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Abstract: Mixed case interval censored data arise when the event time of interest

is only known to lie in an interval obtained from a sequence of k random examina-

tions, where k is a random integer. In this article, we consider mixed case interval

censored data with a cured subgroup, where subjects in this subgroup are not sus-

ceptible to the event of interest. Such data may be encountered in medical and

demographical studies with longitudinal followup, where the population of interest

is composed of heterogeneous subjects. We propose using a semiparametric two-

part model, where the first part is a generalized linear model that describes the

probability of cure, and the second part is a Cox model that describes the event

time for susceptible subjects. We study maximum likelihood estimation of this

two-part model. Finite sample properties, an effective computational algorithm,

and inference with the weighted bootstrap are investigated. Asymptotic proper-

ties, including identifiability, consistency, and weak convergence, are established.

We conduct simulations and analyze the HDSD study using the proposed approach.

Key words and phrases: Cure rate, interval censoring, semiparametric model.

1. Introduction

We have been partly motivated by the analysis of an experiment conducted
by NASA on decompression sickness. The working dataset is extracted from the
NASA’s Hypobaric Decompression Sickness Data Bank (Conkin, Bedahl and
Van Liew (1992)) and is be referred to as the HDSD hereafter. The presence of
gas bubbles in venous blood is associated with an increased risk of decompression
sickness (DCS) in hypobaric environments. A high grade of venous gas emboli
(VGE) can be a precursor to serious DCS. Therefore, it is important to model
the time to onset of grade IV VGE in order to predict the situations in which it is
most likely to occur. The dataset has records from volunteer subjects undergoing
denitrogenation test procedures prior to being exposed to a hypobaric environ-
ment. Each test involved one decompression, where the subject pre-breathed
100% oxygen at site pressure prior to exposure in the altitude chamber. For each
subject, the time to onset of grade IV VGE and values of several covariates were
measured. The onset time, if it occurred, was recorded only as being contained
within a time interval. When the experiment was conducted, for a subject there
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might be multiple examination times. That is, the onset time is case k interval
censored, where k may vary across subjects. Such type of data has been referred
to as “mixed case” interval censored data in the literature (Schick and Yu (2000);
Song (2004); Sen and Banerjee (2007)). Beyond the complexity caused by in-
terval censoring, it has been suggested that “some individuals would never get
grade IV VGE no matter how long they remained in the hypobaric chamber”
(Thompson and Chhikara (2003)). Plot of the NPMLE of the survival function
clearly shows a plateau (plot available upon request). A cure rate model that
allows a subgroup of subjects to be immune from the event of interest is thus
warranted.

Interval censored data arise naturally in medical, biological, and demograph-
ical studies. With interval censored data the event time of interest cannot be
directly observed, it is only known to lie in an interval obtained from a sequence
of examinations (censoring). One way to characterize interval censored data is
by using the number of random censoring times (denoted as k). Case I interval
censored data (k = 1), also known as current status data, has been investigated
in Huang (1996), Lin, Oakes and Ying (1998), Xue, Lam and Li (2004), Ma and
Kosorok (2005a), and others. Nonparametric modeling of case II interval cen-
sored data (k = 2) has been studied in Groeneboom and Wellner (1992). With
k > 1, it has been pointed out that case k interval censoring is not realistic. For
example, when it is known that the event has occurred by examination k′(< k),
there is no need to conduct further examinations. A more realistic model is mixed
case interval censoring, where each subject is case k interval censored. Here, k is
a random integer (as opposed to a fixed number). Mixed case interval censored
data has been studied in Schick and Yu (2000), Song (2004), Sen and Banerjee
(2007), and references therein.

Beyond its interval censoring nature, the HDSD data is difficult to analyze
because of the subgroup not susceptible to the event. Such a phenomenon has
been referred to as “cured” in statistical literature. For right censored data,
studies of cure rate models include Kuk and Chen (1992), Lu and Ying (2004),
Li, Taylor and Sy (2001), Taylor (1995), and others. On interval censored data
with a cured subgroup, published studies include the semiparametric AFT model
in Lam and Xue (2005), the Cox model in Ma (2009), the parametric models with
a Bayesian estimator in Thompson and Chhikara (2003), the frailty models with
a Bayesian estimator in Banerjee and Carlin (2004), and others.

In this article, we study semiparametric two-part models for mixed case
interval censored data, where a cured subgroup is not susceptible to the event
of interest. Such a data structure has been studied in Thompson and Chhikara
(2003) using parametric models. Semiparametric models considered in this article
can be much more flexible and, potentially, provide better descriptions of data.
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The two-part model investigated here is similar to that in Ma (2009). However,
the censoring schemes in the two articles are fundamentally different. Early
studies have shown that the extension from case I to mixed case interval censored
data is highly nontrivial. Compared with mixed case censoring studies in Schick
and Yu (2000) and others, this study has been motivated by the analysis of HDSD
data, which is heterogeneous and needs to be described using a mixture model.
Since the present data structure may be frequently encountered and existing
methodologies are not sufficient, the proposed study seems warranted.

Although we have been motivated by the HDSD data, applications of the
proposed methodology go far beyond it. One family of studies that can be ana-
lyzed using the proposed method is the study of cancer recurrence after surgery.
Time of cancer recurrence is usually not directly observable. Longitudinal moni-
toring is needed and can lead to interval censored data. In addition, susceptibility
to cancer differs significantly among patients. Cure rate models are thus needed.
We focus on methodological development in this article and defer exploration of
its broader applications to future studies.

The rest of the article is organized as follows. Data and model setup are
introduced in Section 2. The maximum likelihood estimate (MLE) is proposed
in Section 3. Finite sample properties, an effective computational algorithm,
and inference are investigated. Asymptotic properties are established in Section
4. Simulation studies in Section 5 demonstrate satisfactory finite sample per-
formance of the proposed approach. Analysis of the HDSD data is presented in
Section 6. We conclude with discussion in Section 7.

2. Data and Model

Let T be the event time of interest. Under mixed case interval censoring,
the censoring is determined via a two-step procedure. In the first step, k, the
number of censoring times, is determined. In the second step, the observation is
determined by a case k interval censoring model. Let (Ũ1, . . . , Ũk) be the random
censoring times. As pointed out in previous studies, only (U, V ) is relevant to
statistical modeling, where (U, V ) is the shortest interval such that U < T ≤ V .
Of note, it is possible that U = 0 or V = ∞. For convenience of notation, we
introduce the left and interval censoring indicators, defined on values of U and V

as δ1 = I(U = 0) and δ2 = I(U > 0∩ V < ∞), where I is the indicator function.
Here we assume P (Ũ1 = 0) = 0, i.e., the first examination happens after starting
of the study; this is reasonable for most biomedical studies. To account for the
possibility of cure, we introduce the unobservable cure indicator Y : Y = 1 if
the subject is cured or immune (T = ∞) and Y = 0 otherwise. Let Z be the
length d1 vector of covariates that are associated with the cure probability, and
X be the length d2 covariates that are associated with the survival for susceptible
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subjects. X and Z may have no, partial, or full overlap. Observation for a single
subject consists of D = (U, V, Z,X).

We model the data structure described above with a two-part model, where
the first part models the cure probability and the second models the survival
time for susceptible subjects. More specifically, we model the cure probability
using a generalized linear model with a known link function. The most widely
used link function is the logit link, where

p(Z) = P (Y = 1|Z) =
exp(α + β′Z)

1 + exp(α + β′Z)
. (2.1)

Here α is the unknown intercept, β is the unknown length d1 regression coefficient,
and β′ is the transpose of β.

In the second part of the two-part model, we assume the Cox model for sub-
jects susceptible to the event of interest. Under the Cox model, the conditional
hazard function is λ(t|X) = λ(t) exp(θ′X), where λ(t) is the baseline hazard
function, and θ is the length d2 regression coefficient. In terms of the cumulative
hazard function,

Λ(t|X) =
∫ t

0
λ(s|X)ds = Λ(t) exp(θ′X). (2.2)

Under models (2.1) and (2.2), the conditional survival function is

S(t|Z,X) = p(Z) + (1 − p(Z)) exp(−Λ(t|X)). (2.3)

S(∞|Z,X) = p(Z) and is thus improper if p(Z) > 0.
Two-part models have been extensively used in analysis of heterogeneous

data. Compared with the latent cause model in Thompson and Chhikara (2003),
two-part models make no assumption on the latent cause, and can be preferred
for data such as the HDSD.

3. Maximum Likelihood Estimation

Consider the model defined in (2.3). Under mixed case interval censoring,
the log-likelihood function for a single observation is

l(α, β, θ, Λ) = δ1 log[(1 − p(Z))(1 − exp(−Λ(V ) exp(θ′X)))]

+ δ2 log[(1 − p(Z))(exp(−Λ(U) exp(θ′X)) − exp(−Λ(V ) exp(θ′X)))]

+ (1 − δ1 − δ2) log[p(Z) + (1 − p(Z)) exp(−Λ(U) exp(θ′X)))]. (3.1)

Assume there are n i.i.d. copies of D. We consider the MLE

(α̂, β̂, θ̂, Λ̂) = argmaxEnl(α, β, θ, Λ), (3.2)
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where En is the empirical measure.

3.1. Assumptions

A1. k and (Ũ1, . . . , Ũk) are independent of (X,Z).

A2. (a) The distribution of Z is not concentrated on any proper subspace of
Rd1 ; Z belongs to a bounded subset of Rd1 . (b) The distribution of X is
not concentrated on any proper subspace of Rd2 ; X belongs to a bounded
subset of Rd2 .

A3. (a) There exists a positive η such that P (V − U ≥ η) = 1. (b) The union
of the support for V |δ1 = 1, U |δ2 = 1, V |δ2 = 1, and U |δ1 = δ2 = 0 is an
interval [τ0, τ1] with 0 < τ0 < τ1 < ∞.

A4. (a) (α, β, θ) belongs to a compact subset of R1+d1+d2 . (b) There exists
M > 0, such that 1/M < Λ(τ0) < Λ(τ1) < M.

The independence assumption A1 has been commonly made in interval cen-
soring studies; A2 is needed in the identifiability and consistency proofs; A3 has
it that the examination times are bounded away from each other, which rules out
accurately observed event times. As pointed out by Kim (2003), if a proportion
of the event times can be accurately observed, properties of the MLE can be
fundamentally different; we focus on the scenario with no accurately observed
event times that better describes the HDSD and most biomedical studies. In
addition, we only consider bounded examination times. Such an assumption is
reasonable, considering that most (if not all) biomedical studies are conducted
within finite time periods. A byproduct of A3 is that k is bounded. Such an
assumption is stronger than the assumption E(k) < ∞ in Schick and Yu (2000),
although in practice such a difference has a negligible impact. The boundedness
assumption (A4) is also commonly made with interval censored data, and is used
in the consistency and weak convergence proofs.

3.2. Finite sample properties

Under A2 and A4, the MLE defined in (3.2) exists. For uniqueness, we
further specify that Λ̂ is right continuous, piecewise constant, and with possible
discontinuities only at {Cj : j = 1 . . .m}, which are unique values of {Ui, Vi :
i = 1 . . . n}.

First, we note that the MLE satisfies

∂Enl

∂α

∣∣∣∣
α̂,β̂,θ̂,Λ̂

=
∂Enl

∂β

∣∣∣∣
α̂,β̂,θ̂,Λ̂

=
∂Enl

∂θ

∣∣∣∣
α̂,β̂,θ̂,Λ̂

= 0. (3.3)
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This follows from the definition of MLE, the differentiability of likelihood
function, and the compactness assumptions. In (3.3), when we take the partial
derivative with respect to one parameter, the other parameters are kept fixed
and the “dependence” among estimates is ignored.

To investigate the properties of Λ̂, we take gU = exp(−Λ(U) exp(θ′X)),
gV = exp(−Λ(V ) exp(θ′X)), and define the processes

WΛ(t) =
n∑

i=1

δ1i exp(θ′Xi)gV (Di)
1 − gV (Di)

I(Vi ≤ t) +
δ2i exp(θ′Xi)gV (Di)
gU (Di) − gV (Di)

I(Vi ≤ t)

−δ2i exp(θ′Xi)gU (Di)
gU (Di) − gV (Di)

I(Ui ≤ t)

−(1 − δ1i − δ2i)(1 − p(Zi)) exp(θ′Xi)gU (Di)
p(Zi) + (1 − p(Zi))gU (Di)

I(Ui ≤ t),

GΛ(t) = W 2
Λ(t),

QΛ(t) = WΛ(t) +
∫

ΛdGΛ.

Let {C(j)} be the ordered {Cj}. For (α, β, θ) = (α̃, β̃, θ̃), let Λ̃ be the left
derivative of the greatest convex minorant of the self-induced cumulative sum
diagram formed by the points (0, 0) and (GΛ̃(C(j)), QΛ̃(C(j))). Then Λ̃ maximizes
Pnl(α̃, β̃, θ̃, Λ) (as a function of Λ). The proof of this result is from Groeneboom
and Wellner (1992), part II, Chapter 1.

3.3. Computational algorithm

The MLE defined in (3.2) does not have a closed, analytic form. We propose
maximization using the following iterative algorithm that has been motivated by
the finite sample properties presented in Section 3.2.

1. Initialize (α̂, β̂, θ̂) = (0 . . . 0).

2. With the current estimate (α̂, β̂, θ̂), compute Λ̂ by maximizing Enl(α̂, β̂, θ̂, Λ)
as a function of Λ. This step of maximization can be achieved as follows.

(a) With the current estimate Λ̂, compute the left derivative of the greatest
convex minorant of the cumulative sum diagram composed of (0, 0) and
(GΛ̂(C(j)), QΛ̂(C(j))). This computation can be realized using available
functions such as the gcmlcm in R. We refer to Robertson, Wright
and Dykstra (1988) for detailed descriptions of computing the greatest
convex minorant.
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(b) Update Λ̂ with the left derivative computed in (a). We note that the
greatest convex minorant is a piece-wise linear function. Thus, we only
need to compute the derivatives at a small number of points, and set
Λ̂ as right-continuous and piece-wise constant.

(c) Repeat Steps (a) and (b) until convergence.

3. With the estimated Λ̂, maximize Enl(α, β, θ, Λ̂) with respect to (α, β, θ).
This can be achieved using the Newton-Raphson method, or built-in opti-
mization functions such as the optim in R.

4. Repeat Steps 2 and 3 until convergence.

The empirical measurement of the log-likelihood function increases at each
iteration. Under the compactness assumptions, the above algorithm always con-
verges. Our numerical studies show that convergence can usually be achieved
within 20 iterations.

3.4. Inference

With the proposed semiparametric model, inference of the parametric por-
tion is of more interest than that of the nonparametric portion. Asymptotic
studies in Section 4 show that (α̂, β̂, θ̂) is

√
n consistent and asymptotically nor-

mally distributed. However, the asymptotic variance calculation in Section 4.4
suggests that a plug-in estimate can be difficult. As an alternative we consider a
weighted bootstrap, described as follows.

1. Generate w1 . . . wn, n i.i.d. positive random weights from a known distribu-
tion with E(W ) = var(W ) = 1. (In the numerical studies, we used exp(1)
distributed weights.)

2. Compute the weighted MLE (α̂∗, β̂∗, θ̂∗, Λ̂∗) = argmax
∑

i wil(Di).

3. Repeat Steps 1 and 2 B (e.g. 500) times.

The sample variance of (α̂∗, β̂∗, θ̂∗) can be used to estimate the variance of
(α̂, β̂, θ̂). In Step 2, the weighted MLE can be computed using an algorithm
similar to the one described in Section 3.3 (by changing simple summations to
weighted summations and keeping everything else the same).

The weighted bootstrap has been proposed as a generic inference tool for
M-estimates with semiparametric models in Ma and Kosorok (2005b), and for U-
estimates in Jin, Ying and Wei (2001). Of note, the weighted bootstrap methods
for M-estimates and U-estimates share similar spirits and generate perturbations
of objective functions by assigning random weights. However, the specific forms
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of perturbations and assumptions on weights are different. With the weighted
bootstrap, the weighted MLE needs to be computed many times. However, since
only simple calculations are involved, the weighted bootstrap is computationally
affordable.

4. Asymptotic Properties

4.1. Identifiability

We first establish identifiability of the model. Li, Taylor and Sy (2001)
shows that with cure rate models, identifiability can be highly nontrivial. Here
we make specific semiparametric model assumptions that, with the compactness
assumptions, lead to identifiability of the model.

Lemma 1. Under A1−A4, the proposed model is identifiable.

Proof. Let µ be the probability measure induced by the joint distribution of U

and V constrained on the interval [τ0, τ1]. Let f(D;α, β, θ, Λ) be the probability
density function of D = (U, V, Z,X) measured at parameter value (α, β, θ, Λ).
The proposed model is identifiable if∫ (√

f(D; α, β, θ, Λ) −
√

f(D;α∗, β∗, θ∗, Λ∗)
)2

dµ = 0 (4.1)

implies (α, β, θ, Λ) = (α∗, β∗, θ∗, Λ∗).
Equation (4.1) leads to(

1 − exp(α + β′Z)
1 + exp(α + β′Z)

)
(1 − exp(−Λ(U) exp(θ′X)))

=
(

1 − exp(α∗ + β∗′Z)
1 + exp(α∗ + β∗′Z)

)
(1 − exp(−Λ∗(U) exp(θ∗′X))),

which implies that

1 − exp(−Λ(U) exp(θ′X)) = c(Z)(1 − exp(−Λ∗(U) exp(θ∗′X))),

where c is a function of Z only. Take partial derivatives of both sides of the last
equality with respect to U :

λ(U) exp(−Λ(U) exp(θ′X)) = c(Z)λ∗(U) exp(−Λ∗(U) exp(θ∗′X)).

Take logarithm and then take the partial derivative with respect to X:

−Λ(U) exp(θ′X)θ =
1

c(Z)
∂c(Z)
∂X

− Λ∗(U) exp(θ∗′X)θ∗.
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Take the partial derivative with respect to U again to get

Λ(U)
Λ∗(U)

=
exp(θ′X)θ′X

exp(θ∗′X)θ∗′X
.

Under A2, this last implies that Λ = Λ∗ and θ = θ∗. In a similar manner, it can
be proved that α = α∗ and β = β∗.

4.2. Consistency

Let mΛ(Λ1, Λ2) =
∫

[(Λ1(u) − Λ2(u))2 + (Λ1(v) − Λ2(v))2]1/2dµ and denote
the unknown true parameter value by (α0, β0, θ0, Λ0). The consistency result can
be summarized as follows.

Lemma 2. Under A1−A4, (α̂, β̂, θ̂) →a.s. (α0, β0, θ0) and mΛ(Λ̂, Λ0) = oP (1).

Proof. From the definition of MLE,

Enl(α̂, β̂, θ̂, Λ̂) ≥ Enl(α0, β0, θ0, Λ0). (4.2)

Under the compactness assumptions, the right side of (4.2) is bounded below.
If (α̂, β̂, θ̂) is not bounded, then Enl(α̂, β̂, θ̂, Λ̂) → −∞. Consider for example
if α̂ → +∞, then p(Z) → 1. In the log-likelihood function, the first two terms
→ −∞, whereas the third term → 0. We can repeat this argument and con-
clude boundedness of (α̂, β̂, θ̂). The functional set {exp(−Λ)} is monotone and
bounded. It is thus compact with respect to the vague topology. Consistency
then follows from Theorem 5.14 of van der Vaart (1998).

Results presented in Lemmas 2 and 3 establish consistency of Λ̂ in the L2

sense. Consistency under other norms may require different, possibly stronger,
assumptions (Schick and Yu (2000)). Since it is not the focus of this study,
we do not pursue consistency under other norms. On a special note, the L2

consistency does not lead to uniform consistency. Specifically, we expect that Λ̂
is not consistent at τ0 and τ1.

4.3. Convergence rate

To establish convergence rates, we add the following assumption.

A5. For (α, β, θ, Λ) satisfying A1-A4,

E(l(α, β, θ, Λ) − l(α0, β0, θ0,Λ0))

≤ −K1(|α − α0|2 + ||β − β0||2 + ||θ − θ0||2 + m2
Λ(Λ, Λ0)),

where K1 is a fixed positive constant.
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Here we assume that the maximizer is “well separated”; this can be veri-
fied under the boundedness conditions and differentiability of the log-likelihood
function.

Lemma 3. Under A1−A5,

|α̂ − α0|2 + ||β̂ − β0||2 + ||θ̂ − θ0||2 + m2
Λ(Λ̂, Λ0) = OP (n−2/3).

We first insert the definition of bracketing number. Let (F, || · ||) be a subset of
a normed space of real functions on some set. Given functions f1 and f2, the
bracket [f1, f2] is the set of all functions f with f1 ≤ f ≤ f2. An ε bracket is a
bracket [f1, f2] with ||f1 − f2|| ≤ ε. The bracketing number N[](ε, F, || · ||) is the
minimum number of ε brackets needed to cover F. The entropy with bracketing
is the logarithm of the bracketing number.

Proof. Lemma 25.84 of van der Vaart (1998) shows that, if A4 is satisfied, there
exists a constant K2 such that for every ε > 0, log N[](ε, {Λ}, L2) ≤ K2(1/ε).
Since the log-likelihood function is Hellinger differentiable, under A2 and A3 we
have log N[](ε, {l(α, β, θ, Λ)}, L2) ≤ K3(1/ε) for a constant K3.

Apply Theorem 3.2.5 of van der Vaart and Wellner (1996). For (α, β, θ, Λ)
satisfying |α − α0|2 + ||β − β0||2 + ||θ − θ0||2 + m2

Λ(Λ, Λ0) < η, we have

P∗ sup |
√

n(En − E)(l(α, β, θ, Λ) − l(α0, β0, θ0, Λ0))|

= Op(1)η1/2

(
1 +

η1/2

η2
√

n
K4

)
(4.3)

with a constant K4, where P∗ is the outer expectation. According to Theorem
3.2.1 of van der Vaart and Wellner (1996), (4.3) and A5 imply |α̂ − α0|2 + ||β̂ −
β0||2 + ||θ̂ − θ0||2 + m2

Λ(Λ̂, Λ0) = OP (n−2/3).
We note that the n1/3 convergence rate is fundamentally different from the

n1/2 rate in Kim (2003). Data considered in Kim (2003) have a nonzero propor-
tion of precisely observed event times, i.e, it is a mixture of uncensored data and
interval censored data. Thus Kim (2003) is able to achieve the faster convergence
rate.

4.4. Information calculation

With semiparametric models,
√

n consistency and asymptotic normality of
estimates of parametric parameters requires non-singularity of the information
matrix. We compute the information matrix for (α, β, θ) as follows.
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The score functions for α, β, θ are the first order derivatives of the log-
likelihood function:

l̇α =
[
− δ1 + δ2

1 − p(Z)
+

(1 − δ1 − δ2)(1 − gV )
p(Z) + (1 − p(Z))gV

]
∂p(Z)

∂α
,

l̇β =
[
− δ1 + δ2

1 − p(Z)
+

(1 − δ1 − δ2)(1 − gV )
p(Z) + (1 − p(Z))gV

]
∂p(Z)

∂β
,

l̇θ =
{

δ1gUΛ(U)
1 − gU

− δ2(gUΛ(U) − gV Λ(V ))
gU − gV

− (1 − δ1 − δ2)gV Λ(V )
p(Z) + (1 − p(Z))gV

}
exp(θ′X)X.

Write l̇α,β,θ = (l̇α, l̇′β , l̇′θ)
′. Consider a small perturbation of Λ defined by

Λs = Λ + sh with s ∼ 0 and h ∈ L2(P ), such that Λs satisfies A4. We can see
that h = ∂Λs

∂s

∣∣
s=0

. Then the score operator for Λ is

l̇Λ[h] =
∂

∂s
l(α, β, θ, Λs)

∣∣∣∣
s=0

=
(

δ1gU

1 − gU
h(U) − δ2gU

gU − gV
h(U) +

δ2gV

gU − gV
h(V )−

(1 − δ1 − δ2)(1 − p(Z))gV

p(Z) + (1 − p(Z))GV
h(V )

)
exp(θ′X).

Computing the information matrix requires one to find h∗ such that, for any
h defined above,

E{(l̇α,β,θ − l̇Λ[h∗])l̇Λ[h]} = 0. (4.4)

Existence of h∗ that satisfies (4.4) can be proved. However, the proof is lengthy
and is omitted here. The information matrix is E(l̇α,β,θ − l̇Λ[h∗])⊗2, assumed to
be positive definite and component-wise bounded.

4.5. Asymptotic normality

We further establish that, despite the slow convergence rate of the cumulative
baseline hazard estimate, the estimates of parametric regression coefficients are
still

√
n consistent, asymptotically normally distributed, and efficient (in the

sense that any regular estimator would have asymptotic variance equal to or
larger than that of the proposed estimate).

Lemma 4. Under A1−A5,
√

n[(α̂, β̂, θ̂) − (α0, β0, θ0)] → N(0,E−1(l̇α,β,θ − l̇Λ
[h∗])⊗2).

Proof. We list some relevant facts.
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1. (Maximization of the objective function) Enl̇α,β,θ(α̂, β̂, θ̂, Λ̂) = 0 component
wise; and Enl̇Λ[h]|α=α̂,β=β̂,θ=θ̂,Λ=Λ̂ = 0 for h defined in Section 4.4.

2. (Rate of convergence) |α̂ − α0|2 + ||β̂ − β0||2 + ||θ̂ − θ0||2 + m2
Λ(Λ̂, Λ0) =

OP (n−2/3).

3. (Positive Information) The Fisher Information matrix is positive definite
and component-wise bounded.

4. (Stochastic equicontinuity) For any δn → 0 and constant K5 > 0, within
the neighborhood {|α− α0| < δn, ||β − β0|| < δn, ||θ − θ0|| < δn,m(Λ, Λ0) <

K5n
−1/3},

sup
√

n|(En − E)(l̇α,β,θ(α, β, θ, Λ) − l̇α,β,θ(α0, β0, θ0,Λ0))| = oP (1),

sup
√

n|(En − E)(l̇Λ[h∗]|α,β,θ,Λ − l̇Λ[h∗]|α0,β0,θ0,Λ0)| = oP (1).

The above two equations can be established by applying Theorem 3.2.5 of
van der Vaart and Wellner (1996) and the entropy result.

5. (Smoothness of the model) Within the neighborhood {|α − α0| < δn, ||β −
β0|| < δn, ||θ − θ0|| < δn,m(Λ, Λ0) < K5n

−1/3}, the expectations of l̇α,β,θ

and l̇Λ are Hellinger differentiable.

With this in hand, Lemma 4 can be proved using Theorem 3.4 of Huang
(1996).

4.6. Inference

In theory, variance of the proposed estimate can be obtained by inverting the
information matrix computed in Section 4.4. However we note that the influence
function, and hence the information matrix, do not have closed forms, which
makes this approach very difficult.

The key to establishing the validity of the weighted bootstrap is that the
functional set {w × l(α, β, θ, Λ)} has the same entropy and similar asymptotic
behaviors as the set {l(α, β, θ, Λ)}. The unconditional properties of the weighted
MLE defined in Section 3.4 can be established following the same arguments
as for the ordinary MLE, which implies that, conditional on the observed data,
(α̂∗, β̂∗, θ̂∗)− (α̂, β̂, θ̂) has the same asymptotic variance as (α̂, β̂, θ̂)− (α0, β0, θ0).
We refer to Ma and Kosorok (2005b) for more details.

5. Simulation Study

We conducted simulations to investigate finite sample performance of the
proposed estimator. Here, we considered two covariates Z = (Z1, Z2) and set
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X = Z. The cure indicator and event time (if not cured) were generated from
models (2.1) and (2.2), with (α0, β0, θ0) = (−2, 2,−2, 2,−1). We generated the
censoring times Ũj =

∑j
i=1 ξi, where ξi ∼ Unif [0.1, 0.25]. We kept generating ξi

until Ũj > min(T, 2.5). We considered the following three simulation scenarios.

1. With probabilities 0.5, Z1 = 0.5 or 1.5, while Z2 had the same distribution
as Z1. On average, about 41% observations were left censored, 31% were
interval censored, 9% were right censored and not cured, and the rest were
cured.

2. With probabilities 0.5, Z1 = 0.5 or 1.5, and Z2 ∼ Unif [0, 2]; censoring rates
were similar to those under Scenario 1.

3. Z1, Z2 ∼ Unif [0, 2]; censoring rates were similar to those under Scenario 1.

Under Scenarios 1–3, we considered covariates with discrete, mixed, and con-
tinuous distributions, respectively. We considered sample sizes 200, 400, and 800.
Summary statistics based on 500 replicates are shown in Table 1. Our simulation
study suggests that (1) the proposed estimates have very small biases, even for
sample size as small as 200; (2) standard deviations of the estimates shrink at
approximately the

√
n rate, which partly supports Lemma 4; (3) the weighted

bootstrap estimated standard deviations are very close to those of the original
estimates, which supports validity of the weighted bootstrap. More simulations
under different settings showed similar, satisfactory results.

6. Analysis of the HDSD

When analyzing the HDSD, one record with missing measurements is re-
moved and 238 records are available for downstream analysis. The response of
interest is the time to onset of grade IV VGE, which is interval censored. Covari-
ates of interest include age, sex, TR360, and NOADYN. Age has mean 31.882,
standard deviation 7.126, and range (20, 54); to make covariates more compa-
rable, we divided age by 10. Of 238 subjects, 177 were male; in the model,
the female group is used as reference. TR360 is a measure of decompression
stress, the ratio of the partial pressure of nitrogen to ambient pressure at the
final altitude, and has mean 1.637, standard deviation 0.227, and range (1.040,
1.890). NOADYN is an experimentally manipulated variable and an indicator for
whether the test subject was ambulatory (NOADYN=1) or lower body adynamic
(NOADYN=0) during the test session; 195 records have NOADYN=1. We refer
to Thompson and Chhikara (2003) for more information on the experiments and
covariates.

We analyze the HDSD with the proposed two-part model. Considering that
“only individual characteristics can influence an individual’s susceptibility to
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Table 1. Simulation study: means computed based on 500 replicates. est:
estimate; sd: standard deviation of (α̂, β̂, θ̂); ŝd: standard deviation of
(α̂∗, β̂∗, θ̂∗) − (α̂, β̂, θ̂).

α β1 β2 θ1 θ2

Scenario 1 n = 200 est -2.001 1.904 -1.993 1.954 -0.988
sd 0.984 0.952 0.749 0.323 0.264
ŝd 0.935 0.922 0.763 0.374 0.271

n = 400 est -2.019 2.102 -2.028 1.967 -0.976
sd 0.678 0.645 0.506 0.240 0.196
ŝd 0.661 0.712 0.500 0.248 0.202

n = 800 est -2.068 2.066 -2.034 1.995 -0.984
sd 0.480 0.452 0.372 0.173 0.148
ŝd 0.486 0.439 0.347 0.175 0.147

Scenario 2 n = 200 est -2.032 1.963 -2.006 1.926 -1.010
sd 1.195 0.943 0.596 0.294 0.253
ŝd 1.229 0.901 0.600 0.286 0.246

n = 400 est -2.062 1.984 -2.025 1.986 -0.945
sd 0.859 0.712 0.414 0.197 0.170
ŝd 0.866 0.700 0.408 0.204 0.164

n = 800 est -1.949 2.026 -1.940 2.004 -0.947
sd 0.597 0.509 0.307 0.136 0.123
ŝd 0.606 0.485 0.306 0.136 0.116

Scenario 3 n = 200 est -2.121 2.002 -1.989 1.992 -0.980
sd 1.134 0.884 0.824 0.276 0.286
ŝd 1.165 0.865 0.867 0.279 0.239

n = 400 est -2.095 1.937 -1.921 1.905 -0.950
sd 0.874 0.546 0.547 0.173 0.201
ŝd 0.802 0.567 0.615 0.186 0.198

n = 800 est -2.008 2.026 -2.079 1.932 -0.938
sd 0.522 0.415 0.402 0.114 0.136
ŝd 0.484 0.428 0.468 0.104 0.137

grade IV VGE” (Thompson and Chhikara (2003)), we set Z = (age, sex). All
four covariates are included in the Cox model.

We compute the MLE using the iterative algorithm described in Section 3.3.
Satisfactory convergence is achieved. The variance estimation is obtained using
the weighted bootstrap and exp(1) weights. The MLEs are

α̂ = 7.393(2.017),
β̂1 = −1.741(0.593), β̂2 = −2.522(0.927),
θ̂1 = −0.602(0.188), θ̂2 = −0.702(0.710), θ̂3 = 0.561(0.413), θ̂4 = 1.021(0.458),

where values in the “()” are the estimated standard errors.
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Figure 7.1. Analysis of HDSD: estimated cumulative baseline hazard func-
tion.

From the above estimation results, we conclude that both age and sex have
significant effects on the risk of getting grade IV VGE; specifically, older and/or
male are more susceptible, a finding consistent with Thompson and Chhikara
(2003). We find for susceptible subjects that the effects of age and NOADYN
are significant; specially, younger subjects and/or subjects being ambulatory
(NOADYN=1) experience grade IV VGE faster, a contrast with Thompson and
Chhikara (2003) who do not conclude significance of the age effect. We find the
effects of sex and TR360 on survival are not significant, consistent with Thompson
and Chhikara (2003).

In Figure 7.1, we show the estimated cumulative baseline hazard. We also
provide the lowess smoother, which suggests that the cumulative baseline is close
to a linear function. Thus, it may be possible to assume constant hazard and
simplify the proposed model. Since significantly different techniques are involved,
we do not pursue this.

7. Discussion

Although the data structure investigated in this article is specific (i.e., there
exists a cured subgroup), we expect that the proposed methodology can be ex-
tended to other heterogeneous data with minor modifications. We have assumed
the parametric generalized linear model and Cox model. We expect that the
estimation and inference approaches, and their asymptotic properties, can be
extended to other models.

The HDSD dataset analyzed in Section 6 is in fact a subset of the data in
Thompson and Chhikara (2003). In the entire HDSD study, there were multiple
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experiments, whereas we focused on only one. Experiments following the first
were conducted on a subset of subjects, where subjects volunteered (instead of
being randomly selected). This raises serious concerns on the possibility of bi-
ased sampling. For example, even with the same experimental scheme, the first
experiment had a censoring rate of 71%, whereas the experiments that followed
had a censoring rate of 83%. Significant differences in covariates also exist. In-
vestigating the possibility of biased sampling is interesting, but beyond the scope
of this article.
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