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Abstract: We propose a spatial autoregressive model with generalized disturbances

to simultaneously model the spatial effects between the response variables and those

between the disturbance terms. By directly modeling the covariance matrix of the

disturbance terms as a polynomial function of a row-normalized adjacency matrix

with a prespecified upper order that may tend to infinity, our model includes the

traditional spatial autoregressive model with moving average disturbances and that

with autoregressive disturbances as special cases. We propose a quasi-maximum

likelihood estimator (QMLE) for estimating the model, and use an approximate

maximum likelihood estimator (AMLE), which is feasible for large-scale networks,

to alleviate the computational cost. We establish the asymptotic properties of

both estimators (i.e., QMLE and AMLE), without imposing any distribution

assumptions. Because the number of matrix predictors diverges, we propose a

type of extended Bayesian information criterion method for model selection, and

demonstrate its selection consistency. The results of our simulation studies and an

analysis of the spatial effects in mutual fund cash inflows demonstrate the usefulness

of the proposed model.

Key words and phrases: Approximate maximum likelihood estimator, extended

Bayesian information criterion, generalized disturbances, quasi-maximum likelihood

estimator, spatial autoregressive model.

1. Introduction

Network data are becoming increasingly available, owing to the rapid

development of online social networks (e.g., Facebook and Weibo), and interest

in the analysis of such data has increased accordingly; for a good summary,

see Knoke and Yang (2008), Kolaczyk (2009), and Newman (2010). Because

the nodes within a network can be connected, the traditional independent and

identically distributed (i.i.d) assumption for sampled data is no longer valid, and

can result in invalid statistical inferences (see, e.g., Anselin (1988)). As a result,

finding ways of exploring the dependence structure of network data has attracted

much interest (see, e.g., Hoff, Raftery and Handcock (2002); Chang, Huang and

Wang (2019)).

*Corresponding author.
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The spatial autoregressive model (SAR) is a popular method for modeling

the dependence structure of different nodes within a network (see, e.g., Cliff and

Ord (1973); Anselin (1988)). Given a network of n nodes, indexed by 1 ≤ i ≤ n,

we define the adjacency matrix A = (aij) ∈ Rn×n, where aij = 1 if nodes i and

j are connected, and aij = 0 otherwise. We define aii = 0, for any i. To model

the dependence structure of the responses Y = (Y1, . . . , Yn)
⊤ of the n nodes, the

SAR with covariates is given by

Y = ρWY +Xα+ ε,

where W = (wij) ∈ Rn×n, with wij = aij/
∑

j aij , is a row-normalized adjacency

matrix, X = (X1, . . . , Xn)
⊤ ∈ Rn×p represents the covariates collected from

the n nodes, α = (α1, . . . , αp)
⊤ ∈ Rp is the unknown regression coefficient,

and ε = (ε1, . . . , εn)
⊤ ∈ Rn is a random noise term. The SAR model

characterizes the sophisticated network dependency in a parsimonious manner

using the autoregressive parameter ρ. To account for more complicated situations,

several extensions of the SAR model have been developed, and its usefulness is

widely recognized in research domains such as real estate (e.g., Osland (2010)),

criminology (e.g., Kakamu, Polasek and Wago (2008)), economics and finance

(e.g., Arnold, Stahlberg and Wied (2013)), and sociology (e.g., Lin (2010); Hsieh

and Lee (2016)).

However, despite many recent advances and successful applications of the

SAR model, to the best of our knowledge, most models assume that the

disturbance term ε is independent across different nodes, which is often overly

restrictive in practice. For example, Behrens, Ertur and Koch (2012) found that

in addition to the spatial interdependence between trade flows, cross-sectional

correlation exists among disturbance terms, which might be caused by measure-

ment errors. Catania and Billé (2017) find that unobservable factors result in

the disturbance terms of financial returns within different sectors being spatially

correlated; for additional applications, see Baltagi and Bresson (2011), Fingleton

and Szumilo (2019), and Fingleton (2020). Thus, it is essential that we model

the spatial effects in the dependent variable and those in the disturbance term

simultaneously. To do so, we consider the following spatial autoregressive model

with a spatial autoregressive process in the disturbance term (SARAR(1,1))

(see, e.g., Kelejian and Prucha (1998); Lee (2003); Kelejian and Prucha (2010);

Liu, Lee and Bollinger (2010)):

Y = ρWY +Xα+ ε, ε = λWε+ u,

where λ is the spatial autoregressive parameter of the error term and u =

(u1, . . . , un)
⊤ ∈ Rn, the elements of which are i.i.d with mean zero and variance σ2.

If |λ| < 1, the covariance matrix of the original disturbance ε is E(εε⊤) = σ2(In−
λW )−1(In − λW⊤)−1 = σ2(

∑∞
k=0 λ

kW k)(
∑∞

i=0 λ
kW k)⊤, where In ∈ Rn×n is the
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identity matrix of dimension n, and W k denotes the kth power of W . Therefore,

the SARAR(1,1) model links the covariance matrix to a row-normalized adjacency

matrix of infinite order. Furthermore, ε = (In − λW )−1u = (
∑∞

k=0 λ
kW k)u

indicates that the SARAR(1,1) model allows a nodal-specific shock to transmit to

all other nodes through higher-order neighbors. However, in some cases, shocks

are bounded to a small local neighborhood, and are not transmitted to other

nodes. Hence, we consider the following alternative model, called the spatial

autoregressive model with moving average disturbances of order (1,1), that is,

SARMA(1,1)(see, e.g., Anselin and Florax (1995); Fingleton (2008); Dogan and

Taspinar (2013); Dogan (2015)):

Y = ρWY +Xα+ ε, ε = u+ λWu.

In this model, the corresponding covariance matrix of the original disturbance is

E(εε⊤) = σ2(In − λW )(In − λW )⊤ = σ2
{
In − λ(W +W⊤) + λ2WW⊤}, which is

limited to the first and second order of the row-normalized adjacency matrix. In

addition to the above two types of models, we examine high-order and infinite-

order spatial lags in the disturbance terms (see, e.g., Lee and Liu (2010); Badinger

and Egger (2011); Gupta and Robinson (2018)). Although the SARAR and

SARMA models are commonly used, which model should be used in empirical

studies is unclear. Some non-nested tests have been developed to distinguish

spatial models (see, e.g., Delgado and Robinson, 2015). In contrast, we propose

a general model that includes the traditional SARMA and SARAR models as

special cases.

We call the proposed model the spatial autoregressive model with generalized

spatial disturbances (SARg), and model the covariance matrix of the disturbances

as a polynomial function of the row-normalized adjacency matrix. That is,

we directly link the covariance matrix Σ of the disturbances with the matrix

predictors W k (k = 1, . . . , d) using unknown parameters. By allowing the number

of matrix predictors to increase slowly with the network size, this model includes

the SARAR and SARMA models as special cases. Specifically, we set d = ∞ for

SARAR(1,1) and d = 2 for SARMA(1,1). Accordingly, in contrast to SARAR

and SARMA, the proposed model is sufficiently flexible to capture complex

dependence structures.

First, to estimate the model, we employ the popular quasi-maximum

likelihood estimator (QMLE; see, e.g., Smirnov and Anselin (2001); Lee (2004)).

Although the consistency and the asymptotic normality of the QMLE with fixed-

dimensional parameters are well established, whether they hold with diverging

parameters is doubtful. In this case, traditional pointwise convergence is no longer

valid, and we need to consider the consistency of the vector and the matrix norms.

Second, when d is large, it is essential to identify which matrix predictors

(i.e., W k, for k = 1, . . . , d) are relevant. However, when d is diverging, traditional
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model selection criteria, such as the Bayesian information criterion (BIC), tend

to choose many spurious predictors and lack selection consistency (see, e.g., Chen

and Chen (2008); Wang, Li and Leng (2009)). To overcome this difficulty, the

extended Bayesian information criterion (EBIC) is considered for linear regression

models (Chen and Chen (2008)). In this study, we investigate the properties of

an EBIC-type criterion for the proposed SARg model and establish its selection

consistency. However, this process is technically challenging, because it involves

a large deviation result on the first-order derivative of the log-likelihood function,

which is a quadratic form of independent random variables. Accordingly, we need

to carefully study the tail probability of the quadratic form of these variables,

which presents a challenge when proving the consistency of the EBIC.

Third, despite its theoretical attractiveness, the QMLE experiences bottle-

necks when considering large-scale networks (see, e.g., Barry and Pace (1999);

Smirnov and Anselin (2001); Ma et al. (2020a)). The associated computational

cost is very high when the network size n is large, because the computational

complexity of calculating the determinant and the inverse is, in general, O(n3)

(Trefethen and Bau (1997); Barry and Pace (1999)). In reality, many social

networks are enormous. For example, Facebook (www.facebook.com) has more

than 1.79 billion daily active users. Thus, an alternative computationally feasible

estimator is needed to alleviate the computational burden of the QMLE.

This study contributes to the literature as follows. First, we show that

under certain mild conditions, the QMLE is consistent and asymptotically normal

when the number of parameters tends to infinity as the sample size increases.

Second, we derive an upper bound for the tail probability of the quadratic form of

independent random variables, and thus a large deviation result for the first-order

derivatives. This approach is particularly useful for establishing the selection

consistency of the EBIC for the proposed SARg model. Third, we propose an

approximate maximum likelihood estimator (AMLE) for the SARg model. The

basic idea is to approximate the determinant in the quasi log-likelihood function

using a truncated-matrix Taylor expansion. Compared with the QMLE, the

AMLE is computationally feasible and attractive for large-scale network analysis.

We also investigate the theoretical properties of the AMLE.

The rest of this paper is organized as follows. Section 2 introduces the SARg

model and the properties of its estimators. Additionally, an EBIC is proposed

for selecting the best model. Section 3 and 4 present numerical studies and a

real-data example, respectively. Finally, Section 5 concludes the paper.

2. Models and Methodology

2.1. Model and notation

In addition to the spatial effect in the dependent variable, we consider a

spatial spillover in the disturbance term. If two nodes are connected, their
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corresponding disturbances are more likely to be correlated. Therefore, the

covariance matrix of the disturbance term may be affected by the network

structure. Therefore, we model the covariance matrix as a polynomial function

of the row-normalized adjacency matrix, with a prespecified upper order, and

propose the following model:

Y = ρWY +Xα+ ε,

E(ε) = 0, and cov(ε) = Σ(β) = β0In + β1W̃ + · · ·+ βdW̃
d. (2.1)

Here, β = (β0, β1, . . . , βd)
⊤ ∈ Rd+1 is the coefficient vector used to characterize

the dependence structure of the disturbance term ε, where βk measures the

contribution of W̃ k, for k = 1, . . . , d, and d is the upper order of the polynomial

function. For completeness, define W̃ 0 = In. Here, to guarantee the symmetry of

the covariance matrix, we use W̃ = (1/2)(W +W⊤), instead of W . Notably, in

model (2.1), βk has practical meaning, because W̃ k = (w̃
(k)
ij ) ∈ Rn×n can capture

the nodal relationship in terms of the k-step path. For example, if w
(1)
ij > 0,

there exists a direct connection from node i to node j, or from node j to node

i. When k = 2, w
(2)
ij =

∑n
l=1 w

(1)
il w

(1)
lj and w

(2)
ij > 0 imply that there exists a

node l such that w
(1)
il > 0 and w

(1)
lj > 0. As a result, there exists a two-step path

connecting node i and node j through intermediary node l. Accordingly, w
(k)
ij > 0

indicates that node i and node j are connected via a k-path. In summary, the

terms W̃ k, for k = 1, . . . , d, contain useful information on network dependence,

and thus may affect the covariance structure of the disturbance term. To assess

the effect of W̃ k on Σ, we assign an appropriate weight βk to each W̃ k, and use βk

to measure the effect of the k-path nodal relationship on the covariance structure

of ε. In equation (2.1), d can be regarded as a positive integer representing the

maximal path length. As the network size n → ∞, we allow d to increase slowly.

For simplicity, we assume p is fixed, which is commonly considered in the extant

literature (see, e.g., Lee (2004); Kelejian and Prucha (2010); Lee and Liu (2010);

Ma et al. (2020b)).

Remark 1. Two types of models, SARAR and SARMA, have been proposed to

model the spatial effect in the disturbance term. The SARAR model assumes

that the disturbances follow a spatial autoregressive process. This assumption

links the covariance matrix of disturbances to the row-normalized adjacency

matrix of infinite order. Alternatively, a spatial moving average process can be

imposed on the disturbances of the SAR model, in which the spatial correlation

between disturbances is limited to a finite order of the row-normalized adjacency

matrix. By linking the covariance matrix to the network adjacency matrix

using matrix polynomial regression, our proposed model is sufficiently flexible

to capture different types of spatial dependence. When the upper order d is set

appropriately, the SARAR and SARMA models are special cases of our model
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framework.

Remark 2. In model (2.1), the upper order d needs to be specified a priori.

In practice, we can set d to be a quite large integer. A similar approach has

been used to specify the lag order in the vector autoregressive model and vector

autoregressive moving average model (see, e.g., Hsu, Hung and Chang (2008);

Wilms et al. (2023)). Moreover, as illustrated in our simulation results, our

estimation results are robust to different choices of d.

2.2. Parameter space

In this section, before estimating the parameters, we discuss the parameter

space of the proposed model. Define the parameter vector θ = (ρ,β⊤,α⊤)⊤ ∈
Rd+p+2 and the true parameter vector θ0 = (ρ0,β

⊤
0 ,α

⊤
0 )

⊤ ∈ Rd+p+2. From model

(2.1), we have Y = (In − ρW )−1(Xα + ε). Because W is a row-normalized

adjacency matrix, the largest eigenvalue of W is one (Banerjee, Carlin and

Gelfand (2004)). A sufficient condition to ensure the invertibility of In − ρW

is |ρ| < 1. Accordingly, we assume |ρ| < 1 throughout this paper. In addition,

the covariance matrix Σ = cov(ε) is required to be positive definite. Following

Fan and Lv (2008), we require that there exist positive constants τmin and τmax

that satisfy

0 < τmin < λmin(Σ) < λmax(Σ) < τmax < ∞,

where λmin(Σ) and λmax(Σ) are the minimal and maximal eigenvalues, respec-

tively, of the covariance matrix Σ. Using a spectral decomposition, we decompose

W̃ as W̃ = UDU⊤, where U is an orthonormal matrix, D = diag(λ1, . . . , λn),

and λj is the jth largest eigenvalue of W̃ . Therefore, we have

U⊤ΣU = diag

(
d∑

i=0

βiλ
i
j

)
. (2.2)

Define amax = max{|λ1|, |λn|}. As a result, we construct the parameter space as

follows:

Θ =

{
θ = (ρ,β⊤,α⊤)⊤ : |ρ| < 1, |αi| < ∞ for i = 1, . . . , p,

τmin <
d∑

i=0

βiλ
i < τmax for any λ ∈ [−amax, amax]

}
.

If θ ∈ Θ, all the eigenvalues of the covariance matrix Σ are positive and bounded.

Clearly, Θ is a nonempty set, because it contains
{
(ρ,β⊤,α⊤)⊤ : ρ = 0,α =

0, β0 > τmin, βk = 0, for any k = 1, . . . , d
}
as a nontrivial subspace. Moreover,

the parameter space Θ is an open set. For detailed results and a proof, see

Proposition 1 in the Supplementary Material, S.2.
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2.3. QMLE

Here, we use the QMLE method to estimate the unknown parameters in

model (2.1). Because E(Y ) = (In−ρW )−1Xα and cov(Y ) = (In−ρW )−1Σ(In−
ρW⊤)−1, the quasi-log-likelihood function, ignoring the constant, is

L(θ) = −1

2
log |Σ|+ 1

2
log |In−ρW |2− 1

2
(Y −ρWY −Xα)⊤Σ−1(Y −ρWY −Xα).

Consequently, the QMLE of θ0 can be obtained as θ̂ = argmaxθ∈Θ L(θ). This

problem can be solved using the Newton–Raphson method with the Armijo line

search. To avoid the problem of local optima, we recommend using a random

initialization method in practice (see, e.g., Wang et al. (2022)). Specifically, we

can generate many randomized initial values, and then use the estimation that

yields the maximum value of the objective function. Our simulation studies

(unreported) demonstrate that this method works satisfactorily and provides

stable estimation results for different sets of randomized initial values.

To investigate the theoretical properties of the QMLE, we first introduce

some notation that will be used to develop the theoretical distributions of θ̂. For

any generic vector x = (x1, . . . , xn)
⊤ ∈ Rn, the vector q-norm is defined as ∥x∥q =

(
∑n

i=1 |xi|q)1/q. For any generic matrix M = (mij) ∈ Rn×n, define ∥M∥q as the

matrix q-norm, for q = 1, 2,∞, and the Frobenius norm ∥M∥F =
∑

i

∑
j m

2
ij .

Moreover, define |M |∞ = ∥ vec(M)∥∞. Denote In(θ0) as the Fisher information

matrix of the quasi-log-likelihood, and In(θ0) + Jn(θ0) as the variance of the

score function, explicit forms of which are shown in the Supplementary Material,

S.1. We next state several conditions.

(C1) As n → ∞, we assume d = O(nκ), for some 0 < κ < 1/4.

(C2) Define Z =
{
Σ(β0)

}−1/2
ε = (z1, . . . , zn)

⊤. Assume z1, . . . , zn are inde-

pendent subGuassian random variables satisfying E(zi) = 0, E(z2i ) = 1,

E(zki ) = µk for k = 3, 4, and E exp(z2i /t
2) ≤ 2 for any t ≥ K, where

µk (k = 3, 4) and K > 0 are finite constants.

(C3) (i) Define τ as the number of distinct eigenvalues of W̃ that satisfies d ≤
τ ≤ n as n → ∞; (ii) Assume supn≥1 ∥W∥1 < ∞, supn≥1 ∥W∥∞ < ∞, and

supn≥1,1≤k≤d ∥W̃ k∥1 < ∞.

(C4) Assume there exists a large enough open subset Θ̃ ⊂ Θ that contains the

true parameter θ0, such that supn≥1 ∥(In − ρW )−1∥1 < ∞, supn≥1 ∥(In −
ρW )−1∥∞ < ∞, supn≥1 ∥

(
Σ(β)

)1/2∥1 < ∞, and supn≥1 ∥
(
Σ(β)

)−1/2∥1 < ∞,

for any θ ∈ Θ̃.

(C5) The auxiliary information X satisfies supn>1 |X|∞ < ∞.
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(C6) Assume ∥In(θ0) − I(θ0)∥F = o(1) and ∥Jn(θ0) − J (θ0)∥F = o(1). We

further assume c1 < λmin

(
I(θ0)

)
< λmax

(
I(θ0)

)
= O(d) and c2 <

λmin

(
I(θ0)+J (θ0)

)
< λmax

(
I(θ0)+J (θ0)

)
= O(d), for some finite positive

constants c1 and c2.

Condition (C1) allows d to diverge as the network size n → ∞. Condition

(C2) is a moment condition that is much weaker than commonly used distribution

assumptions; see, for example, Zhou et al. (2017). We assume that the noise

terms are subGuassian random variables in order to bound the tail probability of

the first derivatives of the log-likelihood function. This is an essential condition

to establish the selection consistency of the EBIC. Condition (C3)(i) assumes

W̃ has divergent distinct eigenvalues, which ensures the identifiability of the

parameters β. If the number of distinct eigenvalues of W̃ is smaller than d,

some parameters βk in model (2.1) will be unidentifiable. Conditions (C3)(ii)

and (C4) are standard regular conditions that limit the spatial correlation to a

manageable degree. Similar conditions appear in Lee (2004) and Kelejian and

Prucha (2010). Condition (C5) assumes that the regressors are bounded, as is

common in the literature; see, for example, Lee (2004). Condition (C6) is a law

of large numbers-type condition that guarantees the convergence of the Fisher

information matrix and the variance of the score function. Similar conditions

can be found in Lee (2007) and Zou et al. (2021). Based on the above conditions,

the theoretical distribution of θ̂ is given in the following theorem.

Theorem 1. Let θ̂ = (ρ̂, β̂⊤, α̂⊤)⊤ be the QMLE of θ0 = (ρ0,β
⊤
0 ,α

⊤
0 )

⊤. Under

Conditions (C1)–(C6), we have

(a) Consistency:

∥θ̂ − θ0∥2 = Op

(√
d

n

)
.

(b) Asymptotic normality:

√
n

d
t⊤(θ̂ − θ0)

d−→ N(0, s2),

for any generic vector t = (t1, . . . , td+p+2)
⊤ ̸= 0 ∈ Rd+p+2 satisfying ∥t∥2 <

C, s2 = d−1t⊤I−1(θ0)
(
I(θ0) +J (θ0)

)
I−1(θ0)t, and d−1t⊤

(
I(θ0) +J (θ0)

)
t

is a finite positive constant.

The proof of Theorem 1 is given in the Supplementary Material. According

to Theorem 1, the QMLE is a
√
n/d-consistent estimator. The asymptotic

distribution of θ̂ remains valid when d diverges. In addition, when d is finite, the

asymptotic distribution of θ̂ simplifies to

√
n(θ̂ − θ0)

d−→ N
(
0, I−1(θ0)

(
I(θ0) + J (θ0)

)
I−1(θ0)

)
.



SAR MODELS WITH GENERALIZED DISTURBANCES 733

In practice, to make valid statistical inferences, we need to estimate I(θ0)

and J (θ0) consistently, which we can do using the sample-based counterparts.

Specifically, we can estimate I(θ0) and J (θ0) by In(θ̂) and Jn(θ̂), respectively,

where µ̂k = n−1
∑n

i=1 ẑ
k
i (k = 3, 4) and Ẑ = (ẑ1, . . . , ẑn) = {Σ(β̂)}−1/2(Y −

ρ̂WY − Xα̂⊤). Notably, when no spatial effect exists in the disturbance term,

that is, d = 0, the asymptotic distribution of the QMLE is the same as that

studied by Lee (2004) for the pure SAR model.

2.4. Model selection

When d is large, it is essential to identify which W̃ k terms are relevant.

Therefore, we propose an EBIC-type model selection method, motivated by Chen

and Chen (2008), for diverging d. Specifically, we define the true model as S0 =

{k ≥ 0 : β0k ̸= 0}, which collects the index of relevant terms W̃ k. We assume that

the number of relevant terms is finite, that is, |S0| < ∞. The full model is defined

as SF = {0, 1, . . . , d}. Let S ⊂ SF be a candidate model. The corresponding

coefficient vector is defined as θ(S) = (ρ,β(S)⊤,α⊤)⊤, β(S) = (βi, i ∈ S) ∈ R|S|,

and |S| represents the size of model S. Then, we propose the following EBIC:

EBICγ(S) = −2L
{
θ̂(S)

}
+ |S| log(n) + 2γ|S| log(d),

for some γ ≥ 0, where θ̂(S) is the QMLE for model S and γ is a scale parameter.

Then, the best model selected by the EBIC is SEBIC = argminS⊂SF
EBICγ(S).

Similarly to Chen and Chen (2008), we define the collection of underfitted

models as A1 = {S : S0 ̸⊂ S, |S| ≤ cd0}, and the collection of overfitted models

as A2 = {S : S0 ⊂ S, |S| ≤ cd0}, where d0 = |S0|, and c > 1 is a fixed

constant defined in Condition (C8). The following conditions are needed before

establishing the properties of the EBIC.

(C7) mini∈S0
|βi0| ≥ Cn−1/4, for some constant C > 0.

(C8) Define L̈(θ) = ∂2L(θ)/∂θ∂θ⊤. For any given δ > 0, there exist constants

ξ > 0 and c > 1 such that, when n is sufficiently large,

(1− δ)In

{
θ0(S ∪ S0)

}
≤ −n−1EL̈

{
θ(S ∪ S0)

}
≤ (1 + δ)In

{
θ0(S ∪ S0)

}
,

for all S such that |S| ≤ cd0 and ∥θ(S ∪ S0)− θ0(S ∪ S0)∥2 ≤ ξ.

Condition (C7) places a requirement on the order of the nonzero coefficients,

and is popular in classic linear regression models. Condition (C8) extends (C6)

to a small neighborhood of the true parameter θ0(S ∪S0). Similar conditions can

be found in Chen and Chen (2012) and Chen and Luo (2013). Based on these

conditions, the selection consistency of the EBIC can be obtained as follows.
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Theorem 2. Under Conditions (C1)–(C8), as n → ∞, we have

P
{
min
S∈A1

EBICγ(S) ≤ EBICγ(S0)
}
→ 0,

for any γ ≥ 0 satisfying γ = o(n1/2/ log d);

P
{
min
S∈A2

EBICγ(S) ≤ EBICγ(S0)
}
→ 0,

for any γ ≥ 0 satisfying γ > 1/min{c∗5, c∗6} − 5/2, where c∗5 and c∗6 are defined in

the Supplementary Material.

The above theorem implies that the EBIC can determine the true model

consistently, as long as n → ∞. In practice, we recommend using γ = 0.5,

which performs well in our simulations. To implement the EBIC, we apply the

forward-backward selection procedure (see, e.g., Zhang (2009); Ma, Guo and

Wang (2023)), which reduces the computational complexity from O(2d) to O(d2).

Thus, the EBIC is applicable even for divergent d.

2.5. AMLE

Despite the theoretical attractiveness of the QMLE, it is computationally

infeasible when the network size n is large, because each iteration calculates the

log-determinant and the inverse of the matrix In − ρW .

To avoid having to calculate log |In − ρW |, the following well-known formula

of matrix powering expansion is commonly used (see, e.g., Martin (1993); Barry

and Pace (1999); Boutsidis et al. (2017)). That is,

log |In − ρW | = −
∞∑
k=1

tr(ρkW k)

k
.

Notably, this expansion holds even when W is asymmetric; therefore, we can

approximate log |In − ρW | using a truncated-matrix Taylor expansion. The

approximate quasi-log-likelihood function is

La(θ) = −1

2
log |Σ|−

m∑
k=1

tr(ρkW k)

k
− 1

2
(Y −ρWY −Xα)⊤Σ−1(Y −ρWY −Xα),

where the constant independent of θ is ignored. Maximizing La(θ) leads to

the AMLE θ̂a = argmaxθ∈Θ La(θ), and we can employ the Newton–Raphson

method to find the AMLE. Although computing the trace for the large-scale

matrix is still computationally expensive, this procedure needs to be conducted

only once, in advance. Furthermore, the log-determinant and the inverse of Σ can

be calculated easily after conducting the spectral decomposition of the matrix W̃ .

Compared with the QMLE, the AMLE is computationally efficient, according to
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our numerical studies. We next establish the theoretical properties for the AMLE.

Theorem 3. Let θ̂a = (ρ̂a, β̂
⊤
a , α̂

⊤
a )

⊤ be the AMLE of θ0 = (ρ0,β
⊤
0 ,α

⊤
0 )

⊤. Under

Conditions (C1)–(C6), if mρm0 = o(n−1/2), we have

(a) Consistency:

∥θ̂a − θ0∥2 = Op

(√
d

n

)
.

(b) Asymptotic normality:

√
n

d
t⊤(θ̂a − θ0)

d−→ N(0, s2),

for any generic vector t = (t1, . . . , td+p+2)
⊤ ̸= 0 ∈ Rd+p+2 satisfying ∥t∥2 <

C, s2 = d−1t⊤I−1(θ0)
(
I(θ0) +J (θ0)

)
I−1(θ0)t, and d−1t⊤

(
I(θ0) +J (θ0)

)
t

is a finite positive constant.

According to Theorem 3, the asymptotic covariance matrix of θ̂a is the same

as that of θ̂, mainly because of the limiting conditionmρm0 = o(n−1/2). Intuitively,

this technical condition holds when either m goes to infinity or ρ0 converges

to zero. In practice, when ρ0 is fixed, m is a tuning parameter that can be

selected using the BIC. Specifically, the optimal m is selected using mBIC =

argmin1≤m≤mmax
−2La

{
θ̂a(m)

}
+ m log(n), where mmax is a pre-specified large

integer, and θ̂a(m) is the corresponding AMLE for truncated order m.

3. Simulation Studies

3.1. Simulation settings

To evaluate the finite-sample performance of the proposed model, we conduct

Monte Carlo simulations in various settings. We consider three types of network

models, each generating its own mechanisms for the adjacency matrix A.

Example 1. We first consider a simple ER model (Erdös and Rényi (1959));

specifically, the diagonal elements aii(i = 1, . . . , n) of the adjacency matrix A are

set to zero. The off-diagonal elements aij(i ̸= j) are independent and identically

generated from Bernoulli distributions with probability n−0.8.

Example 2. To reflect the clustering property observed in many real networks,

we follow Nowicki and Snijders (2001) and generate a stochastic block model,

as follows. We assume there exist five blocks, and that each node is randomly

appointed to one of the five blocks. If node i and node j (i ̸= j) are from the

same block, P (aij = 1) = 10n−1; otherwise, P (aij = 1) = n−1. Similarly, we set

aii = 0, for all i = 1, . . . , n.

Example 3. In many social networks, there exist some nodes with extremely

large in-degree values. This motivates us to simulate a power-law-type network
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structure to mimic such a highly skewed in-degree distribution. Thus, we first

generate the in-degree of each node using a discrete power-law distribution (see,

e.g., Clauset, Shalizi and Newman (2009)) with probability mass function ck−α,

where c is a constant, k is the in-degree of the node, and α = 2.5. For each node

i, with i = 1, . . . , n, we randomly sample min(k, n) nodes, without replacement,

and define this set as Si. If j ∈ Si (j = 1, . . . , n), then aij = 1; otherwise, aij = 0.

Finally, we force aii = 0 for each node i (i = 1, . . . , n).

Given the adjacency matrix A, W can be computed by row-normalizing the

matrix A. Set the auxiliary information matrix X = (X1, . . . , Xn)
⊤ ∈ Rn×2.

For Xi = (xi1, xi2)
⊤ ∈ R2, let xi1 = 1 and xi2 be independent and identically

generated from a standard normal distributionN(0, 1). Then, the response vector

Y is generated by Y = (In − ρW )−1(Xα+ ε). Here, we set ρ = 0.2, α = (3, 6)⊤,

ε = Σ1/2Z, with Σ = 0.1In+0.3W̃+0.7W̃ 2+1.5W̃ 3+2W̃ 4, and W̃ = (W+W⊤)/2.

Each element of Z = (z1, . . . , zn)
⊤ is independent and identically generated from

either a standard normal distribution or a mixture distribution 0.9N(0, 5/9) +

0.1N(0, 5). To study the consistency of the proposed EBIC, we consider different

full model sizes with d = 6, 9, 12 and the size of the true model d0 = 4. We set

γ = 0.5 to select the best model, because other settings yield similar conclusions.

Three network sizes (i.e., n = 500, 1000, 1500) are considered, and each setting is

replicated randomly 500 times.

3.2. Simulation results

Define θ0 =
(
θ0,1, . . . , θ0,d+p+2

)⊤ ∈ Rd+p+2 as the true parameter, and

θ̂(k) =
(
θ̂
(k)
1 , . . . , θ̂

(k)
d+p+2

)⊤ ∈ Rd+p+2 as the estimator of θ0 at the kth simulation

replication. For parameter θ0,j , define the bias as BIASj = 500−1
∑

k

(
θ̂
(k)
j − θ0,j

)

and the standard deviation as SDj = {500−1
∑

k

(
θ̂
(k)
j − θ̄j

)2}1/2, with θ̄j =

500−1
∑

k θ̂
(k)
j . In each iteration, we also calculate the standard error estimate

SE
(k)
j , based on Theorem 1 for the QMLE and Theorem 3 for the AMLE. Then,

the average of the estimated standard error is SEj = 500−1
∑

k SE
(k)
j . The average

CPU time (in seconds) consumed by both estimators (i.e., QMLE and AMLE) is

recorded using a PC with 3.40 GHz and 288 GB RAM.

To assess the performance of the proposed EBIC, we calculate several

evaluation indices. Define ST and Ŝ as the index sets of the true model and the

selected model, respectively. The index set Sc
T represents the complementary set

of the index set ST . Then, we can calculate the average size of the selected model

|Ŝ|, average percentage of the correctly fitted model (CF) I(Ŝ = ST ), average

true positive rate (TPR) |Ŝ ∩ ST |/|ST |, and average false positive rate (FPR)

|Ŝ ∩Sc
T |/|Sc

T |. The simulation results are presented in Tables 1–2. To save space,

the results for Example 1 when the noise term follows the mixture distribution

and the results for Examples 2 and 3 are relegated to the Supplementary Material,
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S.5.1, because they yield similar conclusions.

According to Table 1, the BIAS values are small and the standard deviations

(SD) are close to the standard error estimate (SE) for the QMLE. Furthermore,

the SD and SE values approach zero as the network size n increases. These results

are consistent with the asymptotic theory given in Theorem 1. The AMLE shows

the same pattern as that of the QMLE. Specifically, the SD values of the QMLE

and AMLE are similar. In addition, the SD values of the AMLE are robust to

different choices of truncated order m. However, the AMLE with the optimal m

selected using the BIC outperforms the other methods: it has the smallest SD

values, and its SD values and SE values are almost equal. In addition, the AMLE

is computationally more efficient than the QMLE.

Table 2 shows the performance of the EBIC. From Table 2, we can draw

the following conclusions. First, for any fixed d, the performance of the EBIC

improves as the network size n increases. The percentage of correctly fitted

models increases with the dimension n. Second, the EBIC performs well when

the network size n is large. Specifically, when n = 1500, the average size of the

selected model approaches that of the true model, the average positive selection

rate increases to one, and the average false discovery rate decreases to zero. These

findings are consistent with our theoretical results, and indicate that the EBIC

can consistently select the true model.

4. Real-Data Analysis

To demonstrate the practical usefulness of the proposed method, we study

the spillover effect of mutual funds, which is crucial for both fund managers and

general investors (see, e.g., Spitz (1970); Nanda, Wang and Zheng (2004)). By

applying the proposed model, we simultaneously consider the spillover effects of

the response variable and the disturbance term from a network perspective.

We collect data on actively managed open-ended mutual funds in the first

quarter of 2021 from the WIND financial database, an authoritative database for

the Chinese financial market. After removing funds with missing observations,

261 funds remain. The response variable, cash inflow rate Yi, is defined as Yi =(
TAnew

i − TAold
i (1 + rnewi )

)
/TAnew

i , where TAnew
i and TAold

i are the total net

assets of fund i at the end of the first quarter of 2021 and at the end of 2020,

respectively, and rnewi is the fund return during the first quarter of 2021 (Nanda,

Wang and Zheng (2004)). To avoid the effect of outliers caused by cash flow, we

remove the 1% of funds with the highest cash inflow rate, leaving 258 funds in

our study.

Motivated by Spitz (1970) and Sawicki and Finn (2002), we next introduce

the intercept term and four related exogenous covariates to explore their effect on

cash flow: Xi1 is the logarithm of the total net assets of fund i at the end of 2020;

Xi2 is the logarithm of the fund’s age; Xi3 records the fund’s raw return at the end
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Table 1. Detailed simulation results for Example 1 when the true parameters are
(ρ,β⊤,α⊤) = (0.2, 0.1, 0.3, 0.7, 1.5, 2, 3, 6) and zi (i = 1, . . . , n) follows a normal
distribution. BIAS: the average bias; SD: the standard deviation computed from 500
replications; SE: the average of the estimated standard error. We also report the
computational time (Time) in seconds.

Method n Measure ρ β0 β1 β2 β3 β4 α1 α2 Time

500 BIAS 0.000 -0.001 -0.002 0.002 0.010 -0.004 -0.001 0.000 29.782

SD 0.005 0.012 0.080 0.205 0.459 0.671 0.053 0.017

SE 0.005 0.011 0.075 0.201 0.426 0.590 0.050 0.016

QMLE 1,000 BIAS 0.000 0.000 0.002 -0.001 -0.024 -0.029 0.002 0.000 247.419

SD 0.004 0.008 0.053 0.149 0.310 0.440 0.039 0.011

SE 0.004 0.008 0.054 0.147 0.323 0.466 0.038 0.011

1,500 BIAS 0.000 0.000 -0.002 -0.009 0.002 0.020 -0.003 0.000 1,010.097

SD 0.003 0.007 0.049 0.118 0.313 0.465 0.033 0.009

SE 0.003 0.006 0.044 0.122 0.277 0.409 0.032 0.009

500 BIAS 0.000 -0.001 -0.001 0.003 0.010 -0.006 -0.002 0.000 3.619

SD 0.005 0.012 0.082 0.203 0.462 0.667 0.052 0.016

SE 0.005 0.011 0.075 0.201 0.426 0.590 0.050 0.016

AMLE 1,000 BIAS 0.000 0.000 0.002 -0.001 -0.024 -0.029 0.002 0.000 16.269

(m = 2) SD 0.004 0.008 0.053 0.149 0.310 0.440 0.039 0.011

SE 0.004 0.008 0.054 0.147 0.323 0.466 0.038 0.011

1,500 BIAS 0.000 0.000 -0.002 -0.009 0.002 0.020 -0.003 0.000 39.087

SD 0.003 0.007 0.049 0.119 0.311 0.465 0.033 0.009

SE 0.003 0.006 0.044 0.122 0.277 0.409 0.032 0.009

500 BIAS 0.000 -0.001 -0.003 0.001 0.014 0.001 -0.002 0.000 3.537

SD 0.005 0.012 0.080 0.204 0.451 0.655 0.052 0.016

SE 0.005 0.011 0.075 0.201 0.427 0.591 0.050 0.016

AMLE 1,000 BIAS 0.000 0.000 0.002 -0.001 -0.024 -0.029 0.002 0.000 16.437

(m = 3) SD 0.004 0.008 0.053 0.149 0.310 0.440 0.039 0.011

SE 0.004 0.008 0.054 0.147 0.323 0.466 0.038 0.011

1,500 BIAS 0.000 0.000 -0.002 -0.008 -0.001 0.014 -0.003 0.000 48.840

SD 0.003 0.007 0.051 0.119 0.325 0.483 0.033 0.009

SE 0.003 0.006 0.044 0.122 0.276 0.408 0.032 0.009

500 BIAS 0.000 -0.001 -0.004 0.000 0.021 0.011 -0.002 0.000 9.775

SD 0.005 0.011 0.078 0.203 0.435 0.631 0.051 0.016

SE 0.005 0.011 0.075 0.201 0.428 0.592 0.050 0.016

AMLE 1,000 BIAS 0.000 0.000 0.002 -0.001 -0.024 -0.029 0.002 0.000 43.578

(mBIC) SD 0.004 0.008 0.053 0.149 0.310 0.440 0.039 0.011

SE 0.004 0.008 0.054 0.147 0.323 0.466 0.038 0.011

1,500 BIAS 0.000 0.000 -0.004 -0.011 0.009 0.031 -0.003 0.000 129.494

SD 0.003 0.007 0.044 0.115 0.285 0.423 0.033 0.009

SE 0.003 0.006 0.044 0.122 0.278 0.410 0.032 0.009

of 2020; and Xi4 is the risk-adjusted return of fund i, which is measured by the

intercept of Carhart’s (1997) four-factor model. Histograms of the cash inflow rate

and four exogenous covariates are depicted in Figure S.1 in the Supplementary

Material, S.6. Before starting our analysis, we standardize all the exogenous
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Table 2. Detailed model selection results of the EBIC for Example 3, with d0 = 4,
γ = 0.5, and zi (i = 1, . . . , n) following a normal distribution. |Ŝ|: the average size of the
selected model; CF: the average percentage of correctly fitted models; TPR: the average
true positive rate; FPR: the average false positive rate.

n
d = 6 d = 9 d = 12

|Ŝ| CF TPR FPR |Ŝ| CF TPR FPR |Ŝ| CF TPR FPR

500 3.410 0.410 0.770 0.165 3.230 0.240 0.685 0.098 3.240 0.210 0.678 0.066

1,000 3.940 0.810 0.930 0.110 4.000 0.670 0.908 0.074 4.000 0.600 0.885 0.058

1,500 3.990 0.950 0.985 0.025 4.090 0.780 0.940 0.066 4.190 0.640 0.935 0.056

covariates.

To explore the network effect of mutual funds on cash flow, we construct the

adjacency matrix A = (aij) ∈ Rn×n, as follows. As described in Pareek (2012),

we define aij = aji = 1 if two funds i and j allocate at least 5% of their portfolios

to the same stock; otherwise, aij = aji = 0. Additionally, we require the diagonal

elements of the adjacency matrix A to be equal to zero, for completeness. Next,

we study the spillover effect of mutual funds based on the cash flow and the

observed network structure.

We first use the proposed EBIC method to select the best candidate model,

given the size of the full model d = 6 and the tuning parameter γ = 0.5. This

leads to SEBIC = {0, 1}; thus, the covariance matrix is related to matrices In and

W . Consequently, we obtain the QMLE for the parameters ρ, β, and α and the

corresponding log-likelihood values. The final results are given in Table 3. For

comparison purposes, we present the QMLE estimates of the SARAR(1,1) model

and the SARMA(1,1) model. In addition, we present the QMLE of the pure

SAR model, which ignores the spatial effect of the disturbance term. We draw

the following conclusions from the estimation results. First, compared with other

models, the proposed model fits the data best, because it yields the largest log-

likelihood value (see, e.g., Keller and Shiue (2007)). Second, when considering

the spatial effect of the disturbances, ρ̂ is positive and significant at the 5%

significance level, which suggests a positive and significant spillover effect between

cash flows. Third, in addition to the spatial effect of mutual funds on cash flow, a

local spatial effect exists in the disturbance term, because we observe a significant

negative spatial dependence for directly connected neighbors at the 5% level of

significance. Fourth, the estimates for the four exogenous covariates are similar to

those of the SARAR(1,1) model, SARMA(1,1) model, and pure SAR model. The

age, raw return, and risk-adjusted return of funds have a significant effect on cash

flow, after adjusting for the spatial effect between cash flows. Furthermore, to

determine whether the proposed model fits the data adequately well, we present

a QQ-plot for the estimated error term Ẑ = Σ̂(β̂)−1/2(Y − ρ̂WY −Xα̂), where ρ̂,

α̂, and β̂ are estimated values. If the spatial dependence between the response
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Figure 1. QQ-plot for the error term Ẑ.

Table 3. Detailed estimation results for the mutual fund data set.

Variables
SARg pure SAR SARAR(1,1) SARMA(1,1)

Coef Std p-value Coef Std p-value Coef Std p-value Coef Std p-value

ρ 0.192 0.020 0.000 0.045 0.240 0.859 0.337 0.351 0.337 0.050 0.088 0.566

λ - - - - - - -0.555 0.539 0.303 -0.261 0.277 0.346

In 0.019 0.004 0.000 0.020 0.004 0.000 - - - - - -

W -0.018 0.004 0.000 - - - - - - - - -

Intercept -0.072 0.002 0.000 -0.081 0.019 0.000 -0.060 0.027 0.027 -0.081 0.007 0.000

log(Size) 0.005 0.009 0.615 0.001 0.010 0.944 0.002 0.010 0.830 0.001 0.010 0.885

log(Age) 0.029 0.009 0.002 0.032 0.010 0.001 0.033 0.010 0.001 0.033 0.010 0.001

Return 0.032 0.009 0.000 0.036 0.010 0.000 0.036 0.010 0.000 0.036 0.009 0.000

Alpha 0.013 0.008 0.099 0.017 0.009 0.068 0.016 0.009 0.063 0.016 0.009 0.068

Log-likelihood 141.318 136.904 137.598 137.307

variables and between the disturbance terms is modeled well, we expect the error

term Z to be standard normal. As shown in Figure 1, each element of the

error term Ẑ is roughly normal, implying that the proposed model fits the data

well. Accordingly, it is necessary to consider the spatial correlations between

disturbances.

5. Conclusion

In this paper, we have proposed a novel method called the spatial autore-

gressive model with generalized spatial disturbances to simultaneously model the

spatial effects between the response variables and between the disturbance terms.

We use the QMLE to estimate the model, and establish the asymptotic properties

of the QMLE without imposing any distribution assumptions. Because the

QMLE is computationally infeasible for large-scale network data, we propose an

AMLE and establish its asymptotic properties. Our numerical studies show that
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the AMLE is more computationally efficient than the QMLE, and is applicable

to large-scale network data sets. Because the number of matrix predictors is

diverging, we propose using an EBIC-type method to select the best model, and

demonstrate the consistency of this criterion. We demonstrate the performance

of the proposed method using simulation studies and a real-data example.

Several interesting topics are available for future research. First, it is

reasonable to allow the coefficients to change over time. Therefore, we can

extend our model to a semiparametric or nonparametric model, and use the

information of neighboring time points. Second, in our model, the adjacency

matrix is observed and fixed; it would be of interest to allow the adjacency

matrix to be random or partially observed. Third, our proposed model requires

that the dependent variable be continuous. Thus, modeling the spatial effects

between discrete dependent variables is also an interesting topic. Fourth, similarly

to Wang, Li and Tsai (2007), it would be meaningful to develop a criterion

for choosing the optimal γ for the EBIC. Lastly, we would like to develop

a test to assess the adequacy of the proposed model using high-dimensional

structured covariance matrix tests (see, e.g., Zhong et al. (2017)). However,

this is challenging because of the complex dependence in the dependent variable

and in the disturbance term. We believe these efforts would extend the usefulness

of our proposed method.

Supplementary Material

This online Supplementary Material comprises six parts. Section S.1 provides

the explicit forms of In(θ0) and Jn(θ0). Section S.2 presents the results of

Proposition 1, as well as its proof. Sections S.3–S.4 present six useful lemmas

and the proof of Theorems 1–3, respectively. Additional simulation results and a

descriptive analysis for real data are presented in Sections S.5–S.6, respectively.
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