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Abstract: Principal components analysis (PCA) is a common dimension-reduction

tool that transforms a set of variables into a linearly uncorrelated set of variables.

Standard PCA estimators involve either the eigendecomposition of the estimated

covariance matrix or a singular value decomposition of the centered data. However,

for right-censored failure time data, estimating the principal components in this

way is not straightforward because not all failure times are observed. Standard

estimators for the covariance or correlation matrix should not be used in this case,

because they require strong assumptions on the form of the joint distribution and

on the marginal distributions beyond the final observation time. We present a

novel, nonparametric estimator for the covariance of multivariate right-censored

failure time data based on the counting processes and corresponding martingales

defined by the failure times. We prove that these estimators are consistent and

converge to a Gaussian process when properly standardized. We further show that

these covariance estimates can be used to estimate a PCA for the martingales and

counting processes for the different failure times. The corresponding estimates of

the principal directions are consistent and asymptotically normal. We apply this

method to data from a clinical trial of patients with pancreatic cancer, and recover

a medically valid low-dimensional representation of adverse events.

Key words and phrases: Competing risks, multivariate survival analysis, principal

components analysis.

1. Introduction

Principal components analysis (PCA), first introduced by Pearson (1901),

transforms a set of potentially linearly correlated variables into a set of linearly

uncorrelated variables, called the principal components. The transformations are

all linear combinations of the data, and the first principal component is defined

as the linear combination that explains the largest possible variance within the

data. All subsequent directions are linear combinations of the data with maxi-

mal variance, subject to the constraint that they are orthogonal to all previous
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principal components. PCA is frequently used for dimension reduction and re-

moving collinearity within a set of variables and, in general, is estimated using

the eigendecomposition of the estimated covariance matrix or a singular value

decomposition (SVD) of the mean centered data.

Although widely used, to the best of our knowledge, PCA has not been used

for multivariate time-to-event data in the presence of right censoring. Such a

setup can occur in longitudinal studies in which patients are followed for many

different event types. We consider data from a clinical trial for patients with

pancreatic cancer, but the techniques can be used for any longitudinal studies in

which individuals are followed over time and data are collected on many different

event types. We show that if there is right censoring for the different event types,

either due to loss to follow up or an administrative end to study, standard PCA

estimation techniques cannot be used for the time-to-event data. To show why

this is, we consider a multivariate survival setting with p different event times.

For each subject, we define T (j) as the failure time for the jth event type. If

we assume that each subject also has an independent censoring time, C, the

observed data for the jth event type consists of Y (j) = T (j) ∧ C, as well as an

indicator for whether the observed time is a censoring time or a failure time.

The full covariance matrix for T = [T (1), . . . , T (p)] cannot be estimated without

strong parametric assumptions. This means that a PCA cannot be estimated for

T . In order to overcome this problem, we propose two versions of a PCA for

multivariate survival data, and show how both can be estimated. One version

uses the counting processes for each event type, defined as N (j)(t) = I(T (j) ≤ t).
The second version uses the martingales based on the decomposition of these

counting processes. Even though these counting processes are not observed for

all time points if patients are censored, we show that the covariance between the

counting processes and the martingales for two different event types can both be

estimated nonparametrically. This allows us to consistently estimate the principal

component directions for the counting processes and the martingales, even in the

presence of independent censoring. The corresponding component scores can be

estimated for each subject up until the time they are censored. In order to make

these methods more flexible, we also allow for semi-competing risks, and show

how to extend both survival PCA methods to this setting.

The estimation of the covariance between the counting processes and the

martingales uses existing estimation methods for bivariate and univariate sur-

vival functions and for univariate hazard functions. Prentice and Cai (1992)

show that at a fixed timepoint, the covariance for the counting process martin-

gales for two different event types can be written as a function of bivariate and
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univariate survival functions, and of univariate hazard functions. Similarly, the

covariance between the counting processes for two different event types can be

written as a function of the bivariate and univariate survival functions. We use

the Kaplan–Meier and Nelson–Aalen estimators for the univariate survival and

cumulative hazard functions. Estimators for the bivariate survival function in-

clude those of Dabrowska (1988), Prentice and Cai (1992), van der Laan (1993),

and Lin and Ying (1993). If there are more than two event types, estimates of the

full covariance and the full correlation matrices for the martingales or counting

processes are found by estimating all the elements individually using bivariate

methods, then we can estimate the principal component directions for the mar-

tingales and counting processes using the eigendecomposition of their estimated

covariance or correlation matrices.

In the presence of competing risks, we use existing methods to estimate

bivariate and univariate cause-specific hazard functions and cause-specific cu-

mulative incidence functions (CIFs). Prentice et al. (1978) gives an overview

of cause-specific hazard and incidence functions in the univariate setting, and

Kalbfleisch and Prentice (2011) show how to estimate univariate cause-specific

CIFs. Details on estimating bivariate cause-specific hazard functions and CIFs

can be found in Cheng, Fine and Kosorok (2007). In order to extend our methods

to the competing risk setting, we use the cause-specific counting processes and

the martingales based on their decomposition. We show that the covariance be-

tween the cause-specific martingales or counting processes for two different events

can be written as a function of the bivariate and univariate cause-specific CIFs

and of the univariate cause-specific hazard functions. Using these results, we

show that the full covariance matrix for cause-specific martingales and counting

processes can be estimated in the presence of competing risks, which makes it

possible to estimate the corresponding principal component directions using an

eigendecomposition.

Being able to estimate the covariance and principal component directions

for martingales and counting processes in the presence of competing risks is of

particular interest in sick populations, where death acts as a competing risk

for many adverse events. We present one such example using data from the

metastatic pancreatic adenocarcinoma clinical trial (MPACT) study for patients

with pancreatic cancer. In this study, patients are followed, and there are many

types of adverse events, owing to both the cancer and the treatment. Using

a PCA of the martingales, we define medically relevant groupings of the event

types. We also show how the principal component scores can be estimated and

used as predictors in a Cox proportional hazards (PH) model. This can be used to
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remove the multicollinearity between predictors, and is analogous to a principal

components linear regression.

The rest of this paper is structured as follows. Section 2 presents the

estimation of covariance and correlation matrices for counting processes and

martingales. Section 3 defines the estimators for a survival PCA, and shows

that they are consistent and asymptotically normal. Section 4 provides the re-

sults of our simulation studies for survival PCA methods. Section 5 presents an

analysis of adverse events among patients in the MPACT study for pancreatic

cancer. Section 6 concludes the paper. Proofs for the theorems can be found in

the appendix, and additional simulation results are provided in the Supplemen-

tary Material.

2. Covariance Estimation for Bivariate Counting Processes and Count-

ing Process Martingales

2.1. Estimation of the covariance in the presence of right censoring

As in Section 1, we assume that for each subject in a population, there are p

event types of interest, and let T (j) denote the failure time for the jth event type.

We further assume that T (j) is a continuous random variable. The full vector

of failure times for a subject can be written as T = [T (1), . . . , T (p)]T . If t =

[t1, . . . , tp]
T is a vector of fixed timepoints, the joint distribution for T is defined

as FT (t) = P (T (1) ≤ t1, . . . , T
(p) ≤ tp), and the univariate distribution functions

are defined as F (j)(tj) = P (T (j) ≤ tj), for j = 1, . . . , p. We also assume that

there is an independent censoring time, C, with distribution FC(c) = P (C ≤ c).

This censoring time is the same for all event types. This assumption is reasonable

when all event types are measured for the same subject and the end of the study

or loss to follow up make it impossible to obtain any additional information

from that subject for any of the event types. The observed data for the jth

event type is the observed time, Y (j) = T (j) ∧ C, and the censoring indicator,

η(j) = I(T (j) ≤ C). Define the counting process associated with the jth event

type as N (j)(t) = I(T (j) ≤ t). Note that the value of N (j)(t) is not always

observed, unlike N (j1)(t) = N (j)(t)η(j), which we use in later sections to derive

the asymptotic properties of the estimates.

We define the cumulative hazard function for the jth event type at time t as

Λ(j)(t) =
∫ t

0 λ
(j)(s)ds, where λ(j)(t) = limδ→0(1/δ)P (t ≤ T (j) < t + δ|T (j) ≥ t).

The martingale defined by the decomposition of N (j)(t) is M (j)(t) = N (j)(t) −
Λ(j)(t ∧ T (j)).
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Define the covariance between N (j)(tj) and N (j′)(tj′) as CN (j,j′)(tj , tj′) and,

similarly, the covariance between M (j)(tj) and M (j′)(tj′) as CM (j,j′)(tj , tj′).

Because N (j)(t) may not be observed for every subject in the presence of cen-

soring, CN (j,j′)(tj , tj′) and CM (j,j′)(tj , tj′) cannot be calculated using standard

methods. Thus, we use the following equality to estimate CN (j,j′)(tj , tj′):

CN (j,j′)(tj , tj′) = S(j,j′)(tj , tj′)− S(j)(tj)S
(j′)(tj′), (2.1)

where S(j,j′)(tj , tj′) = P (T (j)>tj , T
(j′)>tj′) is the bivariate survival function and

S(j)(tj) = P (T (j) > tj) is the univariate survival function. Similarly, the following

equality from Prentice and Cai (1992) is obtained using Stieltjes integration and

repeated integration by parts, and can be used to estimate CM (j,j′)(tj , tj′):

CM (j,j′)(tj , tj′) = S(j,j′)(tj , tj′)− 1 +

∫ tj

0
S(j,j′)(s−j , tj′)λ

(j)(sj)ds

+

∫ tj′

0
S(j,j′)(tj , s

−
j′)λ

(j′)(sj′)dsj′

+

∫ tj

0

∫ tj′

0
S(s−j , s

−
j′)λ

(j)(sj)λ
(j′)(sj′)dsjdsj′ . (2.2)

This allows for consistent estimations of CN (j,j′)(tj , tj′) and CM (j,j′)(tj , tj′) by

plugging in consistent estimates of all of the quantities on the right-hand side of

Equations (2.1) and (2.2), respectively. The variances of N (j)(t) and M (j)(t) can

also be written as functions of the univariate survival functions, CN (j,j)(tj) =

S(j)(tj){1 − S(j)(tj)}, and CM (j,j)(tj) = 1 − S(j)(tj), respectively. We use the

Kaplan–Meier estimator for the univariate survival functions, and the Nelson–

Aalen estimator for the univariate cumulative hazard functions. Potential esti-

mators for the bivariate survival function are discussed in Section 1. We use the

estimator from Dabrowska (1988), because it is shown to converge weakly to a

Gaussian process (Gill, van der Laan and Wellner (1995)) and performs well in

simulations (Cheng, Fine and Kosorok (2007)).

In addition to the covariance, the correlation can be a useful measure for

describing the relationship between the martingales or counting processes of two

event types. The correlation is standardized by the product of the standard

deviations of the martingales or counting processes for the two event types.

This gives a useful way of comparing the strength of the linear association of

two martingales or counting processes across time in a way that is not influ-

enced by the changing variance of the martingales and counting processes over

time. Define RN (j,j′)(tj , tj′) = Cor{N (j)(tj), N
(j′)(tj′)} and RM (j,j′)(tj , tj′) =
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Cor{M (j)(tj),M
(j′)(tj′)}. The following equality can be used to estimate

RN (j,j′)(tj , tj′):

RN (j,j′)(tj , tj′) =
CN (j,j′)(tj , tj′)√

S(j)(tj){1− S(j)(tj)}
√
S(j′)(tj′){1− S(j′)(tj′)}

. (2.3)

Similarly, the following equality can be used to estimate RM (j,j′)(tj , tj′):

RM (j,j′)(tj , tj′) =
CM (j,j′)(tj , tj′)√

1− S(j)(tj)
√

1− S(j′)(tj′)
. (2.4)

Note that Equation (2.3) requires that 0 < S(j)(tj) < 1, for all j, and Equation

(2.4) requires that S(j)(tj) < 1, for all j, in order to be well defined. The right-

hand sides of Equations (2.3) and (2.4) can be estimated consistently using the

Kaplan–Meier estimator and estimates for CN (j,j′)(tj , tj′) and CM (j,j′)(tj , tj′),

respectively.

In addition, note that N (j)(t) contains information only on whether an

event has happened before time t, and no further information on when it hap-

pened. This means CN (j,j′)(tj , tj′) and RN (j,j′)(tj , tj′) are only useful when

0 < S(j)(tj), S
(j′)(tj) < 1. For example, when tj or tj′ = ∞, CN (j,j′)(tj , tj′) = 0

and RN (j,j′)(tj , tj′) is undefined, because either N (j)(tj) or N (j′)(tj′) will be a

degenerate random variable. As an alternative, M (j)(t) contains information both

on whether an event has happened by time t and when it happened, if it happened

before time t. If we evaluate CM (j,j′)(tj , tj′) or RM (j,j′)(tj , tj′) at tj = tj′ =∞,

they are equivalent to the covariance and correlation, respectively, between T (j)

and T (j′) after transforming both variables to have an Exponential(1) distri-

bution using a cumulative hazard transformation. That is, CM (j,j′)(∞,∞) =

Cov{Λ(j)(T (j)),Λ(j′)(T (j))} and RM (j,j′)(∞,∞) = Cor{Λ(j)(T (j)),Λ(j′)(T (j))}.
However, this cumulative hazard transformation, and other similar transforma-

tions, such as the CDF transformation, are not possible for all observations in

the presence of right censoring. This is why we focus on martingale and counting

processes, which have correlation and covariance functions indexed by time and

can be estimated in the presence of right censoring.

For a fixed set of timepoints, t = [t1, . . . , tp]
T , we define the full covariance

matrix for all p counting processes as
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CN(t) =

CN
(1,1)(t1, t1) · · · CN (1,p)(t1, tp)

...
. . .

...

CN (p,1)(tp, t1) · · · CN (p,p)(tp, tp)

 . (2.5)

Here, RN(t), CM(t), and RM(t) can be defined analogously. We denote the

estimators of each of these matrices created using the estimator for each element

of the matrix as ĈN(t), R̂N(t), ĈM(t), and R̂M(t) respectively. Note that

these estimates may not be positive semidefinite. In this case several methods

can be used to transform these matrices to be positive semidefinite or positive

definite (Rousseeuw and Molenberghs (1993)). We define C̃N(t) as the matrix

with the same eigenvectors as ĈN(t), and with all negative eigenvalues set to

some small nonnegative constant. Then, R̃N(t), C̃M(t), and R̃M(t) are defined

analogously. If we assume that the true covariance or correlation matrices are

positive definite, then it can be shown that transforming these matrices to be

positive definite does not change the limiting behavior at a fixed timepoint, using

results from Section 2.3 and Weyl’s inequality.

In the presence of censoring, the values of t for which the martingale or

counting process covariance and correlation matrices should be estimated de-

pends on the largest observed censoring or failure time for each event type. For

a given data set, define t∗j as the largest observed failure or censoring time for

the jth event type. The Kaplan–Meier estimator for the survival function for

event type j is typically not estimated beyond timepoint t∗j , because doing so

can introduce bias (Gillespie, Gillespie and Iglewicz (1992)). The Nelson–Aalen

estimator and nonparametric bivariate survival function estimators also have this

problem. For this reason, we recommend only the estimations of CM (j,j′)(tj , tj′),

RM (j,j′)(tj , tj′), CN
(j,j′)(tj , tj′), and RN (j,j′)(tj , tj′), for tj ≤ t∗j and tj′ ≤ t∗j′ .

Furthermore, when the final observed time for the jth event type is a failure time,

then Ŝ(j)(tj) = Ŝ(j,j′)(tj , tj′) = 0, for tj ≥ t∗j . This means that ĈN
(j,j′)

(tj , tj′) = 0

and R̂N
(j,j′)

(tj , tj′) is not well defined for tj ≥ tj′ . A similar problem happens

before the first observed failure for event type j when Ŝ(j)(tj) = 1. In this case,

neither R̂N
(j,j′)

(tj , tj′) nor R̂M
(j,j′)

(tj , tj′) is well defined. In general, the martin-

gale and counting process covariances and correlations should only be estimated

for timepoints between the first observed failure time and the final observed fail-

ure or censoring time for each event type.



1992 LANGWORTHY ET AL.

2.2. Estimation of the covariance in the presence of right censoring and

competing risks

In this section, we allow for the introduction of a single competing risk for all

of the noncompeting event types of interest. As a motivating example, consider

a study in which subjects are followed over time for a number of noncompeting

adverse events, and death acts as a competing risk for each of the adverse events.

As before, we assume that each subject has p noncompeting failure times, T =

[T (1), . . . , T (p)]T . Define T̈ as the failure time for the competing risk. If there is

more than one competing risk, these can be combined into a single competing

event time (Cheng, Fine and Kosorok (2007)). In the absence of censoring for

the jth event type, we observe T̈ (j) = T (j) ∧ T̈ and γ̈(j) = 2 − I(T̈ > T (j)). If

we again assume an independent censoring time, C, we observe Ÿ (j) = T̈ (j) ∧ C,

the failure indicator η̈(j) = I(T̈ (j) ≤ C), and cause and censoring-type indicator,

ε̈(j) = η̈(j)γ̈(j). This setup can be thought of as a semi-competing risk setting,

where T (j) is not observed if T̈ is observed first, but T̈ may still be observed after

T (j) is observed. Previous studies on semi-competing risks include those of Fine,

Jiang and Chappell (2001), Cheng, Fine and Kosorok (2007), and Jazić et al.

(2016). Importantly, as with Cheng, Fine and Kosorok (2007), the event types

in T do not compete with each other, and it is the association between these

noncompeting event types that we focus on in this section.

The cause-specific counting process for the jth event type and lth cause is

defined as N̈
(j)
l (t) = I(T̈ (j) ≤ t, γ̈(j) = l), for j = 1, . . . , p and l = 1, 2. Similarly to

the previous section, N̈
(j)
l is not always observed, and so we also define N̈

(j1)
l (t) =

N̈
(j)
l (t)η̈(j) for estimation purposes. The cumulative cause-specific hazard for the

jth event type and lth cause evaluated at time t is Λ̈
(j)
l (t) =

∫ t
0 λ̈

(j)
l (s)ds, where

λ̈
(j)
l (t) = limδ→0(1/δ)P (t ≤ T̈ (j) < t+ δ, γ̈(j) = l|T̈ (j) ≥ t). The martingale based

on the decomposition of N̈
(j)
l (t) is M̈

(j)
l (t) = N̈

(j)
l (t)− Λ̈

(j)
l (t∧ T̈ (j)) (Lin (1997)).

We focus on the covariance between the counting processes and the mar-

tingales for the noncompeting adverse events. That is, C̈N
(j,j′)

(tj , tj′) = Cov

{N̈ (j)
1 (tj), N̈

(j′)
1 (tj′)} and ¨CM

(j,j′)
(tj , tj′) = Cov{M̈ (j)

1 (tj), M̈
(j′)
1 (tj′)}. These

quantities cannot be estimated using standard methods in the presence of cen-

soring. The following equality can be used to estimate C̈N
(j,j′)

(tj , tj′):

C̈N
(j,j′)

(tj , tj′) = F
(j,j′)
11 (tj , tj′)− F (j)

1 (tj)F
(j′)
1 (tj′), (2.6)

where F
(j,j′)
kl (tj , tj′) = P (T̈ (j) ≤ tj , γ̈

(j) = k, T̈ (j′) ≤ tj′ , γ̈
(j′) = l) is the bivari-

ate cause-specific CIF and F
(j)
k (tj) = P (T̈ (j) ≤ tj , γ̈

(j) = k) is the univariate
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cause-specific CIF. Note that in our setup F
(j,j′)
22 (t, t) simplifies to a univariate

function, because the competing risk time is the same for event types j and j′.

For notational purposes, for a bivariate function, G(t1, t2), define G(dt1, dt2) =

G(1,1)(t1, t2)dt1dt2, G(dt1, t2) = G(1,0)(t1, t2)dt1, and G(t1, dt2) = G(0,1)(t1, t2)dt2,

where G(1,1)(t1, t2) is the second partial derivative of G(t1, t2) with respect to t1
and t2, G(1,0)(t1, t2) is the first partial derivative of G(t1, t2) with respect to t1,

and G(0,1)(t1, t2) is the first partial derivative of G(t1, t2) with respect to t2. Us-

ing the fact that P (T̈j ≤ s, γ̈j = k, T̈j′ > t) = F
(j)
k (s)− F (j,j′)

k1 (s, t)− F (j,j′)
k2 (s, t),

the following result is obtained and can be used to estimate ¨CM
(j,j′)

(t, t):

¨CM
(j,j′)

(t, t) =

Λ̈
(j)
1 (t)Λ̈

(j′)
1 (t)S̈(j,j′)(t, t) +

∫ t

0
Λ̈

(j)
1 (s)Λ̈

(j′)
1 (s)F

(j,j′)
22 (ds)

+

∫ t

0

∫ t

0
{1− Λ̈

(j)
1 (s1)}{1− Λ̈

(j′)
1 (s2)}F (j,j′)

11 (ds1, ds2)

+

∫ t

0
{1− Λ̈

(j)
1 (s)}{−Λ̈

(j′)
1 (t)}{F (j)

1 (ds)− F (j,j′)
11 (ds, t)− F (j,j′)

12 (ds, t)}

+

∫ t

0
{1− Λ̈

(j′)
1 (s)}{−Λ̈

(j)
1 (t)}{F (j′)

1 (ds)− F (j,j′)
11 (t, ds)− F (j,j′)

21 (t, ds)}

+

∫ t

0

∫ t

s1

{1− Λ̈
(j)
1 (s1)}{−Λ̈

(j′)
1 (s2)}F (j,j′)

12 (ds1, ds2)

+

∫ t

0

∫ t

s1

{1− Λ̈
(j′)
1 (s1)}{−Λ̈

(j)
1 (s2)}F (j′,j)

12 (ds1, ds2), (2.7)

where S̈(j,j′)(tj , tj′) = P (T̈ (j) > tj , T̈
(j′) > tj′). Equation (2.7) is obtained using

Stieltjes integration, similarly to how Equation (2.2) is obtained in Prentice and

Cai (1992). The bivariate cause-specific CIFs can be estimated using meth-

ods from Cheng, Fine and Kosorok (2007), and the univariate cause-specific

CIFs and cumulative hazards can be estimated using methods from Kalbfleisch

and Prentice (2011). Both the bivariate CIF and S̈(j,j′)(tj , tj′) require esti-

mating a standard noncompeting risk bivariate survival function. Here, we

use the Dabrowska estimator, as in Section 2.1. Therefore, the estimators for

C̈N
(j,j′)

(tj , tj′) and ¨CM
(j,j′)

(tj , tj′) are obtained by consistently estimating all

the elements on the right-hand side of Equations (2.6) and (2.7), respectively.

The variances of N̈ (j)(tj) and M̈ (j)(tj) can also be written as functions of the

bivariate and univariate cause-specific CIFs, C̈N
(j,j)

(tj) = F
(j)
1 (tj){1− F (j)

1 (tj)}
and ¨CM

(j,j)
(tj) = F

(j)
1 (tj), respectively.
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As in the previous section, we can extend these methods to estimate the cor-

relation between the counting processes or martingales. Define R̈N
(j,j)

(tj , tj′) =

Cor{N̈ (j)
1 (tj), N̈

(j′)
1 (tj′)} and ¨RM

(j,j)
(tj , tj′) = Cor{M̈ (j)

1 (tj), M̈
(j′)
1 (tj′)}. The

following equality is used to estimate R̈N
(j,j)

(tj , tj′):

R̈N
(j,j)

(tj , tj′) =
C̈N

(j,j′)
(tj , tj′)√

F
(j)
1 (tj){1− F (j)

1 (tj)}
√
F

(j′)
1 (tj′){1− F (j′)

1 (tj′)}
, (2.8)

and

¨RM
(j,j)

(t) =
¨CM

(j,j′)
(t)√

F
(j)
1 (t)

√
F

(j′)
1 (t)

(2.9)

can be used to estimate ¨RM
(j,j)

(tj , tj′). Equation (2.8) requires 0 < F
(j)
1 (tj) < 1,

for all j, and Equation (2.9) requires 0 < F
(j)
1 (t), for all j, in order to be well

defined. The full covariance and correlation matrices at the vector of timepoints

t, C̈N(t), R̈N(t), ¨CM(t), and ¨RM(t), can be defined analogously to CN(t),

RN(t), CM(t), and RM(t), respectively, from the previous section. The estima-

tors of these matrices created by estimating each element of the matrix are defined

as ̂̈CN(t), ̂̈RN(t), ̂̈CM(t), and ̂̈RM(t), respectively. These matrix estimates may

not be positive definite. In this case, we can define ˜̈CN(t), ˜̈RN(t), ˜̈CM(t), and˜̈RM(t) using the same techniques as in Section 2.1. As in Section 2.1, the val-

ues of t for which it is useful to estimate C̈N(t), R̈N(t), ¨CM(t), and ¨RM(t) are

meaningful depend on the specific data set. It is not useful to consider values

of tj larger than the largest observed failure, censoring, or competing risk time

for event type j, because this will introduce bias. For values of tj smaller than

the first observed event time for event type j, the estimates of the competing

risk martingale and counting process correlation matrices are not well defined,

because the estimate of F
(j)
1 (tj) is zero.

2.3. Weak convergence of the covariance and correlation estimates

In this section, we show the weak convergence properties for the estimates

of the covariance and correlation matrices for the martingales and the counting

processes. Define PF as the expectation of a random function, F, and H(j)(t) =

I(Y (j) ≥ t). Furthermore, define PnN (j1)(t) = (1/n)
∑n

i=1 I(Y
(j)
i ≤ t, η

(j)
i = 1)

and PnH(j)(t) = (1/n)
∑n

i=1 I(Y
(j)
i ≥ t), and for an arbitrary q × r matrix M ,

define the function Vec(M) as the column vector created by stacking the columns

of M . In general, we assume that Λ(j) is estimated using the Nelson–Aalen
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estimator, and S(j) is estimated using the Kaplan–Meier estimator. Theorem 1

shows the weak convergence of the estimates of the elements of CM , CN , RM ,

and RN .

Theorem 1. Assume that the estimator of S(j,j′) converges weakly, such that√
n[PnN (11)−PN (11), . . . ,PnN (p1)−PN (p1),PnH(1)−PH(1), . . . ,PnH(p)−PH(p),

Ŝ(1,2) − S(1,2), . . . , Ŝ(p−1,p) − S(p−1,p)]T  [ZN1
, . . . , ZNp

, ZH1
, . . . , ZHp

, ZS12
, . . . ,

ZSp−1,p
]T in D[0, τ1]2× · · · ×D[0, τp]

2×D[0, τ12]× · · · ×D[0, τp−1,p], where τjj′ =

(τj , τj′), (D[0, τj ], || · ||∞) is the space of univariate cadlag functions of bounded

variation in [0, τj ] equipped with a uniform norm, (D[0, τjj′ ], ||·||∞) is the space of

bivariate cadlag functions of bounded variation in [0, τjj′ ] equipped with a uniform

norm, and [ZN1
, . . . , ZNp

, ZH1
, . . . , ZHp

, ZS12
, . . . , ZSp−1,p

]T is a mean-zero tight

Gaussian process. Assume that P (Y (j) > τj , Y
(j′) > τj′) > 0 for all 1 ≤ j, j′ ≤ p,

and Λ(j) <∞ for j = 1, . . . , p. Then for any [0, t] ⊂ [0, τ ], where τ = [τ1, . . . , τp],

√
n[Vec(ĈM)−Vec(CM)](t) ZCM (2.10)
√
n[Vec(ĈN)−Vec(CN)](t) ZCN , (2.11)

where ZCM and ZCN are p2-dimensional mean-zero Gaussian processes. Further-

more, if ω = [ω1, . . . , ωp], where ωj < τj for j = 1, . . . , p and P (Y (j) ≤ ωj , Y (j′) ≤
ωj′) > 0 for all 1 ≤ j, j′ ≤ p, then for any [ω, t] ⊂ [ω, τ ],

√
n[Vec(R̂M)−Vec(RM)](t) ZRM (2.12)
√
n[Vec(R̂N)−Vec(RN)](t) ZRN , (2.13)

where ZRM and ZRN are p2-dimensional mean-zero Gaussian processes.

The proof for this theorem is presented in the Appendix, and is done by

showing that the right-hand sides of Equations (2.11) and (2.10) are Hadamard

differentiable mappings, and then applying the functional delta method (Theo-

rem 2.8 in Kosorok (2008)). The additional assumption required for Equations

(2.12) and (2.13) is needed to ensure that RM (j,j) and RN (j,j′) are well defined.

In addition, the assumption of joint weak convergence can be shown for the

Nelson–Aalen, Kaplan–Meier and Dabrowska estimators using methods similar

to those for Lemma A.6 in the appendix of Cheng, Fine and Kosorok (2007).

Next, we show the weak convergence properties for the martingale and counting

process covariance and correlation matrices in the presence of competing risks.

Define Ḧ(j)(t) = I(Ÿ (j) ≥ t). Furthermore, let PnN̈
(j1)
l and PnḦ(j) be defined

analogously to PnN (j1) and PnH(j), respectively. We assume that Λ̈
(j)
1 is es-

timated using a Nelson–Aalen-style estimator, F
(j)
1 is estimated using methods
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from Kalbfleisch and Prentice (2011), and F
(j,j′)
kl is estimated using methods from

Cheng, Fine and Kosorok (2007). This leads to Theorem 2, which shows the weak

convergence for the estimates of the elements of ¨CM , C̈N , ¨RM , and R̈N .

Theorem 2. Assume that the estimator of S̈(j,j′) converges weakly, such that√
n[PnN̈

(11)
1 −PN̈ (11)

1 , . . . ,PnN̈
(p1)
1 −PN̈ (p1)

1 ,PnḦ(1)−PḦ(1), . . . ,PnḦ(p)−PḦ(p),
ˆ̈S(1,2) − S̈(1,2), . . . , ˆ̈S(p−1,p) − S̈(p−1,p)]T  [ZN̈1

, . . . , ZN̈p
, ZḦ1

, . . . , ZḦp
, ZS̈12

, . . . ,

ZS̈p−1,p
]T in D[0, τ̈1]2× · · · ×D[0, τ̈p]

2×D[0, τ̈12]× · · · ×D[0, τ̈p−1,p], where τ̈jj′ =

(τ̈j , τ̈j′), (D[0, τ̈j ], || · ||∞) is the space of univariate cadlag functions of bounded

variation in [0, τ̈j ] equipped with a uniform norm, (D[0, τ̈jj′ ], ||·||∞) is the space of

bivariate cadlag functions of bounded variation in [0, τ̈jj′ ] equipped with a uniform

norm, and [ZN̈1
, . . . , ZN̈p

, ZḦ1
, . . . , ZḦp

, ZS̈12
, . . . , ZS̈p−1,p

]T is a mean-zero tight

Gaussian process. Assume that P (Ÿ (j) > τj , Ÿ
(j′) > τj′) > 0 for all 1 ≤ j, j′ ≤ p,

and Λ̈
(j)
k < ∞ for j = 1, . . . , p and k = 1, 2. Then, for any [0, ẗ] ⊂ [0, τ̈ ], where

τ̈ = [τ̈1, . . . , τ̈p],

√
n[Vec( ̂̈CM)−Vec( ¨CM)](t) Z ¨CM (2.14)
√
n[Vec(̂̈CN)−Vec(C̈N)](t) ZC̈N , (2.15)

where Z ¨CM and ZC̈N are p2-dimensional mean-zero Gaussian processes. In addi-

tion, if ω̈ = [ω̈1, . . . , ω̈p], where ω̈j < τ̈j for j = 1, . . . , p and P (Ÿ (j) ≤ ω̈j , Ÿ (j′) ≤
ω̈j′) > 0 for all 1 ≤ j, j′ ≤ p, then for any [ω̈, ẗ] ⊂ [ω̈, τ̈ ],

√
n[Vec( ̂̈RM)−Vec( ¨RM)](t) Z ¨RM (2.16)
√
n[Vec(̂̈RN)−Vec(R̈N)](t) ZR̈N , (2.17)

where Z ¨RM and ZR̈N are p2-dimensional mean-zero Gaussian processes.

The proof for Theorem 2 is provided in the Appendix, and uses similar meth-

ods to those of the proof for Theorem 1.

3. PCA Methods for Right-Censored Data

A PCA transforms a set of variables into linearly uncorrelated variables. For

a p×1-dimensional random vector X, the first principal component direction, v1,

is the p × 1 vector for which Var(vT1 X) is maximized, subject to the constraint

||v1||2 = 1. The jth principal component direction is the p × 1 vector for which

Var(vTj X) is maximized, subject to the constraints ||vj ||2 = 1 and vTj vj′ = 0,

for j′ < j. The principal components can be shown to be the eigenvectors of

the covariance matrix of X. The solutions are not unique if there are repeated
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eigenvalues. The principal components, vTj X, are linearly uncorrelated. The

proportion of the variance of the data explained by the jth principal component

is equal to λj/
∑p

i=1 λi, where λi is the ith eigenvalue of the covariance matrix

of X. The PCA estimates are found using the eigendecomposition of the sample

covariance matrix or the SVD of the mean-centered data.

In the presence of right censoring, it is not possible to nonparametrically

estimate the principal components of T , the p × 1-dimensional vector of

failure times. This is because it is not possible to estimate the covariance

matrix using standard methods without making strong assumptions on the form

of the joint distribution. This is true both with and without the presence of

competing risks. When there are no competing risks, instead of estimating the

principal components for T , we consider the principal components for N(t) =

[N (1)(t1), . . . , N (p)(tp)]
T or M(t) = [M (1)(t1), . . . ,M (p)(tp)]

T . The principal

directions of N(t) are the eigenvectors of CN(t), and the principal directions

of M(t) are the eigenvectors of CM(t). Similarly, in the presence of competing

risks, we consider N̈(t) = [N̈
(1)
1 (t1), . . . , N̈

(p)
1 (tp)]

T , which has principal direc-

tions equal to the eigenvectors of C̈N(t), and M̈(t) = [M̈
(1)
1 (t1), . . . , M̈

(p)
1 (tp)]

T ,

which has principal directions equal to the eigenvectors of ¨CM(t). In all cases, the

correlation matrix can be used instead of the covariance matrix to obtain a scaled

version of the PCA.

We obtain estimates for the principal directions of N(t),M(t), N̈(t), and

M̈(t) using the eigenvectors of the consistent estimates of the relevant covariance

or correlation matrices, which we derived in Section 2. Consistent estimates

of the proportion of the variance explained are based on the corresponding

eigenvalues. If we assume that the eigenvalues of CM(t), CN(t), ¨CM(t), and

C̈N(t) are unique, then the estimates of the corresponding principal components

are consistent and asymptotically normal, based on the results from Theorem

3. This is also true if we use the correlation matrices instead of the covariance

matrices.

Theorem 3. Assume that t1, . . . , tn are independent and identically distributed

(i.i.d.) realizations of the p × 1 random vector T , with joint distribution FT .

Assume that Σ is a p×p positive definite function of FT , and that Σ̂n is a

positive definite function of (t1, . . . , tn). Define vΣi (v̂Σ̂in) as the ith eigen-

vector of Σ (Σ̂), and ξΣi (ξ̂Σ̂in) as the ith eigenvalue of Σ (Σ̂). Assume that√
n[Vec(Σ̂n)− Vec(Σ)]→d N(0,ΨΣ), where ΨΣ is some positive definite matrix.

Let Ξ = diag(ξΣ1, . . . , ξΣp), Ξ̂n = diag(ξ̂Σ1n, . . . , ξ̂Σpn), V = [vΣ1, . . . , vΣp], and

V̂ = [v̂Σ̂1n, . . . , v̂Σ̂pn]. Then,
√
n[vec(V̂ )−vec(V )]→d N(0,ΨV ) and

√
n[vec(Ξ̂)−
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vec(Ξ)]→d N(0,ΨΞ), where ΨV and ΨΞ are positive semidefinite matrices.

The proof for Theorem 3 can be found in the Appendix, and follows similar

steps to the proof in Anderson (2003) for a PCA using standard estimation tech-

niques when the data have a multivariate normal distribution. When combined

with the results from Section 2, this shows that the estimates for the principal

component vectors based on C̃M(t), C̃N(t), ˜̈CM(t), and ˜̈CN(t), and the corre-

sponding correlation matrix estimates are consistent and asymptotically normal.

The principal component scores can also be estimated for those subjects who

have not been censored by time point t. For this be the case, it must be that

either C > tj or η(j) = 1, for j = 1, . . . , p. In this case we observe N(t) =

[N (1)(t1), . . . , N (p)(tp)]
T , the entire vector of failure counting processes at time

point t. Define v̂cnj(t) as the jth eigenvector of ĈN(t). Then, the estimate of the

jth principal component score is v̂cnj(t)
TN(t). In the presence of a competing

risk, a similar estimate can be made using N̈1(t) = [N̈
(1)
1 (t1), . . . , N̈

(p)
1 (tp)]

T and

the jth eigenvector of ̂̈CN(t), v̂c̈nj . When a subject is not censored by time

point t, the entire vector of martingales, M(t) = [M (1)(t1), . . . ,M (p)(tp)]
T , can

be estimated consistently by plugging in a consistent estimate of Λ(j)(tj ∧ T (j)),

for j = 1, . . . , p. If v̂cmj(t) is the jth eigenvector of ĈM(t), then the estimate

of the jth principal component score is v̂cmj(t)
T M̂(t). Similar calculations can

be performed in the case of a competing risk. In this case, the full vector of

martingales, M̈1(t) = [M̈
(1)
1 (t1), . . . , M̈

(p)
1 (tp)]

T , can be estimated by plugging in

consistent estimates of Λ̈
(j)
1 (tj ∧ T (j)), for j = 1, . . . , p. The jth eigenvector of̂̈CM(t) is defined as v̂ ¨cmj
(t), and the estimate of the jth principal component

score is v̂ĉmj(t)
T M̂1(t). All of the estimates for the principal component scores

based on the scaled counting processes or martingales can be estimated in the

same way using the eigenvectors of the correlation matrices. In Section 5, we

provide an example in which the principal component score estimates are used

as covariates in a Cox PH model. This is possible because the form of the partial

likelihood for the Cox PH model requires only the covariate values for those

subjects who have not been censored by a given timepoint. This allows us to

use principal component scores for censored time-to-event variables as covariates

in a Cox PH model, similarly to how principal component scores are used for a

principal component regression.

The estimation techniques for the PCA derived above all allow for right

censoring from loss to follow up or administrative censoring after reaching the

end of the follow-up period. For certain censoring schemes, there may be simpler

ways to estimate the principal components for M(t) and N(t). However, we
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believe that for almost all types of time-to-event data, it will be necessary to

estimate the principal components of M(t) and N(t), rather than T directly.

Estimating the principal components for T would require no censoring, implying

an unlimited follow-up time and no competing risks, both of which are rare for

data sets and studies with time-to-event data. However, one setting in which we

can simplify the estimation of the covariance or correlation of M(t) and N(t) is

that in which there is only administrative censoring and no loss to follow up. In

this case, we assume that all subjects have the same censoring time, C = c. Note

that unless all subjects have had all of the event types by time c, it is still not

possible to estimate the principal components for T . However, the estimation of

the principal components for M(t) or N(t) can be simplified for t1, . . . , tp < c.

In this case, N(t) is fully observed for each subject, because none have been

censored before the specified timepoints. Thus, the principal components can

be estimated using a standard estimation of the covariance matrix for N(t).

Similarly, M(t) involves an indicator variable that is observed for all subjects,

and a set of cumulative hazard functions that can all be estimated up to time c.

This means we can obtain an estimate of M(t) for each subject, and again use

standard covariance and correlation estimation techniques to obtain the principal

component estimates for M(t). Similarly, in the competing-risk setting, if there

is no loss to follow up and only administrative censoring at time c, it is still

not possible to estimate the principal components of T , unless every subject

has had each of the events before the censoring time, c, and before they have

the competing event. However, in this set up, the necessary indicator functions

N̈
(j)
l (t) are observed for all event types up to time c, and the necessary cause-

specific hazard functions can also be estimated up to time c. Therefore, as before,

we observe N̈(t) and can obtain estimates of M̈(t) for each subject t1, . . . , tp < c.

From here, standard covariance and correlation estimation techniques can be used

to estimate the principal components for N̈(t) and M̈(t).

A question of interest for researchers is whether a PCA based on counting pro-

cesses or martingales is preferred in practice. Although each has its advantages,

we believe that in general, a PCA based on martingales is more useful, because

it contains more information. This is because, as noted previously, M (j))(t) and

M̈ (j)(t) contain information on whether event type j has happened by timepoint

t and when it happened, assuming it happened before timepoint t. In contrast,

N (j))(t) and N̈ (j)(t) contain information only on whether event type j has hap-

pened by timepoint t.



2000 LANGWORTHY ET AL.

4. Simulation Results

Simulations were conducted to examine the estimations of the principal

components of M(t), N(t), M̈1(t), and N̈1(t), focusing on the results using the

correlation matrices. Data sets were simulated with p = 8, 16, and 32. First, we

simulate W = [W (1), . . . ,W (p)] using a multivariate normal distribution, where

W (j) has mean zero and standard deviation one, for j = 1, . . . , p. For each of

the dimensions, the covariance matrix of W is a block-diagonal matrix, with four

equal size blocks along the diagonals, of the form

ΣW =


A1 0 0 0

0 A2 0 0

0 0 A3 0

0 0 0 A4

 .
Here, A1 has all ones along the diagonal and 0.7 on all off-diagonal elements,

A2 has all ones along the diagonals and 0.4 on all off-diagonal elements, A3

has all ones along the diagonal and 0.2 on all off-diagonal elements, and A4

has all ones along the diagonal and 0.1 along all off-diagonal elements. Fur-

thermore, T = [T (1), . . . , T (p)] is defined as a transformation of W such that

T (j) ∼ Exponential(1). Specifically, T (j) = −ln{1 − Φ(W (j))}, where Φ(·) is the

CDF of a standard normal distribution.

The competing risk setting has a similar setup: W T has the same distribution

as above, [W T , Ẅ ]T has a multivariate normal distribution, and the correlation

between Ẅ and W (j) is 0.1, for j = 1, . . . , p. Furthermore, T is still defined as

the same transformation of W and T̈ = −ln{1− Φ(Ẅ )}.
In all settings, the censoring distribution is [1/4 · C1] ∼ Beta(1.5, 6.5). Sim-

ulations with the censoring distribution C2 ∼ Uniform(0, 4) are provided in the

Supplementary Material. For all settings, sample sizes of n = 200 and n = 1000

are simulated. In the setting without competing risks, the average censoring rate

for each event is 53% when using C1, regardless of p, and 25% when using C2.

In the semi-competing risk setting, the censoring rate is 34% when using C1,

and 13% when using C2. For both censoring schemes in the competing risk set-

ting, the competing and noncompeting events are equally likely to be observed.

The lower censoring rate in the competing risk setting is due to the fact that

the censoring time must come before both the noncompeting event time and the

competing event time in order for the subject to be censored.

For each data set, we estimated R̃N(t), R̃M(t), ˜̈RN(t), and ˜̈RM(t) using the

Dabrowska estimator for bivariate survival functions, the Kaplan–Meier
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estimator for univariate survival functions, and the Nelson–Aalen estimator for

all cumulative hazard functions. In order to ensure that all estimated covari-

ance and correlation matrices are positive definite we use a minimum eigenvalue

of 0.001. Matrices are estimated at t = [1, 1, 1, 1, . . .]T and t = [2, 2, 2, 2, . . .]T .

The true covariance matrices are calculated empirically by simulating a single

data set with 500,000 subjects and no censoring, which allows us to use standard

correlation and covariance estimation methods. In the competing risk setting, the

cumulative hazard necessary to calculate the martingales is estimated using the

Nelson–Aalen estimator based on the 500,000 simulated subjects. In the setting

without competing risks, the cumulative hazard is known, based on the distri-

bution of T (j). The true principal component directions are calculated as the

eigenvectors of the true correlation and covariance matrices. More information

on the true correlation matrices can be found in the Supplementary Material.

For the ith simulated data and jth principal component direction, the angle,

in radians, between the estimated direction, v̂ij , and the true direction, vj , is

calculated as Angle(v̂ij , vj) = cos−1[|v̂Tijvj |/(||v̂ij ||2 · ||vj ||2)]. For each setting, the

bias and standard deviation for the jth principal direction are calculated as the

empirical mean and standard deviation, respectively, of the angle between the

estimated direction and the true direction for all 1,000 simulated data sets. Table

1 reports the average angles and standard deviations for the principal component

directions using the eigendecompositions of R̃N(t), R̃M(t), ˜̈RN(t), and ˜̈RM(t)

for C1 and t = [1, 1, 1, 1, . . .]T . The results for t = [2, 2, 2, 2, . . .]T and C2 are

reported in the Supplementary Material. In all cases, just the first four directions

are reported, owing to the four-block structure of the underlying covariance and

correlation matrices. Table 1 shows that, as expected, the average angle decreases

as the sample size increases. Furthermore, the average angle for the first direction

actually decreases as the number of dimensions increases. This is likely due to

the increase in the leading eigenvalue for higher dimension setups. In our higher

dimension setups the leading principal component explains a larger percentage of

the overall variance than it does in lower dimension setups. In addition, because

of the nature of our block matrix setup, as the dimension of a setup increases the

difference between the first and second eigenvalues also increases. Both of these

facts likely contribute to the first eigenvector being estimated more precisely in

our simulations. The true eigenvectors and eigenvalues of the matrices can be

found in the Supplementary Material. For RM(t), when n = 1000, the average

angle between the estimated first direction and true first direction is less than 0.30

radians, which is just over 17 degrees. Even 0.58 radians, which is the highest

average angle between the true and the estimated first principal directions for
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Table 1. Average (SD) of the angle, in radians, between the true and estimated PCA
directions based on counting process and martingale correlations using the censoring
distribution C1.

t=1

No competing risks

Counting Process Martingale

n=200 n=1000 Eigenvalue n=200 n=1000 Eigenvalue

8 Dim PC 1 0.70 (0.24) 0.35 (0.12) 1.49 0.58 (0.19) 0.28 (0.09) 1.59

PC 2 0.98 (0.30) 0.56 (0.22) 1.26 0.84 (0.29) 0.43 (0.16) 1.32

PC 3 1.12 (0.29) 0.78 (0.32) 1.13 1.00 (0.32) 0.62 (0.28) 1.16

PC 4 1.15 (0.29) 0.82 (0.35) 1.06 1.04 (0.32) 0.62 (0.32) 1.08

16 Dim PC 1 0.46 (0.14) 0.21 (0.06) 2.47 0.37 (0.10) 0.17 (0.05) 2.77

PC 2 0.73 (0.25) 0.32 (0.09) 1.77 0.54 (0.18) 0.24 (0.07) 1.96

PC 3 1.03 (0.28) 0.49 (0.19) 1.37 0.82 (0.28) 0.35 (0.12) 1.47

PC 4 1.19 (0.25) 0.65 (0.26) 1.19 1.04 (0.30) 0.42 (0.15) 1.24

32 Dim PC 1 0.37 (0.08) 0.17 (0.04) 4.41 0.30 (0.07) 0.14 (0.04) 5.13

PC 2 0.55 (0.15) 0.24 (0.05) 2.79 0.42 (0.10) 0.19 (0.04) 3.25

PC 3 0.86 (0.25) 0.35 (0.07) 1.87 0.62 (0.19) 0.26 (0.05) 2.11

PC 4 1.17 (0.24) 0.50 (0.11) 1.43 0.92 (0.26) 0.34 (0.06) 1.55

With competing risk

8 Dim PC 1 0.41 (0.28) 0.15 (0.06) 2.20 0.66 (0.23) 0.35 (0.12) 1.56

PC 2 0.95 (0.38) 0.61 (0.40) 1.19 0.93 (0.30) 0.55 (0.23) 1.30

PC 3 1.15 (0.29) 0.91 (0.38) 1.02 1.07 (0.31) 0.74 (0.30) 1.15

PC 4 1.17 (0.28) 0.94 (0.37) 0.93 1.14 (0.27) 0.80 (0.34) 1.07

16 Dim PC 1 0.36 (0.23) 0.14 (0.04) 3.78 0.45 (0.14) 0.21 (0.07) 2.69

PC 2 0.83 (0.38) 0.40 (0.28) 1.85 0.68 (0.22) 0.31 (0.10) 1.90

PC 3 1.09 (0.31) 0.69 (0.35) 1.34 0.94 (0.28) 0.47 (0.18) 1.43

PC 4 1.16 (0.26) 0.77 (0.31) 1.08 1.17 (0.26) 0.62 (0.23) 1.21

32 Dim PC 1 0.35 (0.22) 0.13 (0.03) 6.99 0.37 (0.09) 0.17 (0.04) 4.93

PC 2 0.74 (0.36) 0.31 (0.19) 3.14 0.54 (0.15) 0.24 (0.06) 3.10

PC 3 0.98 (0.30) 0.54 (0.27) 1.98 0.80 (0.24) 0.36 (0.10) 2.01

PC 4 1.02 (0.24) 0.64 (0.21) 1.36 1.07 (0.24) 0.51 (0.11) 1.49

RM(t) at n = 200, is just over 33 degrees. At t = [1, 1, 1, 1, . . .]T , the estimates

based on RM(t) outperform those based on RN(t) across all sample sizes and

dimensions. This is also true when t = [2, 2, 2, 2, . . .]T and C2, as shown in

the Supplementary Material. A key reason for this is that the variance of the

counting processes is much lower than the variances of the martingales, leading

to less precise estimates of the relevant correlations.

In the competing risk setting, the angle between the true and estimated

principal directions based on ¨RM(t) are similar, but slightly worse than those

based on RM(t) in the noncompeting risk section. However, in the competing

risk setting, the average angle between the estimated and true principal directions

using R̈N(t) are lower than those using ¨RM(t). This is again likely due to the
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leading eigenvalues for R̈N(t) being larger, with more separation than RN(t).

This is because N̈
(j)
1 (t) and N̈

(j′)
1 (t) tend to be correlated, even when T (j) and

T (j′) are uncorrelated. Consider the fact that in order for N̈
(j)
1 (t) to equal one, it

must be that both T (j) ≤ t and T (j) ≤ T̈ . If T (j) and T (j′) are independent and

uncorrelated, P (T (j′) ≤ T̈ |T (j) ≤ T̈ ) is higher than P (T (j′) ≤ T̈ ). This, in turn,

means that when T (j) and T (j′) are independent, P (N̈
(j′)
1 (t) = 1|P (N̈

(j)
1 (t) = 1)

is larger than P (N̈
(j′)
1 (t) = 1), leading to a positive correlation between N̈

(j)
1 (t)

and N̈
(j′)
1 (t). The effect on M̈

(j)
1 (t) and M̈

(j′)
1 (t) is not as large, because it does

not introduce correlation between Λ̈
(j)
1 (t ∧ T̈ (j)) and Λ̈

(j′)
1 (t ∧ T̈ (j′)) to the same

degree. Because of this, in our simulation setup the separation between the first

and second eigenvalues for R̈N(t) is larger than that for ¨RM(t), which leads to

more precise estimates of the first principal direction. More information on this,

and specifically the correlation between N̈ (j)(t) and N̈ (j′)(t), even when T (j) and

T (j′) are uncorrelated, can be found in the Supplementary Material.

5. MPACT Trial

The MPACT trial was a clinical trial that ran from 2009 to 2013, in which 861

patients with metastatic pancreatic cancer were randomized to be treated with

either the standard gemcitabine, or a novel medication called paclitaxel (Von Hoff

et al. (2013)). The data for the 430 patients randomized to the standard care are

available through Project Data SphereR©.

During this trial, nine adverse events occurred in at least 50 of the patients:

abdominal pain, anemia, constipation, decreased appetite, fatigue, nausea, neu-

tropenia, thrombocytopenia, and vomiting. For each adverse event, the failure

time is the time from randomization to the first occurrence of that event. Patients

who left the study as a result of death or disease progression before having a given

adverse event are considered to have a competing event. Patients who left the

study before having a given adverse event for any other reason are considered to

be censored. Table 2 gives an overview of the nine events. The event rate is the

proportion of subjects who had the given adverse event, and the censoring rate

is the proportion of subjects who were censored. The median and mean event

times are calculated only among those who had the given event of interest. We

can see that the event rate ranges from 0.13 to 0.27, whereas the censoring rate

ranges from 0.28 to 0.35. In addition, the distribution of all nine event types is

positively skewed with the mean larger than the median, indicating that most

subjects who have a given event have it early in the study, with a few having the

event later in the study.
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Table 2. Summary statistics for the nine adverse events considered from the MPACT
trial.

Event Rate Censoring Rate Median Time (Days) Mean Time (Days)

Abdominal Pain 0.14 0.34 36 57.31

Anemia 0.26 0.29 30 59.10

Constipation 0.13 0.35 18.5 43.09

Decreased Appetite 0.14 0.33 22.5 46.50

Fatigue 0.27 0.29 19 39.96

Nausea 0.20 0.33 15 35.86

Neutropenia 0.26 0.28 23 53.43

Thrombocytopenia 0.18 0.31 19 69.68

Vomiting 0.14 0.35 24 41.95

In order to better understand the relationship between the nine adverse

events, we conduct a survival PCA for these events. We use the martingale cor-

relation matrix, because the martingales contain information on when an event

occurred and whether it occurred by a given time. Because patients are sub-

ject to both censoring and the competing risk of death or the progression of the

disease, we use the competing risk martingale correlation matrix. Here ¨RM(t)

is estimated for timepoints between t = [30, 30, . . .]T and t = [360, 360, . . .]T ,

in increments of one day. Day 360 was chosen as the final timepoint because

by that time, 420 of the 430 patients had left the study. Day 30 was chosen

as the starting point to ensure that a sufficient number of events had occurred

in order to get reasonable precision for the estimates. The principal component

loadings based on ¨RM(t) at t = [360, 360, . . .]T are presented in Table 3. Fig-

ure 1 shows the directions for the first two principal components, plotted over

time between day 30 and 360. The line type is based on the following clinically

defined groupings: constitutional (C): fatigue; gastrointestinal (G): abdominal

pain, constipation, decreased appetite, nausea, vomiting; hematologic (H): ane-

mia, neutropenia, thrombocytopenia.

Figure 1 shows that the largest loadings in the first principal component are

gastrointestinal and constitutional events, and the loadings for these events all go

in the same direction. The largest loadings for the second principal component

are the hematologic events, which also all go in the same direction. Therefore, the

first principal component is driven by the occurrence of gastrointestinal events

and fatigue, and the second principal component is driven by the occurrence of

hematologic events. This shows that the martingales for the gastrointestinal and

constitutional events tend to be correlated with the martingales for other gastroin-

testinal and constitutional events, whereas the martingales for the hematologic
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Table 3. Principal component directions at day 360 and the proportion of the variance
explained for each principal component using estimates based on a martingale correlation
matrix.

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9

Abdominal pain 0.38 -0.21 -0.18 0.03 0.05 0.73 -0.41 -0.26 -0.04

Anemia 0.09 0.42 0.56 0.51 -0.39 0.26 -0.02 0.15 -0.05

Constipation 0.25 0.26 0.36 -0.16 0.80 0.10 0.09 0.21 -0.11

Decreased appetite 0.42 -0.16 -0.42 0.33 -0.03 -0.09 0.11 0.68 -0.16

Fatigue 0.43 0.00 -0.06 0.47 0.17 -0.28 0.28 -0.53 0.34

Nausea 0.46 0.14 0.06 -0.35 -0.29 -0.21 0.12 -0.27 -0.65

Neutropenia -0.10 0.55 -0.45 -0.14 -0.06 0.40 0.54 -0.04 0.09

Thrombocytopenia -0.01 0.60 -0.34 0.09 0.10 -0.30 -0.65 -0.04 -0.01

Vomiting 0.44 0.10 0.14 -0.48 -0.27 -0.07 -0.09 0.22 0.64

Proportion Variance 0.26 0.15 0.11 0.10 0.10 0.08 0.08 0.06 0.05
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Figure 1. Principal component direction loadings from day 30 to 360 for the first two
principal components using martingale correlation matrix estimates. Line types indicate
constitutional, gastrointestinal, and hematologic event types.

events tend to be correlated with those for other hematologic events. Together,

the first two principal components explain close to 40% of the total variance,

which is consistent over time.
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Unlike the first two principal components, the third through ninth principal

components do not have a straightforward interpretation. In addition, as shown

in Table 3, the proportions of the variance explained for the third through seventh

principal components are similar. This is true for all the time points estimated,

and caused potentially crossing eigenvalues. In order to make them comparable

over time, instead of ordering the principal directions using the proportion of

the variance explained, the order was chosen to minimize the sum of the angles

between the principal directions across time. First, day 360 was chosen as a

reference date, and the principal directions were ordered in descending order of

the associated eigenvalues. We define v̂jt as the jth principal direction for t =

[t, t, . . .]T . For all days other than 360, the ordering of the principal directions was

chosen to minimize
∑9

j=1 Angle(v̂jt, v̂j360). This meant that for some days, the

ordering of the principal directions changed. A figure of the principal directions

using this method can be found in the Supplementary Material.

In addition to the simple analysis of the principal component loadings, we

used the first two principal component scores in a Cox PH model, with death

or progression of the disease as the outcome. We follow the methods described

in Section 3 to estimate the principal component scores. Because the loadings

and interpretation of the first two principal components are consistent over time,

we include the principal component scores as time-varying covariates. The first

principal component can be thought of as a measure of how often and how early

a subject had gastrointestinal and constitutional events, with those subjects who

have had more and earlier such events tending to have a higher score. Similarly,

the second principal component can be thought of as a measure of how often and

how early a subject had hematologic events. The scores for the first two principal

components were then used as time-varying covariates in a Cox PH model, with

time until death or progression of the disease as the outcome of interest. In

addition to the principal component scores, the age in years, sex, and Karnofsky

performance status were included as covariates. The Karnofsky performance

status is a numeric measure of the general wellbeing of cancer patients, and

ranges from 70 to 100 within the sample (Karnofsky et al. (1948)). One subject

was dropped from the model because of a missing Karnofsky performance status.

Table 4 gives the estimated hazard ratios for the Cox PH model. The hazard

ratio for the first principal component is estimated to be 1.62, and has a p-

value of 4.28 ×10−7. This indicates that those subjects who have had more

and earlier gastrointestinal events by a given timepoint have a higher estimated

hazard of death, holding the other covariates constant. This result is consistent

with the notion that as-yet-undocumented disease progression may manifest as
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Table 4. Estimated hazard ratios for Cox PH models, including the first two martingale
correlation PC scores.

HR P-Value
PC1 1.62 4.28E-07
PC2 0.92 0.46
Age 0.99 0.04
Sex: Male 1.01 0.94
Karnofsky Performance Status 0.98 0.02
N 429
Events 264

fatigue or gastrointestinal adverse events. This means that subjects with a higher

PC 1 score have a higher hazard for death or progression of the disease, as we

see in the results. The hazard ratio for the second principal component is less

than one, but the p-value is equal to 0.46. The estimated coefficient for PC 2

indicates that those subjects who have had more and earlier hematologic events

by a given time point have a lower hazard of death, holding other covariates

constant. However, given the p-value, we cannot rule out a null or opposite result.

PC 2 having a hazard ratio below one is consistent with hematologic adverse

events indicating greater exposure to the drug (owing to increased absorption or

decreased degradation) or a greater sensitivity to its effects. In this case, we might

expect subjects with more and earlier hematologic events to have a lower hazard of

death or progression of the disease. This is consistent with the estimated hazard

ratio for PC 2 being below one. However the p-value indicates that this may just

be due to random variation in the MPACT trial sample. As a sensitivity analysis,

we estimated the principal components using the counting process correlation

matrix instead of the martingale correlation matrix, and estimated the same

Cox PH model with the counting process correlation principal component scores.

These results led to similar conclusions, and can be found in the Supplementary

Material.

6. Conclusion

We have shown how a PCA can be defined for multivariate survival data

in the presence of censoring by using either the counting processes or the corre-

sponding martingales defined by each event type. We build on previous results for

bivariate survival data to show how to estimate the full covariance and correlation

matrices for either the counting processes or the martingales at a given time point.

In addition, we extended this to the semicompeting-risk setting, in which each of
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the event types is subject to a competing risk and an independent censoring time.

For both the standard censoring-only setting and the semicompeting-risk setting,

we show that the estimators for the martingale and counting process covariance

or correlation matrices converge to a mean-zero Gaussian process when properly

normalized.

We also show that the loadings for the principal components based on the

martingales and counting processes can be estimated consistently using the eigen-

decomposition of the corresponding covariance or correlation matrix. The cor-

responding estimates are shown to be consistent and asymptotically normal. A

subject’s principal component score can only be estimated up to the time they

are censored. However, this still allows for principal component scores to be used

as covariates in a Cox PH regression.

Our results are all for a fixed number of noncompeting failure times, p. Given

the increasing importance of “big data,” it is also of interest to consider the high-

dimensional setting where p → ∞. Here, it would be important to define a set

of conditions under which the estimates of the martingale and counting process

covariance and correlation matrices converge in probability to the corresponding

true matrices. One way to do this is to use maximal inequalities, as defined

in Kosorok (2008). This would allow us to show convergence, even as p → ∞,

as long as n grows at a fast enough rate relative to p. However, in order to

use maximal inequalities, it is necessary to sufficiently bound the rate at which

the martingale or counting process covariance and correlation estimates converge

to the true value for each pair of failure times. This is a stronger condition

than the consistency and asymptotic normality shown here. An example of the

type of bound needed can be found in Theorem 1 of Bitouzé, Laurent and Mas-

sart (1999), which defines a Dvoretzky–Kiefer–Wolfowitz-type inequality for the

Kaplan–Meier estimator. To the best of our knowledge, no similar result has been

shown for any known bivariate survival function estimator. If such a result can

be shown to hold, then the consistency of the martingale and counting process

correlation and covariance estimates in a high-dimensional setting would follow.

The usefulness of this method is shown using data from the comparator arm

of the MPACT trial for patients with pancreatic cancer. We estimate the prin-

cipal components based on the martingale correlation matrix for nine adverse

events experienced by patients in the trial, and define medically relevant group-

ings of these events. An R package that implements these methods is available

at https://github.com/blangworthy/survPCA. One area for future research is

to further consider ordering and potential changes to the principal components

over time. When two or more principal components have similar eigenvalues, the

https://github.com/blangworthy/survPCA
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ordering may change over time, owing to random noise. It may be of interest

to investigate how to identify when changes in principal component loadings and

eigenvalues over time are due to random noise or to a change in the true under-

lying covariance or correlation matrix. In addition, the described methods do

not allow for us to control for covariates. For a standard PCA, it is possible to

estimate a conditional PCA by using model residuals after regressing out a set of

shared covariates. A similar idea may be possible using a Cox PH model for each

event type using a shared set of covariates, and then estimating the PCA using

the martingale residuals. One difference between this method and the survival

PCA presented here is that the martingale residuals are typically calculated at

the event or censoring time for each subject, which can vary between subjects and

event types in a multivariate setting. However, martingales always have a zero

mean. Therefore, the covariance measures between them may give a meaningful

measure of the association between different event types.

Supplementary Material

The online Supplementary Material includes additional simulation results

and an additional analysis of the data from the MPACT trial.
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Appendix

Proof of Theorem 1. Define θC = [S(1), . . . , S(p),Λ(1), . . . ,Λ(p), S(1,2), . . . ,

S(p−1,p)]T and θ̂C = [Ŝ(1), . . . , Ŝ(p), Λ̂(1), . . . , Λ̂(p), Ŝ(1,2), . . . , Ŝ(p−1,p)]T where Ŝ(j)

is the Kaplan–Meier estimator, Λ̂(j) is the Nelson–Aalen estimator. We will as-

sume Ŝ(j,j′) is the Dabrowska estimator, but other bivariate survival estimators

are possible. Based on previously shown results for the Kaplan–Meier, Nelson–

Aalen, and Dabrowska estimators, (see Kosorok (2008) for further details on the

Kaplan–Meier and Nelson–Aalen estimators and Cheng, Fine and Kosorok (2007)

for further details on the Dabrowska estimator)

√
n[θ̂C − θC ]→ ZθC ,

where ZθC = [ZS1
, . . . , ZSp

, ZΛ1
, . . . , ZΛp

, ZS1,2
, . . . , ZSp−1,p

]T is a 2p + (p2 − p)/2
dimensional mean 0 Gaussian process. Using this set up we can show the results
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for ĈN and ĈM

1. ĈN : Consider the mapping

φCNjj′(θC) = S(j,j′) − S(j)S(j′).

Using this mapping

√
n[Vec(ĈN)−Vec(CN)] =

√
n


φCN11(θ̂C)− φCN11(θC)

φCN12(θ̂C)− φCN12(θC)
...

φCNp−1p(θ̂C)− φCNp−1p(θC)

φCNpp(θ̂C)− φCNpp(θC)

 .

The Hadamard derivative of φCNjj′(θC) in the direction of ZθC is

φ′θCCNjj′(Z) = S(j)ZS′j + S(j′)ZSj
− ZSj,j′ .

Therefore by the functional delta method, Theorem 2.8 in Kosorok (2008),√
n[Vec(ĈN) − Vec(CN)]  ZCN where ZCN is a p2 dimensional mean 0

Gaussian process.

2. ĈM : Consider the mapping

φCMjj′(θC)(tj , tj′) = S(jj′)(tj , tj′)− 1 +

∫ tj

0
S(j,j′)(s−j , tj′)λ

(j)(sj)dsj+∫ tj′

0
S(j,j′)(tj , s

−
j′)λ

(j′)(sj′)dsj′+∫ tj

0

∫ tj′

0
S(j,j′)(s−j , s

−
j′)λ

(j)(sj)λ
(j′)(sj′)dsjdsj′ . (A.1)

Using this mapping

√
n[Vec(ĈM)−Vec(CM)] =

√
n


φCM11(θ̂C)− φCM11(θC)

φCM12(θ̂C)− φCM12(θC)
...

φCMp−1p(θ̂C)− φCMp−1p(θC)

φCMpp(θ̂C)− φCMpp(θC)

 .

As with the results for ĈN , the desired result will follow if it can be shown

that φCMjj′(θC)(tj , tj′) is Hadamard differentiable in the direction of ZθC .

In order to do this we can consider each of the five parts on the right
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hand side of Equation (A.1) separately. It is straightforward to show that

S(j,j′)(tj , tj′) and−1 are hadamard differentiable.
∫ tj

0 S
(j,j′)(s−j , tj′)λ

(j)(sj)dsj

and
∫ tj′

0 S(j,j′)(tj , s
−
j′)λ

(j′)(sj′)dsj′ can both be shown to be Hadamard differ-

entiable through Lemma 12.3 from Kosorok (2008), and
∫ tj

0

∫ tj′
0 S(j,j′)(s−j , s

−
j′)

λ(j)(sj)λ
(j′)(sj′)dsjdsj′ can be shown to be Hadamard differentiable through

Lemma A5 from Cheng, Fine and Kosorok (2007). Therefore by the func-

tional delta method
√
n[Vec(ĈM)−Vec(CM)] ZCM where ZCM is a p2

dimensional mean 0 Gaussian process.

In order to show the results for R̂N and R̂M we define θR=[S(1), . . . , S(p), CN (1,1),

CN (1,2), . . . , CN (p,p), CM (1,1), CM (1,2), . . . , CM (p,p)]T and θ̂R = [Ŝ(1), . . . , Ŝ(p),

ĈN
(1,1)

, ĈN
(1,2)

, . . . , ĈN
(p,p)

, ĈM
(1,1)

, ĈM
(1,2)

, . . . , ĈM
(p,p)

]T . Then using re-

sults from above √
n[θ̂R − θR] ZθR ,

where ZθR=[ZS1
, . . . , ZSp

, ZCN1,1
, ZCN1,2

, . . . , ZCNp,p
, ZCM1,1

, ZCM1,2
, . . . , ZCMp,p

]T

is a p + 2p2 dimensional mean 0 Gaussian process. From here we can show the

results for R̂N and R̂M using the functional delta method as above.

1. R̂N Define

φRNjj′(θR) =
CN (j,j′)√

S(j)(1− S(j))
√
S(j′)(1− S(j′))

.

Using this mapping

√
n[Vec(R̂N)−Vec(RN)] =

√
n


φRN11(θ̂R)− φRN11(θR)

φRN12(θ̂R)− φRN12(θR)
...

φRNp−1p(θ̂R)− φRNp−1p(θR)

φRNpp(θ̂R)− φRNpp(θR)

 .

The Hadamard differentiability of φRNjj′(θR) in the direction of ZθR can

be shown through repeated application of the chain rule and the following

results,

• If φ1(A) = A2 then φ′A1(α) = 2Aα.

• If φ2(A) =
√
A then φ′A2(α) = α/(2

√
A).

• If φ3(A,B) = A/B then φ′AB3(α, β) = (Bα−Aβ)/B2.

Therefore by the functional delta method
√
n[Vec(R̂N)−Vec(RN)] ZRN

where ZRN is a p2 dimensional mean 0 Gaussian process.
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2. R̂M Results are similar to those for R̂N if we consider the mapping

φRMjj′(θR) =
CM (j,j′)√

1− S(j)
√

1− S(j′)
.

Proof of Theorem 2. Similar to the proof of Theorem 1 we define θ̈C = [F
(1)
1 ,

. . . , F
(p)
1 , F

(1,1)
11 , F

(1,2)
11 , . . . , F

(p,p)
11 , F

(1,1)
12 , F

(1,2)
12 , . . . , F

(p,p)
12 , F

(1,1)
21 , F

(1,2)
21 , . . . , F

(p,p)
21 ,

F
(1,1)
22 , F

(1,2)
22 , . . . , F

(p,p)
22 , Λ̈

(1)
1 , . . . , Λ̈

(j)
1 ]T and ̂̈θC =[F̂

(1)
1 , . . . , F̂

(p)
1 , F̂

(1,1)
11 , F̂

(1,2)
11 , . . . ,

F̂
(p,p)
11 , F̂

(1,1)
12 , F̂

(1,2)
12 , . . . , F̂

(p,p)
12 , F̂

(1,1)
21 , F̂

(1,2)
21 , . . . , F̂

(p,p)
21 , F̂

(1,1)
22 , F̂

(1,2)
22 , . . . , F̂

(p,p)
22 , ˆ̈Λ

(1)
1 ,

. . . , ˆ̈Λ
(j)
1 ]T . Using results from Cheng, Fine and Kosorok (2007) it can be shown

that √
n[

ˆ̈
θC − θ̈C ] Zθ̈C ,

where Zθ̈C = [ZF11
, . . . , ZF1p

, ZF1111
, ZF1112

, . . . , ZF11pp
, ZF1211

, ZF1212
, . . . , ZF12pp

,

ZF2111
, ZF2112

, . . . , ZF21pp
, ZF2211

, ZF2212
, . . . , ZF22pp

, ZΛ1
, . . . , ZΛp

]T is a 2p+ 3p2 di-

mensional mean 0 Gaussian process. The proofs for ̂̈CN and ̂̈CM follow in a

similar manner to ĈN and ĈM .

1. ̂̈CN : The relevant mapping is for ̂̈CN
φC̈Njj′(θ̈C) = F

(j,j′)
11 − F (j)

1 F
(j′)
1

Using this mapping the desired results can be shown using similar methods

to ĈN in the proof of Theorem 1 above.

2. ̂̈CM : The relevant mapping for ̂̈CM is

φ ¨CMjj′(θ̈C)(t) =

Λ̈
(j)
1 (t)Λ̈

(j′)
1 (t)S̈(j,j′)(t, t) +

∫ t

0
Λ̈

(j)
1 (s)Λ̈

(j′)
1 (s)F

(j,j′)
22 (ds)

+

∫ t

0

∫ t

0
{1− Λ̈

(j)
1 (s1)}{1− Λ̈

(j′)
1 (s2)}F (j,j′)

11 (ds1, ds2)

+

∫ t

0
{1− Λ̈

(j)
1 (s)}{−Λ̈

(j′)
1 (t)}{F (j)

1 (ds)− F (j,j′)
11 (ds, t)− F (j,j′)

12 (ds, t)}

+

∫ t

0
{1− Λ̈

(j′)
1 (s)}{−Λ̈

(j)
1 (t)}{F (j′)

1 (ds)− F (j,j′)
11 (t, ds)− F (j,j′)

21 (t, ds)}

+

∫ t

0

∫ t

s1

{1− Λ̈
(j)
1 (s1)}{−Λ̈

(j′)
1 (s2)}F (j,j′)

12 (ds1, ds2)

+

∫ t

0

∫ t

s1

{1− Λ̈
(j′)
1 (s1)}{−Λ̈

(j)
1 (s2)}F (j′,j)

12 (ds1, ds2),



SURVIVAL PCA 2013

This mapping can be shown to be Hadamard differentiable in the direction

of Zθ̈C through repeated application of Lemma 12.3 from Kosorok (2008)

and Lemma A5 from Cheng, Fine and Kosorok (2007). The results then

follow using similar methods to the proof for ĈM in Theorem 1 above.

The results for ̂̈RN and ̂̈RM can be obtained by defining θ̈R = [F
(1)
1 , . . . , F

(p)
1 ,

C̈N
(1,1)

, C̈N
(1,2)

, . . . , C̈N
(p,p)

, ¨CM
(1,1)

, ¨CM
(1,2)

, . . . , ¨CM
(p,p)

]T and
ˆ̈
θR = [F̂

(1)
1 ,

. . . , F̂
(p)
1 , ̂̈CN (1,1)

, ̂̈CN (1,2)

, . . . , ̂̈CN (p,p)

, ̂̈CM (1,1)

, ̂̈CM (1,2)

, . . . , ̂̈CM (p,p)

]T . Using

the results from above √
n[

ˆ̈
θR − θ̈R] Zθ̈R ,

where Zθ̈R = [ZF11 , . . . , ZF1p , ZC̈N11 , ZC̈N12 , . . . , ZC̈Npp , Z ¨CM11 , Z ¨CM12 , . . . ,

Z ¨CMpp]
T is a p + 2p2 dimensional mean 0 Gaussian process. The results for̂̈RN and and ̂̈RM can be shown using similar methods to R̂N and R̂M above

using the two mappings below.

1. ̂̈RN : The relevant mapping is

φR̈Njj′(θ̈R) =
C̈N

(j,j′)√
F

(j)
1 (1− F (j)

1 )

√
F

(j′)
1 (1− F (j′)

1 )

.

2. ̂̈RM : The relevant mapping is

φ ¨RMjj′(θ̈R) =
¨CM

(j,j′)√
F

(j)
1

√
F

(j′)
1

.

Proof of Theorem 3. The consistency of V̂ can be established through a

straightforward application of the Davis-Kahan Theorem, and the consistency of

Ξ̂ can be established through Weyl’s inequality. From here asymptotic normality

can be established using steps similar to Theorem 13.5.1 in Anderson (2003),

which derives the asymptotic variances of the eigenvectors and eigenvalues for

the sample covariance matrix when data have a multivariate normal distribution

and the sample covariance matrix has wishart distribution. However the steps

can be straightforwardly extended to any asymptotically normal positive definite

estimate of the covariance or correlation matrix as shown below.

Consider the transformation Q = V T Σ̂V . Then by the Delta method
√
n(Q−

Ξ)→d N(0, JV ΨΣJ
T
V ) where JV = V T ⊗V T . It can be shown that Σ̂ and Q have
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the same singular values so Q can be represented as

Q = GΞ̂GT , (A.2)

for orthogonal G. G can be uniquely defined with the constraint gii ≥ 0. Note

that Ξ̂ = V̂ T Σ̂V̂ , which together with the fact that V T V̂ is orthogonal implies

that every column of G is equal to ± the corresponding column of V T V̂ . Because

V̂ → V the constraint that gii ≥ 0 implies that G → I where I the identity

matrix. Define U =
√
n(Q − Ξ), D =

√
n(Ξ̂ − Ξ) and W =

√
n(Y − I). When

we combine Equation (A.2) with GGT = I, and the conditions gii > 0 and

ξ̂1, > . . . , > ξ̂p, we get a set of one to one functions from Q to G and Ξ̂ except on

a set of measure zero which are continuously differentiable and have well defined

inverses in the neighborhood of Ξ̂ = Ξ and G = I. Therefore by the fact that U

is asymptotically normal with mean zero, from the delta method W and D are

also asymptotically normal with mean zero. Further because the column of V̂

is equal to ± the corresponding column of V G and G → I,
√
n(V̂ − V ) has the

same limiting distribution as
√
n(V G− V ) which is asymptotically normal with

mean zero by the delta method.

In order to show that the limiting variances are functions of ΨΣ, V , and

Λ, using similar algebra from Theorem 13.5.1 in (Anderson (2003)) we get the

following equalities

U = WΛ +D + ΛW T + op(1) (A.3)

0 = W +W T + op(1) (A.4)

By combining results from Equations (A.3) and (A.4) and ignoring the op(1)

terms we obtain

wii = 0 (A.5)

dii = uii (A.6)

wij =
uij

λj − λi
for i 6= j (A.7)

The limiting distribution for W and D can be solved for using the limiting dis-

tribution of U . The limiting distribution of W can be used to find the limiting

distribution of
√
n(V̂ − V ).
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Jazić, I., Schrag, D., Sargent, D. J. and Haneuse, S. (2016). Beyond composite endpoints analy-

sis: Semicompeting risks as an underutilized framework for cancer research. JNCI: Journal

of the National Cancer Institute 108. Web: https://doi.org/10.1093/jnci/djw257.

Kalbfleisch, J. D. and Prentice, R. L. (2011). The Statistical Analysis of Failure Time Data.

John Wiley & Sons, Hoboken.

Karnofsky, D. A., Abelmann, W. H., Craver, L. F. and Burchenal, J. H. (1948). The use of the

nitrogen mustards in the palliative treatment of carcinoma. with particular reference to

bronchogenic carcinoma. Cancer 1, 634–656.

Kosorok, M. R. (2008). Introduction to Empirical Processes and Semiparametric Inference.

Springer, New York.

Lin, D. and Ying, Z. (1993). A simple nonparametric estimator of the bivariate survival function

under univariate censoring. Biometrika 80, 573–581.

Lin, D. Y. (1997). Non-parametric inference for cumulative incidence functions in competing

risks studies. Statistics in Medicine 16, 901–910.

Pearson, K. (1901). On lines and planes of closest fit to systems of points in space. The London,

Edinburgh, and Dublin Philosophical Magazine and Journal of Science 2, 559–572.

Prentice, R. L. and Cai, J. (1992). Covariance and survivor function estimation using censored

multivariate failure time data. Biometrika 79, 495–512.

Prentice, R. L., Kalbfleisch, J. D., Peterson Jr, A. V., Flournoy, N., Farewell, V. T. and Breslow,

N. E. (1978). The analysis of failure times in the presence of competing risks. Biometrics

34, 541–554.

Rousseeuw, P. J. and Molenberghs, G. (1993). Transformation of non positive semidefinite cor-

relation matrices. Communications in Statistics–Theory and Methods 22, 965–984.

van der Laan, M. J. (1993). Modified EM-estimator of the Bivariate Survival Function. Rijk-

suniversiteit Utrecht. Mathematisch Instituut.

Von Hoff, D. D., Ervin, T., Arena, F. P., Chiorean, E. G., Infante, J., Moore, M. et al. (2013).

Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. New England

Journal of Medicine 369, 1691–1703.

https://doi.org/10.1093/jnci/djw257


2016 LANGWORTHY ET AL.

Benjamin W. Langworthy

Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC

27599-7420, USA.

E-mail: langworthy.ben@gmail.com

Jianwen Cai

Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC

27599-7420, USA.

E-mail: cai@bios.unc.edu

Robert W. Corty

School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7420,

USA.

E-mail: rcorty@gmail.com

Michael R. Kosorok

Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599,

USA.

E-mail: kosorok@bios.unc.edu

Jason P. Fine

School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

E-mail: jpfine1606@yahoo.com

(Received March 2021; accepted November 2021)

mailto:langworthy.ben@gmail.com
mailto:cai@bios.unc.edu
mailto:rcorty@gmail.com
mailto:kosorok@bios.unc.edu
mailto:jpfine1606@yahoo.com

	Introduction
	Covariance Estimation for Bivariate Counting Processes and Counting Process Martingales
	Estimation of the covariance in the presence of right censoring
	Estimation of the covariance in the presence of right censoring and competing risks
	Weak convergence of the covariance and correlation estimates

	PCA Methods for Right-Censored Data
	Simulation Results
	MPACT Trial
	Conclusion

