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Abstract: When using inverse regression methods in dimension reduction models,

the popular linearity condition has a paradoxical effect: ignoring the linearity con-

dition yields a more efficient estimator than making use of the linearity condition.

By considering classes of parametric models, which include the linearity condition

as a special case, we examine this phenomenon using a geometry approach, and

provide an intuitive and extended explanation. Our findings explain what the real

cause of the paradox is, indicate how to properly handle the linearity condition

and reveal the true role of the linearity condition. Our analysis directly leads to

new estimators that further improve the existing efficient estimator that did not

specifically account for the linearity condition and the possible constant variance

condition.
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1. Introduction

The linearity condition, often jointly with the constant variance condition,

is a popular assumption when data require dimension reduction (Li and Duan

(1989); Li (1991); Cook and Weinberg (1991); Li (1992); Cook (1998); Cook and

Li (2002); Li and Wang (2007)). These conditions are routinely assumed in the

dimension reduction literature, where the central model assumption is that the

response Y is linked to the covariates X via some linear combinations βTX,

where β is a matrix; that is, Y X|βTX. The linearity condition states that

the covariate vector X satisfies that E(X|βTX) is a linear function of βTX.

The constant variance condition states that cov(X|βTX) is a constant matrix.

However, a puzzling phenomenon is described in the numerical experiment of

Ma and Zhu (2012), where it is discovered that ignoring these conditions, even if

they indeed hold, yields better results than making use of these conditions. It was

later discovered that the gain is in terms of estimation efficiency. More precisely,
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assuming the linearity condition and, if needed, the constant variance condition

to hold, Ma and Zhu (2013a) showed that if we ignore these conditions and

nonparametrically estimate the relevant quantities, which would be known under

these conditions, then the resulting estimation variance of the inverse regression

method decreases. For brevity, in the following, we refer to this phenomenon as

the linearity puzzle.

Although a mathematical proof is provided, Ma and Zhu (2013a) do not

provide an intuitive explanation behind the astonishing phenomenon. This is

somewhat a pity because a mathematical proof does not necessarily or at least

easily lead to clear understanding of the phenomenon. Thus, the intuition on

why linearity puzzle occurs is still missing. On the other hand, a similar para-

doxical phenomenon related to missing values is familiar to researchers in statis-

tics. There, it was known that in implementing the inverse probability weight-

ing method, using an estimated weight, even when the true weight is known,

can reduce the estimation variability (Hirano, Imbens and Ridder (2003)). This

counterintuitive phenomenon was later beautifully explained using information

geometry by Henmi and Eguchi (2004), thus revealing the underlying structure

of the inverse probability weighting estimator and the inherent reason for the

paradox.

This motivates us to use the tool of information geometry to inspect the

linearity puzzle and to provide an intuitive explanation in a style similar to that

of Henmi and Eguchi (2004). This plan turns out to be partially feasible. Al-

though we managed to understand and explain the intuition behind the linearity

puzzle, our approach is a mixture of information geometry and algebra; thus it

is quite different to that of Henmi and Eguchi (2004). Information geometry

(Amari and Kawanabe (1997); Amari and Nagaoka (2007)) usually employs dif-

ferential geometry tools; here, we adopt it in a wider sense. In the following, we

first describe the linearity puzzle in its general form. Then, we inspect a series

of models that bridge the completely known function specified in the linearity

condition and a completely unknown function when this condition is given up

in combination with various estimation procedures. By investigating this more

general model setting, we are able to embed the linearity puzzle within a bigger

picture, and gain an intuitive understanding of why and how it occurs.

We expand our understanding of these phenomena by investigating whether

the linearity and constant variance conditions can be used smartly and “prop-

erly” so that they contribute to the estimation in a positive way. We answer

this question by deriving the semiparametric efficiency bound under either and
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both conditions. Our results indicate that if these conditions are accounted for

appropriately, they can indeed contribute to benefitting the estimation in terms

of reducing the estimation variability. Encouraged by this discovery, we further

devise two new estimators. The first is optimal under the linearity condition,

and the second is optimal under both linearity and constant variance conditions.

We illustrate the advantages of the new estimators over the efficient estimator

proposed in Ma and Zhu (2013b), both theoretically and numerically, by means

of a series of simulation studies.

2. Linearity Puzzle

Let X be a p×1 random vector, and let Y be a univariate random response.

In the dimension reduction literature, the goal of estimating the column space

of β can be expressed equivalently as estimating the lower (p − d) × d block

of the p × d matrix β, while fixing the upper d × d matrix as the identity. A

very general class of estimators can be constructed from the estimating function

g(Y )[a(X)−E{a(X)|βTX}]T, where g is a prespecified length pg vector function,

a is a prespecified length pa vector function, and pgpa = (p − d)d. Ma and Zhu

(2013a) showed that the estimator of β obtained from solving
n∑
i=1

g(Yi){a(Xi)−m(βTXi)}T = 0 (2.1)

is less efficient than the estimator of β obtained from solving
n∑
i=1

g(Yi){a(Xi)− m̂(βTXi)}T = 0. (2.2)

Here, m(βTX) ≡ E{a(X)|βTX} is the true expectation of a(X) conditional on

βTX, and m̂(βTX) ≡ Ê{a(X)|βTX} is a kernel-based nonparametric estimator

of E{a(X)|βTX}. Here and throughout the text, when we say one estimator (say

estimator β̃) is less efficient than the other (say estimator β̂), we mean that the

difference of the asymptotic variances of the two estimators (cov(β̃)− cov(β̂)) is

positive-definite. This result is quite counterintuitive because usually one would

expect the additional estimation to inflate the overall estimation variability.

3. General Parametric Model Case

To gain a comprehensive view of the linearity puzzle described in Section 2,

and to generalize it to all parametric models, we consider estimating equations

of the form
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n∑
i=1

g(Yi)[a(Xi)−m{βTXi, α̂(β)}]T = 0. (3.1)

Here, α ∈ Rpα is a parameter, m(βTX,α) is a true parametric model of E{a(X)|
βTX}, i.e. there exists α0(β) such that m{βTX,α0(β)} = E{a(X)|βTX} for

any β, and α̂ is an estimator of α. We can view Li and Dong (2009) as a special

case of this consideration. Because we substitute in the conditional mean of the

covariate function a(X), we call the estimators derived from (3.1) the family of

plug-in estimators. We can view (3.1) as a transition from the completely known

expectation in (2.1) to the completely unknown expectation in (2.2). In (3.1),

when pα = 0, we obtain (2.1), and when pα = ∞, we obtain (2.2). Various

methods of estimating α exist, based on the regression model

a(X) = m(βTX,α) + ε,

where E(ε|βTX) = 0. In general, an estimator α̂(β) can be written as the root

of
n∑
i=1

A(βTXi){a(Xi)−m(βTXi,α)} = 0, (3.2)

where A(βTXi) is a pα × pa matrix. Obviously, different choices of A(βTXi)

lead to different weighted least squares (WLS) estimators.

To compare the performance of the estimators obtained from solving various

estimating equations, we use β̃ to denote the estimator from (2.1), β̂ to denote

that from (2.2), and β̆ to denote that from (3.1). The relative performance of the

three estimators is summarized in Theorem 1. Here and throughout the text, we

use vec(A) to denote the vector formed by the columns of the matrix A, and we

use vecl(A) to denote vec(AL), where AL is the lower submatrix of A, excluding

the upper square submatrix. Further, define

ΣA = E

(
[a(X)− E{a(X)|βTX}]⊗ ∂E{g(Y )|βTX}

∂vecl(β)T

)
,

B1 = E
[
A(βTX)mα{βTX,α0(β)}

]
,

B2 = E
[
mα{βTX,α0(β)} ⊗ g(Y )

]
,

where mα{βTX,α0(β)} = ∂m(βTX,α)/∂αT|α=α0(β), and ⊗ denotes the Kro-

necker product.

Theorem 1. Under the conditions given in the Supplementary Material, the

estimators β̃, β̂ and β̆ satisfy
√
nΣAvecl(β̃ − β)
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=
1√
n

n∑
i=1

Ipa ⊗
[
g(Yi)− E{g(Yi)|βTXi}

] [
a(Xi)−m{βTXi,α0(β)}

]
+

1√
n

n∑
i=1

Ipa ⊗ E{g(Yi)|βTXi}
[
a(Xi)−m{βTXi,α0(β)}

]
+ op(1),

√
nΣAvecl(β̂ − β)

=
1√
n

n∑
i=1

Ipa ⊗
[
g(Yi)− E{g(Yi)|βTXi}

] [
a(Xi)−m{βTXi,α0(β)}

]
+ op(1),

√
nΣAvecl(β̆ − β)

=
1√
n

n∑
i=1

Ipa ⊗
[
g(Yi)− E{g(Yi)|βTXi}

] [
a(Xi)−m{βTXi,α0(β)}

]
+

1√
n

n∑
i=1

Ipa ⊗ E{g(Yi)|βTXi}
[
a(Xi)−m{βTXi,α0(β)}

]
− 1√

n

n∑
i=1

B2B
−1
1 A(βTXi)

[
a(Xi)−m{βTXi,α0(β)}

]
+ op(1).

The results for β̃ and β̂ are obtained in Ma and Zhu (2013a); we provide

the derivation of the result for β̆ in the Supplement Material S.2. We show

the relative performance of the estimators β̃, β̂ and β̆ through their influence

functions in the left panel of Figure 1.

Clearly, β̂ has the smallest variance because vec([g(Y ) − E{g(Y )|βTX}]
[a(X) − E{a(X)|βTX}]T) is orthogonal with both vec(E{g(Y )|βTX}[a(X) −
E{a(X)|βTX}]T) and B2B

−1
1 A(βTX)[a(X)−E{a(X)|βTX}]. Thus, we mainly

illustrate the gains of β̃ and β̆ over β̂. In Figure 1, we set the origin at vec([g(Y )−
E{g(Y )|βTX}][a(X) − E{a(X)|βTX}]T), which can be understood as a vector

orthogonal to the plane plotted in Figure 1. We set the center of the circle at

vec(E{g(Y )|βTX}[a(X)−E{a(X)|βTX}]T). Thus, the circle contains all func-

tions for which the difference between the function and vec(E{g(Y )|βTX}[a(X)−
E{a(X)|βTX}]T) has the same length as vec(E{g(Y )|βTX} [a(X)−E{a(X)|βT

X}]T) itself. We highlight three different scenarios for B2B
−1
1 A (βTX) [a(X)−

E{a(X)|βTX}], indicating three possible outcomes of the relative performance

of β̆, namely falling inside, outside, and on the circle. As we can see, depending

on the choice of A(βTX) and the effect of the parametric model mα through

B1 and B2, β̆ could have larger variance than β̃, smaller variance than β̃ or the
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Figure 1. Relative performance of β̃, β̂ and β̆ under WLS (left) and OWLS (right) in

terms of their influence functions. β̂ is the origin O. β̃ is vector O to circle center C. The
vectors from origin O to a, b and c are B2B

−1
1 A(βTX)[a(X)−E{a(X)|βTX}] (left) and

B2B
−1
3 mT

α{βTX,α0(β)}Q−1(βTX)[a(X) − E{a|βTX}] (right) under three scenarios,

resulting in three β̆ as vectors a to C, b to C and c to C.

same variance as β̃, illustrated as the vector a, b and c to the center of the circle

respectively in the left panel of Figure 1.

In addition to all these different relative performances between β̆ and β̃, the

relative performances between different parametric models are also very complex.

Generally speaking, there exists no monotonicity result among different paramet-

ric models, even among nested parametric models. This is reflected in the left

panel of Figure 1, in that the point corresponding to B2B
−1
1 A(βTX)[a(X) −

E{a(X)|βTX}] can be anywhere in the figure, and its distance to the center of

the circle can be as small as zero or as large as one wishes.

4. General Parametric Model with Constant Variance and OWLS

We now direct our attention to a smaller class of estimators than those de-

scribed in (3.2). The constant variance condition requires var(ε|βTX) to be a con-

stant matrix, denoted as Q. However, in general, the error variance can depend

on βTX as well; therefore we write the variance-covariance matrix more explicitly

as Q(βTX). It is well known that among all WLS estimators for regression mod-

els, the optimal weighted least squares (OWLS) estimator is optimal, in that it

has the smallest estimation variance of the various WLS estimators. The optimal

weight matrix is Q−1(βTX). Thus, we now consider exclusively the OWLS esti-

mator α̂, which solves (3.2), with A(βTX) replaced by mT
α(βTX,α)Q−1(βTX).

The estimating equation corresponding to (3.2) is then
n∑
i=1

mT
α(βTXi,α)Q−1(βTXi){a(Xi)−m(βTXi,α)} = 0. (4.1)
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Define

B3 = E
[
mT

α{βTX,α0(β)}Q−1(βTX)mα{βTX,α0(β)}
]
,

which a special case of B1. The general result concerning β̆ in Theorem 1 subse-

quently reduces to a special structure that has a unique orthogonality property.

We explicitly describe the properties of the OWLS estimator in Theorem 2. The

OWLS estimator is slightly different from the estimators that solve (3.2) because

A(βTX) in (3.2) does not contain α. We give the proof of Theorem 2 in the

Supplementary Material S.3.

Theorem 2. When the OWLS estimator α̂(β) is obtained by solving (4.1), the

resulting estimator β̆ satisfies
√
nΣAvecl(β̆ − β)

=
1√
n

n∑
i=1

Ipa ⊗
[
g(Yi)− E{g(Yi)|βTXi}

] [
a(Xi)−m{βTXi,α0(β)}

]
+

1√
n

n∑
i=1

Ipa ⊗ E{g(Yi)|βTXi}
[
a(Xi)−m{βTXi,α0(β)}

]
− 1√

n

n∑
i=1

B2B
−1
3 mT

α{βTXi,α0(β)}Q−1(βTXi)
[
a(Xi)−m{βTXi,α0(β)}

]
+ op(1).

In addition,

B2B
−1
3 mT

α{βTX,α0(β)}Q−1(βTX)
[
a(X)−m{βTX,α0(β)}

]
is orthogonal to[

Ipa ⊗ E{g(Y )|βTX} −B2B
−1
3 mT

α{βTX,α0(β)}Q−1(βTX)
]

×
[
a(X)−m{βTX,α0(β)}

]
.

Similarly to Section 3, we inspect the results from Theorem 2 from an infor-

mation geometry point of view in the right panel of Figure 1 to gain an intuitive

understanding of the results. Now, because of the orthogonality property estab-

lished in Theorem 2, the length of[
Ipa ⊗ E{g(Y )|βTX} −B2B

−1
3 mT

α{βTX,α0(β)}Q−1(βTX)
]

×
[
a(X)−m{βTX,α0(β)}

]
is the distance from the center of the circle to an arbitrary line that goes through

the origin; hence, it is always shorter than the radius itself, which is the length
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of

Ipa ⊗ E{g(Y )|βTX}
[
a(X)−m{βTX,α0(β)}

]
.

It is now immediately clear that the variance of the estimator β̆ based on any

parametric model m(βTX,α) with OWLS estimation is always smaller than or

equal to the variance of the estimator β̃ based on the known m(βTX). It is also

clear that the best parametric model must satisfy B2B
−1
3 mT

α{βTX,α0(β)}Q−1

(βTX) = Ipa ⊗E{g(Y )|βTX}, for example, by any parametric model that satis-

fies mT
α{βTX,α0(β)} = Ipa ⊗ E{g(Y )|βTX}Q(βTX), which would reduce the

estimation variance to the minimum, i.e. as small as the variance of β̂.

We now take a closer look at the parametric models to see how different

sizes of various parametric models affect the variances of the resulting β̆’s. In

fact, Figure 1 is simplified. For example, the vector from the origin to a, b or

c is B2B
−1
3 mT

α{βTX,α0(β)}Q−1(βTX)[a(X) − E{a|βTX}] when it is a two-

dimensional vector. When the number of parameters pα is larger, we should use

a plane, a hyperplane, etc. that goes through the origin to represent it. When

the parametric models are nested, we subsequently will obtain a plane that con-

tains the line, a hyperplane that contains the plane, and so on. Correspondingly,

the circle becomes a sphere, a hypersphere, and so on. As a result, the distances

between the circle center to the line, plane, hyperplane will decrease accordingly.

This implies that the variances of β̆ will decrease as the complexity of the para-

metric models m(βTX,α) increase. This general observation, in that in terms of

the estimation variability of β̆, “bigger parametric model is always better than a

smaller nested model” naturally suggests that when the model is “maximized”,

we should obtain the optimal estimation variance of β̆. Intuitively, we would

consider a nonparametric model as the “maximum” parametric model, hence

this would explain why the nonparametric-based estimator β̂ has the smallest

variance.

We now explain how to rationalize the intuition that the kernel based non-

parametric estimator can be viewed as an extreme case of the OWLS estimator

when the number of parameters is sufficiently large to yield a “nonparametric”

model. Consider the parametric model where we put a different mean function

value at each different βTX value, i.e. m(βTX) = c0 when βTX = βTx0. In

this case, to estimate c0, the corresponding OWLS estimator becomes
n∑
i=1

I(βTXi = βTx0)Q−1(βTXi){a(Xi)− c0} = 0,
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which yields

c0 =

∑n
i=1 I(βTXi = βTx0)Q−1(βTXi)a(Xi)∑n

i=1 I(βTXi = βTx0)Q−1(βTXi)
=

∑n
i=1 I(βTXi = βTx0)a(Xi)∑n

i=1 I(βTXi = βTx0)
.

Here Q−1(βTXi) appears only when βTXi = βTx0 hence dropped out from

both the numerator and the denominator. Of course we would like to further

assume smoothness of the mean function, hence we modify the indicator function

I(βTXi = βTx0) to Kh(βTXi − βTx0). This modifies the above display to

c0 =

∑n
i=1Kh(βTXi − βTx0)a(Xi)∑n

i=1Kh(βTXi − βTx0)
,

which is exactly the expression of the Nadaraya-Watson nonparametric regression

kernel estimator.

5. Role and Correct Use of the Linearity/Constant Variance Condi-

tions

Having obtained the results in Section 4 and understood why the non-

parametric estimator is the most efficient choice among all possible models of

E{a(X)|βTX} both mathematically and intuitively, we are now in the position

to take a closer look at the popular linearity condition and the constant variance

condition to see the benefits and cost these conditions bring. This turns out to

be not a trivial task at all. In order to proceed properly, we take the approach

of Bickel et al. (1993); Tsiatis (2006) and derive the nuisance tangent space, its

orthogonal complement, and the efficient score, for the case with the linearity

condition and the case with both linearity and constant variance conditions.

We first investigate the case when only the linearity condition is assumed to

hold. We can express the likelihood of one typical observation (X, Y ) as

f(X, Y ) = f1(βTX)f2(βTX, ε2)f3(βTX, Y ),

where ε2 = X2 −m(βTX,β2) = X2 − β2(βTβ)−1βTX, X = (XT
1 ,X

T
2 )T, and

β = (Id,β
T
2 )T. We use f1, f2, and f3 to denote the probability density function

(pdf) of βTX, the pdf of ε2 conditional on βTX and the pdf of Y conditional on

X, which by the model assumption, is a function of βTX and Y only. We write

Q2(βTX) = E(ε⊗2
2 |βTX).

Theorem 3. Assume that the linearity condition holds. Then, when estimating

β2, the nuisance tangent space is Λ = Λ1 ⊕ Λ2 ⊕ Λ3, where

Λ1 =
[
h(βTX) : E{h(βTX)}=0, E{hT(βTX)h(βTX)}<∞,h(βTX)∈R(p−d)d

]
,
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Λ2 =
[
h(βTX, ε2) : E{h(βTX, ε2)|βTX}=0, E{ε2h

T(βTX, ε2)|βTX} = 0,

E{hT(βTX, ε2)h(βTX, ε2)} <∞,h(βTX, ε2) ∈ R(p−d)d
]
,

Λ3 =
[
h(βTX, Y ) : E{h(βTX, Y )|βTX} = 0, E{hT(βTX, Y )h(βTX, Y )} <∞,

h(βTX, Y ) ∈ R(p−d)d
]
.

The nuisance tangent space orthogonal complement is

Λ⊥ =
[
g(X, Y ) : E{g(X, Y )|βTX, Y } = 0, E{g(X, Y )|βTX, ε2} = A(βTX)ε2,

E{gT(X, Y )g(X, Y )} <∞,g(X, Y ) ∈ R(p−d)d,A(βTX) ∈ R(p−d)d×(p−d)
]
.

The efficient score function is

Seff(X, Y,β)

= vec

(
ε2
∂logf1(βTX)

∂XTβ
+
∂Q2(βTX)

∂XTβ

[
Id ⊗

{
Q−1

2 (βTX)ε2

}]
+ m(βTX,β2)εT

2

×Q−1
2 (βTX)

∂m(βTX,β2)

∂XTβ
+ ε2

∂logf3(βTX, Y )

∂XTβ

)
+
∂mT(βTX,β2)

∂vec(β2)
Q−1

2 (βTX)ε2.

Despite of the complexity of the analytic form of the efficient score described

in Theorem 3, it immediately reveals that the linearity condition indeed has

contribution towards estimation efficiency. This is because the efficient score

under this condition is very different from that without this condition, as given in

Ma and Zhu (2013b). Thus, to take full advantage of this condition and to achieve

optimal efficiency require estimating Q2(βTX), f1, f3 and their derivatives with

respect to βTX. The proof of Theorem 3 is provided in the Supplementary

Material S.4.

Under the additional constant variance condition, the variance of ε2 satisfies

E(ε⊗2
2 |βTX) = Q2 = I − β2(βTβ)−1βT

2 , which does not vary with βTX. The

analysis of the efficient estimation under both the linearity and constant variance

conditions follows the same spirit, but is even more tedious and technical. In this

case, we define Q2(β2) = E[{X2−m(βTX,β2)}⊗2|βTX], which does not depend

on βTX according to the assumption, and we assume Q2(β2) = D⊗2(β2). We

further define ε̃2 = D−1(β2){X2 −m(βTX,β2)}, and write the pdf of (X, Y ) as

f(X, Y ) = f1(βTX) det{D−1(β2)}f2(βTX, ε̃2)f3(βTX, Y ),

where f1 and f3 are as before, while f2 is now subject to the mean zero, variance

identity condition. We present the results in Theorem 4 and provide a sketch of
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the proof in the Supplementary Material S.5.

Theorem 4. Assume the linearity and constant variance conditions hold. Then,

when estimating β2, the nuisance tangent space is Λ = Λ1 ⊕ Λ2 ⊕ Λ3, where

Λ1 =
[
h(βTX) :E{h(βTX)}=0, E{hT(βTX)h(βTX)}<∞,h(βTX)∈R(p−d)d

]
Λ2 =

[
h(βTX, ε̃2) : E{h(βTX, ε̃2)|βTX} = 0, E{ε̃2h

T(βTX, ε̃2)|βTX} = 0,

E{vec(ε̃2ε̃
T
2 )hT(βTX, ε̃2)|βTX} = 0, E{hT(βTX, ε̃2)h(βTX, ε̃2)} <∞,

h(βTX, ε̃2) ∈ R(p−d)d
]

Λ3 =
[
h(βTX, Y ) : E{h(βTX, Y )|βTX} = 0, E{hT(βTX, Y )h(βTX, Y )} <∞,

h(βTX, Y ) ∈ R(p−d)d
]
.

The nuisance tangent space orthogonal complement is

Λ⊥ =
[
g(X, Y ) : E{g(X, Y )|βTX, ε̃2} = A(βTX)ε̃2 + B(βTX)vec(ε̃2ε̃

T
2 − Ip−d),

E{g(X, Y )|βTX, Y } = 0, E{gT(X, Y )g(X, Y )} <∞,g(X, Y ) ∈ R(p−d)d
]
.

The efficient score function is

Seff(X, Y,β) = vec

(
D(β2)ε̃2

∂logf1(βTX)

∂XTβ
+ D(β2)ε̃2

∂logf3(βTX, Y )

∂XTβ

)
−K1(βTX,β2)ε̃2 + K2(βTX,β2)v −K4(βTX,β2)v.

Here, v = v1 − E(v1ε̃
T
2 |βTX)ε̃2, v1 = vec(ε̃2ε̃

T
2 − Ip−d),

K1(βTX,β2)=−
{
∂mT(βTX,β2)

∂βTX
⊗m(βTX,β2)+

∂mT(βTX,β2)

∂vec(β2)

}
{D−1(β2)}T,

K2(βTX,β2) = K1(βTX,β2)E(v1ε̃
T
2 |βTX)T

{
E(vvT|βTX)

}−1
,

C1(β2) =

[
vec

{
DT(β2)

∂{D−1(β2)}T

∂vec(β2)1

}
, . . . , vec

{
DT(β2)

∂{D−1(β2)}T

∂vec(β2)(p−d)d

}]T

,

K3(βTX,β2) = C1(β2)−
[
∂mT(βTX,β2)

∂βTX

{
D−1(β2)

}T
]
⊗D(β2),

K4(βTX,β2) = −K3(βTX,β2)E

[
vec

{
ε̃2
∂logf2(βTX, ε̃2)

∂ε̃T
2

}
vT|βTX

]
{E(vvT|βTX)}−1.

Similar observations can be made regarding the efficient estimator under

both the linearity condition and the constant variance condition. Theoretically,

the additional constant variance condition indeed further improves the optimal
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efficiency bound over that under linearity condition only. This conclusion is

drawn directly based on the fact that the two efficient score functions given in

Theorems 3 and 4 are different (Bickel et al. (1993); Tsiatis (2006)).

6. Numerical Evaluation

We perform a series of numerical experiments to evaluate the efficient es-

timators. We simulate p − d independent variables uj (j = 1, . . . , p − d) from

a Weibull distribution with shape parameter one and scale parameter two. Let

ε2 = v−1/2(u −m), where u = (u1, . . . , up−d)
T, and m and v are, respectively,

the mean and variance of u. Thus, ε2 is a random vector with mean 0, and

variance-covariance matrix Ip−d. We consider Z from two distributions, a lo-

gistic distribution and a centered gamma distribution. Both distributions have

mean zero and variance βTβ. To generate the covariates, we consider three

models:

(I) X2 = β2(βTβ)−1Z + (βTβ)−1/2|Z|{Ip−d − β2(βTβ)−1βT
2 }1/2ε2,

(II) X2 = β2(βTβ)−1Z + {Ip−d − β2(βTβ)−1βT
2 }1/2ε2,

(III) X̃2 = β2(βTβ)−1(Z2 − βTβ) + {Ip−1 − β2(βTβ)−1βT
2 }1/2ε2.

We then let X1 = Z − βT
2 X2, X = (X1,X

T
2 )T in models (I) and (II). For model

(III), we let X̃1 = Z − βT
2 X̃2, and form X̃ = (X̃1, X̃

T
2 )T, X = {var(X̃)}−1/2X̃,

where var(X̃) is the variance-covariance matrix of X̃. Our construction is de-

signed under d = 1, and ensures that the resulting covariate vector X satis-

fies E(X) = 0 and var(X) = Ip. In addition, model I satisfies the linearity

condition, but not the constant variance condition, whereas model (II) satis-

fies both the linearity and the constant variance conditions. Specifically, both

models satisfy E(X|βTX) = β(βTβ)−1βTX. On the other hand, for model (I),

cov(X|βTX) = (βTβ)−1(βTX)2{Ip − β(βTβ)−1βT}, which is not a constant

matrix, whereas for model (II), cov(X|βTX) = Ip − β(βTβ)−1βT. In contrast

to models (I) and (II), model (III) does not satisfy the linearity condition. We

subsequently simulate Y from the normal distribution with mean sin(2βTX) and

variance log{2 + (βTX)2}.
We now implement the three optimal estimators: (a) the efficient estimator

given in Ma and Zhu (2013a), which does not make use of linearity or con-

stant variance condition, and is optimal without assuming these relations; (b)

the efficient estimator proposed in Theorem 3, which assumes only the linearity
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condition, and is optimal if this assumption is indeed satisfied; and (c) the effi-

cient estimator proposed in Theorem 4, which assumes both the linearity and the

constant variance conditions, and is optimal when both conditions hold. We set

β = (1, 0.2, 0.3, 0.4)T and compare the three estimators under the various model

assumptions with a sample size of n = 50.

We illustrate the performance of the three estimators across 1,000 simula-

tions in Tables 1 and 2, which present the estimation absolute biases and standard

errors. In addition, we create the boxplots for the squared distances of the esti-

mators to the true parameter values, defined as {(p− d)d}−1‖β̂ − β‖22 in Figure

2 and 3. From Table 1 and 2, and Figure 2, we can see that under model (I),

where only the linearity condition is satisfied, estimator (b) has smaller estima-

tion error compared with estimator (a). This is because estimator (b) utilizes

the linearity condition properly to further improve the estimation efficiency over

that of estimator (a). However, estimator (c) goes too far in further assuming

the constant variance condition and hence is biased. In contrast, under model

(II), where both the linearity and constant variance conditions are satisfied, all

estimators are consistent while estimator (c) yields the smallest estimation error.

This is because estimator (c) increases the estimation efficiency by further tak-

ing into account the additional constant variance condition in an optimal way.

Finally, under model (III), where the linearity condition does not hold, estimator

(a) performs best, because the other two estimators are both obtained under

wrong models and hence are both inconsistent.

We also considered d = 2. In this case, we first generate u and ε2 in the same

way as before. To construct Z, we write the (i, j) element of βTβ as σij , and first

generate Z1 from a centered gamma distribution with mean zero and variance

σ11. Then, we generate Z2 from a logistic distribution with mean σ12σ
−1
11 Z1 and

variance σ22 − σ12σ
−1
11 σ21. This ensures that the vector Z = (Z1, Z2)T has mean

0 and variance-covariance matrix βTβ. To generate the covariates, we consider

three models, similarly to the d = 1 case:

(I) X2 = β2(βTβ)−1Z + σ
−1/2
11 |Z1|{Ip−1 − β2(βTβ)−1βT

2 }1/2ε2,

(II) X2 = β2(βTβ)−1Z + {Ip−1 − β2(βTβ)−1βT
2 }1/2ε2,

(III) X̃2 = β2(βTβ)−1diag(ZZT − βTβ) + {Ip−1 − β2(βTβ)−1βT
2 }1/2ε2.

We then let X1 = Z − βT
2 X2, and X = (XT

1 ,X
T
2 )T in models (I) and (II).

For model (III), we let X̃1 = Z − βT
2 X̃2, X̃ = (X̃T

1 , X̃
T
2 )T and form X =

{var(X̃)}−1/2X̃. Careful algebraic calculations can then be employed to verify
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Table 1. The absolute biases and standard deviations of the estimators for a logistic Z
at d = 1. Results based on 1,000 simulations at sample size n = 50. Estimator (a) is the
efficient estimator given in Ma and Zhu (2013a); (b) is the efficient estimator proposed
in Theorem 3; (c) is the efficient estimator proposed in Theorem 4.

(a) (b) (c)
model (I)

β2 0.03392 (0.1280) 0.00614 (0.0694) 0.02683 (0.2753)
β3 0.06543 (0.1350) 0.00251 (0.0673) 0.14387 (0.2850)
β4 0.09790 (0.1416) 0.01053 (0.0729) 0.31569 (0.3033)

model (II)
β2 0.00252 (0.1071) 0.00392 (0.1048) 0.00782 (0.0968)
β3 0.00077 (0.1128) 0.00342 (0.1094) 0.00944 (0.0907)
β4 0.00280 (0.1179) 0.00258 (0.1158) 0.00389 (0.0996)

model (III)
β2 0.04971 (0.1387) 0.05450 (0.1405) 0.05322 (0.1897)
β3 0.07423 (0.1395) 0.08235 (0.1460) 0.10098 (0.2190)
β4 0.10971 (0.1575) 0.12779 (0.1673) 0.16378 (0.2401)

Table 2. The absolute biases and standard deviations of the estimators for a gamma Z
at d = 1. Results based on 1,000 simulations at sample size n = 50. Estimator (a) is the
efficient estimator given in Ma and Zhu (2013a); (b) is the efficient estimator proposed
in Theorem 3; (c) is the efficient estimator proposed in Theorem 4.

(a) (b) (c)
model (I)

β2 0.01125 (0.1307) 0.00126 (0.0474) 0.25528 (0.5217)
β3 0.02544 (0.1337) 0.00306 (0.0491) 0.21482 (0.5554)
β4 0.02010 (0.1263) 0.00551 (0.0520) 0.41567 (0.5502)

model (II)
β2 0.00383 (0.1011) 0.00478 (0.0607) 0.00006 (0.0530)
β3 0.00521 (0.1050) 0.00476 (0.0607) 0.00238 (0.0604)
β4 0.01012 (0.1023) 0.00896 (0.0677) 0.00630 (0.0644)

model (III)
β2 0.01213 (0.1334) 0.04392 (0.1267) 0.14229 (0.2748)
β3 0.00381 (0.0998) 0.03532 (0.0966) 0.41074 (0.5416)
β4 0.00373 (0.1024) 0.04272 (0.1067) 0.44644 (0.6430)

that the construction in the three models satisfies E(X) = 0 and var(X) = Ip.

In addition, X satisfies only the linearity condition in model (I), but also sat-

isfies the constant variance condition in model (II). It does not satisfy the lin-

earity condition in model (III). We then generate Y from a normal distribu-

tion with mean sin(2βT
0.1X) and variance log{2 + (βT

0.2X)2}, where β0.1 and

β0.2 denote the first and second columns of β respectively. We set vec(β2) =
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Figure 2. Squared distances of the estimated space to the true space in model (I) (left),
model (II) (middle), and model (III) (right) for logistic Z (upper) and gamma Z (lower).
The results are based on 1,000 simulations with sample size n = 50 and d = 1. Estimator
(a) is the efficient estimator given in Ma and Zhu (2013a); (b) is the efficient estimator
proposed in Theorem 3; (c) is the efficient estimator proposed in Theorem 4.
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Figure 3. Squared distances of the estimated space to the true space in model (I) (left),
model (II) (middle), model (III) (right). Results based on 1,000 simulations at sample
size n = 50, d = 2. Estimator (a) is the efficient estimator given in Ma and Zhu (2013a);
(b) is the efficient estimator proposed in Theorem 3; (c) is the efficient estimator proposed
in Theorem 4.

(β13, β14, β15, β23, β24, β25)T = (0.2, 0.3, 0.4, 0.3, 0.2, 0.4)T, and present the esti-

mation results in Table 3 and Figure 3. These results convey the same general

message as that of the previous simulation study. Specifically, when the linearity
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Table 3. The absolute biases and standard deviations of the estimators for d = 2. Results
based on 1,000 simulations at sample size n = 50. Estimator (a) is the efficient estimator
given in Ma and Zhu (2013a); (b) is the efficient estimator proposed in Theorem 3; (c)
is the efficient estimator proposed in Theorem 4.

(a) (b) (c)
model (I)

β13 0.01205 (0.1370) 0.02088 (0.0627) 0.06876 (0.2062)
β14 0.01193 (0.1353) 0.02780 (0.0733) 0.03191 (0.2109)
β15 0.04068 (0.1511) 0.03887 (0.0741) 0.01462 (0.2383)
β23 0.08464 (0.3127) 0.00552 (0.0342) 0.08232 (0.4441)
β24 0.08466 (0.3211) 0.00874 (0.0346) 0.08786 (0.4361)
β25 0.16100 (0.3478) 0.01095 (0.0367) 0.22637 (0.4993)

model (II)
β13 0.00207 (0.1206) 0.00205 (0.0670) 0.00260 (0.0629)
β14 0.00216 (0.1127) 0.00029 (0.0644) 0.00091 (0.0625)
β15 0.00302 (0.1305) 0.00115 (0.0722) 0.00363 (0.0646)
β23 0.02530 (0.2916) 0.02511 (0.2240) 0.00391 (0.1522)
β24 0.01126 (0.2636) 0.00824 (0.2204) 0.00139 (0.1513)
β25 0.04626 (0.2875) 0.04151 (0.2357) 0.01934 (0.1679)

model (III)
β13 0.04646 (0.1294) 0.08826 (0.1813) 0.53279 (0.2311)
β14 0.02477 (0.1547) 0.02250 (0.1835) 0.87108 (0.2697)
β15 0.06756 (0.1460) 0.15399 (0.1892) 0.49997 (0.3131)
β23 0.11495 (0.2415) 0.36965 (0.3353) 0.90932 (0.4845)
β24 0.12070 (0.2449) 0.19437 (0.3030) 0.90814 (0.4303)
β25 0.21334 (0.2360) 0.48398 (0.3812) 1.63762 (0.5302)

condition and/or constant variance conditions are satisfied, they are able to con-

tribute to better estimation when the conditions are properly taken into account,

in that the estimation efficiency can be further reduced even compared with the

optimal estimator without these conditions.

We further experiment with the situation that the covariance of X is not the

identity. We first generate covariates according to models (I), (II) and (III) in the

d = 2 case. We then multiply the observations by Σ1/2 to obtain the correlated

X, where Σ is a symmetric matrix, with 0.5|i−j| as its (i, j) entry. We present

box plots of the squared distances between the estimators and the true parameter

values in Figure 4. Because the estimation error of Σ can affect the estimation

results significantly when n = 50, the differences between the three estimation

procedures are not as dramatic as those in the identity covariance case. However,

it is clear that Figure 4 still follows the same efficiency improvement patterns as

those shown in Figure 3.
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Figure 4. Squared distances of the estimated space to the true space in model (I) (left),
model (II) (middle), model (III) (right). Results based 500 simulations of the correlated
covariates at sample size n = 50 and d = 2. Estimator (a) is the efficient estimator given
in Ma and Zhu (2013a); (b) is the efficient estimator proposed in Theorem 3; (c) is the
efficient estimator proposed in Theorem 4.

7. Discussion

The linearity condition and constant variance condition are common assump-

tions in the dimension reduction literature. However, their roles and functions

became somewhat confusing after a paradox was discovered by Ma and Zhu

(2012). Our goal in this article is to provide an intuitive and thorough under-

standing of these conditions, and hence bring a closure to this mystery. We also

provide an optimal way to incorporate these conditions in two new estimators,

hence demonstrating the true value of these conditions. The essential messages

of this article are the following. First, using the linearity and/or constant vari-

ance conditions as a plug-in method as in the classical inverse regression method

yields an efficiency loss. Second, this efficiency loss can be decreased by replac-

ing the linearity condition with increasingly more flexible models to capture the

mean of the covariates conditional on the reduced dimension covariates, and us-

ing OWLS to estimate the parameters of these models. Third, when this series

of models becomes maximally flexible, we reach the optimal estimator in this

family of estimators, which corresponds to perform dimension reduction with-

out using the linearity or constant variance conditions. Fourth, if we want to

take full advantage of the linearity and/or constant variance conditions, plug-

in method is not adequate. Analysis under these conditions is needed, and the

theoretical results from the new analysis show improved efficiency due to these

conditions. Fifth, the newly developed optimal estimators under the linearity

and/or constant variance conditions show improvement numerically.

We would like to point out that the linearity puzzle is one of several seemingly
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puzzling phenomena discovered in statistics; for example, see Henmi, Yoshida and

Eguchi (2007); Hitomi, Nishiyama and Okui (2008) and Kawakita and Kanamori

(2013) for several other paradoxes with similar flavor. However, intuitive or

geometrical explanations were not given in these works, hence in a sense the un-

derstanding of these puzzles is not complete. It will be interesting to investigate

the geometrical structure and to further unveil the underneath nature of these

puzzles.

Supplementary Material

The first two authors are joint first authors. The online Supplementary

Material includes the conditions required to establish the asymptotic properties

of the estimators and detailed proofs of Theorem 1–4.
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