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Abstract: In biomedical studies, longitudinal covariates are often used to monitor

the progress of a disease as well as survival time. However, a sparse covariate

history, possibly in combination with measurement error, adds complications to the

survival analysis. Moreover, marginal analysis of the longitudinal covariates may

incur biases due to informative dropout of the longitudinal processes when death

is the endpoint for survival time. Joint modeling of survival and longitudinal data

can gain information from both components, and has proved as an effective way to

model their relationship. A common approach is the semiparametric joint likelihood

approach of Wulfsohn and Tsiatis (1997). However, it suffers from computational

instability due to the large number of parameters involved in the likelihood and

difficulties with standard error estimation. In this article, we propose the method

of sieves and establish asymptotic consistency and the rate of convergence of the

resulting sieve maximum-likelihood estimate (SMLE), including the estimate for the

baseline hazard function. Results from numerical studies support this approach.

The proposed SMLE is applied to a liver cirrhosis study for further illustration.

Key words and phrases: Asymptotic theory, EM algorithm, joint likelihood, missing

data, Monte Carlo integration, nonparametric maximum likelihood method.

1. Introduction

In biomedical research, subjects are monitored throughout a study, and key

concerns are their progression toward some event of interest as well as the dynam-

ics of some longitudinal biomarker processes. From the statistical perspective,

the former involves survival analysis, while the latter involves longitudinal data

analysis. Recently, more attention has been drawn to jointly modeling the sur-

vival and longitudinal data to better understand the entire dynamic system.

Several issues arise when longitudinal data are collected with survival data.

The first is that survival models with time-dependent covariates need the com-

plete history of the longitudinal process from entry time to event-time. This

is not always feasible, because subjects are only measured intermittently and

measurement times can vary among subjects even when the original schedule is

regular. Although many imputation techniques, such as the Last-Value-Carry-

Forward (LVCF) employed in standard statistical packages, provide convenient
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ways to fill in the missing covariate values, most of them introduce biases in sub-

sequent survival analysis. A second issue is the termination of the longitudinal

observations by the event of interest, which occurs when a subject is either dead

or censored. The loss of longitudinal measurements caused by death triggers

informative drop-out of the longitudinal process and induces bias in the analysis

unless proper care is taken. A survey article by Tsiatis and Davidian (2004) re-

views several existing approaches to reduce or correct both biases simultaneously.

Guo, Ratcliffe and Ten Have (2004) provided a practical implementation of the

Bayesian joint modeling approach suggested by Henderson, Diggle and Dobson

(2000). A more recent review on joint models can be found in Verbeke and David-

ian (2008). The semiparametric joint likelihood approach to modeling both types

of data together emerges as the most satisfactory method. This approach, first

proposed by Wulfsohn and Tsiatis (1997), is based on nonparametric maximum

likelihood estimation (NPMLE) of the baseline hazard function, which assigns

point masses to all uncensored event-times for the baseline hazard function. This

leads to a situation where the number of parameters is of the order of the sample

size and causes both computational and theoretical challenges. Elegant asymp-

totic theory was established in Zeng and Cai (2005) and Dupuy, Grama and

Mesbah (2006) for finite dimensional parameters and the cumulative baseline

hazard function, but the resulting point mass baseline hazard estimator is not

consistent and the computational challenges remain unresolved, as described in

Section 2.

We propose here a more convenient estimator found according to the method

of sieves of Grenander (1981). The idea is to by-pass the high-dimensional MLE

approach by first restricting the parameter space to a low-dimensional “sieve

space”, which grows with the sample size and eventually densely fills the entire

parameter space. By suitably choosing the sieve space, we can reduce the number

of parameters to close to O(n1/3), where n is the sample size. This produces a

consistent baseline hazard estimation, which NPMLE does not. The dimension

reduction facilitates not only asymptotic theory but also computational stabil-

ity of the estimates and their corresponding asymptotic covariance matrix, as

illustrated by simulations and a case study.

This paper is organized as follows. In Section 2, we set up the joint model

and explain the computational and theoretical challenges of the NPMLE that

motivates the use of the method of sieves. In Section 3, we explain the method of

sieves and establish the asymptotic properties of the proposed sieve estimators.

Proofs are relegated to the Appendix. Several simulation studies in Section 4

demonstrate the validity of the asymptotic variance estimates of the sieve MLE,

and show that it circumvents the instability of the NPMLE. The method is

applied to the Primary Biliary Cirrhosis (PBC) data in Section 5.
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2. Model and Motivation

Let Ti be the time to the event of interest for the ith subject, which is subject

to a censoring time Ci. We assume that the Ti and Ci are independent in each risk

set at t, conditioning on the covariate history to time t. The observed survival

data from the i-th individual is (Vi,∆i) with Vi = min(Ti, Ci) and ∆i = 1(Ti≤Ci).

Often, the survival time relates to some covariates. We assume for simplicity

that there is only one time-dependent process Xi(t) and that the hazard function

follows the Cox model

λ(t|X̄i(t)) = λ(t) exp{βXi(t)}, (2.1)

where λ(t) is the baseline hazard function shared by all subjects and X̄i(t) =

{Xi(s) : 0 ≤ s ≤ t} indicates the entire history of the covariate process for

the i-th subject up to time t. However, Xi(t) is not observed, and instead

we observe Wi = (Wi1, . . . ,Wini)
′ at intermittently scheduled time points ti =

(ti1, ti2, . . . , tini)
′ through

Wij =Wi(tij) = Xi(tij) + ei(tij), (2.2)

where the measurement errors eij = e(tij)
iid∼ N(0, σ2e) and independent of the

time-varying covariate process Xi(t). The observed Wi is only available up to

Vi, hence tini ≤ Vi and the number of observed measurements ni for each subject

is random.

The classical partial likelihood approach is not applicable here because it

requires the complete history X̄i(t). As a resolution, a linear mixed effect model

is assumed for the unobservable covariate process Xi(t),

Xi(t) , Xi(t;bi) = b′
iψ(t), (2.3)

where ψ(t) = (ψ0(t), ψ1(t), . . . , ψq−1(t))
′ are q linearly independent basis func-

tions, and the vector of random coefficients bi = (bi0, bi1, . . . , biq−1) is indepen-

dent across subjects, and with normal distribution π(· ;α,Σb). A common choice

of the basis functions in the literature is {ψ0(t) ≡ 1, ψ1(t) = t}, aiming at cap-

turing the overall linear trend of the longitudinal process.

Combining the Cox model (2.1) for survival data and the longitudinal mea-

surements (2.2) with the random effect structure (2.3), the marginal likelihood

function of the observed data {Oi = (Vi,∆i,Wi, ti, ni); i = 1, . . . , n} is

L(θ) =
n∏

i=1

[ ∫
Rq

{ ni∏
j=1

f(Wij |bi, σ
2
e)
}
π(bi;α,Σb)f(Vi,∆i|bi, β, λ)dbi

]
, (2.4)
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where θ = {α,Σb, σ
2
e , β, λ(·)} is the model parameter and f denotes the corre-

sponding density functions for the longitudinal and survival data:

f(Wij |bi, σ
2
e) = (2πσ2e)

−1/2 exp
{
− [Wij −Xi(tij ;bi)]

2

2σ2e

}
,

f(Vi,∆i|bi, β, λ(·)) = [λ(Vi) exp{βXi(Vi;bi)}]∆i exp

[
−
∫ Vi

0
λ(t)eβXi(t;bi)dt

]
.

If we treat the random effect bi as missing data, we can write the complete

likelihood for data {Oi, bi} from the ith subject as L
(c)
i (θ) =

∏ni
j=1 f(Wij |bi, σ

2
e)

π(bi;α,Σb)f(Vi,∆i|bi, β, λ). Then the likelihood contributed by the ith subject

can be written as Li =
∫
Rk L

(c)
i (θ)dbi and the posterior density of random effects

is

h(bi|Oi, θ) =
L
(c)
i (θ)∫

Rk L
(c)
i (θ)dbi

. (2.5)

Following the classic Cox model Johansen (1983), one can take the derivative of

the logarithm of the observed likelihood (2.4) and derive self-consistent equations

for the parameters as

α =

n∑
i=1

Ei,θ(bi)

n
,

Σb =

n∑
i=1

Ei,θ[(bi − α̂)(bi − α̂)′]

n
,

σ2e =

∑n
i=1

∑mi
j=1Ei,θ[(Wij −Xi(tij))

2]∑n
i=1mi

,

λ(t) =

n∑
i=1

∆i1(Vi=t)∑n
j=1Ej,θ[exp{βXj(t)}]Yj(t)

,

where Yj(t) = 1(Vj≥t) is an indicator at risk set and Ei,θ[·] is taken with respect to

the posterior density. As for the solution of β, these expressions can be plugged

into the likelihood L(θ) to obtain the implicit pseudo profiled score equation

Sip(β) =

n∑
i=1

∆i

[
Ei,θ[Xi(Vi)]−

∑n
j=1Ej,θ[Xj(Vi) exp{βXj(Vi)}]Yj(Vi)∑n

j=1Ej,θ[exp{βXj(Vi)}]Yj(Vi)

]
. (2.6)

We note that this is not the conventional profile equation studied in Murphy and

van der Vaart (2000), because the pseduo profile score equation (2.6) does not pro-

file out the baseline hazard function in the sense that the conditional expectation

Ei,θ involves λ through (2.5). Therefore, a direct application of Newton-Raphson
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method to estimate β is not feasible and a proxy version through the expectation

conditional maximization (ECM) algorithm by Meng and Rubin (1993) is em-

ployed instead. Alternatively, one can consider a more sophisticatedly modified

version of Newton-Raphson algorithm such as the reweighted iteration procedure

of Chen (2009).

This nonparametric maximum likelihood approach Kiefer and Wolfowitz

(1956) has been successfully applied in the classic Cox model due to its spe-

cial structure of proportional hazards. This approach continues to hold in the

joint modeling setting as carried out in Wulfsohn and Tsiatis (1997). Although

the NPMLE approach leads to satisfactory estimation of the parametric compo-

nents via the EM-algorithm, it is computationally unstable and faces challenges

in estimating the standard errors. The computational challenge is attributable to

the mixture structure of the joint likelihood with the random effects that appear

in both the longitudinal and survival model. The posterior expectation in the

score functions is a nonlinear function of all parameters, so the score equations

cannot be solved explicitly, rendering no tractable profile likelihood for the sur-

vival regression parameters. Thus, unlike the partial likelihood approach in the

classic Cox model, the survival regression parameter now depends on the baseline

hazard function due to the presence of the random effects.

Another complication is that the sample Fisher information îλλ may not be

semi-positive definite unlike in the classic Cox Model. A positive probability

that îλλ is not semi-positive definite leads to the possibility of multiple local

maxima of the likelihood function. Thus the NPMLE for λ may not be unique

in the joint modeling setting and the proxy version of the EM algorithm may

fail to converge. The method of sieves provides a potential remedy by reducing

the dimensionality of the baseline hazard function: some subjects are pooled to

obtain the information for λ so that iλλ is become semi-positive definite. This

makes standard error estimation possible.

For the baseline hazard function λ(t), the corresponding NPMLE is a point

mass function with masses at all uncensored event-time points. This baseline

hazard estimation is inconsistent and, due to the large number of parameters in-

troduced by λ(t), the estimating algorithm is usually computationally unstable.

We propose to estimate λ within piecewise constant sieve space, as discussed in

details in next section. By reducing the number of parameters, we obtain compu-

tational stability and standard error estimation, as well as consistent estimation

of the baseline hazard function.

Remark. The current model can be easily extended to include additional time-

independent covariates in either survival or longitudinal submodels or both. More

complicated models add computational costs. But, under some regularity condi-

tions, the theoretical conclusions are similar.
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3. The Method of Sieves

The method of sieves as proposed in Grenander (1981) uses finite-dimensional

spaces to approximate an infinite-dimensional space. It is an attractive approach

that exploits the flexibility of a semi-parametric model while retaining the sim-

plicity of a parametric approach. There are two difficulties to be overcome: the

choice of the sieve space is crucial (Geman and Hwang (1982); Shen and Wong

(1994)) and varies from case to case; there is a sieve bias that may be hard to

nail down. Some recent work in survival analysis has successfully employed the

method of sieves, including Xue, Lam and Li (2004). To overcome the diffi-

culties in our semi-parametric setting, we need to reduce the dimension of the

nonparametric part to the extent that the estimation bias induced by the approx-

imation is negligible. This requires the asymptotic sieve bias to be of a smaller

order than the variance. As it happens the special structure of the Cox model

allows the term
∏n

i=1[λ(t)]
∆i to be taken out of the integration in the joint likeli-

hood (2.4), so that the conditional expectation Ei,θ[·] depends on λ only through∫ Vi

0 λ(t) exp{βXi(t; bi)}dt. Taking advantage of this, we show that simple piece-

wise constant hazard functions provide a simple way to track the sieve biases and

are therefore a natural choice for the sieve space.

Let the parameter space of λ be S = {λ(·)|λ ∈ C1,d, 0 < c0 ≤ λ(t), ∀t ∈
[0,∞)} for some small constant c0 and 0 < d ≤ 1. Here the space Ck,d consists

of those functions which have derivatives up to order k, where k is a nonnegative

integer, and such that the kth derivatives are Hölder continuous with exponent

d, where 0 < d ≤ 1. The technical assumption on the lower bound c0 could be

relaxed and all arguments still hold if λ is bounded from below after some fixed

time τ : 0 < c0 ≤ λ0(t), ∀t > τ . Under careful analysis, c0 may be allowed

go to 0 at a very slow rate, but we forgo such technical refinements in favor of

simplicity of presentation.

For the sieve spaces, we use a series of step functions to approximate λ. To

be precise, let 0 = t(1) < t(2) < · · · < tmn = K1 log n be a chosen partition on

[0,K1 log n] for some constant K1 > 1/c0, and let ∆̄mn = supj |t(j−1) − t(j)| be
the mesh size. Note that

exp {−Λ(K1 log n)} ≤ exp
{
−

∫ logn/c0

0
c0ds

}
= n−1,

which implies that the baseline survival probability beyond K1 log n is bounded

by n−1. We consider the sequence of sieve spaces

Smn=
{
λ|λ(·)=

mn∑
j=1

cjDj(·), c0≤cj≤K0mn, Dj(t)=1(t(j−1),t(j)](t), t∈ [0,K1 log n]
}
,

(3.1)
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where K0 is some constant and mn goes to infinity as n goes to infinity. It is easy

to see that Smn ⊆ Smn+1 and S ⊆
∪

mn=1Smn (under the topology introduced by

the L2 norm).

To simplify the notation, we hereafter suppress the subscript n in mn. We

use K and K ′ for positive constants and ε for small positive constants. Recall

that θ = {α,Σb, σ
2
e , β, λ(·)} denotes all parameters in the model in Section 2. Let

Θ−{λ} be the finite dimensional parameter space excluding the baseline hazard

function and θ−{λ} = {α,Σb, σ
2
e , β} ∈ Θ−{λ}. We take the sieve space Θm =

Θ−{λ} × Sm and denote the parameters restricted in the sieve space by θm =

{αm,Σb,m, σ
2
e,m, βm, λm(·)}.

The sieve MLE θ̂m is defined as the point which maximizes the observed

likelihood within the sieve space,

θ̂m = argmax
θm∈Θm

1

n

n∑
i=1

logLi(θm) = arg inf
θm∈Θm

1

n

n∑
i=1

log
Li(θ)

Li(θm)
.

Note that the true λ may not be in Sm for any m. Therefore, for a given n and

m, the maximum likelihood estimate that maximizes logL(θ) over Θm is not

targeting θ but rather a parameter value θ∗m ∈ Θm that is the minimizer of the

Kullback-Leibler (KL) divergence:

θ∗m = arg inf
θm∈Θm

Eθ

[
log

Li(θ)

Li(θm)

]
= arg inf

θm∈Θm

KL(θ, θm). (3.2)

Thus θ̂m minimizes K̂L(θ, θm), where K̂L(θ, θm) = (1/n)
∑n

i=1 logLi(θ)/Li(θm).

Since θ∗m may be outside the original parameter space Θ, the distance be-

tween θ∗m and θ, the sieve bias, depends on the choice of m and should be cal-

culated and controlled carefully. Typically, a larger sieve space Θm yields to a

smaller distance to θ and thus a smaller sieve bias. And, on the other hand, a

larger sieve space leads to a larger “modulus of continuity” of the centered pro-

cesses
√
n(K̂L−KL), which measures the variation between θ̂m and θ∗m (van der

Vaart and Wellner (1996, p.323)). Thus, the “bias” and “variance” should be bal-

anced to achieve a good rate of convergence. We show that the “sieve bias” in our

case can be reduced to zero to obtain
√
n consistency for the finite-dimensional

parameters θ−{λ}.

Another issue here is that, even if Θm is convex, the KL divergence is not

a metric distance but only a premetric that measures the statistical departure

between two distributions. Therefore, θ∗m may not be unique and one needs to

carefully select the sieve space. A practical suggestion is provided in Section 4.
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3.1. Sieve bias

To look at the sieve bias for the sieve space (3.1), we define a metric distance

ρ(θ, θm) between two parameter values, θ and θm as

ρ(θ, θm)2 =

∫
|λm(t)− λ(t)|2dt+ ∥θm−{λ} − θ−{λ}∥2,

where ∥ · ∥ denotes the Euclidian norm. The sieve bias is thus equal to ρ(θ, θ∗m).

To better compute the bias, we first turn to a similar but simpler situation

under the Cox regression model, in which the longitudinal covariate is time-

invariant and known. With θm=(βm, λm(·)), the corresponding KL divergence is:

KL(θ, θm) = EX,θ[log
f(T |θ)
f(T |θm)

],

≈ 1

2
EX,θ[(

λm(T )

λ(T )
− 1) + (βm − β)X(T )]2.

For piecewise constant sieve space Sm, the minimizer of KL(θ, θm) is the solution

to

ck =
Eθ[λ

−1(T )Dk]− (βm − β)EX,θ[X(T )λ−1(T )Dk]

Eθ[λ−2(T )Dk]
, k = 1, . . . ,m;

βm = β − EX{
∑m

k=1Eθ[X(T )(ckλ
−1(T )− 1)Dk]

Eθ[X2(T )]
}.

Let θ̃m = (β̃m, c̃1, . . . , c̃m) be the unique solution of this system of equations,

β̃m = β +
EX,θ[X(T )]−

∑m
k=1

Eθ[λ
−1(T )Dk(T )]EX,θ[λ

−1(T )Dk(T )X(T )]

Eθ[λ−2(T )Dk(T )]

EX,θ[X2(T )]−
∑m

k=1

E2
X,θ[λ

−1(T )Dk(T )X(T )]

Eθ[λ−2(T )Dk(T )]

,

c̃k =
Eθ[λ

−1(T )Dk(T )]

Eθ[λ−2(T )Dk(T )]
− (β̃m − β)

EX,θ[λ
−1(T )Dk(T )X(T )]

Eθ[λ−2(T )Dk(T )]
.

Given λ ∈ C(1,d), since the covariate processX(t) is bounded and smooth enough,

it can be shown that β̃m − β = O(∆̄1+d
m ) and [c̃kDk(t)/λ(t)] − 1 = O(∆̄m).

Therefore, we have

KL(θ, θ̃m) ≈ 1

2
Eθ

[ m∑
k=1

c̃kDk(T )

λ(T )
− 1

]2
= O(∆̄2

m), (3.3)

Thus the sieve bias essentially depends on the size of the mesh ∆̄m, and the

minimum KL divergence from the sieve space Θm to the true value θ is dominated

by the bias of the baseline hazard function c̃kDk(t)/λ(t)− 1.



METHOD OF SIEVES TO JOINTLY MODEL SURVIVAL AND LONGITUDINAL DATA 1189

Similar results hold in our joint modeling setting. In particular, when all

other parameters are known except for λ, the KL divergence can be calculated

as

KL(λ, λm) ≈ 1

2
Eθ

[
log

λ(T )

λm(T )
− 1 +

λm(T )

λ(T )

]
≈ 1

2
Eθ

[λm(T )

λ(T )
− 1

]2
,

so the order of the KL divergence is the same as the order of the quadratic term

Eθ[λm(T )/λ(T )− 1]2.

More generally, given an uncensored datum, we approximate the KL diver-

gence via the Taylor expansion

KL(θ, θm) = Eθ[log
Li(θ)

Li(θm)
]

= Eθ[−
∂

∂θ
logLi(θ)(θm − θ)

−1

2
(θm − θ)′

∂2

∂θ2
logLi(θ)(θm − θ) + o(∥θm − θ∥)2]

≈ 1

2
Eθ{(λm(T )− λ(T ), βm − β, θm−{β,λ} − θ−{β,λ})

[imθ,θ](λm(T )− λ(T ), βm − β, θm−{β,λ} − θ−{β,λ})
′}, (3.4)

where θ−{β,λ} = (α,Σb, σ
2
e) and i

m
θ,θ denote the sample Fisher information matrix

in the sieve space Θm evaluated at the true parameters, assumed to be uniformly

bounded away from 0 in the neighborhood of θ. (Here only one subject is con-

sidered and contributes to imθ,θ.) Furthermore, the sieve bias can be calculated

through the minimizer

(λ̃m(·)− λ(·), β̃m − β, α̃m − α, Σ̃b,m − Σb, σ̃2m − σ2)

= arg inf
θm∈Θm

Eθ{(λm(T )− λ(T ), βm − β, θm−{β,λ} − θ0−{β,λ})

[imθ,θ](λm(T )− λ(T ), βm − β, θm−{β,λ} − θ0−{β,λ})
′}. (3.5)

Theorem 1 (Sieve bias). Under the joint modeling setting, for the sieve space

Sm of (3.1), the sieve biases are

c∗kDk(t)

λ(t)
− 1 = O(∆̄m), k = 1, . . . ,m, (3.6)

β∗m − β = O(∆̄1+d
m ), (3.7)

θ∗m−{β,λ} − θ−{β,λ} = O(∆̄1+d
m ), (3.8)

for each t and

KL(θ, θ∗m) = inf
θm∈Θm

Eθ

[
log

Li(θ)

Li(θm)

]
,
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≈ 1

2
EX,θ

[ m∑
k=1

c∗kDk(T )

λ(T )
− 1

]2
. (3.9)

3.2. Strong consistency and convergence rates of the sieve MLEs

As noted, the KL divergence is not a metric and hence the sieve target θ∗m
may not be unique. Further, the sieve MLE θ̂m ∈ Θm involves high-dimensional

optimization when m is large and there may be multiple sieve MLEs. Therefore,

for a sample of size n, we define the collection of such maximum likelihood

estimators in Θm as:

Mn
m =

{
θ̂m ∈ Θm|L(θ̂m) = sup

Θm

L(θm)
}
.

The notation an ∼ bn means that there are constants 0 < K < K ′ < ∞ such

that K ≤ an/bn ≤ K ′ for all n. Following Theorem 1 and related arguments in

Geman and Hwang (1982), we now show the strong consistency of the sieve MLE

and its rate of convergence in the joint modeling setting.

Theorem 2 (Strong Consistency). For the likelihood function L(θ) as (2.4) and

a sequence of piecewise constant sieve spaces {Sm} on [0,K1 log n] as equation

(3.1). If m < n and m ∼ n1/3−ε for some small ε > 0, then

(i) sup
θ̂m∈Mn

m

ρ(θ̂m, θ) → 0 almost surely.

(ii) In particular, if m ∼ n1/4−ε for some small ε > 0, then

KL(θ,Mn
m) = sup

θ̂m∈Mn
m

KL(θ, θ̂m) = O(n−1/4+2ε),

and any sequence of θ̂m ∈Mn
m converges to θ at the rate O(n−1/8+ε) almost

surely.

This consistency of the sieve MLE utilizes the Borel-Cantelli’s Lemma and a

crude version of the maximum inequality employed in Geman and Hwang (1982).

We note that the rate of convergence O(n−1/8+ε) is too slow to be useful in the

derivation of the asymptotic distribution. However, the theorem says that even-

tually the set of sieve MLE approaches the true value θ. This strong consistency

allows us to limit our search of sieve MLEs to a compact set Bm×Sm, where Bm

is a bounded subset of RQ containing θ−{λ}.

Remark. The rate of convergence can be significantly improved if a better

approximation of ϕ
′′
(t) can be obtained (see the Appendix). It might also be

possible to improve the rate of convergence by applying inequalities for the KL
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divergence as in Wong and Shen (1995). We show in Theorem 3 and 4 that
indeed the optimal rate of convergence for the parametric component is

√
n.

3.3. Consistency of the sieve MLE in a finer sieve space

Even though strong consistency of the sieve MLE can be obtained from
Theorem 2, a finer sieve space and a refined maximum inequality from empir-
ical process theory (Pollard (1984,1990)) are needed to obtain a better rate of
convergence by restricting the maximum likelihood estimation on Bm × Sm.

Theorem 3. For Sm as (3.1), suppose that the sieve target θ∗m is an interior
point of a bounded set Bm × Sm. For m ∼ np and ε ≤ p ≤ 1− ε for some small
ε > 0,

K̂L(θ, θm)−KL(θ, θm) = Op(n
−(1−p)/2(log n)3/2), (3.10)

uniformly for θm ∈ Bm × Sm.

For a fixed m, the sieve MLE is simply an M-estimator that maximizes
−KL(θ, θm) over Bm×Sm. The uniform convergence of the maximizing function
guarantees the convergence of the M-estimator, provided the maximum point is
unique and isolated. When m increases with n at a rate faster than nε, then θ̂m
is consistent.

Corollary 1 (Consistency). Suppose θ is the isolated unique minimizer of the
Kullback-Leibler divergence, that is,

inf
θ∗: ρ(θ,θ∗)≥δ

KL(θ, θ∗) > 0.

Under the assumptions of Theorem 3,

θ̂m → θ in probability,

and consequently by Theorem 1 that θ̂m − θ∗m → 0 in probability.

Proof. We have K̂L(θ, θ̂m) ≤ K̂L(θ, θ∗m) + o(1) by the definition of the sieve
MLE for all m and n, and K̂L(θ, θ∗m) = KL(θ, θ∗m) + op(1) by choosing θ∗m in

Theorem 3. Hence K̂L(θ, θ̂m) ≤ KL(θ, θ∗m) + op(1), and

0 ≤KL(θ, θ̂m)−KL(θ, θ∗m) ≤ KL(θ, θ̂m)− K̂L(θ, θ̂m) + op(1)

≤ sup
θm

|KL(θ, θm)− K̂L(θ, θm)|+ op(1) = op(1),

by (3.10). Hence, KL(θ, θ̂m) − KL(θ, θ∗m) → 0 in probability. Furthermore,
Theorem 1 implies KL(θ, θ∗m) = O(∆̄2

m) = o(1) when mn−ε → +∞. Hence,
KL(θ, θ̂m) = op(1). By the assumptions, for every ϵ > 0, there exists a number
η > 0 such that KL(θ, θ∗) > η for every θ∗ with ρ(θ, θ∗) ≥ ϵ. Thus the event
{ρ(θ̂m, θ) ≥ ϵ} is contained in the event {KL(θ, θ̂m) > η}, the probability of
which converges to 0.
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3.4. Convergence rate of the sieve MLE

We now establish the convergence rate of the sieve estimates for each compo-

nent of θ = (θ−{λ}, λ). We show that the conventional
√
n-rate can be achieved

for estimates of the finite dimensional parameters in θ−{λ} but not for λ(·), the
sieve estimates of which converge at the slower rate n(1−p)/2 for p > 1/3. This

slower rate of convergence is due to the unbounded domain [0,K1 logn] of the

sieve spaces Sm.

Consider the score equations and the sample Fisher information matrix de-

rived from the observed log likelihood at θm ∈ Θm:

S∗
n(θm) =

n∑
i=1

∂

∂θm
logLi(θm),

imθm,θm = −
n∑

i=1

∂2

∂θ2m
logLi(θm).

Under classical regularity conditions, Corollary 3.1 implies that the score equa-

tion evaluated at the sieve MLE can be expanded as

0 ≡ S∗
n(θ̂m) = S∗

n(θ
∗
m)− imθ∗m,θ∗m

(θ̂m − θ∗m) + op(i
m
θ∗m,θ∗m

(θ̂m − θ∗m)),

⇒ θ̂m − θ∗m = (imθ∗m,θ∗m
+ op(i

m
θ∗m,θ∗m

))−1S∗
n(θ

∗
m). (3.11)

With the chosen sieve space Sm, the scores in (3.11) can be written as

S∗
n(θm) = (S∗

n(α|θ∗m), S∗
n(Σb|θ∗m), S∗

n(σ
2
e |θ∗m), S∗

n(λm|θ∗m), S∗
n(β|θ∗m))T ,

where S∗
n(λm|θ∗m) = (S∗

n(c1|θ∗m), . . . , S∗
n(cm|θ∗m)),

S∗
n(Σb|θ∗m) = (S∗

n(u1|θ∗m), . . . , S∗
n(uq(q+1)/2|θ∗m)),

and u = (u1, . . . , uq(q+1)/2)
T is the parameter involved in Σb. More specifi-

cally, letting E∗
i [·] denote the conditional expectation w.r.t. the posterior density

h(bi|Oi, θ
∗
m) with θ∗m in the sieve space Θm, we have

S∗
n(α|θ∗m) = Σ−1

b

n∑
i=1

E∗
i (bi)− nΣ−1

b α,

S∗
n(u|θ∗m) = −n

2
tr(Σ−1

b

∂Σb

∂u
) +

1

2

n∑
i=1

E∗
i [(bi − α)TΣ−1

b

∂Σb

∂u
Σ−1
b (bi − α)],

S∗
n(σ

2
e |θ∗m) = −N

2
σ2e +

n∑
i=1

mi∑
j=1

E∗
i [(Wij −Xij)

2]

2σ4e
,

S∗
n(ck|θ∗m) =

n∑
i=1

{
∆iDk(Vi)

ck
− E∗

i

[ ∫ Vi

0
Dk(s) exp{βXi(s)}ds

]}
, (3.12)
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k = 1, . . . ,m,

S∗
n(β|θ∗m) =

n∑
i=1

{
∆iE

∗
i [Xi(Vi)]−

m∑
k=1

cjE
∗
i

[ ∫ Vi

0
Dk(s)Xi(s) exp{βXi(s)}ds

]}
.

(3.13)

Note that the expectation of each score function is 0 only under θ∗m, but not under

θ. That is: Eθ[S
∗
n(θ

∗
m)] ̸= 0, when the sieve does not contain the true parameter θ.

The difficulty is the fact that the score S∗
n is derived at θ∗m, while the expectation

is taken with respect to θ. In order to derive the asymptotic properties of the sieve

MLE θ̂m based on these equations, we need to show that Eθ[S
∗
n(θ

∗
m)] approaches

0 at a fast enough rate for each parameter. The convergence rates for each

component of Eθ(S
∗
n(θ

∗
m)) to 0, and the componentwise bounds of variances for

the S∗
n(θ

∗
m) are given as follows.

Theorem 4. Suppose the true baseline function satisfies λ(t) ∈ C(1,d) with d ≥
1/2 and θ−{λ} is an interior point in Θ−{λ}. For Sm as (3.1), if m ∼ np with

1/3 < p < 1 , then for every finite-dimensional parameter ω in (α,Σb, σ
2
e , β) and

all ck,

(i) Eθ[n
−1/2S∗

n(ω|θ∗m)] = O(n1/2∆̄1+d
m ) = O(n1/2−p(1+d)(log n)1+d),

Eθ[n
−(1−p)/2S∗

n(ck|θ∗m)] = O(n(1−p)/2∆̄m) = O(n(1−3p)/2 logn).

(ii) Varθ[n
−1/2S∗

n(ω|θ∗m)] = O(1),

Varθ[n
−(1−p)/2S∗

n(ck|θ∗m)] = O(1).

(iii) Hence, n1/2(θ̂m−{λ} − θ−{λ}) → Op(1),

n(1−p)/2(λ̂m(t)− λ(t)) → OP (1),

for a fixed time point t.

Remark. Heuristically, for each ck there are only n/m subjects falling in

(tk−1, tk] to affect ck, so the variance of effective subjects should be (n/m)−1 =

n−(1−p).

3.5. Implementation of the method of sieves

The practical estimation procedure of the sieve MLE is implemented through

an ECM algorithm. In the E-step, we calculate the conditional expectations in

the scores equations using Monte Carlo expectations. The random effects, bi, are

generated from the posterior density (2.5). In the M-step, we solve the scores

(3.12) and (3.13) given the conditional expectations and the parameter estimates
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from the previous iterations. The E-step and M-step are then iterated until the

parameter estimates converge. Finally, the observed Fisher information matrix

is inverted to provide a standard error estimation.

Remarks:

1. Smaller Monte Carlo samples are used at the beginning of the iterations

to speed up the computation and larger samples are used at the later iterations to

protect the accuracy of the integrations. Finally, the observed Fisher information

matrix is inverted to provide a standard error estimation.

2. The initial estimates for ECM algorithm can be selected subjectively. We

use the two-stage procedure, described in the simulation section.

3. Theoretically, the number of sieves, m, should grow slowly as the sample

size increases, while a larger m leads to a smaller sieve bias. The best rate, ac-

cording to Theorem 4, is to allow n1/3m−1 to approach zero as slowly as possible.

In practice, we recommend partitioning the sieve space to uniformly place un-

censored even-times in each piece and trying a few different m until a clear shape

emerges for the baseline hazard function. A good starting point is m = Cn1/3

with some initial choices of C. If the estimated baseline hazard function is roughly

a constant, then a smaller number of sieves need to be considered. A larger num-

ber of sieves is often necessary. The choice of m is a challenging model selection

problem that deserves futher research.

4. Simulation Results

We set up three simulations to demonstrate the proposed method of sieves

and compare it with the NPMLE. The results based on 100 Monte Carlo samples

are reported for four different methods. The “ideal” method used the simulated

longitudinal profile X(t), unobservable in practice, and serves as the benchmark.

In the two-stage (“TS”) procedure, the longitudinal component was modeled

through a linear mixed-effects model at the first stage and the resulting prediction

for the longitudinal covariate was then employed at the next stage to model the

survival component through the partial likelihood method for the Cox model.

This two-stage procedure was included to demonstrate the bias when survival and

longitudinal components are modelled marginally. The NPMLE is similar to the

proposal in Wulfsohn and Tsiatis (1997), but we used the two-stage estimates as

the initial values and Monte Carlo integration in the E-step. The method of sieves

with different numbers of sieves and different partitions on the time interval was

investigated. The time interval was partitioned intom pieces with equal numbers

of event-times in each piece. Here, “SMLE1” used uncensored event times for

the partition rule; while “SMLE2” used all observed times (including censored

times) to partition the sieve space. In addition to reporting the Monte Carlo

standard deviation (SD), bias, and mean square (MSE) for each procedure, we
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Table 1. Estimation for β in Simulation 1: Constant Baseline with Exponen-
tial Censoring. Five methods are compared with IDEAL using the simulated,
but unobservable, profile X(t); TS denotes the two-stage method; NPMLE
denotes the nonparametric maximum likelihood estimate; and SMLE1 and
SMLE2 are two different partition rules for the sieves method.

β = −1 IDEAL TS NPMLE*
SMLE1 SMLE2

m=3 m = 5 m = 7 m = 3 m = 5 m = 7

Bias -0.008 0.196 0.095/0.059 -0.009 -0.035 -0.044 -0.006 -0.024 -0.053

SD 0.180 0.230 0.285/0.291 0.170 0.208 0.257 0.207 0.248 0.287

SE —– —– —–/—– 0.181 0.205 0.243 0.203 0.229 0.270

MSE 0.033 0.091 0.091/0.089 0.029 0.044 0.068 0.043 0.062 0.085

*: The first column uses the same rule as the other procedures in this table, with 1,000 Monte Carlo samples

to do integration and the procedure stops if the relative difference is less than 0.01; the second column uses

10,000 Monte Carlo samples with a stopping rule of 0.001.

also report the standard error (SE) of β for the sieves estimates using the sample

Fisher information matrix. The results reported in Tables 1, 3, and 5 confirm

that these SE estimates are close to the SD, providing evidence of the advantage

of the method of sieves to produce reliable SE estimates.

The sample sizes in the three simulations were 100, 100, and 400, respec-

tively. The longitudinal measurements for the ith subject were uniformly placed

at ni randomly selected time points on [0,5], where ni was randomly gener-

ated from 1 to 11. (All subjects were measured at time 0.) These time points

were further truncated by the observed event-time Vi = min(Ti, Ci) and this

resulted in an average of four longitudinal measurements per subject. Ob-

served individual longitudinal profiles followed Wi(tij) = bi0 + bi1tij + eij , where

[bi0, bi1] were independently normal with mean α and covariance (σ11, σ12, σ22) =

(1,−0.3, 0.2). The stochastic noise eij was independent of the random effects

and normal with mean 0 and variance 0.6. In the three simulations, the means

were α = (5,−2)′, (5,−1.5)′, and (4,−1)′, respectively. In addition, the survival

times were generated from the Cox model with X(t) = bi0 + bi1t, β = −1 and

λ(t) = 1, 1, exp(−4 + t), respectively, in the three simulations. Observed

event-times were subject to random censoring with three distributions: (i) expo-

nential distribution with mean 10, which led to 14% censoring rate; (ii) uniform

censoring distribution on [3, 7], which led to 16% censoring rate; (iii) min(5, Ui),

where Ui was uniformly distributed on [3.7, 5.7], which led to 46% censoring rate.

The true baseline hazard λ(t) was constant in the first two simulations, so

there was no bias in the sieve estimation, and the variance expected to decrease as

the number of sieves decreased. This was confirmed in Tables 1 and 3. The choice

of the number and location of sieves depended on the data, similar to the choice of

smoothing parameters in nonparametric smoothing methods. Theoretical results

provide the rate for the number of sieves, but the practical choice under finite
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Table 2. Estimations for Longitudinal Components in Simulation 1: Con-
stant Baseline with Exponential Censoring. The methods, TS, NPMLE,
SMLE1, and SMLE2, as described in Table 1, are compared.

α = E[(bi0, bi1)] = [5,−2] Σb = (σ11, σ12, σ13) = (1,−0.3, 0.2) σ2
e = 0.6

TS [4.971(0.114), -1.922(0.073)] [1.001(0.178), -0.322(0.095), 0.212(0.067)] 0.605(0.066)

NPMLE [4.998(0.113), -1.988(0.070)] [0.992(0.163), -0.305(0.079), 0.202(0.058)] 0.598(0.063)

m = 3 S1 [4.999(0.113), -2.001(0.070)] [0.991(0.177), -0.307(0.083), 0.209(0.057)] 0.601(0.064)

m = 7 S1 [4.999(0.113), -2.001(0.071)] [0.990(0.176), -0.305(0.082), 0.208(0.057)] 0.601(0.064)

m = 3 S2 [4.999(0.113), -2.000(0.070)] [0.992(0.177), -0.306(0.083), 0.207(0.056)] 0.601(0.063)

m = 7 S2 [4.999(0.113), -2.001(0.072)] [0.990(0.178), -0.305(0.083), 0.207(0.058)] 0.601(0.063)

S1=SMLE1; S2=SMLE2.

Table 3. Estimation for β in Simulation 2: Constant Baseline with Uniform
Censoring. The methods, IDEAL, TS, NPMLE, SMLE1, and SMLE2, as
described in Table 1, are compared.

β = −1 IDEAL TS NPMLE*
SMLE1 SMLE2

m = 3 m = 5 m = 7 m = 3 m = 5 m = 7

Bias -0.014 0.181 0.101/0.026 -0.040 -0.048 -0.061 -0.019 -0.044 -0.065

SD 0.136 0.171 0.284/0.221 0.172 0.195 0.215 0.164 0.179 0.200

SE — — — /— 0.168 0.183 0.209 0.158 0.175 0.204

MSE 0.019 0.062 0.091/0.050 0.031 0.040 0.050 0.027 0.034 0.044

*: The first column uses the same rule as the other procedures in this table, with 1,000 Monte Carlo samples

to do integration and the procedure stops if the relative difference is less than 0.01; the second column uses

10,000 Monte Carlo samples with a stopping rule of 0.001.

Table 4. Estimations for Longitudinal Components in Simulation 2: Con-
stant Baseline with Uniform Censoring. The methods, TS, NPMLE, SMLE1,
and SMLE2, as described in Table 1, are compared.

α = E[(bi0, bi1)] = [5,−1.5] Σb = (σ11, σ12, σ13) = (1,−0.3, 0.2) σ2
e = 0.6

TS [4.973(0.110), -1.438(0.060)] [1.005(0.186), -0.311(0.087), 0.196(0.053)] 0.613(0.056)

NPMLE [5.007(0.109), -1.499(0.054)] [0.988(0.182), -0.299(0.079), 0.197(0.045)] 0.600(0.053)

m = 3 S1 [5.008(0.109), -1.510(0.057)] [0.995(0.183), -0.302(0.081), 0.200(0.047)] 0.608(0.054)

m = 7 S1 [5.008(0.109), -1.512(0.057)] [0.994(0.182), -0.302(0.080), 0.201(0.047)] 0.607(0.054)

m = 3 S2 [5.007(0.109), -1.509(0.057)] [0.995(0.183), -0.301(0.081), 0.200(0.048)] 0.607(0.054)

m = 7 S2 [5.008(0.109), -1.511(0.057)] [0.994(0.182), -0.301(0.081), 0.200(0.048)] 0.608(0.054)

S1=SMLE1; S2=SMLE2

sample size needs further investigation. Different values for the number of sieve

spaces, m, were tried, though onlym = 3, 5, and 7 are presented here to illustrate

the pattern. In both tables, the SD of the sieve estimator is well estimated by the

SE and, as expected, both SD and SE increasd as the number of sieves increased.

The sieve approach was computationally more stable than the NPMLE due to

the reduced parameter space, and had the smallest Mean Square Error (MSE).

Furthermore, different censoring patterns were associated with different better

sieve choices. In the first simulation, when fewer subjects were censored at the
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Table 5. Estimation for β in Simulation 3: Gompertz Baseline with Uniform
Censoring. The methods, IDEAL, TS, NPMLE, and SMLE1, as described
in Table 1, are compared.

β = −1 IDEAL TS NPMLE
SMLE1

m = 7 m = 13 m = 19 m = 30 m = 40

Bias 0.008 0.182 0.021 -0.153 -0.078 0.049 -0.027 -0.017

SD 0.082 0.085 0.124 0.146 0.141 0.138 0.136 0.125

SE — — — 0.124 0.125 0.124 0.124 0.123

MSE 0.007 0.040 0.016 0.045 0.026 0.021 0.019 0.016

Table 6. Estimations for Longitudinal Components in Simulation 3: Gom-
pertz Baseline with Uniform Censoring. The methods, TS, NPMLE, and
SMLE1, as described in Table 1, are compared.

α = E[(bi0, bi1)] = [4,−1] Σb = (σ11, σ12, σ13) = (1,−0.3, 0.2) σ2
e = 0.6

TS [4.001(0.054), -0.982(0.027)] [0.973(0.095), -0.278(0.040), 0.177(0.021)] 0.602(0.025)

NPMLE [4.027(0.055), -1.016(0.028)] [0.973(0.096), -0.277(0.039), 0.181(0.019)] 0.598(0.024)

m = 7 S1 [4.032(0.054), -1.021(0.026)] [0.966(0.093), -0.277(0.039), 0.181(0.020)] 0.602(0.025)

m = 40 S1 [4.026(0.054), -1.015(0.026)] [0.971(0.093), -0.279(0.040), 0.183(0.020)] 0.599(0.025)

S1=SMLE1.

end of the study, “SMLE1”, which used only uncensored event-times to partition

the sieve space, performed better than “SMLE2”. This was reversed in the

second simulation, which had heavy censoring at the tail and partitioning that

used all observed times (including censored ones) as in “SMLE2” was preferred.

Generally speaking, more uncensored events at the tail provides more information

in estimating baseline hazards in the tail, and lead to more accurate estimate for

the regression coefficient β in the Cox model. The results for the longitudinal

parameters were similar for all methods, so only m = 3 and 7 for the method of

sieves are presented in the Tables 2 and 4.

The baseline hazard function in the third simulation followed a Gompertz

distribution function. The baseline hazard then increased at an exponential rate,

so we expect the empirical bias of the sieve estimates to decrease as the number

of sieves m increases. This is reflected in the simulation results reported in

Tables 5 and 6. Only “SMLE1” with m = 7, 13, 19, 30, and 40 are presented

to illustrate the pattern of the estimators. Note that, for this setting with non-

constant hazard, the sieve bias was nonzero and only negligible asymptotically.

Hence for a small number of sieves, we observed a notable difference between the

SDs and SEs. However, as the sieve biases decreased with increasing numbers

of sieves, the gap between the SD and SE got smaller. By using only one-fifth

of the parameters to model the baseline hazard function, the method of sieves

with m = 40 yielded much smaller bias than the NPMLE. Even at the cost of

increasing variance, the MSEs of the method of sieves were still comparable with
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those from the NPMLE. Moreover the method of sieves was much more stable,

and had good standard error estimates. The longitudinal parameters were also

well estimated for both NPMLE and sieve estimates (for all choices of m). In the

left panel of Figure 1, we show the averaged estimates of the cumulative hazard

functions. One can see that SMLEs with much fewer number of parameters to

model the cumulative hazard function performed as well as NPMLE. The bias of

the estimated hazard functions, shown in the right panel of Figure 1, was reduced

by increasing m as expected.

Remark.

1. The NPMLE is more sensitive to the MC integration random errors than the

sieve estimates. When the algorithm was stopped when the relative differences

was less than 0.01 and the MC sample size was 1,000, the NPMLE showed

bigger bias than the SMLEs. This was improved by increasing the accuracy

of Monte Carlo integration to sample size 104, using the stricter stopping rule

of 0.001. This reduced the biases of the NPMLE to the same range of the

SMLEs. This observation confirms that the NPMLE can be trapped at local

maxima much more frequently than the SMLEs.

2. The idea of the method of sieves is to pool subjects into each sieve piece to

stabilize the estimation of the hazard function. Ironically, the NPMLE is more

stable when the censoring rate is higher, since fewer parameters are involved

in estimating hazard function. This explains why, in the setting of Simulation

3, the NPMLE performed better than in the first two simulations.

5. Case Study: Primary Biliary Cirrhosis (PBC) Data

PBC is a rare but fatal chronic liver disease. The Mayo Clinic conducted

a double-blinded randomized trial from January, 1974 to May, 1984 to compare

the drug D-penicillamine with a placebo. The data set we used is from a follow-

up longitudinal study that had follow-up laboratory data for each patient in the

original study. In the primary PBC data set, 17 baseline measurements for 312

patients were recorded, as well as their survival information. In the survival

analysis literature using the PBC data (Murtaugh et al. (1994); Fleming and

Harringtion (1991)), only age, albumin, bilirubin, edema score, and prothrom-

bin time have been detected as significant predictors. There was no significant

treatment effect. For illustration purposes, we consider only the most significant

longitudinal covariate, albumin.

We excluded four subjects with extreme measurement values as outliers.

The number of measurements per patient ranges from 1 to 16 with a median

of 5. The profiles of ten randomly selected subjects are plotted in Figure 2,

where the observed albumin are connected by solid lines and death (censoring
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Figure 1. Cumulative Hazard Functions in Simulation 3.

Left panel: Red: true cumulative hazard function; solid green curve: NPMLE, dot-dash green curve: 95%

Confidence Band for NPMLE; dash black curve: SMLE (with m = 40), dotted black curve: 95% Confidence

Band for SMLE;

Right panel: SMLE of cumulative hazard functions with m = 7(dotted green line), m = 19(dot-dash blue line)

and m = 40(dash black line) as well as the true cumulative hazard function (solid red line).

time) is indicated by a cross (diamond) on the x-axis. Albumin was centered

by subtracting its mean to avoid numerical instability. The centered albumin

was modeled by a linear mixed effect model as described in Section 2. Observed

survival times were from 0.12 to 12 years. About 55% of the patients were right

censored or still alive at the end of the study.
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Figure 2. 10 Random Selected Observed Albumin Profiles.

Table 7. Estimation of Survival Regression Coefficient β for four methods:
LVCF denotes the last-value-carry-forward method, and TS, NPMLE, and
SMLE1 are described in Table 1.

LVCF TS NPMLE*
SMLE1

m = 5 m = 6 m = 7 m = 8 m = 15 m = 30

β̂ -2.70 -3.10 -3.70/-3.63 -3.69 -3.66 -3.64 -3.63 -3.74 -3.74

SE — — —/— 0.33 0.33 0.32 0.32 0.34 0.34

*: The first column uses the same rule as the other procedures in this table, with 1,000 Monte Carlo samples

to do integration and the procedure stops if the relative difference is less than 0.01; the second column uses

10,000 Monte Carlo samples with a stopping rule of 0.001.

We compared the sieve estimation with the LVCF (last value carry forward)

procedure, two-stage estimation, and the NPMLE. Both NPMLE and sieve esti-

mation used two-stage estimates as the initial values. Results for the regression

coefficients are reported in Table 7 with SE (standard errors) for the sieve es-

timates. The LVCF and two-stage procedures had substantial smaller covariate

effects compared the sieve estimates. This was also observed in the simulations

where the LVCF and two-stage estimates were biased toward 0. Further, Figure

3 reveals that the NPMLE led to different estimates, −3.70 and −3.63, under
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Figure 3. Iterations of NPMLE and SMLE.

Solid lines are iterations for NPMLE and dash lines are for SMLE when m = 8. The thicker (solid blue

and dash green) lines stem from 1,000 Monte Carlo samples for integration and the convergence criteria of

a relative difference of 0.01; the thinner lines stem from 10,000 Monte Carlo samples for integration with

iteration stopped when the relative difference is less than 0.001.

convergence criteria 0.01 and 0.001, respectively, but the SMLE led to essentially

the same estimate, −3.64. This illustrates the vulnerability of the NPMLE to

get trapped in a local maximum. On the other hand, the NPMLE took fewer

iterations than the SMLE to converge.

For the method of sieves, we used uncensored event-time to partition the sieve

space (SMLE1) because less censoring happened at the end of the study, and the

results were similar if one adopted SMLE2. Several different choices of sieves

were investigated. The results were similar for the longitudinal component and

we report the longitudinal mean fit and cumulative hazard function estimation in

Figure 4 with m = 8. We conclude that higher albumin is significantly associated

with lower mortality rate, with the mortality rate decrease exp−3.63 = 0.027 (95%

CI [0.014, 0.050]) when albumin increases one unit.

6. Discussion

We propose the method of sieves for practical applications of the joint model

and established asymptotic consistency and normality for the proposed SMLE.

Compared with the traditional NPMLE, the proposed sieve estimator is compu-

tationally stable, provides a consistent baseline hazard estimation, and leads to

good standard error estimation.
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Figure 4. Longitudinal Mean and Cumulative Hazard Function Estimations.

Left panel: Observed longitudinal measurements (dots) with estimated longitudinal means by two-stage

method(green dot-dash line), NPMLE (solid red line) and SMLE for m = 8 (thick blue dash line) with

the 95% confidence band (blue dotted line).

Right panel: Estimated cumulative hazard functions from NPMLE (solid red line) and SMLE for m = 8 (thick

blue dash line) with the 95% confidence band (blue dotted line).
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Although we have focused on one time-dependent covariate process, the

model can be extended to include additional time-independent or time-dependent

covariates at the cost of additional computation. The sieve score equations need

to be derived for the additional covariates in the same spirit of equations (3.12)

and (3.13). The expectations may involve more random coefficients if additional

time-dependent covariates are used. In summary, this generation does not affect

the theoretical development much, but the notation is messier. In principle, the

method of sieves can be applied to any semiparametric survival model, but the

justification of the asymptotic properties depends on the characteristics of the

likelihood functions (or loss functions) and the choice of sieve spaces. Therefore,

the derivations and proofs often vary case by case when the method of sieves is

used.
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Appendix

Notation List

• Survival observations for the ith subject:

Ti: event-time; Ci: Censoring time.

Vi = min(Ti, Ci): observed event-time; ∆i = 1(Ti≤Ci): censoring indicator;

• Longitudinal observations for the ith subject:

Wi: Observed longitudinal measurements

Xi(t;bi) = Xi(t): unobserved longitudinal process

bi: q-dimensional vector to model individual random effects

ni: the number of observed longitudinal measurements.

• Oi = (Vi,∆i,Wi, ti, ni): Observed data for the ith subject

• Θ−{λ} ⊂ RQ: finite dimensional parameter space excluding the baseline haz-

ard function

• Θ = Θ−{λ} × S: true parameter space

• Sm: sieve space for baseline hazard functions

• Θm = Θ−{λ} × Sm: sieve parameter space

• θ = {β, λ(·), α,Σb, σ
2
e} = {θ−{λ}, λ(·)}: true parameters

• θ∗m = {β∗m, λ∗m(·), α∗
m,Σ

∗
b,m, σ

2∗
e,m} : target of the sieve estimate which is the

projection of the true parameters onto the sieve space Sm
• θ̂m: sieve MLE in Θm

• θm = {βm, λm(·), αm,Σb,m, σ
2
e,m}: an arbitrary parameter in the sieve space

Θm

• θ̃m: the minimizer of the quadratic approximation of KL divergence
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• imθ,θ: the sample Fisher information matrix in the sieve space Θm evaluated at
the true parameters

• imθ∗m,θ∗m
: the sample Fisher information matrix in the sieve space Θm evaluated

at the sieve target θ∗m.
• iθ,θ: the sample Fisher information matrix in the space of NPMLE evaluated
at the true parameter θ.

Proof of Theorem 1. With the approximation (3.4) of KL divergence in the
joint modeling setting, we have

∂

∂c∗k
KL(θ, θ∗) =

∂

∂c∗k
Eθ

[
log

Li(θ)

Li(θ∗)

]
;

≈ EX,θ{(Dk(t), 0, 0, . . . , 0)[i
m
θ,θ](λ

∗
m(t)− λ(t), β∗m − β, θ∗m−{β,λ} − θ−{β,λ})

′}.

The sample Fisher information imθ,θ in the sieve space Θm, contributed by subject
i, is

iβ,β = Ei,θm

(∫ Vi

0

m∑
j=1

cjDj(t)X
2
i (t) exp{βXi(t)}dt

)
−Vari,θm

(
∆iXi(Vi)−

∫ Vi

0

m∑
j=1

cjDj(t)Xi(t) exp{βXi(t)}dt
)
,

iβ,ck = Ei,θm

(∫ Vi

0
Dk(t)Xi(t) exp{βXi(t)}dt

)
+Covi,θm

(∫ Vi

0
Dk(t) exp{βXi(t)}dt,

∆iXi(Vi)−
∫ Vi

0

m∑
j=1

cjDj(t)Xi(t) exp{βXi(t)}dt
)
,

iλm,λm = Diag
(∆iDk(Vi)

c2k

)
−

(
ai(h, k)

)
,

where ai(h, k) = Covi,θm

(∫ Vi

0 Dh(t) exp{βXi(t)}dt,
∫ Vi

0 Dk(t) exp{βXi(t)}dt
)
. Hence

we have

c̃k =
1

Eθ (ick,ckDk(t))

{
Eθ (ick,ckλ(t)Dk(t))

−EX,θ

(
ick,θ−{ck}Dk(t)

)
(β̃m − β, θ̃m−{β,λ} − θ−{β,λ})

′
}
, k = 1, . . . ,m.

Similarly we can derive the remaining equations for each component of (β̃m−
β, θ̃m−{β,λ} − θ−{β,λ}). By solving them, we find the order of sieve bias:

c̃k,mDk(t)

λ(t)
− 1 = O(∆̄m), k = 1, . . . ,m,
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β̃m − β = O(∆̄1+d
m ),

θ̃m−{β,λ} − θ−{β,λ} = O(∆̄1+d
m ),

and approximate KL by

KL(θ, θ̃m) = inf
Sm×Rd

Eθ

(
log

Li(θ)

Li(θm)

)
,

≈ 1

2
EX,θ

( m∑
k=1

c̃k,mDk(T )

λ(T )
− 1

)2
.

Now we find the bound on the difference between θ∗m and θ̃m, componentwise.

Note that KL(θ, θ∗m) = KL(θ, θ̃m) + d
dθm

KL(θ, θm)|θm=θ∗(θ
∗
m − θ̃m), where θ∗ =

θ̃m + t(θ∗m − θ̃m) with t ∈ [0, 1]. Hence,∣∣∣θ∗m − θ̃m

∣∣∣ = ∣∣∣ d

dθm
KL(θ, θm)|θm=θ∗

∣∣∣−1∣∣∣KL(θ, θ∗m)−KL(θ, θ̃m)
∣∣∣

≤ a
(
|KL(θ, θ∗m)|+ |KL(θ, θ̃m)|

)
≤ 2a|KL(θ, θ̃m)| = O(∆̄2

m),

⇒
∣∣∣θ∗m − θ

∣∣∣ ≤ ∣∣∣θ∗m − θ̃m

∣∣∣+ ∣∣∣θ̃m − θ
∣∣∣ = O(θ̃m − θ),

when d < 1 and we assume d
dθm

KL(θ, θm) is uniformly bounded away from 0.

This concludes the proof of Theorem 1.

Proof of Theorem 2. The proof follows the arguments of Theorem 2 in Geman

and Hwang (1982). We first check the two assumptions used there:

C1 For every m and n, the set of sieve MLE Mn
m is almost surely nonempty.

C2 (a) If for some sequence θm ∈ Θm, KL(θ, θm) → 0, then θm → θ.

(b) There is a sequence θ′m ∈ Θm such that KL(θ, θ′m) → 0.

Note that the maximum of the function log c∗k−c∗k∆̄m occurs at c∗k = 1/∆̄m =

O((log n)m−1). Moreover, given the observed data, the likelihood function is a

continuous function on the compact set

{θm = {θm−{λ}, c1, . . . , cm}| c0 ≤ ck ≤ K0m, k = 1, . . . ,m; ∥ θm−{λ} ∥≤ C0},

where c0 > 0 is the lower bound of λ(t). Therefore C1 is satisfied, and C2 follows

from (3.4) and the fact that the sequence of sieve spaces is dense in the original

parameter space.

For each δ > 0 and m, define

Dm = {θm = {αm,Σb,m, σ
2
e,m, βm, λm(·)}|λm ∈ Sm,KL(θ, θm) ≥ KL(θ, θ′m) + δ},
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where θ′m is the sequence in C2(b). Our goal is to find a finite cover of Dm. That

is to find Om
1 , . . . ,Om

lm
such that Dm ⊆ ∪lm

k=1O
m
k and

∑∞
n=1 lm · (ρm)n <∞ with

ρm = sup
k

inf
t≥0

Eθ

(
exp

{
t log

f(O,Om
k )

f(O, θ′m)

})
,

where O denotes a generic copy of the observed data Oi = (Vi,∆i,W i, ti), and

f(O, θ′m) is the likelihood function evaluated at θ′m. The notation f(O,Om
k ) de-

notes supθ∗∈Om
k
f(O, θ∗). Theorem 2 then follows from the Borel-Cantelli lemma

as shown in Theorem 2 of Geman and Hwang (1982). It thus suffices to construct

the suitable covering sets and show
∑∞

n=1 lm(ρm)n < ∞, where the (ρm)n is an

upper bound of the probability of one sieve MLE being in Dm.

Consider the set of functions

Υm = {λ∗(t) =
m∑
k=1

c∗kDk(t)| c∗k = c0 +
p

m
, p = 0, 1, . . . ,K0m

2, t ∈ [0, log
n

c0
]}.

Note that Υm ⊆ Sm and has cardinality (K0m
2)m ≤ mam for some positive

constant a. Since any function λm in Sm is bounded by K0m, there exists a

λ∗ in Υm such that sup0<t<K1 logn |λm(t) − λ∗(t)| < 1/m. Thus, the collection

of open balls Õm
1 , . . . , Õm

lm with centers at the λ∗(t) and radius 1/m covers Sm.

Similarly, for finite-dimensional parameters, we consider the set of points Ξm =

{θ∗−{λ} = ±p/m, p = 0, 1, . . . , C0m
2}, which has cardinality ma for some positive

constant a, and the open covering balls P̃m
1 , . . . , P̃m

pm with centers at θ∗−{λ}’s and

radius 1/m. Now take Om
k = (Õm

i × P̃m
j ) ∩Dm. It is not difficult to see that we

can cover Dm with at most mam such Om
k ’s for some positive constant a. Hence

lm ≤ mam.

For each k and a fixed θ∗∗ ∈ Om
k , the approximation of KL divergence in

(3.4) implies

E

(
log

f(O,Om
k )

f(O, θ∗∗)

)
≈ 1

2
E{ sup

θ∗∈Om
k

[(θ∗∗ − θ∗)(iθ∗,θ∗)(θ
∗∗ − θ∗)T ]},

<
a′ logm

m
,

since |θ∗∗ − θ∗| < 1/m. By the definition of Dm, and for θ′m satisfying C2,

E

(
log

f(O,Om
k )

f(O, θ′m)

)
≤KL(θ, θ∗∗)−KL(θ, θ′m) +

a′ logm

m
,

<
a′ logm

m
− δ,
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for all k = 1, 2, . . . , lm and all m.

Again for any fixed k, let

ϕ(t) = E
{
exp

[
t log

f(O,Om
k )

f(O, θ′m)

]}
, t > 0.

Then ϕ(0) = 1 and ϕ
′
(0) ≤ (a′ logm)/m − δ. Furthermore, we have the bound

ϕ
′′
(t) < (m logm)2 for small t.

Hence ϕ(t) < 1 + (
a′ logm

m
− δ)t+

1

2
(m logm)2t2

= 1− t

(
δ − a′ logm

m
− (m logm)2t

)
. (5.1)

By choosing t = (m logm)−2(logm)−q and q,m sufficiently large, we have

ϕ(t) < 1 − δ/[2(m logm)2(logm)q] for all k = 1, . . . , lm. That is, ρm ≤ 1 −
δ/[m2(logm)2+q]. Finally,

∞∑
n=1

lm(ρm)n ≤
∞∑
n=1

mam
{
1− δ

m2(logm)2+q

}n

= exp
{
am logm

(
1− δ

an−1m3(logm)3+q

)}
, (5.2)

which is finite when m → +∞ and mn−1/3+ε < +∞. Part (i) of Theorem 2

follows from Theorem 2 of Geman and Hwang (1982) by using the Borel-Cantelli

lemma.

As for part (ii), from the construction of Dm, we know that the set, Mn
m, of

the sieve MLE is within the δ +KL(θ, θ′m) ball of θ in term of KL divergence.

Hence if we also allow δ → 0, we find a convergence rate for the sieve MLE,

since KL divergence is O(ρ(θ̂
(s)
m , θ)2). However, δ has to tend to 0 slower than

n−1m3(logm)3+q, so that (5.2) is still finite, and slower than (a′ logm)/m in

order to stay as the leading term in (5.1). To get the best convergence rate,

we choose m = Kn1/4−ε and δ = Kn−1/4+2ε for some sufficient small ε > 0

and constant K. The sum in (5.2) is still finite. Hence the “global” rate of

convergence of the sieve MLE, especially for λ̂m, is O(n−1/8+ε).

Proof of Theorem 3. Note that

K̂L(θ, θm)−KL(θ, θm)

=
( 1

n

n∑
i=1

logLi(θ)−Eθ(logLi(θ))
)
−

( 1

n

n∑
i=1

logLi(θm)− Eθ(logLi(θm))
)
,
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where the first term is Op(n
−1/2) and does not depend on m. We show the

uniform (w.r.t. m) rate of the second term by calculating the covering en-

tropy and following the maximum inequalities in Pollard (1990). Let log f(θ) =

(logL1, . . . , logLn) be the n− vector of individual log-likelihood values corre-

sponding to n copies of observed data. Consider a bounded set Bm ∈ RQ, so the

Euclidian norm of the envelope function is

sup
θm∈Bm×Sm

∥ log f(θm)∥ ≤ Kn1/2 logm ≤ Kn1/2 log n.

Similar to the proof of Theorem 2, we set up Υϵ and Ξϵ for every given ϵ > 0,

m and n as

Υϵ =
{
λ∗(t) =

m∑
k=1

c∗kDk(t)
∣∣∣ c∗k = c0 +

ϵp√
n
, p = 0, 1, . . . ,

Km
√
n

ϵ

}
;

Ξϵ =
{
θ∗−{λ} = ± ϵp√

n
, p = 0, 1, . . . ,

C0m
√
n

ϵ

}
.

For every θm ∈ Bm × Sm there exists a θ∗ ∈ Υϵ × Ξϵ such that∥ log f(θm) −
log f(θ∗)∥ ≤

√
n(ϵ/

√
n) = ϵ, hence the ϵ−balls with centers at Υϵ × Ξϵ cover

the set {log f(θm)|θm ∈ Bm × Sm} with covering number (Km
√
n/ϵ)am. The

integrated squared-root of the covering entropy is hence calculated as∫ n1/2 logn

0

√
am log(

Km
√
n

ϵ
) dϵ

= a
√
m
√
n m

∫ +∞

log(Km/ logn)

√
xe−x dx

≤ a
√
m
√
n m

[
−

√
xe−x

∣∣∣+∞

log(Km/ logn)
+

∫ +∞

log(Km/ logn)
e−x dx

]
≤K ′n1/2m1/2(log n)3/2,

for certain positive constant K ′.

The Ψ-Orlicz norm, ∥Z∥Ψ = inf{C > 0 : EΨ(|Z|/C) ≤ 1}, is often used to

control the tail probability. By the maximum inequality in Pollard (1990, p. 3),

we have a bound for the Orlicz norm ∥Z∥Ψ,∥∥∥ max
Bm×Sm

∣∣∣u · log f(θm)
∣∣∣∥∥∥

Ψ
≤ K ′n1/2m1/2(log n)3/2.

Equivalently we have

E

(
1

5
exp

{maxBm×Sm |u · log f(θm)|
n1/2m1/2(log n)3/2

})
≤ 1,
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where Ψ(x) = exp(x2)/5 and u = {u1, . . . , un} is a n-vector of i.i.d. binary

random variables with equal probability 1/2 to be ±1. This finiteness of the

Ψ-Orlicz norm places a constraint on the rate of the tail probability: P (|Z| ≥
t) ≤ 5 exp(−t2/∥Z∥2Ψ), for any random variable Z. This and the theorem of

symmetrization and conditioning in Pollard (1990, p. 7) imply

P
(

max
Bm×Sm

∣∣∣ n∑
1

log fi(θm)− E[log fi(θm)]
∣∣∣ ≥ t

)
≤ P

(
max

Bm×Sm
|u · log f(θm)| ≥ t

)
≤ 5 exp

{
− t2

(K ′n1/2m1/2(log n)3/2)2

}
.

Hence,

max
Bm×Sm

∣∣∣ n∑
1

log fi(θm)− E(log fi(θm))
∣∣∣ = O(n1/2m1/2(log n)3/2),

and the uniform convergence in Theorem 3 is proved.

Proof of Theorem 4. (i) First, we discuss the case without censoring: ∆i =

1, ∀i. The score of ck contributed by the ith individual is:

Eθ

(
Dk(Vi)

ck
− E∗

i

(∫ Vi

0
Dk(s) exp{βXi(s)}ds

))
=

∫
Rmi

∫
R+

(
Dk(t)

ck
− E∗

i

(∫ t

0
Dk(s) exp{βXi(s)}ds

))
Li(Oi; θ)dtdw. (5.3)

Let fVi(t|bi, β, λ
∗
m) and fWi(w|bi, σ

2
e) be the densities for survival and longi-

tudinal measurements, given random effects and parameters, respectively. Note

that, when ∆i = 1,

Li(Oi; θ|∆i = 1)

Li(Oi; θ∗m|∆i = 1)
= 1 +O(∆̄m).

By Taylor expansion, changing the order of integration, and then applying

integration-by-parts, we have∫
Rmi

∫
R+

(
E∗

i

[ ∫ t

0
Dk(s) exp{βXi(s)}ds

])
Li(Oi; θ)dtdw

=

∫
Rmi

∫
R+

(∫
Rq

[ ∫ t

0
Dk(s) exp{βXi(s)}ds

]L(c)
i (Oi, bi; θ

∗
m)

Li(Oi; θ∗m)
dbi

)
Li(Oi; θ)dtdw

=

∫
Rmi

∫
Rq

(∫
R+

[ ∫ t

0
Dk(s) exp{βXi(s)}ds

]
L
(c)
i (Oi, bi; θ

∗
m)

Li(Oi; θ)

Li(Oi; θ∗m)
dt
)
dbidw
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=

∫
Rmi

∫
Rq

(∫
R+

[ ∫ t

0
Dk(s) exp{βXi(s)}ds

]
fVi(t|bi, β, λ

∗
m)dt

)
{fWi(w|bi, σ

2
e)π(bi;α,Σb)}(1 +O(∆̄m))dbidw

=

∫
Rmi

∫
Rq

(∫
R+

Dk(t)

ck
fVi(t|bi, β, λ

∗
m)dt

)
fWi(w|bi, σ2e)π(bi;α,Σb)

×(1 +O(∆̄m))dbidw

=

∫
Rmi

∫
R+

(Dk(t)

ck

)(∫
Rq

fVi(t|bi, β, λ
(s)
m )π(bi;α,Σb)fWi(w|bi, σ

2
e)dbi

)
×(1 +O(∆̄m)dtdw

=

∫
Rmi

∫
R+

(Dk(t)

ck

)(∫
Rq

fVi(t|bi, β, λ)π(bi;α,Σb)fWi(w|bi, σ
2
e)dbi

)
×(1 +O(∆̄m))dtdw

=

∫
Rmi

∫
R+

(Dk(t)

ck

)
Li(Oi; θ)(1 +O(∆̄m))dtdw. (5.4)

The last approximation implies

Eθ

(
Dk(Vi)

ck
− E∗

i

[ ∫ Vi

0
Dk(s) exp{βXi(s)}ds

])
= O(∆̄m)Eθ

(
Dk(Vi)

ck

)
= O(n−p∆̄m),

for each individual, since the probability that the survival time of this individual

falls in Dk is O(m−1) = O(n−p). Therefore, Eθ[S
∗
n(λ

∗
m|θ∗m)] = O(n1−p∆̄m).

For the case with censoring, we need to replace Dk(Vi) by ∆iDk(Vi) in (5.3).

This means the expectation in (5.3) now consists of two parts:

Eθ

(
∆iDk(Vi)

ck
− E∗

i

[ ∫ Vi

0
Dk(s) exp{βXi(s)}ds

])
= P (∆i = 1)

∫
Rmi

∫
R+

(
Dk(t)

ck
− E∗

i

(∫ t

0
Dk(s) exp{βXi(s)}ds|∆i = 1

))
Li(Oi; θ|∆i = 1)dtdw

+P (∆i = 0)

∫
Rmi

∫
R+

−E∗
i

(∫ t

0
Dk(s) exp{βXi(s)}ds|∆i = 0

)
Li(Oi; θ|∆i = 0)dtdw.

The first term from ∆i = 1 can be handled by previous arguments, while the

second term from ∆i = 0 is of smaller order; this is because the likelihood ratio

of the censoring data Li(Oi, θ|∆i = 0)/Li(Oi, θ
∗
m|∆i = 0) only contains λ in the

format of cumulative hazard function.
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Next, we consider the expectation of the score function for β:

S∗
n(β|θ∗m) =

n∑
i=1

{
∆iE

∗
i (Xi(Vi))−

m∑
k=1

ckE
∗
i

(∫ Vi

0
Dk(s)Xi(s) exp{βXi(s)}ds

)}
.

Similar to the previous argument, the portion contributed by censored data is
negligible compared to the portion contributed by uncensored data. We thus
have covered the case where all ∆i = 1.

Following similar arguments as in (5.4), with changing the order of integra-
tion and integration-by-parts, we obtain

Eθ

{
E∗

i (Xi(Vi))−
m∑
k=1

ckE
∗
i

(∫ Vi

0
Dk(s)Xi(s) exp{βXi(s)}ds

)}
= Eθ{E∗

i (Xi(Vi))} − Eθm{E∗
i (Xi(Vi))}

+Eθm

{ m∑
k=1

ckE
∗
i

(∫ Vi

0
Dk(s)Xi(s)e

βXi(s)ds
)}

−Eθ

{ m∑
k=1

ckE
∗
i

(∫ Vi

0
Dk(s)Xi(s)e

βXi(s)ds
)}

=

∫∫∫
Xi(t)

( Li(Oi; θ)

Li(Oi; θ∗m)
− 1

)
Lc
i (Oi, bi; θ

∗
m)dbidtdw

−
∫∫∫ (∫ t

0

m∑
k=1

ckDk(s)Xi(s)e
βXi(s)ds

)( Li(Oi; θ)

Li(Oi; θ∗m)
−1

)
Lc
i (Oi, bi; θ

∗
m)dbidtdw

.
=Q1 −Q2.

Since

Li(Oi; θ)

Li(Oi; θ∗m)
− 1 =

∫
Rq fWi(w|bi, σ

2
e)fVi(t|bi, β, λ)π(bi;α,Σb)dbi∫

Rq fWi(w|bi, σ2e)fVi(t|bi, β, λ∗)π(bi;α,Σb)dbi
− 1

≈
(
λ(Vi)

λ∗m(Vi)
− 1

)
+O(∆̄1+d

m ),

and the deviation (λ(Vi)/λ
∗
m(Vi) − 1) is roughly stochastically independent of

covariate Xi(Vi) and its finite integral
∫ Vi

0 λ∗m(s)Xi(s) exp{βXi(s)}ds, the differ-
ence between Q1 and Q2 is of the order O(∆̄1+d

m ). Then we have Eθ(S
∗
n(β|θ∗m)) =

O(n∆̄1+d
m ) = O(n1−p(1+d)(log n)1+d). The expectation of score functions for other

finite dimensional parameters can be derived in a similar fashion.
(ii) We now consider the order of the variance of score functions. Again,

Dk(Vi)/ck is a binomial random variable, so Varθ(Dk(Vi)/ck) = O(P (Dk(Vi) =
1)) = O(m−1). From (3.12), the second term in S∗

n(ck|θ∗m) is

Varθ

(
E∗

i

( ∫ Vi

0
Dk(s) exp{βXi(s)}ds

))
= O(∆̄mVarθ(1[Vi>tk−1]))
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= O
(
∆̄m

k

m
(1− k

m
)
)
.

Hence, Varθ(Dk(Vi)/ck − E∗
i

( ∫ Vi

0 Dk(s) exp{βXi(s)}ds
)
)=O(m−1), and

Varθ
(
S∗
n(ck|θ∗m)

)
= O(nm−1) = O(n1−p).

Similarly, assuming the covariate process is bounded as in A1, we have

Varθ

{
∆iE

∗
i (Xi(Vi))−

m∑
k=1

ckE
∗
i

(∫ Vi

0
Dk(s)Xi(s) exp{βXi(s)}ds

)}
= O(1),

and Varθ
(
S∗
n(β|θ∗m)

)
= O(n) from (3.13). The variance bounds for the remaining

finite dimensional parameters {α,Σb, σ
2
e} in Theorem 4 are straightforward.

(iii) Combining the results in (i) and (ii), we have n−1/2S∗
n(ω|θ∗m) = Op(1) for

every finite-dimentional parameter ω in (α,Σb, σ
2
e , β), and n

−(1−p)/2S∗
n(ck|θ∗m) =

Op(1) for all ck’s in λ. From the expansion in (3.11) and Slusky’s Theorem, the

distance between the sieve estimate and sieve projection can be calculated as

follows. For finite-dimensional parameters,

n1/2(θ̂m−{λ} − θm−{λ}) = Op(n
1/2(imθ∗m,θ∗m

)−1S∗
n(θ̂m−{λ}|θ∗m)) = Op(1),

and for the baseline hazard function λ,

n(1−p)/2(λ̂m(t)− λ∗m(t)) = Op(n
(1−p)/2(imθ∗m,θ∗m

)−1S∗
n(λ̂m|θ∗m) = Op(1).

The proof of Theorem 4 is now complete, since both terms dominate the sieve

biases calculated in Theorem 1.
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