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Abstract: This paper discusses the problem of fitting a parametric model to the

nonparametric component in partially linear regression models when covariates in

parametric and nonparametric parts are subject to Berkson measurement errors.

The proposed test is based on the supremum of a martingale transform of a certain

partial sum process of calibrated residuals. The asymptotic null distribution of

this transformed process is shown to be the same as that of a time transformed

standard Brownian motion. Consistency of this sequence of tests against some fixed

alternatives and asymptotic power under some local nonparametric alternatives

are also discussed. A simulation study is conducted to assess the finite sample

performance of the proposed test. A Monte Carlo power comparison with some

existing tests shows some superiority of the proposed test at the chosen alternatives.
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1. Introduction

In this paper, we are interested in developing a lack-of-fit test for checking if
the nonparametric component takes on a parametric form in the partially linear
regression model with Berkson measurement errors. More precisely, in the model
under consideration one observes (S,Z, Y ) obeying the relations

Y = β′X + g(T ) + ε, X = Z + ξ, T = S + η, (1.1)

where X is a p-dimensional random vector, T is a scalar random variable, β

is an unknown p-dimensional vector of regression parameters, and g is an un-
known real-valued measurable function. The random variables (r.v.’s) ξ and η

are p-dimensional and 1-dimensional measurement errors, respectively. All r.v.’s
ε, (Z, S), ξ, and η are assumed to be mutually independent, with ε, η having zero
means, finite variances, and ξ having zero mean and known covariance matrix
Σξ. The distributions of ε and ξ are assumed to be otherwise unknown, while
that of η is assumed to be known. Under these assumptions, the above model is
identifiable and the covariance of X and T is the same as that of Z and S. See
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Hu and Schennach (2008) for more on identifiability in Berkson and other non-
classical measurement error models. A discussion on the availability of density
function or covariance matrices of measurement errors can be found in Delaigle,
Hall, and Qiu (2006).

Traditionally, in some cases, the variables Z and S are called controlled vari-
ables as their values are deterministic. But as in Delaigle, Hall, and Qiu (2006),
we also treat these variables as random. These authors cite many examples
where the controlled variables are genuinely random, rather than deterministic,
cf. Reeves et al. (1998), Thomas et al. (1999), Raaschou-Nielsen et al. (2001),
Stram, Huberman and Wu (2002) and Lubin et al. (2005). See also Huwang and
Huang (2000) and Wang (2004) for more on this point.

Here, we are interested in testing whether g in (1.1) is of a parametric form
or not. Thus, given a parametric family of functions {gγ ; γ ∈ Γ}, where Γ is a
subset of Rq with q being a known positive integer, one is interested in testing
H0 : g(t) = gγ(t), for some γ ∈ Γ, and for all t ∈ R, versus H1 : H0 is not true.
This problem is of interest because knowing g is parametric would lead to more
accurate inference about the underlying parameters.

Lack-of-fit testing in other regression models without measurement errors
has been widely studied in the literature, cf., Hart (1997), Stute, Thies, and
Zhu (1998), Stute and Zhu (2002, 2005), Zhu and Ng (2003), Liang (2006), and
Khmaladze and Koul (2004).

In this paper, we provide a test for H0 based on a martingale transform, a
la Khmaladze (1979) and Stute, Thies, and Zhu (1998) (STZ), of the marked
empirical process of calibrated residuals. A similar idea is used to construct lack-
of-tests in a purely nonparametric regression set-up with Berkson measurement
error in Koul and Song (2008), but its extension to the above partial linear model
set-up is far from trivial. It is not a priori clear how the presence of linear com-
ponent in the model affects asymptotic properties of the martingale transformed
process. In particular, the key lemma used in the purely nonparametric case
obviously needs to be modified to account for the multidimensional covariates
X, as is done in Lemma 5.2 below. We also have to deal with the additional
difficulty that the linear part has to be estimated before constructing a test.
Moreover, some quantities, such as the conditional variances of the residuals, are
more complicated than in the purely nonparametric set-up.

Upon choosing Σξ = 0 and σ2
η = 0, where σ2

η is the variance of η, we see that
the proposed test is also applicable in the partial linear regression model with
no measurement error. For such a model, Zhu and Ng (2003) have developed a
procedure to test the hypothesis E(Y |X = x, T = t) = β′x + g(t), for some β

and g, but if we know X is linearly related to the response, this test will be less
efficient than ours. Moreover, their test is not asymptotically distribution free.
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They propose a variant of wild bootstrap approximation to implement their test.
Liang (2006) developed two tests based on a residual-marked empirical process
and a linear mixed effect framework for checking linearity of the non-parametric
component. Again, because of the complicated limiting distributions, Liang uses
bootstrap methodology to implement these tests. In contrast, the transformed
marked residual empirical process discussed in this paper converges weakly to a
time transformed Brownian motion in uniform metric. Consequently, any test
based on a continuous functional of this process is asymptotically distribution free
(ADF) and can be implemented at least for moderate to large samples without
resorting to a resampling method.

The rest of the paper is organized as follows. The marked residual empiri-
cal process and its asymptotic null distribution is discussed in Section 2 under
quite broad assumptions. Consistency and asymptotic power against n−1/2-local
nonparametric alternatives of the test based on the supremum of this process are
discussed in Section 3. Section 4 contains a simulation study, and a Monte Carlo
power comparison of the proposed test with the two tests of Liang.

All proofs are deferred to Section 5. In the sequel, B denotes standard
Brownian motion on [0,∞), and for any r.v. U , FU and fU denote its distribution
and density function, respectively.

2. Main Results

The first subsection below discusses a test for a simple hypothesis, while
testing for H0 is discussed in the next subsection.

2.1. Testing for a simple hypothesis

Let g0 be a known real-valued function with Eg2
0(T ) < ∞. Consider the

simple hypothesis

H10 : g(t) = g0(t), ∀ t ∈ R, versus H11 : H10 is not true.

The discussion of this simple case sheds some light on the more general hypothesis
H0 to be discussed later.

Let µ(s) := E(g(T )|S = s), s ∈ R. Under the model assumptions, E(Y |Z =
z, S = s) = E(β′X + g(T ) + ε|Z = z, S = s) = β′z + µ(s). We are thus led to
the calibrated partial linear regression model Y = β′Z + µ(S) + ζ, where the
error variable ζ satisfies E(ζ|Z = z, S = s) = 0, and hence is uncorrelated with
(Z, S). This technique of transforming the regression function of Y on (X,T )
to the regression function of Y on (Z, S) is known as regression calibration, and
is widely used when dealing with measurement error models, see, e.g., Carroll,
Ruppert, and Stefanski (1995).
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Let µ0(s) := E(g0(T )|S = s), s ∈ R. Since fη is known, µ0(s) = E(g0(S +
η)|S = s) =

∫
g0(s + v)fη(v)dv is known. Thus, a test of H10 can be carried out

by testing

H20 : µ(s) = µ0(s), ∀s ∈ R, versus H21 : H20 is not true.

The two hypotheses H10 and H20 are not equivalent in general. Clearly, H10

implies H20. The converse is not true in general, since
∫

g0(v)fη(v − s)dv ≡∫
g1(v)fη(v − s)dv need not imply g0 = g1, but if the family of densities {fη(· −

s), s ∈ R} is complete, then g0 = g1 almost everywhere.
To proceed further, let τ2

0 (s) = E[(g0(T ) − µ0(S))2|S = s] and σ2
ε := E(ε2).

The conditional variance of ζ, given (Z, S), is

σ2
ζ,β(z, s) := E(ζ2|Z = z, S = s) = σ2

ε + βT Σξβ + τ2
0 (s).

Since σ2
ζ,β(z, s) does not depend on z, write σ2

ζ,β(s) for σ2
ζ,β(z, s). Extend the

definitions of µ0, τ2
0 to R̄ := [−∞,∞] by assigning the value 0 to these functions

at ±∞. This convention will apply also to the analogs of these functions in the
sequel. Note that σ2

ζ,β(s) ≥ σ2
ε > 0 for all s ∈ R̄.

Under H20 one has the regression model where the ‘response’ variable is
Y − β′Z, the design variable is S, and the error ζ is uncorrelated with S and
heteroscedastic with the conditional variance function σ2

ζ,β(S). Thus if β were
known, one could adapt the STZ testing procedure to this regression set-up. In
the more realistic situation where β is unknown, this procedure is modified as
follows.

Let β̂n be a n1/2-consistent estimator of β under H10, ζi = Yi−β′Zi−µ0(Si),
and ζ̂i = Yi − β̂′

nZi − µ0(Si). Because E(ζ2) = σ2
ε + βT Σξβ + Eτ2

0 (S), consistent
estimators of σ2

ε and σ2
ζ,β(s) are given, respectively, by

σ̂2
2ε =

∣∣∣ 1
n

n∑
i=1

ζ̂2
i − β̂′

nΣξβ̂n − 1
n

n∑
i=1

τ2
0 (Si)

∣∣∣, σ̂2
2(s) = σ̂2

2ε + β̂T
n Σξβ̂n + τ2

0 (s).

Tests of H20 can be based on the marked residual process

W2n(s) :=
1√
n

n∑
i=1

ζ̂i

σ̂2(Si)
I(Si ≤ s), s ∈ R̄.

Tests of lack-of-fit based on analogs of this process have a long history beginning
with von Neumann (1941).See An and Cheng (1991), Hart (1997), STZ, and
Khmaladze and Koul (2004) for more on basing tests of lack-of-fit on these types
of marked empirical processes.

The asymptotic null distribution of the process {W2n(s), s ∈ R̄} generally
depends on the estimator β̂n and the joint d.f. of (Z, S), and hence is not known.
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We next describe a transform of this process that converges to a time transformed
Brownian motion. Because of the known parametric structure of the error vari-
ance σ2

ζ,β(s), unlike in STZ, we do not use the split sample technique to construct
a consistent estimator of σ2

ζ,β(s).
Let FZ,S denote the joint d.f. of (Z, S), and set

ei =
ζi

σζ,β(Si)
, e =

ζ

σζ,β(S)
, Cs = E

ZZ ′I(S ≥ s)
σ2

ζ,β(S)
, s ∈ R.

Assume Cs is positive definite for all s ∈ R and let

K(s) := e
[
I(S ≤ s) −

∫
y≤s

∫
x′

σζ,β(y)
C−1

y I(S ≥ y)dFZ,S(x, y)
Z

σζ,β(S)

]
.

One can verify that EK(s) ≡ 0 and EK(s)K(t) = FS(s ∧ t), s, t ∈ R. Let Ki(s)
denote K(s) when the r.v.’s e, Z, and S are replaced by ei, Zi and Si, respectively.
Define Wβ,FZ,S

(s) = n−1/2
∑n

i=1 Ki(s). From the classical CLT, we readily obtain
that all finite dimensional distributions of Wβ,FZ,S

converge weakly to those of
B ◦ FS . But this transform is not useful as it depends on the unknown β and
FZ,S .

Let F̂Z,S denote the empirical d.f. of (Zi, Si), 1 ≤ i ≤ n, Ĉy denote the Cy

with FZ,S and σζ,β replaced by F̂Z,S and σ̂2, and let K̂i denote the transform K
when e, Z, S, Cy and FZ,S are replaced by êi := ζ̂i/σ̂2(Si), Zi, Si, Ĉy and F̂Z,S ,
respectively. Then, the transformed process on which the proposed test is based
takes the form Ŵn(s) = n−1/2

∑n
i=1 K̂i(s). Under some regularity conditions, we

can show that Ŵn ⇒ B ◦ FS in D([−∞, s]), for every s < ∞, and in uniform
metric. Details of the proof here are similar to those given for the general case
in the next section and hence are omitted. A computational formula for Ŵn(s)
is

Ŵn(s) =
1√
n

n∑
i=1

êi

{
I(Si ≤ s) − 1

n

n∑
j=1

Z ′
j

σ̂2(Sj)
Ĉ−1

Sj
I(Sj ≤ s ∧ Si)

Zi

σ̂2(Si)

}
,

ĈSj :=
1
n

n∑
k=1

ZkZ
′
k

σ̂2
2(Sk)

I(Sk ≥ Sj).

2.2. Tests for H0

Let µγ(s) = E(gγ(T )|S = s) =
∫

gγ(s + v)fη(v)dv. Under H0, by regression
calibration, we obtain the calibrated partial linear regression model Y = β′Z +
µγ(S) + ζ, where ζ is still used to denote the regression error. Thus to test H0

vs. H1, it suffices to test the hypothesis

H30 : µ(S) = µγ(S) for some γ ∈ Γ, versus H31 : H30 is not true.
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Let β0 denote the true value of β, γ0 denote the true value of γ under H0,
assumed to be in the interior of Γ, and let θ′ = (β′

0, γ
′
0). To proceed further, we

need the following additional assumptions.

(e) Eε4 + E‖ξ‖4 + E‖Z‖4 + Eg4
γ0

(T ) < ∞.

(g1) For some positive continuous function r(t) with Er4(T ) < ∞,

|gγ1(t) − gγ2(t)| ≤ ‖γ1 − γ2‖r(t), ∀ γ1, γ2 ∈ Γ, t ∈ R.

(g2) For every t ∈ R, gγ(t) is differentiable in γ in a neighborhood of γ0 with
the vector of derivatives ġγ(t), such that E‖ġγ0(T )‖2 < ∞, and for every
0 < k < ∞,

sup
t∈R,

√
n‖γ−γ0‖≤k

√
n|gγ(t) − gγ0(t) − (γ − γ0)′ġγ0(t)| = o(1).

(g3) Let µ̇γ(s) :=
∫

ġγ(s+ y)fη(y)dy. For some q× q square matrix µ̈γ0(s) and a
nonnegative function kγ0(s), both measurable in the s coordinate, the fol-
lowing hold: E‖µ̈γ0(S)‖2 <∞, E‖µ̈γ0(S)‖‖µ̇γ0(S)‖j <∞, E‖µ̈γ0(S)‖jkγ0(S)
< ∞, j = 0, 1, and for all δ > 0, there exists an η > 0 such that ‖γ−γ0‖ ≤ η

implies

‖µ̇γ(s) − µ̇γ0(s) − µ̈γ0(s)(γ − γ0)‖ ≤ δkγ0(s)‖γ − γ0‖, a.s. (FS).

(m) E‖µ̇γ0(S)‖2 < ∞, and with `(z, s) := (z, µ̇γ0(s))
′/σζ,θ(s),

My := E`(Z, S)`(Z, S)′I(S ≥ y) is positive definite for all y ∈ R.

The moment condition (e) is needed to bound some quantities when deriving
their asymptotics. Conditions (g1)−(g3) require certain smoothness of gγ as a
function of γ. These conditions are satisfied if either gγ(t), as a function of γ, has
bounded second derivative, or the r.v. T has a compact support. Condition (m)
is a technical assumption to ensure that certain matrices used in the martingale
transformation are invertible.

Now let τ2
γ (s) := E[(gγ(T ) − µγ(S))2|S = s], s ∈ R. The analogs of τ2 and

σ2
ζ,β of the previous sub-section are, respectively, τ2

γ0
and σ2

ζ,θ(s) = σ2
ε +β′

0Σξβ0 +
τ2
γ0

(s). To estimate them, let β̂n, γ̂n be any
√

n-consistent estimators for β0, γ0,
under H0, respectively. Let ζ̃i := Yi − β̂′

nZi − µγ̂n(Si). Because µγ is continuous
in γ at γ0, consistent estimators of σ2

ε and σ2
ζ,θ(s) are, respectively,

σ̂2
3ε =

∣∣∣ 1
n

n∑
i=1

ζ̃2
i − β̂′

nΣξβ̂n − 1
n

n∑
i=1

τ2
γ̂n

(Si)
∣∣∣, σ̃2

3(s) = σ̂2
3ε + β̂′

nΣξβ̂n + τ2
γ̂n

(s).
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Let Ŵ3n(s) = (1/
√

n)
∑n

i=1 ζ̃iI(Si ≤ s)/σ̃3(Si). As in the simple hypothesis
case, lack-of-fit tests based on Ŵ3n are not ADF, but the ones based on its
martingale transform are. To describe this transform, let M̂y denote the estimate
of My obtained by the plug-in method where all parameters are replaced by their
estimates:

M̂y =
∫∫

s≥y

( zz′ zµ̇′
γ̂n

(s)
µ̇γ̂n(s)z′ µ̇γ̂n(s)µ̇′

γ̂n
(s)

) 1
σ̃2

3(s)
dF̂Z,S(z, s).

Under assumptions (e), (g1), (g2) and under H0, supy ‖M̂y − My‖ = op(1).
Consequently, with arbitrarily large probability, M̂−1

y will exist for all y < ∞
and for all sufficiently large n. Let ˆ̀(z, s) denote the `(z, s) where γ0 and σζ,θ

are replaced by γ̂n, and σ̃3, respectively. Define ẽi := ζ̃i/σ̃3(Si), and

K̃i(s) := ẽi

[
I(Si ≤ s) −

∫
y≤s

∫
ˆ̀(x, y)′M̂−1

y I(Si ≥ y) dF̂Z,S(x, y) ˆ̀(Zi, Si)
]
.

The proposed test is to be based on the process

Wn(s) := n−1/2
n∑

i=1

K̃i(s)

=
1√
n

n∑
i=1

ẽi

{
I(Si ≤ s) − 1

n

n∑
j=1

ˆ̀(Zj , Sj)′M̂−1
Sj

I(Si ∧ s ≥ Sj) ˆ̀(Zi, Si)
}

,

M̂s :=
1
n

n∑
i=1

ˆ̀(Zi, Si)ˆ̀(Zi, Si)′I(Si ≥ s).

The following theorem gives the needed weak convergence result.

Theorem 2.1. Suppose, in addition to (1.1) and H0, the conditions (e), (g1)−
(g3), and (m) hold, and β̂n, γ̂n satisfy

√
n‖β̂n − β0‖ = Op(1),

√
n‖γ̂n − γ0‖ = Op(1), (H0). (2.1)

Then, for every s0 < ∞, Wn ⇒ B ◦ FS, in D([−∞, s0]) and uniform metric.

Although many estimation methods will provide estimators of β0, γ0 satis-
fying (2.1), in the Appendix, we show that, under certain mild conditions, the
least square estimators of β0, γ0 satisfy (2.1).

As in STZ, we recommend applying the above result with s0 equal to the 99th
percentile of F̂S . Consequently, the test that rejects H0 whenever sups≤s0

|Wn(s)
/0.995| > bα is of the asymptotic size α, where bα is such that P (sup0≤u≤1 |B(y)|
> bα) = α.
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3. Consistency and Local Power

In this section we show, under some regularity conditions, that the above
test is consistent for certain fixed alternatives, and has non-trivial asymptotic
power against a large class of n−1/2-local nonparametric alternatives.

3.1. Consistency

Let h be a known real-valued function with Eh2(T ) < ∞ and h /∈ {gγ ; γ ∈ Γ}.
Consider the alternative Ha : g(t) = h(t), for all t ∈ R. Assume the estimators
β̂n, γ̂n used in the test statistic now satisfy

√
n(β̂n − βa) = Op(1),

√
n(γ̂n − γa) = Op(1) (3.1)

for some βa ∈ Rp, γa ∈ Rq, under the alternative Ha.
One way to obtain these estimators and parameters is to proceed as follows.

Let

(β̂′
n, γ̂n)′ := argminβ,γ

1
n

n∑
i=1

[Yi − β′Zi − µγ(Si)]2, (3.2)

(β′
a, γa)′ := argminβ,γEa[Y − β′Z − µγ(S)]2. (3.3)

The Appendix provides some sufficient conditions under which the above β̂n, γ̂n,
βa, γa satisfy (3.1).

Now, define new random variables

Y a
i = β′

aXi + gγa(Ti) + εi, êa
i =

Y a
i − β̂′

nZi − µγ̂n(Si)
σ̃3(Si)

, i = 1, . . . , n,

where β̂n, γ̂n used in σ̃3(s) are as in (3.2). Also, let ˆ̀
i := ˆ̀(Zi, Si), M̂i := M̂Si ,

1 ≤ i ≤ n, where M̂y is the same as in the previous section with β̂n, γ̂n replaced
by the ones defined in (3.2). Then, ẽi = êa

i + [(Yi − Y a
i )/σ̃3(Si)] and Wn(s) =

Wa
n(s) + Ra

n(s), where

Wa
n(s) :=

1√
n

n∑
i=1

êa
i

{
I(Si ≤ s) − 1

n

n∑
j=1

ˆ̀′
jM̂

−1
j I(Si ∧ s ≥ Sj) ˆ̀

i

}
,

Ra
n(s) :=

1√
n

n∑
i=1

Yi − Y a
i

σ̃3(Si)

{
I(Si ≤ s) − 1

n

n∑
j=1

ˆ̀′
jM̂

−1
j I(Si ∧ s ≥ Sj) ˆ̀

i

}
.

Using (3.1), one can verify that sups∈R̄ |σ̃2
3(s) − σ2

a(s)| = op(1), where

σ2
a(s) :=

∣∣∣σ2
ε + Ea[β′

0X − β′
aZ + h(T ) − µγa(S)]2
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−β′
aΣξβa − Ea[gγa(T ) − µγa(S)]2

∣∣∣ + β′
aΣξβa + τ2

γa
(s).

In particular, if X and T can be measured without error, then X = Z, T = S,
and σ2

a(s) = σ2
ε + Ea[(β0 − βa)′X + h(T ) − gγa(T )]2. We can also show that

sup
1≤i≤n

|σ̃2
3(Si) − σ2

a(Si)| = op(1), (Ha), (3.4)

in a similar fashion as showing (5.5) in Section 5.
Define

`a(z, s) :=
( z

µ̇γa(s)

) 1
σa(s)

, As := E(la(Z, S)l′a(Z, S)I(S ≥ s)),

D1(s) := E
[(β0 − βa)′X + h(T ) − gγa(T )

σa(S)
I(S ≤ s)

]
.

ρ(y) := E
[(β0 − βa)′X + h(T ) − gγa(T )

σa(S)
`a(Z, S)I(S ≥ y)

]
,

D2(s) := E
[
`a(Z, S)′A−1

S ρ(S)I(S ≤ s)
]
.

The difference between D1 and D2 measures the discrepancy between the null
and the alternative hypotheses as is reflected in the following theorem.

Theorem 3.1. Suppose the conditions (e), (g1)−(g3), (m), and (3.1) hold un-
der the alternative hypothesis Ha. Also assume the alternative is such that As

is positive definite for all s < ∞. Then, for every s0 < ∞, the test that re-

jects H0 whenever sups≤s0
|Wn(s)/

√
F̂S(s0)| > bα is consistent for Ha, provided

sups≤s0
|D1(s) −D2(s)| > 0.

3.2. Local power

Let δ be a real-valued function with Eδ2(T ) < ∞. Here we study the asymp-
totic power of the proposed test against the local alternatives

HLoc : gn(t) = gγ0(t) + n−1/2δ(t), ∀ t ∈ R. (3.5)

Under HLoc, the partial linear regression model becomes Yi = β′
0Xi + gγ0(Ti) +

n−1/2δ(Ti) + εi, i = 1, . . . , n. Now assume that the estimators β̂n, γ̂n used in the
test statistic satisfy (2.1) under the local alternative (3.5). This in turn, with a
similar argument as in showing (5.5), implies sup1≤i≤n

∣∣∣σ̃2
3(Si)−σ2

ζ,θ(Si)
∣∣∣ = op(1).

By introducing the notation Y L
i = β′

0Xi + gγ0(Ti) + εi,

êL
i =

Y L
i − β̂′

nZi − µγ̂n(Si)
σ̃3(Si)

, i = 1, . . . , n,
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the standardized residuals ẽi have the decomposition

ẽi = êL
i +

Yi − Y L
i

σ̃3(Si)
= êL

i +
δ(Ti)√
nσ̃3(Si)

, i = 1, . . . , n.

Then Wn(s) = WL
n (s) + RL

n(s), where WL
n (s) has the same form as Wa

n(s) with
êa
i replaced by êL

i , while RL
n(s) is obtained by replacing Yi − Y a

i by δ(Ti)/
√

n

in Ra
n(s). Using these facts, asymptotic distribution of Wn under HLoc can be

studied by similar arguments as in the case of fixed alternative. Define

DL
1 (s) := E

[ δ(T )
σζ,θ(S)

I(S ≤ s)
]
, ρ(y) := E

[ δ(T )
σζ,θ(S)

`a(Z, S)I(S ≥ y)
]
,

DL
2 (s) := E

[
`a(Z, S)′M−1

S ρ(S)I(S ≤ s)
]
.

Since δ(t) reflects the deviation of the local alternative from the null hypothesis,
so DL

1 and DL
2 are measures of the difference between these two hypotheses. In

fact, we have the following theorem.

Theorem 3.2. Suppose the local alternatives (3.5) and the conditions (e), (m),
(g1)−(g3), (2.1) hold. Then, for every s0 < ∞,

lim
n→∞

P
(

sup
s≤s0

∣∣∣ Wn(s)√
F̂S(s0)

∣∣∣ > bα

)
= P

(
sup
s≤s0

∣∣∣B(FS(s)) + DL
1 (s) −DL

2 (s)
∣∣∣√

FS(s0)
> bα

)
.

Remark 3.1. Unknown fη and Σξ. The structure of the null hypothesis on
µ and the test statistic assume that the density function fη and the covariance
matrix Σξ are known. The necessity of this assumption is mainly due to the
identifiability issue, but its feasibility comes from the fact that, in some studies,
we do have some prior information on fη and Σξ. For example, in the data
example of Delaigle, Hall, and Qiu (2006), the measurement error in the digitized
aerial photography can be reasonably modeled as having a bi-weight density
function.

If no prior knowledge about these entities is available, but there is a suf-
ficiently large validation data set, larger than the main data set, in which the
observations of both the true and the surrogate variables are available, then the
conclusions of Theorems 2.1, 3.1 and 3.2 still hold after replacing fη, Σξ in Wn by
their consistent estimators obtained from the validation data. Currently nothing
is known about asymptotic null distribution of this modified test when the size
of the validation data set is smaller than or comparable to the size of the main
data set.
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4. Simulation

We first give a computational formula for Wn(s) that is used in simulation.
Let S(i), i = 1, . . . , n be the order statistics of Si, i = 1, . . . , n. Let ê(i), Z(i),

σ̂3(i), µ̇γ̂n(i), be the sorted sequence of ẽi, Zi, σ̃3(Si), and µ̇γ̂n(Si) according to Si,
i = 1, . . . , n. Let ν̂ ′

(i) := (Z ′
(i), µ̇

′
γ̂n(i))/σ̂3(i). Then, with S(0) := −∞, S(n+1) := ∞,

Wn(s) =
1√
n

l∑
i=1

ê(i)

{
1 − 1

n

i∑
j=1

ν̂ ′
(j)M̂

−1
(j) ν̂(i)

}
, S(l) ≤ s < S(l+1), l = 1, · · · , n,

M̂(j) =
1
n


n∑

k=j

Z(k)Z
′
(k)

σ̂2
3(k)

n∑
k=j

Z(k)µ̇
′
γ̂n(k)

σ̂2
3(k)

n∑
k=j

µ̇γ̂n(k)Z
′
(k)

σ̂2
3(k)

n∑
k=j

µ̇γ̂n(k)µ̇
′
γ̂n(k)

σ̂2
3(k)

 .

Let s0 be the 99th percentile of F̂S and Tn ::= sups≤s0
|Wn(s)/0.995|. For an

0 < α < 1, let bα denote (1−α)th percentile of the distribution of sup0≤u≤1 |B(u)|.
From Khmaladze and Koul (2004) we have bα = 2.24241, 2.49771, 2.80705, for
α = 0.05, 0.025, 0.01, respectively. In the following simulation, Tn was computed
1,000 times for every sample size, and empirical size and power were computed
by using #{Tn ≥ bα}/1, 000.

Simulation: The data were generated from the following models:

Model 0: Yi = βXi + γTi + εi,

Model 1: Yi = βXi + γTi + sin(Ti) + εi, (4.1)

Model 2: Yi = βXi + γTi + 0.1(T 2
i − 4.03) + εi.

Here the null hypothesis is H0 : g(t) = γt, t ∈ R. Data from Model 0 were used
to study the empirical level, while from Models 1 and 2 were used to study the
empirical power of the test. In the simulation, X = Z+ξ, T = S+η, ε ∼ N(0, 1),
Z ∼ N(1, 1), ξ ∼ N(0, 0.32), S ∼ N(1, 1), η ∼ N(0, 0.32) and β0 = 1, γ0 = 2.
Under this set up, mθ(z, s) = βz + γs, τ2

γ (S) = 0.01γ2. Hence, σ̃2
3(s) did not

depend on s. Also, in Model 2, T 2 − 4.03 is orthogonal to T . The estimators
β̂n, γ̂n were chosen to be the least square estimators based on the new regression
model Y = βZ + γS + ζ. Then σ̃2

3(s) was simply the mean of squared residuals
Yi − β̂nZi − γ̂nSi, not depending on s. Table 1 illustrates the simulation results.

To investigate the effects of the magnitude of measurement errors on level and
power of the proposed test, we also conducted several additional simulations for
different choices of σ2

η and σ2
ξ . Our results also apply to the case in which Σ2

ξ = 0
and σ2

η = 0, that is, without measurement errors. Given all other distributional
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Table 1. Simulation WITH measurement error.

α-level Model\ n 50 100 200 300 500
Model 0 0.041 0.037 0.039 0.046 0.049

0.050 Model 1 0.106 0.182 0.424 0.697 0.973
Model 2 0.210 0.462 0.781 0.915 0.991
Model 0 0.014 0.012 0.019 0.022 0.019

0.025 Model 1 0.073 0.116 0.290 0.535 0.899
Model 2 0.136 0.342 0.684 0.866 0.985
Model 0 0.008 0.002 0.009 0.010 0.009

0.010 Model 1 0.033 0.054 0.168 0.340 0.729
Model 2 0.074 0.201 0.559 0.770 0.968

Table 2. Simulation WITH measurement error, σ2
η = 0.32, σ2

ξ = 0.52.

α-level Model\ n 50 100 200 300 500
Model 0 0.045 0.041 0.044 0.045 0.046

0.050 Model 1 0.100 0.173 0.403 0.661 0.956
Model 2 0.200 0.425 0.742 0.886 0.986
Model 0 0.016 0.012 0.021 0.022 0.025

0.025 Model 1 0.069 0.096 0.266 0.486 0.864
Model 2 0.129 0.296 0.628 0.821 0.980
Model 0 0.007 0.003 0.006 0.010 0.009

0.010 Model 1 0.035 0.046 0.149 0.312 0.665
Model 2 0.064 0.179 0.499 0.719 0.949

Table 3. Simulation WITH measurement error, σ2
η = 0.52, σ2

ξ = 0.52.

α-level Model\ n 50 100 200 300 500
Model 0 0.040 0.031 0.041 0.044 0.048

0.050 Model 1 0.077 0.098 0.248 0.397 0.719
Model 2 0.162 0.332 0.632 0.804 0.961
Model 0 0.015 0.011 0.016 0.027 0.024

0.025 Model 1 0.049 0.053 0.143 0.256 0.534
Model 2 0.103 0.226 0.514 0.712 0.930
Model 0 0.006 0.003 0.008 0.006 0.012

0.010 Model 1 0.018 0.022 0.081 0.151 0.348
Model 2 0.047 0.128 0.375 0.580 0.871

assumptions unchanged, we also generated the data from the above model by
setting ξ = 0 and η = 0. These simulation results are shown in Tables 2 to 4.
From these tables we see that the level of the proposed test is robust against
the variation in measurement errors, while power gets smaller, though not too
drastically, as variances of measurement errors become larger.

We also conducted a simulation study when X had two dimensions. Similar
results were obtained, hence not reported here.
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Table 4. Simulation WITHOUT measurement error.

α-level Model\ n 50 100 200 300 500
Model 0 0.041 0.040 0.045 0.045 0.049

0.050 Model 1 0.233 0.501 0.825 0.942 0.997
Model 2 0.315 0.608 0.915 0.982 0.999
Model 0 0.017 0.012 0.020 0.025 0.022

0.025 Model 1 0.167 0.387 0.763 0.904 0.993
Model 2 0.218 0.493 0.867 0.971 0.999
Model 0 0.005 0.004 0.005 0.015 0.007

0.010 Model 1 0.101 0.278 0.666 0.862 0.982
Model 2 0.123 0.371 0.786 0.936 0.999

To compare the performance of the Tn test with the two tests studied in
Liang (2006), we generated data from a model without measurement error (also
used in Liang (2006)), Y = 1.3X1 + 0.45X2 + 2.5T + ε, ε ∼ N(0, σ2

ε) with
T ∼ Uniform(0, 1), and X from one of the following two cases:

Case 1: (X1, X2) ∼ N2(0, diag(0.32, 0.42)); (X1, X2) and T are independent;
Case 2: Xj = 0.4T + 0.6Uj , j = 1, 2, and U1, U2, i.i.d. Uniform(0,1).

We also used the same alternatives as in Liang (2006):

g(t) = 2.5t + c[4.25 exp(−3.25t) − 4 exp(−6.5t) + 3 exp(−9.75t)],

for c = 0.2, 0.4, 0.6, 0.8 and 1. In the simulation, σε was chosen to be 0.1, 0.25,
and 0.5. The sample size n = 100 and nominal level 0.05 were considered for the
purpose of illustration. Figure 1 presents empirical levels and powers of the three
tests. The top panel is for Case 1 and the bottom panel for Case 2. In each plot,
the solid line is for the Tn test, the dashed line is for Liang’s Cramér-von Mises
type test and the dotted line for Liang’s likelihood ratio test. From the figure,
one sees that the likelihood ratio test is the most conservative while the levels of
the Tn and Cramér-von Mises type tests are both close to the nominal level 0.05.
It is clear that the powers of these three tests increase as the value c becomes
larger. One can also see that the Tn test is comparable to the Cramér-von Mises
type test, and outperforms the likelihood ratio test at all configurations. Finally,
Tn test is relatively easy to compute.

Remark 4.1. Robustness of the test. In the Berkson model, it is usually as-
sumed that the Berkson error density and/or variance are known. However, one
may ask that if the test is somewhat robust against error misspecification. A sat-
isfying answer to this question would require some theoretical arguments, such
as finding out the influence function of the test procedure, but we believe this
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Figure 1. Power curves of three testing procedures.

is beyond the scope of the current paper. Instead, some simulation studies were
conducted for the purpose of illustration.

We generated the data from models 0 to 2 in (4.1), except now ξ and η are
independent Uniform(−

√
0.27,

√
0.27) r.v.’s; when computing the test statistic,

we assumed that ξ, η ∼ N(0, 0.32). Note that these two distributions have the
same variance. See Table 5 for the simulation results. Table 6 reports another
simulation study in which the data were generated from models 0 to 2 with
measurement errors being double exponential with mean 0, and variance 0.32,
but N(0, 0.32) distribution was used in the test statistic. Again, note that these
distributions have the same variance 0.32.

The simulation results suggest that if the true and the misspecified measure-
ment errors distributions were different but have the same variance, the proposed
test is reasonably robust.

We also conducted some simulations when the distributions of measurement
errors were completely misspecified, and when the distribution type was misspec-
ified but the variance was correctly specified. The results were mixed. At present
it is not clear that the test will work if fη is completely misspecified.
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Table 5. Uniform distribution misspecified as Normal.

α-level Model\ n 50 100 200 300 500
Model 0 0.040 0.042 0.044 0.046 0.040

0.050 Model 1 0.111 0.246 0.503 0.733 0.970
Model 2 0.250 0.535 0.853 0.961 0.999
Model 0 0.017 0.018 0.021 0.023 0.016

0.025 Model 1 0.059 0.154 0.358 0.580 0.904
Model 2 0.156 0.412 0.760 0.932 0.999
Model 0 0.008 0.006 0.007 0.015 0.007

0.010 Model 1 0.028 0.090 0.232 0.409 0.755
Model 2 0.074 0.288 0.661 0.871 0.995

Table 6. Double exponential distribution misspecified as Normal.

α-level Model\ n 50 100 200 300 500
Model 0 0.027 0.041 0.044 0.042 0.054

0.050 Model 1 0.092 0.250 0.503 0.731 0.972
Model 2 0.269 0.496 0.862 0.967 0.999
Model 0 0.010 0.02 0.025 0.014 0.024

0.025 Model 1 0.062 0.168 0.37 0.574 0.902
Model 2 0.153 0.396 0.771 0.933 0.993
Model 0 0.004 0.007 0.005 0.006 0.011

0.010 Model 1 0.029 0.095 0.231 0.409 0.752
Model 2 0.080 0.292 0.664 0.882 0.988

5. Proofs

Lemma 5.1. Suppose U and V are random variables with E(U |V ) = 0, 0 ≤
E(U2) < ∞. Let σ2(v) = E(U2|V = v), L(v) = Eσ2(V )I(V ≤ v), v ∈ R̄. Let
(Ui, Vi), 1 ≤ i ≤ n be i.i.d. copies of (U, V ), and

Un(v) =
1√
n

n∑
i=1

UiI(Vi ≤ v), v ∈ R̄ = [−∞,∞].

Assume L to be continuous. Then, Un ⇒ B ◦ L, in D(R̄) and uniform metric.

The proof of this lemma uses Theorem 12.6 in Billingsley (1968). Details are
similar to those appearing in STZ.

To state the next lemma, let U be a continuous random vector of length p,
V be a continuous r.v. with d.f. G, and let F (u, v) denote their joint d.f. Let
`(u, v) be a vector of q functions with E‖`(U, V )‖2 < ∞. Assume the matrix
Cv := E`(U, V )`(U, V )′I(V ≥ v) is positive definite for all v ∈ R. For a real-
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valued function ψ ∈ L2(R, G), define the transforms

Tψ(u, v) :=
∫

y≤v

∫
ψ(y)`(x, y)′C−1

y dF (x, y) `(u, v),

Kψ(u, v) := ψ(v) − Tψ(u, v).

The following lemma is an extension of Proposition 4.1 of Khmaladze and Koul
(2004) and Lemma 9.1 of Koul (2006). Its proof is similar to that of these results,
and hence is not presented.

Lemma 5.2. For the entities defined above,

EKψ(U, V )`(U, V )′ = 0, ∀ ψ ∈ L2(R, F ), (5.1)

EKψ1(U, V )Kψ2(U, V ) = Eψ1(V )ψ2(V ), ∀ ψ1, ψ2 ∈ L2(R, F ). (5.2)

Remark 5.2 Let ξ be a r.v. such that E(ξ|U, V ) = 0, Eξ2 < ∞, τ2(u, v) :=
E(ξ2|U = u, V = v) > 0, for all u, v. Then the covariance function of the process

Wψ(ξ, U, V ) :=
[ ξ

τ(U, V )

]
{ψ(V ) − Tψ(U, V )},

as a process in ψ ∈ L2(R, G), is that of Bψ(G), where Bψ is a Brownian motion
in ψ. Hence, if (ξi, Ui, Vi), 1 ≤ i ≤ n, are i.i.d. copies of (ξ, U, V ), then by the
classical CLT, the finite dimensional distributions of n−1/2

∑n
i=1 Wψ(ξi, Ui, Vi),

as ψ varies, converge weakly to those of Bψ(G).

To prove Theorem 2.1, recall that θ := (β′
0, γ

′
0)

′, ei = ζi/σζ,θ(Si), and let

Wθ,FZ,S
(s) :=

1√
n

n∑
i=1

ei

{
I(Si ≤ s)

−
∫

y≤s

∫
`(x, y)′M−1

y I(Si ≥ y) dFZ,S(x, y) `(Zi, Si)
}

.

Proof of Theorem 2.1. The proof consists of the following two steps.

(a) For every s0 < ∞, Wθ,FZ,S
⇒ B ◦FS , in D([−∞, s0]) and in uniform metric.

(b) sups≤s0
|Wn(s) −Wθ,FZ,S

(s)| = op(1), (H0).

Proof of Part (a). Applying Lemma 5.2 and Remark 5.2 to ξ = e = ζ/σζ,θ, U =
Z, V = S, and to the family of indicator functions ψ(v) = I(v ≤ x), x ∈ R, we
readily obtain that all finite dimensional distributions of Wθ,FZ,S

converge weakly
to those of B ◦ FS . Thus, the claim (a) would follow if we prove the tightness of
Wθ,FZ,S

. Toward this, let

W3n(s) :=
1√
n

n∑
i=1

eiI(Si ≤ s),
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Qn(s) :=
1√
n

n∑
i=1

ei

∫
y≤s

∫
`(x, y)′M−1

y `(Zi, Si)I(Si ≥ y)dFZ,S(x, y), s ∈ R.

Then we can rewrite Wθ,FZ,S
(s) := W3n(s) − Qn(s). Lemma 5.1 applied to

U = e, V = S, yields the tightness of W3n(s), s ∈ R̄, in uniform metric.
To prove the tightness of the Qn process, let ϕ(s) :=

∫
y≤s

∫
‖`(z, y)′M−1

y ‖
dFZ,S(z, y), s ∈ R. Note that ϕ is nondecreasing, non-negative and because of as-
sumption (m), ϕ(s) < ∞ for all s ∈ R. Moreover, E(e|Z, S) = 0, E(e2|Z, S) = 1,
and ‖M‖∞ := sups∈R ‖Ms‖ ≤ E‖`(Z, S)‖2 < ∞, imply E[Qn(t) − Qn(s)]2 ≤
‖M‖∞[ϕ(t)−ϕ(s)]2,∀ s ≤ t. This bound, together with Theorem 15.6 of Billings-
ley (1968), imply that for every s0 < ∞, Qn(s) is tight in uniform metric on
(−∞, s0]. This completes the proof of part (a).
Proof of Part (b). Let `i := `(Zi, Si), ˆ̀

i := ˆ̀(Zi, Si), and let

Ũn(y) :=
1√
n

n∑
i=1

ẽi
ˆ̀
i I(Si ≥ y), Un(y) :=

1√
n

n∑
i=1

ei `i I(Si ≥ y).

Then Wn(s) and Wθ,FZ,S
(s) can be written as

Wn(s) = Ŵ3n(s) −
∫

y≤s

∫
ˆ̀(x, y)′M̂−1

y Ũn(y)dF̂Z,S(x, y), (5.3)

Wθ,FZ,S
(s) = W3n(s) −

∫
y≤s

∫
`(x, y)′M−1

y Un(y)dFZ,S(x, y). (5.4)

Let bn := β̂n − β0. We can rewrite Ŵ3n as the sum of six terms:

In1(s) =
1√
n

n∑
i=1

eiI(Si ≤ s), In2(s) = b′n
1√
n

n∑
i=1

Zi

σζ,θ(Si)
I(Si ≤ s),

In3(s) =
1√
n

n∑
i=1

µγ̂n(Si) − µγ0(Si)
σζ,θ(Si)

I(Si ≤ s),

In4(s) =
1√
n

n∑
i=1

ei

(σζ,θ(Si)
σ̃3(Si)

− 1
)
I(Si ≤ s),

In5(s) = b′n
1√
n

n∑
i=1

Zi

σζ,θ(Si)

(σζ,θ(Si)
σ̃3(Si)

− 1
)
I(Si ≤ s),

In6(s) =
1√
n

n∑
i=1

µγ̂n(Si) − µγ0(Si)
σζ,θ(Si)

(σζ,θ(Si)
σ̃3(Si)

− 1
)
I(Si ≤ s).

The term In1 is simply W3n. We can show that sups∈R̄ |Inj(s)| = op(1), j = 4, 5, 6.
Because most of the arguments are similar, for the sake of brevity, we give details
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only for the case j = 4. First we show that

max
1≤i≤n

|σ̃2
3(Si) − σ2

ζ,θ(Si)| = op(1). (5.5)

By definition, σ̃2
3(Si) − σ2

ζ,θ(Si) = σ̂2
3ε + β̂′

nΣζ β̂n + τ2
γ̂n

(Si) − σ2
ε − β′

0Σζβ0 −
τ2
γ0

(Si). Since σ̂2
3ε −σ2

ε = op(1), β̂′Σζ β̂n −β′
0Σζβ0 = op(1), it suffices to show that

max
1≤i≤n

|τ2
γ̂n

(Si) − τ2
γ0

(Si)| = op(1). (5.6)

Note that for all s ∈ R,

|τ2
γ̂n

(s) − τ2
γ0

(s)| ≤
∣∣∣ ∫

[g2
γ̂(s + y) − g2

γ0
(s + y)]fη(y)dy

∣∣∣
+

∣∣∣[ ∫
gγ̂n(s + y)fη(y)dy

]2
−

[ ∫
gγ0(s + y)fη(y)dy

]2∣∣∣
= An(s) + Bn(s), say.

Let δn := γ̂n − γ0. By condition (g1), for all s ∈ R,∫ (
gγ̂n(s + y) − gγ0(s + y)

)2
fη(y)dy ≤ ‖δn‖2

∫
r2(s + y)fη(y)dy.

The assumption that Er4(T ) < ∞ implies E(
∫

r2(S + y)fη(y)dy)2 < ∞. Hence,
max1≤i≤n

∫
r2(Si + y)fη(y)dy = op(

√
n) and, in view of (2.1),

max
1≤i≤n

n1/2

∫ (
gγ̂n(Si + y) − gγ0(Si + y)

)2
fη(y)dy = op(1).

This fact and a routine argument now shows that max1≤i≤n An(Si) = op(1),
max1≤i≤n Bn(Si) = op(1), thereby completing the proof of (5.6), and hence that
of (5.5).

Let Dn := σ2
ε − σ̂2

3ε + β′
0Σζβ − β̂′

nΣζ β̂
′
n. Then In4(s) can be written as the

sum of two terms:

In41(s) = Dn
1√
n

n∑
i=1

ei

[ 1
σ̃3(Si)(σ̂3(Si) + σζ,θ(Si))

]
I(Si ≤ s),

In42(s) =
1√
n

n∑
i=1

ei

[ τ2
0 (Si) − τ2

γ̂n
(Si)

σ̃3(Si)(σ̃3(Si) + σζ,θ(Si))

]
I(Si ≤ s).

Subtracting and adding 1/2σ2
ζ,θ(Si), In41 can be written as the sum:

√
nDn · 1

n

n∑
i=1

ei

[ 1
σ̃3(Si)(σ̃3(Si) + σζ,θ(Si))

− 1
2σ2

ζ,θ(Si)

]
I(Si ≤ s)
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+Dn · 1√
n

n∑
i=1

ei

2σ2
ζ,θ(Si)

I(Si ≤ s).

By (5.5), and the fact that σ2
ζ,θ ≥ σ2

ε > 0,

max
1≤i≤n

∣∣∣ 1
σ̃3(Si)(σ̃3(Si) + σζ,θ(Si))

− 1
2σ2

ζ,θ(Si)

∣∣∣ = op(1). (5.7)

By Lemma 5.1, we obtain

sup
s∈R̄

∣∣∣ 1√
n

n∑
i=1

ei

2σ2
ζ,θ(Si)

I(Si ≤ s)
∣∣∣ = Op(1).

These facts, together with
√

n(σ2
ε−σ̂2

3ε) = Op(1),
√

n(β′
0Σζβ0−β̂′

nΣζ β̂
′
n) = Op(1),

and
∑n

i=1 |ei|/n = Op(1), imply that sups∈R̄ In41(s) = op(1).
Next, we sketch an argument for proving sups∈R̄ In42(s) = op(1). For this

purpose, we need a refined analysis of τ2
γ̂n

(Si) − τ2
0 (Si). By definition,

τ2
γ̂n

(Si) − τ2
0 (Si) =

∫
[gγ̂n(Si + y) − gγ0(Si + y)]2fη(y)dy

+2
∫

gγ0(Si + y)[gγ̂n(Si + y) − gγ0(Si + y)]fη(y)dy

−
[ ∫

[gγ̂n(Si + y) − gγ0(Si + y)]fη(y)dy
]2

−2
∫

gγ0(Si + y)fη(y)dy

∫
[gγ̂n(Si + y)−gγ0(Si + y)]fη(y)dy.

Let ∆ni(y) = gγ̂n(Si+y)−gγ0(Si+y)−δ′nġγ0(Si+y). Subtracting and adding
δ′nġγ0(Si + η) to the difference gγ̂n(Si + y) − gγ0(Si + y) in the above integrals,
and expanding various quadratics yields that τ2

γ̂n
(Si) − τ2

0 (Si) is the sum of ten
terms:

Ai,1 :=
∫

∆2
ni(y)fη(y)dy, Ai,2 = 2δ′n

∫
ġγ0(Si + y)∆ni(y)fη(y)dy,

Ai,3 := δ′n

∫
ġγ0(Si + y)ġ′γ0

(Si + y)fη(y)dy δn,

Ai,4 := 2
∫

gγ0(Si + y)∆ni(y)fη(y)dy,

Ai,5 := 2δ′n

∫
gγ0(Si + y)ġγ0(Si + y)fη(y)dy, Ai,6 := −

[ ∫
∆ni(y)fη(y)dy

]2
,

Ai,7 := −2δ′n

∫
gγ0(Si + y)fη(y)dy ·

∫
∆ni(y)fη(y)dy,
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Ai,8 := −δ′n

∫
ġγ0(Si + y)fη(y)dy ·

∫
ġ′γ0

(Si + η)fη(y)dy δn,

Ai,9 := −2
∫

gγ0(Si + y)fη(y)dy ·
∫

∆ni(y)fη(y)dy,

Ai,10 := −δ′n

∫
gγ0(Si + y)fη(y)dy ·

∫
ġγ0(Si + η)fη(y)dy.

From (g2), (g3), (2.1), for j = 1, . . . , 10, we can obtain that

sup
s∈R̄

∣∣∣ 1√
n

n∑
i=1

eiAi,j

σ̃3(Si)(σ̃3(Si) + σζ,θ(Si))
I(Si ≤ s)

∣∣∣ = op(1). (5.8)

These imply that sups∈R̄ In42(s) = op(1). Here we present the proof of (5.8) for
j = 4 only, as the proof for the other cases is similar.

The l.h.s. of (5.8) for j = 4 is bounded above by

2 sup
1≤i≤n, y∈R

n1/2|∆ni(y)| · 1
n

n∑
i=1

∣∣∣ei

∫
gγ0(Si + y)fη(y)dy

∣∣∣
σ̃3(Si)(σ̃3(Si) + σζ,θ(Si))

.

By (g2) and (2.1), the first factor of this bound is op(1). The square integrability
of ei, gγ0(Ti), together with (5.7) and the Law of Large Numbers, imply that the
second factor of the above bound is Op(1). Hence (5.8) holds for j = 4.

In summary, we obtain

sup
s∈R̄

∣∣∣Ŵ3n(s) − W3n(s) + E
[
`(Z, S)′I(S ≤ s)

]√
n
(bn

δn

)∣∣∣ = op(1). (5.9)

Next, consider the difference Ũn(y) − Un(y). Let αi := µγ̂n(Si) − µγ0(Si),
and α̇i := µ̇γ̂n(Si) − µ̇γ0(Si). By replacing 1/σ̃2

3(Si) by [σ2
ζ,θ(Si)/σ̃2

3(Si) − 1 +
1]/σ2

ζ,θ(Si), subtracting and adding β0 from β̂n, µγ0(Si) from µγ̂n(Si), and µ̇γ0(Si)
from µ̇γ̂n(Si), Ũn(y)−Un(y) can be rewritten as the sum of Dn1(y), Dn2(y) and
a remainder term Rn(y), where

Dn1(y) = −b′n
1√
n

n∑
i=1

Zi

σζ,θ(Si)
`i I(Si ≥ y),

Dn2(y) = − 1√
n

n∑
i=1

αi

σζ,θ(Si)
`i I(Si ≥ y).

By conditions (g2), (g3), (m), and (2.1), one can show supy∈R̄ |Rn(y)| = op(1).
Subtract and add δ′nµ̇γ0(Si) to µγ̂n(Si)−µγ0(Si), to rewrite −Dn2 as the sum

1√
n

n∑
i=1

µγ̂n(Si)−µγ0(Si)−δ′nµ̇γ0(Si)
σ2

ζ,θ(Si)
`i I(Si ≥ y)+

δ′n√
n

n∑
i=1

µ̇γ0(Si)
σ2

ζ,θ(Si)
`i I(Si≥y).
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In view of (g2), the first term of this sum is bounded from the above by

√
n max

1≤i≤n
|µγ̂n(Si) − µγ0(Si) − δ′nµ̇γ0(Si)|

1
nσ2

ε

n∑
i=1

‖`i‖ = op(1).

Hence, with θn :=
√

n(b′n, δ′n)′, supy≤s0

∥∥∥Ũn(y) − Un(y) + M̃yθn

∥∥∥ = op(1), where

M̃y =


1
n

n∑
k=1

I(Sk ≥ y)ZkZ
′
k

σ2
ζ,θ(Sk)

1
n

n∑
k=1

I(Sk ≥ y)Zkµ̇
′
γ0

(Sk)
σ2

ζ,θ(Sk)

1
n

n∑
k=1

I(Sk ≥ y)µ̇γ0(Sk)Z ′
k

σ2
ζ,θ(Sk)

1
n

n∑
k=1

I(Sk ≥ y)µ̇γ0(Sk)µ̇′
γ0

(Sk)
σ2

ζ,θ(Sk)

 .

By a Glivenko-Cantelli argument, one can show that

sup
y∈R̄

‖M̃y − My‖ = op(1). (5.10)

This in turn implies that supy≤s0

∥∥Ũn(y) − Un(y) + Myθn

∥∥ = op(1). Routine ar-
guments, together with the conditions (e), (m) and (g3), lead to supy≤s0

‖M̂−1
y −

M−1
y ‖ = op(1), by the positive definiteness of My for all y ∈ R.

For convenience, let Pn(s) be the the second term on the right hand side of
(5.3), and P0(s) be the the second term on the right hand side of (5.4). Note
that

Pn(s) =
∫

y≤s

∫ (x′, µ̇′
γ̂n

(y) − µ̇′
γ0

(y) + µ̇′
γ0

(y))
σζ,θ(y)

[σζ,θ(y)
σ̃3(y)

− 1 + 1
]
·

[M̂−1
y − M−1

y + M−1
y ] · [Ũn(y) − Un(y) + Un(y)]dF̂Z,S(x, y),

which can be written as the sum of

Bn1(s) =
∫

y≤s

∫ (x′, µ̇′
γ0

(y))
σζ,θ(y)

M−1
y Un(y)dF̂Z,S(x, y),

Bn2(s) =
∫

y≤s

∫ (x′, µ̇′
γ0

(y))
σζ,θ(y)

M−1
y [Ũn(y) − Un(y)]dF̂Z,S(x, y),

and a remainder term Rn(s), say. In view of (g3), (5.5), one verifies that

Bn1(s) = P0(s) + up(1), Bn2(s) = −E
[(Z ′, µ̇′

γ0
(S))

σζ,θ(S)
I(S ≤ s)

]
θn + up(1).

and sups≤s0
|Rn(s)| = op(1). The claim (a) follows from these results, (5.9), and

the fact that

Wn(s) −Wθ0,FZ,S
(s) = [Ŵ3n(s) − W3n(s)] − [Pn(s) − P0(s)].
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Proof of Theorem 3.1. Fix an s0 < ∞. By a similar argument as in the null
hypothesis case, we obtain

Wa
n(s) =⇒ B ◦ ψ in D([−∞, s0]) and uniform metric, (5.11)

where ψ(s) = E(σ̃2
a(S)I[S ≤ s]/σ2

a(s)), and σ̃2
a(s) = σ2

ε + β′
aΣξβa + Ea([gγa(T )

−µγa(S)]2|S = s).
Now, consider Ra

n(s). Write Ra
n(s) = Ra

n1(s) −Ra
n2(s), where

n−1/2Ra
n1(s) =

1
n

n∑
i=1

β′
0Xi + h(Ti) − β′

aXi − gγa(Ti)
σa(Si)

I(Si ≤ s)

+
1
n

n∑
i=1

β′
0Xi + h(Ti) − β′

aXi − gγa(Ti)
σa(Si)

[σa(Si)
σ̃3(Si)

− 1
]
I(Si ≤ s).

A Glivenko-Cantelli type argument, together with (3.4), implies that

sup
s∈R̄

∣∣∣n−1/2Ra
n1(s) −D1(s)

∣∣∣ = op(1). (5.12)

Let

V̂n(y) :=
1
n

n∑
i=1

Yi − Y a
i

σ̃3(Si)
ˆ̀(Zi, Si)I(Si ≥ y).

Then
n−1/2Ra

n2(s) =
∫

y≤s

∫
ˆ̀(x, y)′M̂−1

y V̂n(y)dF̂Z,S(x, y).

Subtracting and adding µ̇γa(Si) from µ̇γ̂a(Si), replacing 1/σ̂2
ζ (Si) with (σ2

a(Si)
/σ̂2

3ζ(Si) − 1 + 1)/σ2
a(Si), V̂n(y) can be written as the sum of four terms:

V̂n1(y) =
1
n

n∑
i=1

Yi − Y a
i

σa(Si)

[σ2
a(Si)

σ̃2
3(Si)

− 1
]
`(Zi, Si)I(Si ≥ y),

V̂n2(y) =
1
n

n∑
i=1

Yi − Y a
i

σa(Si)
`(Zi, Si)I(Si ≥ y),

V̂n3(y) =
1
n

n∑
i=1

Yi − Y a
i

σ2
a(Si)

[σ2
a(Si)

σ̃2
3(Si)

− 1
]( 0

µ̇γ̂n(Si) − µ̇γa(Si)

)
I(Si ≥ y),

V̂n4(y) =
1
n

n∑
i=1

Yi − Y a
i

σ2
a(Si)

( 0
µ̇γ̂n(Si) − µ̇γa(Si)

)
I(Si ≥ y).

Condition (g3), (3.4), and the additional assumption Ea

[
(Y −Y a)/σ2

a(S)
]2

< ∞,

imply supy∈R̄
∣∣V̂nj(y)

∣∣ = op(1), for j = 1, 3, 4. As for V̂n2(y), a Glivenko-Cantelli
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type argument yields supy∈R̄ |V̂n2(y) − ρ(y)| = op(1). These facts in turn imply

sup
y∈R̄

|V̂n(y) − ρ(y)| = op(1). (5.13)

Using exactly the same argument as in the null case, one can verify that
under the alternative Ha, supy≤s0

∣∣∣M̂−1
y −A−1

y

∣∣∣ = op(1). Rewrite n−1/2Ra
n2(s) as

n−1/2Ra
n2(s) =

∫
y≤s

∫ (x′, µ̇′
γ̂n

(y) − µ̇′
γa

(y) + µ̇′
γa

(y))

σa(y)

[σa(y)
σ̃3(y)

− 1 + 1
]

·[M̂−1
y − A−1

y + A−1
y ] · [V̂n(y) − ρ(y) + ρ(y)]dF̂Z,S(x, y)

=
∫

y≤s

∫ (x′, µ̇′
γa

(y))
σa(y)

A−1
y ρ(y)dF̂Z,S(x, y) + Rn(s).

Under (g3), (3.4), one can show that sups≤s0
|Rn(s)| = op(1). Using a Glivenko-

Cantelli type argument, one further concludes that∫
y≤s

∫ (x′, µ̇′
γa

(y))
σa(y)

A−1
y ρ(y)dF̂Z,S(x, y) = D2(s) + up(1).

In fact, with hy = E(Z|S = y), we can write

D2(s) =
∫

y≤s

(h′
y, µ̇

′
γa

(y))
σa(y)

A−1
y ρ(y)dFS(y).

So we have shown that

sup
s≤s0

∣∣∣n−1/2Ra
n2(s) −D2(s)

∣∣∣ = op(1), (Ha). (5.14)

Then (5.12) and (5.14) jointly implies

sup
s≤s0

∣∣∣n−1/2Ra
n(s) − [D1(s) −D2(s)]

∣∣∣ = op(1). (5.15)

Finally, the consistency is derived by combining (5.11), (5.15), the inequality

sup
s≤s0

∣∣∣Wa
n(s) + Ra

n(s)
∣∣∣ ≥ sup

s≤s0

∣∣∣Ra
n(s)

∣∣∣ − sup
s≤s0

∣∣∣Wa
n(s)

∣∣∣
and the condition d = sups≤s0

|D1(s) −D2(s)| > 0.

Proof of Theorem 3.2. Details of the proof of this theorem are similar to that
of Theorem 3.1, with obvious modifications.
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Appendix:
√

n-Consistency of the LSE

The validity of Theorem 2.1, 3.1, and 3.2 require the
√

n-consistency of β̂n

and γ̂n under all three hypotheses H0, Ha and HLoc. Under some regularity condi-
tions, we can show that the least squares procedure can provide such estimators.

The argument provided below is only for the case of Ha, but the adaption
to the H0 and HLoc cases is straightforward.

To be specific, let h(·) and Ha be as in Section 3.1, and recall the definition
(3.2). Assume

C1: L(β, γ) := Ea[Y −β′Z−µγ(S)]2 exists for all β, γ and takes unique minimum
at (β′

a, γ
′
a)

′ which is an interior point of Θ,
C2: Σ := E(ZZ ′) is positive definite,
C3: the parameter space Γ ∈ Rq is convex and compact,
C4: Eh2(T ) < ∞, E supγ |gγ(T )|2 < ∞,
C5: E supγ |ġγ(T )|2 < ∞, E supγ ‖g̈γa(T )‖2 < ∞.

Note that the Lipschitz condition (g1) implies E supγ |gγ(T )|2 < ∞. Note that
the Lipschitz condition (g1) implies E supγ |gγ(T )|2 < ∞.

The condition (C1) guarantees the validity of the least squares procedures
while (C2) ensures the uniqueness of the least squares estimator for β, a com-
mon assumption even in simple linear regression models. Conditions (C3)−(C5)
are the usual assumptions needed for proving consistency of the least squares
estimators in nonlinear regression models.

Now, for a fixed γ ∈ Γ, the equation ∂L(β, γ)/∂β = −2Ea(Y − β′Z −
µγ(S))Z = 0, yields

β(γ) := Σ−1EaZ(Y − µγ(s)) = Σ−1Ea[ZY ] − Σ−1E[Zµγ(S)]. (A.1)

Therefore, L(β(γ), γ)≤L(β, γ), for all β, γ. Let γ̃a be a solution of ∂L(β(γ), γ)/∂γ

= 0 or, equivalently, a solution of

Ea[Y − b′Z + h(γ)′Z − µγ(S)] · [ḣ(γ)Z − µ̇γ(S)] = 0, (A.2)

where b = Σ−1E(Y Z), h(γ) = Σ−1E[Zµγ(S)]. Then we must have

L(β(γ̃a), γ̃a) ≤ L(β(γ), γ) ≤ L(β, γ), ∀β, γ.
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Under (C1), (C2), γ̃a must be unique and βa = β(γ̃a), γa = γ̃a.

Now consider the empirical version of L: Ln(β, γ) = n−1
∑n

i=1[Yi − β′Zi −
µγ(Si)]2. For any fixed γ ∈ Γ, the equation ∂Ln(β, γ)/∂β = 0 yields

βn(γ) = Σ−1
n [ZY − Zµγ(S)], (A.3)

where

Σn =
1
n

n∑
i=1

ZiZ
′
i, ZY =

1
n

n∑
i=1

ZiYi, Zµγ(S) =
1
n

n∑
i=1

Ziµγ(Si).

Therefore, Ln(βn(γ), γ) ≤ Ln(β, γ), for all β, γ ∈ Γ. Let γ̃n be a the solution of
the equation ∂Ln(βn(γ), γ)/∂γ = 0, or

1
n

n∑
i=1

[Yi − β′
n(γ)Zi − µγ(Si)] [β̇n(γ)Zi − µ̇γ(Si)] = 0,

where β̇n(γ) := Σ−1
n [ZY − Zµ̇γ(S)]. Then we must have Ln(βn(γ̃n), γ̃n) ≤

Ln(βn(γ), γ) ≤ L(β, γ), ∀β, γ. In other words, βn(γ̃n), γ̃n is a minimizer of the
nonlinear least square solution of (3.3). Denote these estimators simply by β̂n,
γ̂n.

A.1. Consistency of β̂n, γ̂n

Notice that

Ln(βn(γ), γ) =
1
n

n∑
i=1

[Yi − Σ−1
n {(ZY ) − Zµγ(S))}′Zi − µγ(Si)]2,

L(β(γ), γ) = Ea[Y − Σ−1{Ea(ZY ) − E(Zµγ(S))}′Z − µγ(S)]2,

as functions of γ, are defined on a compact subset of Rq. Then under some
conditions, we can show that

Ln(βn(γ), γ) → L(β(γ), γ) uniformly for γ. (A.4)

For this purpose, we need the following lemma.

Lemma A.1. (Jennrich (1969)) Let g be a function on X × Θ, where X is a
Euclidean space and Θ is a compact subset of a Euclidean space. Let g(x, θ) be
a continuous function of θ for each x and a measurable function of x for each
θ. Assume also that g(x, θ) ≤ h(x) for all x and θ, where h is integrable with
respect to a probability distribution function F on X. If X1, X2, . . . is a random
sample from F then n−1

∑n
i=1 g(Xi, θ) → E(g(X, θ)), a.s. uniformly for all θ in

Θ.
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Expanding Ln(βn(γ), γ), one can see that to show (A.4), it suffices to show
that, almost surely,

Y µγ(S) → Ea(Y µγ(S)), Zµγ(S) → E(Zµγ(S)), µ2
γ(S) → E(µ2

γ(S)),

uniformly in γ ∈ Γ. But these can be fulfilled by letting h(·) = supγ |Y µγ(S)|,
supγ |Zµγ(S)|, and supγ |µ2

γ(S)|, and using (e), (c2), (C3), and Lemma A.1.
Therefore, γ̂n → γa almost surely. For if there were a subsequence of γ̂n, say γ̂nk

,
that converged to γ1 almost surely, then

L(β(γ1), γ1) ← Lnk
(βnk

(γ̂nk
), γ̂nk

) ≤ Lnk
(βnk

(γa), γa) → L(β(γa), γa)

and uniqueness of γa imply the desired strong consistency. Finally, β̂n → βa

almost surely follows from the fact βn(γ) → β(γ) uniformly for γ ∈ Γ, and the
consistency of γ̂n to γa.

A.2. Convergence rates of β̂n, γ̂n

By Taylor expansion,

∂Ln(βn(γ), γ)
∂γ

=
∂Ln(βn(γ), γ)

∂γ

∣∣∣∣∣
γ=γa

+
∂2Ln(βn(γ), γ)

∂γ∂γ′

∣∣∣∣∣
γ=γ∗

(γ − γa).

Evaluate both sides at γ = γ̂n, then

0 =
∂Ln(βn(γ), γ)

∂γ

∣∣∣∣∣
γ=γa

+
∂2Ln(βn(γ), γ)

∂γ∂γ′

∣∣∣∣∣
γ=γ∗

n

(γ̂n − γa) (A.5)

=: Tn1 + Tn2(γ̂n − γa),

where γ∗
n lies between γ̂n and γa. The convexity of Γ implies γ∗

n ∈ Γ. By
subtracting and adding β(γa) and β̇(γa) from βn(γa) and β̇n(γa), respectively,
Tn1 can be written as the sum of four terms:

Tn11 =
1
n

n∑
i=1

[Yi − β′(γa)Zi − µγa(Si)][β̇(γa)Zi − µ̇γa(Si)],

Tn12 = (β̇n(γa) − β̇(γa))
1
n

n∑
i=1

[Yi − β′(γa)Zi − µγa(Si)]Zi,

Tn13 = (βn(γa) − β(γa))′
1
n

n∑
i=1

Zi[β̇(γa)Zi − µ̇γa(Si)],

Tn14 = (βn(γa) − β(γa))′
1
n

n∑
i=1

Zi(β̇n(γa) − β̇(γa))Zi.
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We first consider the asymptotic behavior of βn(γa). From (A.1) and (A.3),
we obtain

βn(γa) − β(γa) = Σ−1
n [ZY − Zµγa(S)] − Σ−1[Ea(ZY ) − E(Zµγa(S))] (A.6)

= (Σ−1
n − Σ−1)[ZY − Zµγa(S)]

+Σ−1[ZY − Zµγa(S) − Ea(ZY ) + E(Zµγa(S))].

By the LLN, ZY − Zµγa(S) → Ea(ZY ) − E(Zµγa(S)). Let

∆ = Ea(ZY ) − E(Zµγa(S)), ZZ ′ = (Bjk)p×p, E(ZZ ′) = (bjk)p×p,

and B∗
jk be the cofactor of Bjk and b∗jk be the cofactor of bjk. Then,

√
n(Σ−1

n − Σ−1)∆ =
√

n

(
(B∗

jk)p×p

|ZZ ′|
−

(b∗jk)p×p

|E(ZZ ′)|

)
∆

= −
√

n(|ZZ ′| − |E(ZZ ′)|)
(B∗

jk)p×p∆

|ZZ ′| · |E(ZZ ′)|
+

√
n(B∗

jk − b∗jk)p×p∆
|E(ZZ ′)|

, (A.7)

where |A| denotes the determinant of the square matrix A. Using the fact that√
n(B∗

jk − b∗jk) = Op(1), one can show both terms in (A.7) are Op(1). Also, it is
easy to see that the second term in (A.6) has the same order. This then implies√

n(βn(γa) − β(γa)) = Op(1). Therefore,

√
nTn13 =

1
n

n∑
i=1

[β̇(γa)Zi − µ̇γa(Si)]Z ′
i

√
n(βn(γa) − β(γa))

= E[β̇(γa)ZZ ′ − µ̇γa(S)Z ′]
√

n(βn(γa) − β(γa)) + op(1) = Op(1).

Similarly, by considering each row in the matrix β̇n(γa) − β̇(γa), we can show
that, under (C4),

√
nTn12 = Op(1),

√
nTn14 = op(1). Use that (A.2) implies

Ea[Y − β′(γa)Z − µγa(S)][β̇(γa)Z − µ̇γa(S)] = 0 to show that
√

nTn11 = Op(1).
Hence,

√
nTn1 = Op(1).

Now consider the matrix Tn2 in (A.5). Manipulating the derivatives of ma-
trix, one obtains

Tn2 =
1
n

n∑
i=1

[β̇n(γ∗
n)Zi − µ̇γ∗

n
(Si)][β̇n(γ∗

n)Zi − µ̇γ∗
n
(Si)]′

− 1
n

n∑
i=1

[Yi − β′
n(γ∗

n)Zi − µγ∗
n
(Si)][Bn(Iq×q ⊗ Zi) − µ̈γ∗

n
(Si)],

where Bn = [β̈n1(γ∗
n), β̈n2(γ∗

n), · · · , β̈nq(γ∗
n)]q×pq, and β̈nj(γ∗

n) is the derivative of
the j-th row of β̇n(γ) with respect to γ, then evaluated at γ = γ∗

n, ⊗ denotes the
Kronecker product.
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Since γ̂n is strongly consistent for γ, so is γ∗
n. By (e), (C3), (C4), (C5), using

Lemma A.1, we can show that Tn2 is Π + op(1) asymptotically, where

Π := E[β̇(γa)Z − µ̇γa(S)][β̇(γa)Z − µ̇γa(S)]′

−E[Y − β(γa)Z − µγa(S)][B(Iq×q ⊗ Z) − µ̈γa(S)],

with B = [β̈1(γa), β̈2(γa), · · · , β̈q(γa)]q×pq, and β̈j(γa) is the derivative of the
j-th row of β̇(γ) with respect to γ, then evaluated at γ = γa. Finally, if Π is
nonsingular, we can get

√
n(γ̂n−γa) = Op(1). The claim

√
n(β̂n−βa) = Op(1) can

then be obtained by replacing γ with γ̂n in (A.3), and using a routine argument.
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