost all tuning param-

eters (h,w0)s’, and the best (h,w0) is achieved at (1.13hmin, 0.5) for MNARN.

We also examined whether the functional covariate leads to better prediction.

Specifically, by setting θ0 = 0, we repeated the same estimation procedure to

calculate (Cortest,Cortr) at (1.13hmin, 0.5), leading to Cortr = 0.257(0.054) and

Cortest = 0.127(0.059). Comparing such results with those in Table 1 reveals

that RAVEN images can substantially improve prediction accuracy.

After fixing h = 1.13hmin and w0 = 0.5, we calculated the estimates of the

non-functional covariates in Table 2. The bootstrap resampling procedure was

further utilized for inference. Specifically, we repeated the bootstrap resampling

procedure 300 times. At each time, we calculated the parameter estimates and
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Table 1. ADNI data analysis results: prediction accuracy scores.

(w0, h) MCAR MAR MNARP MNARN
Cortr (0, 1.13hmin) 0.3238 (0.0695) 0.2984 (0.0658) 0.2994 (0.0654) 0.2970 (0.0619)
Cortest (0, 1.13hmin) 0.1161 (0.0605) 0.1384 (0.0609) 0.1388 (0.0623) 0.1377 (0.0629)
Cortr (0, 1.14hmin) 0.3244 (0.0707) 0.2993 (0.0761) 0.3000 (0.0665) 0.2967 (0.0621)
Cortest (0, 1.14hmin) 0.1160 (0.0607) 0.1380 (0.0608) 0.1389 (0.0615) 0.1387 (0.0624)
Cortr (0, 1.15hmin) 0.3243 (0.0701) 0.2997 (0.0672) 0.3013 (0.0674) 0.2984 (0.0633)
Cortest (0, 1.15hmin) 0.1150 (0.0616) 0.1373 (0.0603) 0.1384 (0.0616) 0.1377 (0.0619)
Cortr (0, 1.16hmin) 0.3264 (0.0710) 0.3010 (0.0656) 0.3031 (0.0671) 0.3014 (0.0639)
Cortest (0, 1.16hmin) 0.1153 (0.0613) 0.1369 (0.0592) 0.1371 (0.0604) 0.1360 (0.0611)
Cortr (0, 1.17hmin) 0.3269 (0.0706) 0.3021 (0.0665) 0.3039 (0.0678) 0.3012 (0.0635)
Cortest (0, 1.17hmin) 0.1146 (0.0601) 0.1368 (0.0586) 0.1373 (0.0588) 0.1368 (0.0600)
Cortr (1, 1.10hmin) 0.3266 (0.0724) 0.3023 (0.0645) 0.2949 (0.0617) 0.2900 (0.0611)
Cortest (1, 1.10hmin) 0.1146 (0.0620) 0.1394 (0.0586) 0.1435 (0.0593) 0.1419 (0.0598)
Cortr (1, 1.11hmin) 0.3255 (0.0695) 0.3055 (0.0672) 0.2972 (0.0627) 0.2911 (0.0633)
Cortest (1, 1.11hmin) 0.1152 (0.0625) 0.1404 (0.0580) 0.1459 (0.0593) 0.1447 (0.0594)
Cortr (1, 1.12hmin) 0.3265 (0.0720) 0.3069 (0.0713) 0.3009 (0.0675) 0.2944 (0.0648)
Cortest (1, 1.12hmin) 0.1148 (0.0609) 0.1405 (0.0577) 0.1439 (0.0587) 0.1443 (0.0589)
Cortr (1, 1.13hmin) 0.3266 (0.0731) 0.3063 (0.0720) 0.3020 (0.0695) 0.2947 (0.0647)
Cortest (1, 1.13hmin) 0.1139 (0.0614) 0.1393 (0.0589) 0.1438 (0.0593) 0.1447 (0.0593)
Cortr (1, 1.14hmin) 0.3260 (0.0718) 0.3064 (0.0722) 0.3032 (0.0720) 0.2972 (0.0662)
Cortest (1, 1.14hmin) 0.1145 (0.0613) 0.1395 (0.0588) 0.1436 (0.0598) 0.1443 (0.0594)
Cortr (1, 1.15hmin) 0.3268 (0.0726) 0.3060 (0.0685) 0.3030 (0.0691) 0.2990 (0.0668)
Cortest (1, 1.15hmin) 0.1147 (0.0621) 0.1398 (0.0593) 0.1433 (0.0597) 0.1445 (0.0597)
Cortr (1, 1.16hmin) 0.3230 (0.0693) 0.2997 (0.0668) 0.2998 (0.0681) 0.2957 (0.0618)
Cortest (1, 1.16hmin) 0.1155 (0.0609) 0.1398 (0.0609) 0.1430 (0.0612) 0.1443 (0.0616)
Cortr (1, 1.17hmin) 0.3277 (0.0720) 0.3055 (0.0689) 0.3024 (0.0688) 0.2991 (0.0677)
Cortest (1, 1.17hmin) 0.1139 (0.0615) 0.1363 (0.0594) 0.1404 (0.0603) 0.1405 (0.0604)
Cortr (1, 1.18hmin) 0.3273 (0.0729) 0.3052 (0.0688) 0.3026 (0.0704) 0.2996 (0.0677)
Cortest (1, 1.18hmin) 0.1135 (0.0614) 0.1364 (0.0595) 0.1398 (0.0597) 0.1388 (0.0600)
Cortr (0.5, 1.10hmin) 0.3236 (0.0692) 0.2999 (0.0614) 0.2908 (0.0568) 0.2888 (0.0555)
Cortest (0.5, 1.10hmin) 0.1152 (0.0615) 0.1409 (0.0598) 0.1444 (0.0597) 0.1433 (0.0607)
Cortr (0.5, 1.11hmin) 0.3243 (0.0705) 0.3011 (0.0653) 0.2947 (0.0619) 0.2912 (0.0594)
Cortest (0.5, 1.11hmin) 0.1150 (0.0610) 0.1413 (0.0591) 0.1443 (0.0604) 0.1436 (0.0621)
Cortr (0.5, 1.12hmin) 0.3242 (0.0685) 0.3055 (0.0695) 0.3000 (0.0670) 0.2947 (0.0614)
Cortest (0.5, 1.12hmin) 0.1157 (0.0602) 0.1415 (0.0599) 0.1462 (0.0597) 0.1462 (0.0616)
Cortr (0.5, 1.13hmin) 0.3232 (0.0702) 0.3007 (0.0694) 0.2997 (0.0683) 0.2935 (0.0613)
Cortest (0.5, 1.13hmin) 0.1163 (0.0608) 0.1418 (0.0602) 0.1461 (0.0599) 0.1470 (0.0613)
Cortr (0.5, 1.14hmin) 0.3234 (0.0700) 0.3004 (0.0704) 0.3015 (0.0692) 0.2961 (0.0630)
Cortest (0.5, 1.14hmin) 0.1163 (0.0609) 0.1412 (0.0614) 0.1453 (0.0605) 0.1464 (0.0610)
Cortr (0.5, 1.15hmin) 0.3238 (0.0689) 0.3027 (0.0692) 0.3014 (0.0696) 0.2965 (0.0631)
Cortest (0.5, 1.15hmin) 0.1161 (0.0601) 0.1412 (0.0607) 0.1447 (0.0606) 0.1462 (0.0613)
Cortr (0.5, 1.16hmin) 0.3237 (0.0702) 0.2997 (0.0666) 0.3001 (0.0679) 0.2958 (0.0616)
Cortest (0.5, 1.16hmin) 0.1158 (0.0608) 0.1409 (0.0603) 0.1438 (0.0603) 0.1447 (0.0620)
Cortr (0.5, 1.17hmin) 0.3239 (0.0698) 0.2993 (0.0648) 0.2984 (0.0651) 0.2945 (0.0596)
Cortest (0.5, 1.17hmin) 0.1163 (0.0607) 0.1411 (0.0604) 0.1442 (0.0601) 0.1449 (0.0599)
Cortr (0.5, 1.18hmin) 0.3248 (0.0702) 0.2993 (0.0653) 0.2994 (0.0655) 0.2958 (0.0591)
Cortest (0.5, 1.18hmin) 0.1149 (0.0606) 0.1390 (0.0605) 0.1422 (0.0606) 0.1423 (0.0605)
Cortr (0.5, 1.19hmin) 0.3236 (0.0693) 0.3001 (0.0665) 0.2997 (0.0665) 0.2979 (0.0618)
Cortest (0.5, 1.19hmin) 0.1158 (0.0608) 0.1394 (0.0605) 0.1416 (0.0612) 0.1416 (0.0616)
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Table 2. ADNI data analysis results: parameter estimates, 90% confidence intervals and
p-values of regression coefficients.

Covariates MCAR MAR MNARP MNARN P -value

Age −0.0157 −0.0059 0.0023 0.0112 0.56
[−0.020, 0.059] [−0.028, 0.021] [−0.027, 0.035] [−0.029, 0.044] –

Gender 0.0750 −0.1296 0.1014 0.2824 0.18
[−0.804, 0.602] [−0.546, 0.559] [−0.516, 0.795] [−0.546, 0.969] –

Education 0.0717 0.0714 0.0980 0.1276 0.00
[−0.007, 0.145] [0.0004, 0.140] [0.010, 0.201] [0.005, 0.209] ***

Apoe4 −0.3857 −0.3567 −0.4180 −0.4563 0.02
[−0.551, −0.019] [−0.594, −0.070] [−0.728, −0.106] [−0.817, −0.108] **

if.widowed 0.3891 0.3874 0.2955 0.2287 0.32
(marriage) [−0.303, 1.076] [−0.191, 1.035] [−0.265, 0.989] [−0.316, 0.980] –
if.divorced 1.2330 1.2590 1.4663 1.6364 0.04
(marriage) [0.405, 2.225] [0.321, 2.201] [0.418, 2.556] [0.452, 2.768] **

if.lmci 1.6478 1.7373 2.7110 3.4572 0.02
(DX-bl) [−0.135, 2.731] [0.945, 3.069] [1.309, 3.921] [1.531, 4.100] **

φ̂ – 0 −0.1367 −0.2224
– 0 [−0.292, −0.061] [−0.392, −0.061]

Table 3. ADNI: estimates for significant coefficients and their standard deviations in
parentheses, and estimates for the top principle components.

MCAR MAR MNARP MNARN

Education 0.069 (0.046) 0.049 (0.044) 0.1101 (0.053) 0.120 (0.055)
Apoe4 −0.379 (0.176) −0.323 (0.169) −0.3924 (0.195) −0.496 (0.216)

if.divorced (marriage) 1.158 (0.615) 1.118 (0.650) 1.3431 (0.724) 1.500 (0.753)
if.lmci (DX-bl) 1.768 (0.958) 1.651 (0.556) 3.5929 (0.613) 3.557 (0.700)

1st.Pcomp −0.227 −0.201 −0.314 −0.338
2ed.Pcomp 0 0.136 0.027 0
3ed.Pcomp 0 −0.090 −0.141 0
4th.Pcomp 0 0.178 0.0284 0
5th.Pcomp 0 0.202 0.060 0
6th.Pcomp 0 0.128 0 0
7th.Pcomp 0 0.041 0 0
8th.Pcomp 0 0.038 0 0
9th.Pcomp 0 −0.015 0 0
10th.Pcomp 0 −0.007 0 0

φ̂. Subsequently, we calculated the 90% confidence intervals for φ and all other

parameters and their associated p-values by using the Fast Double Bootstrap

(Davidson and James (2007)). Table 2 also presents the bootstrap confidence

intervals and their corresponding p-values based on MNARN. Table 3 presents the

coefficient estimates for the four significant nonfunctional covariates and those for

the principle components associated with the RAVEN images. Figure 1 presents

the selected slices of the first two principle component images. We repeated the
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Figure 1. The first Principle Component (positive loadings: top left; negative loadings:
top right), the second principle component (positive loadings: middle left; negative
loadings: middle right), and the functional coefficient images of MNARP (positive part:
bottom left; negative part: bottom right) of RAVEN images of ADNI real data analysis.
The slices are taken at: (top left) coronal = 62, sagittal = 71, axial = 50; (top right)
coronal = 66, sagittal = 71, axial = 39; (middle left) coronal = 62, sagittal = 71, axial
= 50; (middle right) coronal = 62, sagittal = 71, axial = 50; (bottom left) coronal =
62, sagittal = 76, axial = 43; (bottom right) coronal = 62, sagittal = 71, axial = 50,
respectively.

RRSV procedure and calculated the prediction accuracy (standard deviation)

based on the test set for MCAR, MAR, MNARP, and MNARN as 0.143(0.063),

0.154(0.062), 0.167(0.059), and 0.170(0.057), respectively. The results indicate

that MNARN outperforms all other three methods.

We have the following findings. First, MNAR performs well in both training

and test sets for most window widths h and kn. Second, the four covariates,

Education, Apoe4, whether the individual is divorced, and whether the DX-bl of

the individual is the LMCI (= 1) or the AD (= 0), strongly influence the learning

test score. Such findings are clinically significant in that AD has a more serious

effect on the intelligence behavior than LMCI. Third, the negative value of φ̂ in

Table 2 implies that people with high learning test scores have the tendency to

drop out of the study as expected. Finally, inspecting the functional coefficient

image based on MNARN and MNARP (Table 3, Figures 1) reveals that estimates

in most voxels are negative and relatively large in the regions of “lateral ventricle

left” and “lateral ventricle right”. Such regions (Color figure online) may have
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negative effects on learning ability. These findings are consistent with the existing

literature on the abnormal lateral ventricle (Nestor et al. (2008)) of AD patients.

Supplementary Materials

Available in the attached file include the simulations, the proofs of Lemmas

1–13, Theorems 1–3, and Corollary 1.
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