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Abstract: In this work we apply the methodology of integral priors to deal with

Bayesian model selection in nested binomial regression models with a general link

function. These models are often used to investigate associations and risks in

epidemiological studies where one goal is to find whether or not an exposure is

a risk factor for developing a certain disease; the purpose of the current paper

is to test the effect of specific exposure factors. We formulate the problem as a

Bayesian model selection one and solve it using objective Bayes factors. To elicit

prior distributions on the regression coefficients of the binomial regression models,

we rely on the methodology of integral priors that is nearly automatic as it only

requires the specification of estimation reference priors and it does not depend on

tuning parameters or on hyperparameters.
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1. Introduction

In an epidemiological context the response variable is quite often binary.

Binomial regression models (and specially the logistic regression model) are some

of the main techniques on which analytical Epidemiology relies to estimate the

effect of an exposure on an outcome. Other link functions can be used: for

example, when the objective is to model the ratio of probabilities instead of the

ratio of odds, the logistic approximation may be inappropriate, see Greenland

(2004), and a log-binomial model in which the link function is the logarithm is

preferable.

Binomial regression models open the possibility to estimate the effect of

several risk factors and exposures on an outcome. While being able to estimate

these effects is paramount, the statistical validation of the underlying model is

equally important. Epidemiological studies very often show point estimates with

their associated confidence intervals and p-values. The null hypothesis H0 is a

null effect of some specific factors of interest. However, a delicate issue is that
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the frequentist perspective prohibits a proper quantification of the probability of

the alternative hypothesis H1.

We formulate the problem. Suppose that {(yi, xi); i = 1, . . . , n} are in-

dependent observations, where yi is a Bernoulli distributed random variable,

yi ∼ Ber(pi), xi = (xi1, . . . , xik) is a vector of covariates and X is the matrix

with rows x1, . . . , xn. The probability pi is related to the vector xi through a link

function such that g(pi) = xiβ (i = 1, . . . , n), where β = (β1, . . . , βk)
T ∈ Θ ⊆ Rk

is the vector of the regression coefficients and xik = 1, that is the intercept

is βk. For a given value k0 ∈ {1, . . . , k − 1} we want to test the hypothesis

H0 : (β1, . . . , βk0) = (0, . . . , 0) versus H1 : (β1, . . . , βk0) ̸= (0, . . . , 0).

Here we formulate the hypothesis testing (H0 versus H1) as a model selec-

tion problem from an objective Bayesian perspective, and we provide a solution

based on the respective probabilities of both hypotheses after data are observed.

Each hypothesis provides a competing model to explain the sample data. This

hypothesis testing is equivalent to the problem of selecting between the models

M1 and M2, with

M1 : yi | xi, θ1 ∼ Ber(pi), g(pi) = xiθ1 (i = 1, . . . , n)

θ1 = (θ11, . . . , θ1k)
T ∈ Θ1 ⊆ Rk, θ1j = 0 (j = 1, . . . , k0),

M2 : yi | xi, θ2 ∼ Ber(pi), g(pi) = xiθ2 (i = 1, . . . , n)

θ2 = (θ21, . . . , θ2k)
T ∈ Θ2 ⊆ Rk.

There are k − k0 unknown parameters in model M1 and k in model M2.

To set some notation, consider that under the null hypothesis the distribution

of the sample y is f1(y | θ1), and under the alternative it is f2(y | θ2). If both

models have a priori the same probability and the respective prior distributions

on the parameters are πi(θi) (i = 1, 2), then the posterior probability of the

alternative hypothesis is
m2(y)

m1(y) +m2(y)
=

B21(y)

1 +B21(y)
, (1.1)

where

mi(y) =

∫
fi(y | θi)πi(θi)dθi (i = 1, 2)

and B21(y) is the Bayes factor in favour of the alternative hypothesis,

B21(y) =

∫
f2(y | θ2)π2(θ2)dθ2∫
f1(y | θ1)π1(θ1)dθ1

.

To compute the probability (1.1) the specification of the prior distributions

{π1(θ1), π2(θ2)} on the parameters of the models to be compared is needed. In

the literature diffuse, vague, or flat priors and objective ones like the Jeffreys prior

(1961) or the reference prior (Bernardo (1979); Berger and Bernardo (1989)), are
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the methods of choice to estimate the parameters of regression models. Since the

Jeffreys prior for binomial regression models is usually a proper distribution, see

Ibrahim and Laud (1991) and Chen, Ibrahim, and Kim (2008), Bayes factors for

the Jeffreys prior are well defined and hence this prior could be used for testing

H0 versus H1. However, the Jeffreys’s prior for model M2 does not depend on the

null hypothesis and therefore does not concentrate mass around the null model,

which is a commonly desired condition (see, e.g., Casella and Moreno (2006),

pages 157, 160, Casella and Moreno (2009) and references therein). The Jeffreys

prior is not appropriate for Bayesian model selection.

The literature on objective prior distributions for testing in binomial re-

gression models is quite limited. The intrinsic prior distributions (Berger and

Pericchi (1996); Moreno, Bertolino, and Racugno (1998)) are objective priors

that have been proved to behave well in problems involving normal linear mod-

els, see Casella and Moreno (2006); Girón, Mart́ınez, Moreno, and Torres (2006)

and Moreno and Girón (2006). However, the implementation of this technique

in binomial regression models with a general link function has not been yet

developed. Recently León-Novelo, Moreno, and Casella (2012) have applied the

intrinsic priors to the problem of variable selection in the probit regression model.

They took advantage of the use of intrinsic priors for normal regression models

(Girón, Mart́ınez, Moreno, and Torres (2006)) thanks to the connection between

the probit model and the normal regression model with incomplete information.

Therefore their results only apply to probit models. An extension of Zellner’s

g-prior to generalized linear models like binomial regression models has been

developed by Sabanés and Held (2011); however, this extension needs the speci-

fication of a hyperprior distribution on the parameter g.

The purpose of the current work is to obtain the posterior probability of

the alternative hypothesis in a binomial regression model with a general link

function using an automatic prior-modelling procedure. Our proposal here is to

use integral priors. This methodology automatically provides prior distributions

that do not depend on hyperparameters, or values (or prior distributions) to be

subjectively assigned or estimated from the data, as has been shown in a number

of situations, see Cano, Kessler, and Salmerón (2007a,b) and Cano and Salmerón

(2013). Our setting is more general than the León-Novelo, Moreno, and Casella

(2012) approach since it can be directly applied to such other link functions as

the logit, the complementary log-log, the Cauchit, and the probit link. The

possibility of implementing the method based on R code provided by the authors

is an important added value.

2. Integral Priors

To compare the modelsMi : y ∼ fi(y | θi) (i = 1, 2), and to build appropriate
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objective priors, we rely on the integral priors proposed in Cano, Kessler, and

Salmerón (2007a,b) and Cano, Salmerón, and Robert (2008). These priors are

defined as the solutions {π1(θ1), π2(θ2)} of the following system of two integral

equations

π1(θ1) =

∫
πN
1 (θ1 | z1)m2(z1)dz1,

π2(θ2) =

∫
πN
2 (θ2 | z2)m1(z2)dz2,

where πN
i (θi) is an objective prior distribution used for the purpose of estimation

in model Mi,

πN
i (θi | z) ∝ fi(z | θi)πN

i (θi), mi(z) =

∫
fi(z | θi)πi(θi)dθi (i = 1, 2)

and z1 and z2 are minimal imaginary training samples. Note that π2(θ2) and

π1(θ1) enter the two integral equations through m2(z1) and m1(z2), respectively.

See Cano, Salmerón, and Robert (2008) for details and motivations. Usually z1
and z2 are training samples of the same size, although this is not a requirement

of the approach: we just need to take zi of minimal size under the condition that

πN
i (θi | zi) be a proper distribution.

The argument to derive these equations is that a priori both models are

equally valid and they are equipped with ideal unknown priors that yield to the

true marginals, being a priori neutral when comparing both models, see Cano,

Salmerón, and Robert (2008). Moreover, these equations balance each model

with respect to the other one since the prior πi(θi) is derived from the marginal

mj(zi), and therefore from πj(θj), i ̸= j, as an unknown expected posterior prior,

see Pérez and Berger (2002).

Solving this system of integral equations may be difficult. However, there

exists a numerical approach that provides simulations from the integral priors.

The system of integral equations is naturally associated with a Markov chain

with transition θ2 → θ′2 that consists of the following four steps

1. z1 ∼ f2(z1 | θ2),
2. θ1 ∼ πN

1 (θ1 | z1),
3. z2 ∼ f1(z2 | θ1),
4. θ′2 ∼ πN

2 (θ′2 | z2).

The invariant σ-finite measure associated with this Markov chain is the inte-

gral prior π2(θ2). Therefore, it can be simulated by running this Markov chain,

provided it is recurrent.
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In regression models, a training sample is associated with a set of rows of the

design matrix and therefore there exist different training samples. To overcome

this issue, in linear models, Berger and Pericchi (2004) suggested that imaginary

training samples can be defined as observations that arise by first randomly

drawing linearly independent rows from the design matrix and then generating

the corresponding observations from the regression model. (A similar perspective

is adopted in bootstrap, see Freedman (1981)).

In the context of the integral priors methodology with regression models, this

simulation of training samples can be easily adapted by first randomly drawing

linearly independent rows from the design matrix and then generating the cor-

responding observations from the regression model according to Steps 1 and 3

above. We have proceeded in this way to deal with binomial regression models.

Different training samples provide different amounts of information and this

can impact the resulting Bayes factor. In the context of intrinsic priors, see Berger

and Pericchi (2004) about this issue. However, when using our procedure, if a

simulated training sample has a high information amount in, say, Step 1, it is

compensated for in Step 3 where a new training sample is drawn conditional on

a new set of rows drawn independently of the rows previously used in Step 1.

We stress that, for this model, the associated Markov chain is necessarily

recurrent since the training samples have a finite state space and the full con-

ditional densities fi(z | θi) (i = 1, 2) are strictly positive everywhere. Therefore

the Markov chain is irreducible and hence ergodic.

3. Simulating Imaginary Training Samples and Posteriors:

The Theory

To simulate the Markov chains associated with the integral priors two actions

are required: first, we need to generate imaginary training samples (Steps 1 and

3) and second, we need to simulate from the corresponding posteriors (Steps 2

and 4). At this point we should account for the fact that training samples are

subsets of the data such that their corresponding posterior is proper. In some

binomial regression problems, if the vector ỹ = (ỹ1, . . . , ỹk) is a subset of the data

and the submatrix X̃ with rows x̃1, . . . , x̃k ofX associated to ỹ is of full rank, then

the Jeffreys prior, πN (β | X̃), and its corresponding posterior, πN (β | ỹ, X̃), are

proper distributions, as can be seen in Ibrahim and Laud (1991). Concretely, they

stated that this is the case for binary regression models, such as the logistic, the

probit and the complementary log-log regression models. Therefore it is possible

to select the imaginary training samples z1 and z2 that are needed in Steps 1 and

3 in such a way that the dimensions of these samples be k−k0 and k, respectively.

Of course, to generate these samples, we first have to select the corresponding

full rank submatrices X̃. In addition, we need to simulate from the posterior
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distribution πN (β | ỹ, X̃). In binomial regression models usually the posterior

distribution of the regression coefficients does not enjoy a simple and closed

form, which complicates the simulation. Therefore, we could use an Accept-

Reject algorithm based, for instance, on Laplace approximations to the posterior

distribution, or use MCMC steps, instead. However, we propose a more efficient

shortcut: when ỹ has dimension k, ỹi ∼ Ber(p̃i), g(p̃i) = x̃iβ (i = 1, . . . , k),

and the submatrix X̃ above is of full rank; to simulate from πN (β | ỹ, X̃) it

is equivalent to simulate from πN (p̃1, . . . , p̃k | ỹ, X̃) and then use the change of

variables β = X̃−1(g(p̃1), . . . , g(p̃k))
T. Usually Θ = Rk, although, when Θ is

restricted (e.g. when g(p) = log(p)), we can always repeat simulations until the

restriction is satisfied. The implementation of this idea is straightforward since,

whatever the link function g be, the Jeffreys prior is

πN (p̃1, . . . , p̃k | X̃) =
k∏

i=1

1

π
√

p̃i(1− p̃i)
,

and therefore the posterior distribution,

πN (p̃1, . . . , p̃k | ỹ, X̃) =

k∏
i=1

πN (p̃i | ỹ, X̃) =

k∏
i=1

Beta(p̃i | ỹi +
1

2
,
3

2
− ỹi),

is easily simulated. This shortcut is an important reason for choosing imaginary

training samples of appropriate and different sizes: z1 of size k1 = k − k0 and z2
of size k.

When working with intrinsic priors, Casella and Moreno (2009), Berger and

Pericchi (2004), Consonni, Moreno, and Venturini (2011), among others, have

found it more efficient to increase the size of the imaginary training samples

when the data come from a binomial distribution. One way to achieve this in

the case of binomial regression models, while keeping the simplicity in simulating

from the posterior distribution of the regression coefficients, is to introduce more

than a single Bernoulli variable ỹi for each selected row x̃i. Concretely, if the

vector ỹ = (ỹ1, . . . , ỹk) is of dimension qk (q being a positive integer), ỹi =

(ỹ1i , . . . , ỹ
q
i ), ỹ

t
i ∼ Ber(p̃i) (t = 1, . . . , q), and g(p̃i) = x̃iβ (i = 1, . . . , k), then

πN (p̃1, . . . , p̃k | ỹ, X̃) is
k∏

i=1

πN (p̃i | ỹ, X̃) =

k∏
i=1

Beta

(
p̃i | qŷi +

1

2
, q (1− ŷi) +

1

2

)
,

where ŷi is the mean of the components of ỹi. As Casella and Moreno (2009)

point out, the grade of concentration around the null hypothesis is controlled

by the value of q. These authors apply this augmentation data scheme to study

independence in contingency tables, using intrinsic priors such that the size of
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the imaginary training samples does not exceed the size of the data. Taking

advantage of this perspective, we propose that the number of Bernoulli vari-

ables be a discrete uniform random variable between 1 and the number of times

that each row is repeated in the matrix X. If N(x) is the number of times

that the row x appears in the matrix X and qi is a discrete uniform random

variable in {1, 2, . . . , N(x̃i)} (i = 1, . . . , k), then we can take ỹ = (ỹ1, . . . , ỹk),

ỹi = (ỹ1i , . . . , ỹ
qi
i ), ỹti ∼ Ber(p̃i) (t = 1, . . . , qi), and g(p̃i) = x̃iβ (i = 1, . . . , k). In

this case the posterior distribution πN (p̃1, . . . , p̃k | ỹ, X̃, q1, . . . , qk) is

k∏
i=1

Beta

(
p̃i | qiŷi +

1

2
, qi (1− ŷi) +

1

2

)
.

The value qiŷi can be directly generated from the binomial distribution,

avoiding the simulation of ỹti at the end of Steps 1 and 3, although not much

gain in execution time is derived from this choice.

In the case of continuous covariates usually N(x) = 1 since an increase in

the size of the imaginary training samples as described above makes no sense.

When this happens, an alternative could be to discretize the continuous covariates

using quantiles and to compute the value N(x) using the discretized version, even

though we work later with the original matrix X.

4. Running the Markov Chain and Computing the Bayes Factor:

Implementation

4.1. Algorithm generating the Markov chain

In this section, we describe in detail the algorithm used to simulate the

Markov chain with transition θ2 → θ′2 that is associated with our model selection

problem. Recall that, in order to simulate z1 and z2, we need to select full-

ranked submatrices of X. To do this, rows of X are randomly ordered and they

are consecutively chosen until we have a full rank matrix. The algorithm is as

follows.

• Step 1. Simulation of z1.

- Randomly select k1 = k − k0 rows of the matrix X: x̃1, . . . , x̃k1 , with the

condition that if R1 is the submatrix of X with these rows, and R2 is the

submatrix of R1 with columns k0 + 1, . . . , k, then |R2| ≠ 0.

- Simulate qi ∼ U{1, . . . , N1(x̃i)} (i = 1, . . . , k1), where N1(x̃i) is the number

of times that the vector with the columns k0 + 1, . . . , k of x̃i appears in

the design matrix of model M1.

- Independently simulate ỹti ∼ Ber(g−1(x̃iθ2)) (t = 1, . . . , qi; i = 1, . . . , k1),

and take z1 = (ỹ1, . . . , ỹk1) where ỹi = (ỹ1i , . . . , ỹ
qi
i ).
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• Step 2. Simulation of θ1.

- Simulate p̃i ∼ Beta (p̃i | qiŷi + 1/2, qi (1− ŷi) + 1/2) (i = 1, . . . , k1), and

compute v = R−1
2 (g(p̃1), . . . , g(p̃k1))

T. Take θ1 = (0, . . . , 0, vT)T.

• Step 3. Simulation of z2.

- Randomly select k rows of the matrix X: x̃1, . . . , x̃k, with the condition that

if S is the submatrix of X with these rows, then |S| ≠ 0.

- Simulate qi ∼ U{1, . . . , N2(x̃i)} (i = 1, . . . , k), where N2(x̃i) is the number

of times that x̃i appears in the design matrix of model M2.

- Independently simulate ỹti ∼ Ber(g−1(x̃iθ1)) (t = 1, . . . , qi; i = 1, . . . , k),

and take z2 = (ỹ1, . . . , ỹk) where ỹi = (ỹ1i , . . . , ỹ
qi
i ).

• Step 4. Simulation of θ′2.

- Simulate p̃i ∼ Beta (p̃i | qiŷi + 1/2, qi (1− ŷi) + 1/2) (i = 1, . . . , k), and

compute v = S−1(g(p̃1), . . . , g(p̃k))
T. Take θ′2 = v.

4.2. Computing the integral Bayes factor

To compute the Bayes factor

B21(y) =

∫
f2(y | θ2)π2(θ2)dθ2∫
f1(y | θ1)π1(θ1)dθ1

for the integral priors {π1(θ1), π2(θ2)}, and therefore to obtain the posterior

probability of model M2 we can exploit the simulations from both integral pri-

ors. Beginning with a value θ2 = θ02, each time the transition θ2 → θ′2 is simulated

we obtain a value for θ2 and another one for θ1. Therefore with this procedure

we obtain two Markov chains (θt1)t and (θt2)t, whose stationary probability dis-

tributions are respectively, π1(θ1) and π2(θ2). The ergodic theorem thus implies

lim
T→∞

∑T
t=1 f2(y | θt2)∑T
t=1 f1(y | θt1)

= B21(y),

and this result provides an approximation to the Bayes factor B21(y). The major

difficulty with this approach is that when the likelihood is much more concen-

trated than its corresponding integral prior, πi, most of the simulations θti enjoy

very small likelihood values, which means that the approximation procedure is

then inefficient, resulting in a high variance. This problem can be bypassed us-

ing importance sampling, but this requires the ability to numerically evaluate

the integral priors, and we are only able to simulate from these distributions. To

overcome this difficulty we resort to nonparametric density estimations based on

the Markov chains (θt1)t and (θt2)t. In the examples that we present we have used
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Table 1. Data relating receptor level and stage with 5-year breast cancer
mortality.

Stage Receptor Level Deaths Total
1 1 2 12
1 2 5 55
2 1 9 22
2 2 17 74
3 1 12 14
3 2 9 15

the kernel density estimation from the package np of R, see Hayfield and Racine

(2008). Concretely, if π̂i(θi) is the kernel density estimation of πi(θi), and Gi(θi)

is the importance density, then∫
fi(y | θi)πi(θi)dθi ≈

∫
fi(y | θi)π̂i(θi)

Gi(θi)
Gi(θi)dθi.

Then, simulating from Gi(θi) and evaluating fi(y | θi), π̂i(θi) and Gi(θi), we can

approximate the Bayes factor.

Alternatively, and still relying on kernel density estimation, the method of

Carlin and Chib (1995) can be used to approximate the Bayes factor. A rough es-

timate is also provided by Laplace type approximations as in Schwarz (1978). On

the other hand, following the original Rao-Blackwellisation argument of Gelfand

and Smith (1990), the training sample also provides the Monte Carlo approxi-

mation

πi(θi) ≈
1

T

T∑
t=1

πN
i (θi | ztj), j ̸= i,

where ztj are simulations from mj(z), which is more accurate than a nonpara-

metric estimation of the integral priors.

5. Examples

5.1. Breast cancer mortality

Table 1 reproduces a dataset on the relation of receptor level and stage

with the 5-year survival indicator, in a cohort of women with breast cancer, see

Greenland (2004).

For this example we have used the logistic link function. First, we have

compared the model with the intercept and the stage versus the full model. A

classical logistic regression analysis exhibits an association between receptor level

and mortality, with 2.51 as the estimate for the odds ratio and a p-value of 0.02.

In order to estimate the posterior probability of the full model M2, our

importance sampling proposal is based on a normal distribution centred at the
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Table 2. Estimates of the posterior probability of model M2, based on 50
Markov chains of length T and an importance sampling approximation sup-
ported by T simulations.

T = 1, 000 T = 5, 000 T = 10, 000
Mean 0.710 0.722 0.726
Standard deviation 0.020 0.010 0.008

maximum likelihood estimator θ̂i and covariance 2V̂i, where V̂i is the estimated

covariance of θ̂i. We have approximated π1(θ1) and π2(θ2) based on the outcome

of the Markov chain and kernel density estimation as described in the previous

section. For T =1,000, 5,000, and 10,000, we have run 50 Markov chains of length

T , while the importance sampling also relies on T simulations. The mean and

the standard deviation of the 50 estimates of the posterior probability of model

M2 appear in Table 2, and they show a high probability of a true association

between receptor level and mortality.

Figure 1 shows the marginal integral priors for model M2. These marginal

priors concentrate mass around zero, although the marginal prior for the coeffi-

cient of the receptor level is more concentrated. Note that the null hypothesis

is that this coefficient is equal to zero. The first row provides the priors for the

coefficient of the receptor level and the intercept, the second row corresponds to

the stage.

We have also carried out this analysis with the probit link function. We

have considered a Markov chain with T = 10,000 and 50 times the importance

sampling step, also with T = 10,000 simulations. The 50 computed values of the

posterior probability of model M2 ranged from 0.727 to 0.739, thus exhibiting a

similar answer to the one obtained with the logistic link.

In this example with four regression coefficients and a sample size of 192, the

high posterior probability of model M2 indicates that there exists an association

between mortality and receptor level, although it is not conclusive. On the

other hand, it is well-known that stage is a factor that is strongly related with

mortality. We have computed the posterior probability of the full model versus

the model that includes the intercept and the receptor level obtaining a posterior

probability of 0.999. This very large value means that we can conclude that the

most important predictor is by far the stage if we are looking for a reduced model

that satisfactorily explains the data. For comparison, in this case the odds ratios

are 3.11 and 18.84 and the p-values are 0.01485 and 5.34× 10−7, respectively.

5.2. Low birth weight

The birthwt dataset is made of 189 rows and 10 columns (see the object

birthwt from the statistical software R). Data were collected at the Baystate
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Figure 1. Non-parametric approximations to the integral priors (top, left:
receptor level; top, right: intercept; bottom, left and right: stage) based on
50,000 iterations of the associated Markov chain.

Medical Center, Springfield, Massachusetts in 1986 in order to identify which

factors contribute to an increased risk of low birth-weight babies. Information

was recorded from 189 women of whom 59 had low birth-weight infants. We have

used this dataset and the logistic link function to further illustrate the integral

priors methodology.

We first studied the association between the low birth-weight and smoking

(two levels), race (three levels), previous premature labours (two levels), and age

(five levels, defined as the right closed intervals with upper endpoints 18, 20, 25, 30

and ∞, respectively). We have considered as the reduced model the one without

the variable “smoking”. The p-value associated with the exclusion of “smoking”

is 0.014 and the corresponding estimation of the odds ratio is 2.62.

The analysis is based on 30, 000 iterations of the Markov chain and 10, 000

simulations from the importance sampling density. It yields 0.67 as the posterior

probability that smoking has an effect over the low birth-weight. Figure 2 shows

an approximation of the integral prior distributions for the nine regression coef-

ficients. The marginal integral priors for all regression coefficients under model

M2 are very similar except the one for the smoking coefficient; this prior is more

concentrated around zero that is the null hypothesis. The standard deviations for

these priors are 4.2, 5.4, 5.5, 4.9, 5.7, 5.4, 5.8, 6.2 and 5.1, respectively, showing

again that the prior on the smoking coefficient (first standard deviation) is more
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Figure 2. Non-parametric approximations to the integral prior distributions
for model M2 in the birthwt dataset example.

Table 3. Estimates of the posterior probability of the model M2 running 30
Markov chains of length T and importance sampling simulations based on
T simulations too.

T = 10, 000 T = 20, 000 T = 30, 000
Mean 0.671 0.673 0.681
Standard deviation 0.0143 0.014 0.010

concentrated while the others are similar. The behaviour of the marginal priors

in Figure 2 is what one would expect: the priors for all coefficients concentrate

mass around zero, they are symmetric around zero, and the prior standard devia-

tion for the smoking coefficient is smaller than the others. To study the stability

of these results, based on T = 10, 000, 20, 000 and 30, 000 iterations, we have run

30 Markov chains of length T , and importance sampling with T simulations too.

Mean and standard deviation for the 30 estimates of the posterior probability of

the model M2 are reported in Table 3.

6. Conclusions

Integral prior distributions have successfully been derived for an objective

Bayesian model selection analysis in binomial regression models and two logistic

regression examples have demonstrated how they can be used in practice. This

analysis has been done within the Bayesian model selection framework and it

remains completely automatic since no choice other than the estimation reference

priors for the competing models under consideration is requested. Although

unrelated with the purpose of this paper, this methodology can be applied to
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variable selection problems, using an encompassing structure as done applying

the intrinsic priors methodology in León-Novelo, Moreno, and Casella (2012).

For the sake of comparison we have applied the intrinsic prior methodology

in León-Novelo, Moreno, and Casella (2012) to our examples. For the breast

cancer example we have calculated 30 times the posterior probability of the full

model using the package varSelectIP that implements the intrinsic priors for the

probit model, see León-Novelo, Moreno, and Casella (2012). The 30 computed

values ranged from 0.607 to 0.809 with a mean of 0.703 and standard deviation

0.055, thus exhibiting a similar answer but with more variability than the integral

priors methodology, see Table 2. For the second example (low birth-weight) the

posterior probability of the full model using the package varSelectIP 30 times

ranged from 0.820 to 0.922 with a mean of 0.870 and standard deviation 0.024,

showing again that the integral priors methodology is more stable that the one

implemented with intrinsic priors; at last, the conclusion that using integral priors

is more conservative, which is a rather positive argument in medical studies where

one is trying to associate an exposure with an illness.

These features could be the consequence of the property that although inte-

gral and intrinsic priors are centred around the null hypothesis, the correspond-

ing null hypotheses are defined in different ways since, when we use the intrinsic

priors methodology developed in León-Novelo, Moreno, and Casella (2012), the

intrinsic priors for all models under consideration are centred around a null model

where all the β′s are zero except the intercept, that is the reference model for the

intrinsic methodology. Nevertheless, we should keep in mind that computations

with integral priors were made for the logistic model while those with intrinsic

priors were made for the probit model.

This work straightforwardly applies to any link function and to the compar-

ison of non-nested models. Furthermore, it can be extended to compare different

link functions. Concretely, to compare the link function g1 with the link function

g2, Steps 3 and 4 in Subsection 4.1 are the same but taking g = g2, while in Steps

1 and 2 we have to take k0 = 0, g = g1 and θ1 = v.

All the computations have been programmed in R and are freely available at

the address https://webs.um.es/dsm/miwiki/doku.php?id=investigacion.
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