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Abstract: Performance tuning of computer codes is an essential issue in computer

experiments. By suitable choosing the values of the tuning parameters, we can

optimize the codes in terms of timing, accuracy, robustness, or other performance

objectives. As computer software and hardware are becoming more and more com-

plicated, such a tuning process is not an easy task, and there are strong needs

for developing efficient and automatic tuning methods. In this article, we consider

software auto-tuning problems that involve qualitative and quantitative tuning pa-

rameters by solving the resulting optimization problems. Because the performance

objective functions in the target optimization problems are usually not explicitly

defined, we build up surrogates from the response data and attempt to mimic the

true, yet unknown, performance response surfaces. The proposed surrogate-assisted

tuning process is an iterative procedure. At each iteration, surrogates are updated

and new experimental points are chosen based on the prediction uncertainties pro-

vided by the surrogate models until a satisfactory solution is obtained. We propose

two surrogate construction methods that adopt two infill criteria for the tuning

problems containing qualitative and quantitative parameters. The four variants of

the proposed algorithm are used to optimize computational fluid dynamic simula-

tion codes and artificial problems to illustrate the usefulness and strengths of the

proposed algorithms.
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process, infill criteria, performance tuning, qualitative and quantitative parameters,
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1. Introduction

Numerical simulations have been widely used in natural science, engineering,

and social sciences under various scenarios. The successes of numerical simula-

tions rely on the efficiency of computer codes. One key component for producing

efficient computer codes is software tuning, which involves finding the optimal
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parameters within algorithms and codes to achieve optimal performance. Such a

tuning process is difficult, if not impossible, to perform manually. It is not trivial

because of the increasing complexities of algorithms, software, and computer ar-

chitectures. Consequently, software automatic performance tuning (auto-tuning

in short) plays a key role in computer code efficiency.

Auto-tuning has been studied intensively using various approaches. In early

achievements such as ATLAS (Whaley, Petitet and Dongarra (2001)), FFTW

(Frigo and Johnson (2005)), SPIRAL (Franchetti et al. (2009)), and ABCLib

Script (Katagiri et al. (2006)), manually created models and exhaustive search

(with heuristic pruning) were used. More general-purpose auto-tuners such as

Active Harmony (Ţăpuş et al. (2002)) and OpenTuner (Ansel et al. (2014)) have

a set of search algorithms, such as exhaustive, random, Hill-Climbing, Nelder-

Mead, SA, GA, and PSO. Some researchers used machine learning techniques for

auto-tuning, such as regression trees (Bergstra, Pinto and Cox (2012)), neural

networks (Falch and Elster (2015); Pellegrini et al. (2010)), decision trees (Pel-

legrini et al. (2010); Monsifrot, Bodin and Quiniou (2002)), PCA plus k-nearest

neighbors (Collins et al. (2013)), and kernel canonical correlation analysis (Gana-

pathi et al. (2009)). Auto-tuning is also called algorithm configuration in some

literature. To solve this type of problems, several iterative algorithms have been

developed. At each iteration, one needs to select the configuration candidates,

evaluate the performance to compare with the incumbent optimal configuration,

and then update the current best parameter setting if necessary. Candidate se-

lection can be performed by Random Online Aggressive Racing (Hutter, Hoos

and Leyton-Brown (2011)) or the genetic algorithm (Hutter et al. (2009)).

The aforementioned auto-tuning approaches solve the optimization problems

(to choose the next testing parameters or configurations) by direct search type

methods without relying on performance models. In contrast, statistical model-

based methods are considered in such auto-tuning literature as Ylvisaker and

Hauck (2011) and Suda (2011). For example, Gramacy, Taddy and Wild (2013)

have studied computer code auto-tuning problems involving qualitative variables

(and ordinal variables). They propose a statistical surrogate analysis approach

that is based on the “dynamic tree” model. The Sequential Model-Based Al-

gorithm Configuration (SMAC) is proposed in Hutter, Hoos and Leyton-Brown

(2011). SMAC uses Gaussian process, tree model, random forest, or others to

form a surrogate of the performance model. The method uses efficient global op-

timization and the expected improvement criterion (Jones, Schonlau and Welch

(1998)) to select the next configuration candidate. Furthermore, an intensifica-
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tion step is used to make sure what the best point is. An auto-tuning scheme

that searches the parameters based on a discretized spline model is studied in

Murata et al. (2015). The idea is to use a “d-spline” as fitting model function. It

assumes continuity of performance value over the parameter space. It increases

the sampling points and updates the d-spline function until the estimated optimal

point is found.

In this article, we focus on auto-tuning problems that involve quantitative

and qualitative (Q&Q) tuning parameters. Such a Q&Q auto-tuning problem is

the optimization problem

min
w∈Ω

y(w) (1.1)

by using the following notation. Let x = (x1, . . . , xI)
t ∈ ΩQN ⊂ RI be the vector

containing I quantitative tuning parameters and z = (z1, . . . , zJ)t ∈ ΩQL ⊂ RJ

be the vector containing J qualitative tuning parameters, with ΩQN and ΩQL

the quantitative and qualitative experimental domains, respectively. We assume

that the qualitative parameters zj have qj levels and, thus, a Q&Q auto-tuning

problem has M cases for M =
∏J
j=1 qj . Finally, we let w =

(
xt, zt

)t ∈ Ω for

Ω = ΩQN ×ΩQL ⊂ RI+J and denote the objective function as y(w).

We take the Algebraic Multigrid (AMG) linear system solver (Fujii, Nishida

and Oyanagi (2005); Fujii and Marques (2014); Fujii (2014)) as an example to

illustrate (1.1). Linear systems arise in many numerical simulations such as fluid

dynamics (Darwish, Sraj and Moukalled (2009)) and elastic analysis (Adams

et al. (2004)). Solving these linear systems is usually the most expensive part

of the simulations. To accelerate the running time of an AMG solver, both

quantitative and qualitative parameters need to be tuned, and the number of all

possible combinations of the tuning parameters can be large. For example, in the

AMG implementation introduced in Fujii, Nishida and Oyanagi (2003), there are

106 different combinations of the tuning parameters. It is thus not practical to

test all combinations to find the shortest running time. We propose a systematic

way of finding the suitable combinations of the parameters so that the execution

time of the AMG solver and the associated numerical simulations can be reduced

as much as possible. Example 1 is a particular example of an Q&Q auto-tuning

optimization problem. We show how the proposed methods can be applied to

solve this problem.

Example 1 (Algebraic Multigrid Linear System Solver). We assume I = J = 2,

q1 = 2, q2 = 3, M = 6, and w = (x1, x2, z1, z2)
t. The quantitative tuning

parameter x1 is the threshold for strong coupling (Vanĕk, Mandel and Brezina
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(1996)), and x2 is the relaxation parameter of smoother (Briggs, Henson and

McCormick (2000)). To simplify the tuning procedure, we set a grid over the

domain of these two quantitative parameters. In particular, x1 ∈ {0.02, 0.025,

0.03, . . . , 0.08, 0.09, 0.11} contains 15 grid points and x2 ∈ {0.6, 0.8, 1.0, . . . , 1.8}
contains 7 grid points. Consequently, the corresponding quantitative experiment

domain ΩQN is a two-dimensional domain with 15 × 7 grid points. The quali-

tative parameter z1 can be either the Symmetric Gauss-Seidel smoother (SGS)

or the Gauss-Seidel smoother (GS) (Briggs, Henson and McCormick (2000)).

The qualitative parameter z2 can be the V-, F-, or W-cycle in the AMG solver

(Briggs, Henson and McCormick (2000)). The objective function y(w) is the

total execution time of the AMG solver with the tuning vector w. There are

15× 7× 2× 3 = 630 possible combinations of w in total.

Such Q&Q auto-tuning problems are common in various computer simula-

tion codes. To the best of our knowledge, there are few efficient and systematic

ways to perform auto-tuning for this type of problem. For example ppOpen-AT

(Katagiri, Ohshima and Matsumoto (2014)), an auto-tuning framework, allows

library developers to implement auto-tuning functionality only by inserting tun-

ing directives to the codes. Many functionalities have already been prepared this

task. For example, d-spline parameter search, loop unrolling, loop splitting, and

loop fusion can be implemented only by inserting one or two directive lines. All

combinations of transformed code patterns and parameter values are checked for

the best performance. As it does not distinguish Q&Q parameters, it is difficult

to deal with the problems in an efficient way other than by exhaustive searches.

A parameter tuning study targeting a multigrid solver is conducted in Chan et al.

(2009) using an auto-tuning language called PetaBricks. The multigrid method

is a multi-level method for solving linear equations. The study optimized the

combinations of parameter settings at each level for multiple convergence crite-

ria. It succeeded in reducing the parameter space by dynamic programming, was

able to choose the optimized parameter setting according to a computing envi-

ronment, and required convergence levels. This study does not distinguish the

Q&Q parameters and this approach is not recommended for our target problem.

While SMAC and other Sequential Model-based Optimization (SMBO) al-

gorithms (Hutter, Hoos and Leyton-Brown (2011); Hutter et al. (2009)) can

solve the Q&Q problem, these algorithms are designed to handle different types

of problems, and differ from these proposed here. The main difference is that

SMBO and SMAC are designed with the assumptions that the responses contain

noises. Here we assume responses are deterministic and focus on approaches that
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can quickly identify a near-optimal parameter setting by minimizing the number

of explored points. We take the responses to be deterministic because the perfor-

mance of our numerical solvers show small variations in response when repeated

under the same parameter set-up. For a given AMG solver problem, our goal is

to efficiently identify a good parameter set-up with less computational cost. For

the Q&Q modeling, a modified Gaussian Process deals with qualitative factors

and the corresponding kernel function as proposed in Hutter, Hoos and Leyton-

Brown (2011). In our Q&Q Gaussian process, the setting of the kernel function

is more general, because we also quantify the effect of the different levels of qual-

itative factors. An expected improvement criterion for log-transformed response

is considered in Hutter, Hoos and Leyton-Brown (2011). We propose modified

expected improvement criteria for the different types of surrogate modeling ap-

proaches.

We face the following challenges: the response functions involve two differ-

ent types of parameters; the objective functions are measurable but not explicitly

defined; we usually need to determine the optimal parameter by using only a few

experimental trials without checking all possible parameter set-ups. To solve the

Q&Q auto-tuning problem efficiently, we propose a Surrogate-Assisted Tuning

(SAT) framework, along with well-developed statistical technologies; the key is

to construct the surrogate model as an approximation of the true objective func-

tions based on few experimental trials. The SAT solves the derived optimization

problem in an iterative manner. At the beginning, SAT constructs a surrogate

based on a set of experimental points. Then, based on the prediction uncer-

tainty, the next explored point is determined via a certain infill criterion. The

surrogate is then updated based on the responses of the explored points. This

process is repeated until the (near) optimal solution is found or the available

resources have been consumed. The two key components of SAT are surrogate

construction and infill criteria. For the surrogate constructions, we rely on Gaus-

sian processes (Sacks et al. (1989)) and qualitative and quantitative Gaussian

processes (Qian, Wu and Wu (2008); Zhou, Qian and Zhou (2011)) to construct

the surrogates. In the Q&Q setting, we propose two infill criteria that are based

on the expected improvement (Jones, Schonlau and Welch (1998)), designed to

search the next experimental point for optimizing the objective function and im-

proving the surrogate. When the problem contains only quantitative parameters,

the SAT framework is similar to the Design and Analysis of Computer Experi-

ment (DACE) (Sacks et al. (1989)) or the Efficient Global Optimization (EGO)

approach (Jones, Schonlau and Welch (1998)).
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Table 1. Notation used.

I number of quantitative parameters
J number of qualitative parameters
qj number of levels of the jth qualitative parameter

M No. of all possible combinations in qualitative parameters (M =
∏J

j=1 qj)

n number of experimental points
N number of repetitions in numerical experiments
t the (tth) iteration number in SAT-QQ
T maximum iteration numbers allowed in SAT-QQ (as the stopping criterion)
Nmesh number of uniform grid points in each dimension of ΩQN

This paper is organized as follows. We introduce the framework of surrogate-

assisted tuning in Section 2. The details of the surrogate constructions and infill

criteria are discussed in Section 3 and Section 4, respectively. The proposed

algorithms are summarized in Section 2. Numerical studies of the proposed

algorithms are presented in Section 5. The paper concludes in Section 6. Table 1

presents the notation we use.

2. Surrogate-Assisted Tuning for Q&Q Parameters (SAT-QQ)

We propose solving the Q&Q auto-tuning optimization problem (1.1) using

the Surrogate-Assisted Tuning framework as outlined in Algorithm 1. The algo-

rithm is called SAT-QQ and is composed of initialization, tuning iteration, and

a stopping criterion. The details of the algorithm are discussed as follows.

In the initialization stage of SAT-QQ, we do the following. In Step (1.1), we

select an initial design D containing n experimental points w(i) for i = 1, . . . , n.

It is common to apply a space-filling design such as Latin hypercube design

(LHD) (Santner, Williams and Notz (2003); Chen et al. (2013)), uniform design

(Fang et al. (2000)), or a sliced LHD (Qian (2012)). In Step (1.2), we evaluate

the corresponding objective functions y(i) = y(w(i)).

In the tuning stage, we do the following. In Step (2.1), we need to construct

or update the surrogates. We discuss how to construct the surrogates in the

Q&Q domain Ω in Sections 3. These methods are motivated by the Gaussian

process (or kriging) (Sacks et al. (1989)). In Step (2.2), we need to choose the

new experimental point. We discuss how to find the next experimental point by

using the proposed infill criteria that are motivated by the expected improvement

(EI) criterion (Jones, Schonlau and Welch (1998)). In Steps (2.3) and (2.4), we

evaluate the corresponding objective functions and update D, y, and ymin. The



QUALITATIVE AND QUANTITATIVE PARAMETERS TUNING 767

iteration ends when the pre-defined stopping criteria are satisfied. A popular

criterion involves the available computing resources such as the total runtime or

iteration number.

Algorithm SAT-QQ sketches how we can solve the tuning problems. De-

pending on the choices of surrogate constructions and the infill criteria, the SAT-

QQ has four variants: SDGP-SDEI, SDGP-WDEI, WDQQ-SDEI, and WDQQ-

WDEI. We elaborate on how the surrogates are constructed in Section 3, and

how the infill criteria are determined in Section 4.

Algorithm 1 Surrogate-Assisted Tuning for Q&Q Parameters (SAT-QQ)

(1) Initialization

(1.1) Select an initial design D =
{
w(1), . . . ,w(n)

}
in Ω.

(1.2) Evaluate the function values y(i) = y(w(i)).

Set y =
(
y(1), y(2), . . . , y(n)

)t
and ymin = minw∈D y(w).

(2) Tuning Iteration

Repeat until stopping criterion is satisfied.
(2.1) Construct/Update the surrogate based on D and y % surrogate

by SDGP (Section 3.2) or WDQQ (Section 3.3).
(2.2) Determine the next experimental point w+ % infill criterion

by SDEI (Section 4.2) or WDEI (Section 4.3.)
(2.3) Evaluate the function value y+ = y(w+).
(2.4) Update D = D ∪w+ and y = (y; y+) and ymin = min (ymin, y

+) .
(3) Output

(3.1) Output ymin and wmin = arg minw∈D y(w).

3. Surrogate Construction

Surrogate construction and updates in Step (2.1) of Algorithm 1 play a key

role in the SAT-QQ procedure. A Gaussian process (kriging) is commonly used

in computer experiments to construct surrogates based on the stationary as-

sumption of quantitative parameters (Sacks et al. (1989)). For example, Mariani

et al. (2012) adopted the Gaussian process as the foundation of the OSCAR to

deal with an auto-tuning problem. When qualitative parameters are considered,

Gramacy, Taddy and Wild (2013) suggested using a dynamic tree model. This

surrogate model can also deal with a non-stationary surface. We consider the

computer experiments involving both of qualitative and quantitative parameters.

Based on the qualitative parameters, two models related to Gaussian processes

for surrogate constructions are proposed. The first method is called Sub-Domain

with Gaussian Process and introduced in Section 3.2. The second method is

called Whole-Domain with Qualitative and Quantitative Gaussian Process and
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presented in Section 3.3.

3.1. Gaussian process (GP)

We briefly outline how the Gaussian process is constructed on a quantitative

domain ΩQN . For more details on the GP, see Sacks et al. (1989); Santner,

Williams and Notz (2003), for example. In the Gaussian process, the response

function y(x) is characterized as a stochastic process Y (x) in ΩQN , so at point x,

the response Y (x) is a random variable and the observed response value y(k) =

y(xk) is treated as a realization at the experimental point x(k), 1 ≤ k ≤ n. We

assume that

Y (x) = f(x)tβ + ε(x), (3.1)

where f(x) = (f1(x), . . . , fp(x))t ∈ Rp is a pre-specified regression vector, β ∈
Rp is the corresponding coefficient vector, and ε(x) is a stationary Gaussian

process with mean zero and covariance matrix σ2R. The correlation function of

between points x1 and x2 is commonly taken as Kθ(x1,x2) = exp(−
∑I

i=1 θi(x1i−
x2i)

2), where the θi’s are positive parameters and θ = (θ1, . . . , θI).

Suppose we have n input vectors in the design matrix X = [x(1),x(2), . . . ,

x(n)]t ∈ Rn×I , and let y = (y(1), y(2), . . . , y(n))t ∈ Rn. The unknown parameters,

β, σ2, and θ, are estimated using maximal likelihood. Here F = [f(x(1)), f(x(2)),

. . . , f(x(n))]t ∈ Rn×p; R = (Rij) ∈ Rn×n with Rij = Kθ(x
(i),x(j)). Thus, given

θ, β̂ = (F tR−1F )−1F tR−1y and σ̂2 = (y − Fβ̂)tR−1(y − F β̂)/n, and θ can be

estimated via the minimization problem

arg min
θ>0

{
n log(σ̂2) + log(|R|)

}
.

Thus, the prediction of a particular point x is

ŷ(x) = f(x)tβ̂ + rtR−1(y − F β̂), (3.2)

where r ∈ Rn is the correlation vector with rj = Kθ̂(x,x
(j)) and the mean

squared error (MSE) of ŷ(x) is

ŝ2(x) = σ̂2
[
1− rtR−1r + ut(F tR−1F )−1u

]
, (3.3)

where u = F tR−1r − f(x).

The prediction ŷ(x) is the empirical best linear unbiased predictor (EBLUP),

and the interpolation property ŷ(x(k)) = y(x(k)) and ŝ2(x(k)) = 0 is satisfied

(Lophaven, Nielsen and Sondergaard (2002)). The prediction at a point x is a

now realization of a normal distribution with mean ŷ(x) and variance ŝ2(x),

Y (x) ∼ N(ŷ(x), ŝ2(x)). (3.4)
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3.2. Sub-domain with Gaussian process (SDGP)

One approach to include the qualitative parameters is to apply the “divide-

and-conquer” technique on the experimental domain w. Because the Q&Q auto-

tuning optimization problem at (1.1) has M cases, we divide the experimental

domain Ω into M disjoint sub-domains Ωm, m = 1, . . . ,M . By doing so, each

Ωm involves only the quantitative factors and we can apply the Gaussian Process

(GP) discussed in Section 3.1 on each sub-domain Ωm, independently, to con-

struct M GP-based surrogates. All the derivations regarding GP on ΩQN can

then be applied to Ωm. For example, the prediction of a point x ∈ Ωm is

ŷm(x) = f(x)tβ̂m + rtmR
−1
m (ym − Fmβ̂m). (3.5)

3.3. Whole-domain with qualitative and quantitative Gaussian pro-

cess (WDQQ)

Another approach is an “all-in-one” type named Whole-Domain Qualitative

and Quantitative Gaussian Process (WDQQ). As the SDGP does not take the

cross-correlations effects into account, a modification of the Gaussian process

was proposed in Qian, Wu and Wu (2008) and Zhou, Qian and Zhou (2011) that

incorporates both qualitative and quantitative variables.

In WDQQ, the response model for an explored point w is represented as

Y (w) = f(w)tβ + ε(w), (3.6)

where f(w) = (f1(w), . . . , fp(w))t is the vector of the pre-specified functions

on Ω, β is the unknown coefficient vector, and ε(w) is assumed to be a Gaussian

process with mean zero and constant variance σ2.

The key step here is to define the proper correlation function for the dif-

ferent levels of the qualitative factors. If the M cases are z1, . . . , zM , with

zm = (zm1, . . . , zmJ)t, any experimental point can be represented as w = (xt, zt)t.

Then, following Zhou, Qian and Zhou (2011), for any two points wi = (xti, z
t
i)
t,

i = 1, 2, the correlation between ε(w1) and ε(w2) is taken as

cor (ε(w1), ε(w2)) = τz1,z2Kθ(x1,x2), (3.7)

where τz1,z2 is the cross-correlation between z1 and z2. To estimate the unknown

parameters τr,s and θ, an efficient maximum likelihood estimation (MLE) ap-

proach via the hypersphere parameterization was proposed in Zhou, Qian and

Zhou (2011) to model the correlations of the qualitative factors.

An unexplored point w, the prediction ŷ(w) and the mean square error ŝ2(w)
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can be derived by replacing x by w in the formulas of GP:

ŷ(w) = f(w)tβ̂ + rtR−1(y − Fβ̂), (3.8)

ŝ2(w) = σ̂2
[
1− rtR−1r + ut(F tR−1F )−1u

]
. (3.9)

Here, β̂ = (F tR−1F )−1F tR−1y ∈ Rp; F =
[
f(w(1)), f(w(2)), . . . , f(w(n))

]t ∈
Rn×p; R = (Rij) ∈ Rn×n with Rij = cor (ε(wi), ε(wj)), and r ∈ Rn is the

correlation vector with rj = cor (ε(w), ε(wj)).

3.4. A short summary

The SDGP and WDQQ have their own advantages and disadvantages. We

compare them theoretically here and numerically in Section 5.

The WDQQ constructs a global surrogate model containing all of the quan-

titative and qualitative variables. From this viewpoint, the global surrogate may

fit the true function better, but it contains more parameters, and the correlation

matrix may have more chances to become ill-conditioned. With WDQQ, we have

the stationary assumption, while SDGP can deal with some minor non-stationary

cases because the variance estimations for the different domains can differ.

The interplay between modeling accuracy and computational efficiency of

SDGP and WDQQ depends on the problem. For WDQQ, different sub-domains

share the same θi’s, and the SDGP constructs the surrogate independently for

each sub-domain with different θi’s. If the true surface in each sub-domain is

quite different, SDGP has more flexibility to deal with it. One can modify the

correlation structures in the WDQQ for this, but this increases the complexity

of the covariance matrix and thus increases the computational cost.

We compare the cost of surrogate construction, particularly the cost for

solving the MLE problems, in the SDGP and WDQQ. In SDGP, we need to

solve the MLE problems with dimension I in each sub-surrogate. In WDQQ,

the dimension is I + M(M − 1)/2, if the product correlation structure (3.7) is

used. To compute the prediction value and regression coefficients, a symmetric

positive definite linear system R · x = b is solved at the cost of cubic order

of the size of R (Trefethen and Bau III (1997)). If nm is the experimental

point size in Ωm and n =
∑M

m=1 nm is the total experimental point size in Ω,

computational complexities of SDGP and WDQQ are O(M · maxm=1,...,M n3m)

and O(n3), respectively. In the SDGP, when a new experimental point is added,

only the corresponding kth sub-surrogate model has to be updated, with cost

O(n3m), in the WDQQ, the global surrogate must be updated with cost O(n3).
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4. Infill Criteria

A second main component of the SAT-QQ is to select the new experimental

point using an infill criterion. The infill criterion is embedded in the iterative

tuning process, Step (2.2) of Algorithm 1, where we iteratively select the next

experimental point to explore the experimental domain and search for the op-

timal solution. If the stopping criterion has not been reached, we include the

information due to the newly selected point to update the surrogates. To select

the next experimental point in Step (2.2), we propose two approaches that are

inspired by the expected improvement (EI) criterion (Jones, Schonlau and Welch

(1998); Forrester, Sobester and Keane (2008)).

4.1. Expected improvement (EI)

The EI selection criterion is proposed in Jones, Schonlau and Welch (1998)

and is widely used in optimization problems with quantitative factors when

searching a new experimental point so that the experimental space can be ex-

ploited locally and explored globally in an efficient way. We discuss expected

improvement (EI) in this section.

Consider the experimental region with only the quantitative variable ΩQN .

In this case, we define the improvement function of a point x ∈ ΩQN as

I(x) = max(ymin − Y (x), 0), (4.1)

where ymin = min{y(1), y(2), . . . , y(n)} is the observed minimum in ΩQN . This

improvement function can be interpreted as the quantity of improvement at a

certain point x, and it is positive only if Y (x) < ymin. Based on the GP assump-

tion, Y (x) satisfies (3.4). Consequently, instead of measuring the improvement

quantity I(x) directly, we compute the expected value of the improvement func-

tion

EI(x) = E[I(x)] (4.2)

as our new experimental point selection criterion. Thus if x+ is the next experi-

mental point to be explored, and we take

x+ = arg max
x∈ΩQN

E(I(x)). (4.3)

It can be shown that

E[I(x)] = (ymin − ŷ(x))Φ

(
ymin − ŷ(x)

ŝ(x)

)
+ ŝ(x)φ

(
ymin − ŷ(x)

ŝ(x)

)
, (4.4)

where Φ(·) and φ(·) are the standard normal distribution function and density

function, respectively. Equation (4.4) suggests that the EI infill criterion tries to
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balance the prediction-based local exploitation ymin − ŷ(x) and the error-based

global exploration ŝ(x).

The EI criterion can only be used for the quantitative variables. To link in

the information on the qualitative variables, we propose two variants of it.

4.2. Sub-domain expected improvement (SDEI)

This is a direct extension of EI. As in Section 3.2, we divide the experimental

domain Ω into M disjoint sub-domains Ωm. Because each Ωm involves only the

quantitative factors, we can apply the EI criterion to each Ωm. First, we choose

the sub-domain Ωm∗ with the minimal prediction value,

m∗ = arg min
m=1,...,M

(ỹm) , where ỹm = min
x∈Ωm

(ŷ(x)) . (4.5)

Then, we apply EI criterion on Ωm∗ to select the next experimental point

x+ = arg max
x∈Ωm∗

(E(I(x)) . (4.6)

We call this infill criterion the Sub-Domain Expected Improvement (SDEI).

4.3. Whole-domain expected improvement (WDEI)

In the Whole-Domain Expected Improvement, we link information at dif-

ferent levels of the qualitative factors to define the WDEI for selecting the new

experimental point. Let y∗m be the minimal observed value on the sub-domain

Ωm, and take

y∗g = min
m=1,...,M

y∗m

to be the currently global minimal observed response on Ω. We define the “cross

domain improvement function”

Ig(w) = max(y∗g − Y (w), 0) for w ∈ Ω, (4.7)

where the prediction Y (w) can be obtained from SDGP or WDQQ. The cross

domain expected improvement is

EIg(w) = E[Ig(w)], (4.8)

and next experimental point is chosen as

w+ = arg max
w∈Ω

EIg(w). (4.9)

Theorem 1 asserts that the WDEI (4.8) has properties similar to that of the

original EI. Because the proof is similar to that for the original EI, we omit its

proof.
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Table 2. Experiment settings.

Problem n0 M n0 ×M T N Nmesh Regression functions
AMG solver 6 6 36 90 100 12 f1 = 1, f2 = x1, f3 = x2
gabor lv3 6 3 18 90 100 32 f1 = 1

Theorem 1 (Properties of WDEI). The improvement function in (4.7) satisfies

(i) E[Ig(w)] > 0 if and only if ŝ2(w) > 0, (ii) ŝ2(w) > 0, then

E[Ig(w)] =
(
y∗g − ŷ(w)

)
Φ

(
y∗g − ŷ(w)

ŝ(w)

)
+ ŝ(w)φ

(
y∗g − ŷ(w)

ŝ(w)

)
. (4.10)

5. Numerical Experiments

We conducted numerical experiments to study the performance of the pro-

posed algorithms. The algorithms were implemented in MATLAB, and the nu-

merical experiments were conducted on a workstation with Intel Xeon X5570

CPU (8 cores) and 48 GB of main memory. To generate the initial design in

Step (1.1) of Algorithm 1, we used Latin hypercube designs (LHD) (McKay,

Beckman and Conover (1979)) for the quantitative variables in each case inde-

pendently. The sizes of LHD in each case were all the same. Let n0 denote the

number of the initial design points in each sub-domain Ωk, and let n0M denote

the total number of initial design points. We partition the quantitative domain

ΩQN into uniform grids with Nmesh points for each dimension. The stopping

criterion in the Repeat-loop is the maximal number of iterations, denoted by T .

Other experimental settings are listed in Table 2.

We have tested the proposed algorithms for two types of tuning problems. In

the first problem (TP1), we considered the AMG solver introduced in Example 1.

The AMG solver was used to solve anisotropic (ani) or isotropic (iso) problems

in physical simulations with Conjugate Gradient (cg) or Biconjugate gradient

stabilized (bicgstab) linear system solvers Fujii (2014) and Fujii, Nishida and

Oyanagi (2003). Thus we considered four AMG solvers denoted by amg ani cg,

amg ani bicgstab, amg iso cg, and amg iso bicgstab. The second type of prob-

lems (TP2) involved artificial oscillatory surfaces. The surface, gabor lv3, was

constructed using the Gabor functions

gre = exp

(
−x
′2 + γ2y′2

2σ2

)
cos

(
2π
x′

λ
+ ψ

)
,

gim = exp

(
−x
′2 + γ2y′2

2σ2

)
sin

(
2π
x′

λ
+ ψ

)
,
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Table 3. Definitions of the three categories of the qualitative parameter in garbor lv3.

Qualitative level λ ϑ ψ σ γ Function
1 1.0 π/4 2 0.5 2.0 gre
2 1.2 π/4 3 0.5 1.8 gre
3 0.8 π/4 4 0.5 2.2 gim

Table 4. Results of TP1.

Problem Meas.
SDGP WDQQ

SDEI WDEI SDEI WDEI
(a)

amg ani cg
fhit (%) 85 60 97 87

mean(eR) 2.1238E-02 7.7617E-02 1.0194E-02 3.9869E-02
(b)

amg ani bicgstab
fhit (%) 27 28 13 14

mean(eR) 3.3310E-02 2.2610E-02 4.4969E-02 4.9670E-02
(c)

amg iso cg
fhit (%) 58 73 75 76

mean(eR) 1.6217E-02 2.1621E-03 7.5348E-03 8.5935E-03
(d)

amg iso bicgstab
fhit (%) 60 75 78 75

mean(eR) 2.5353E-02 1.6276E-02 1.4383E-02 1.6332E-02

where x′ = x cosϑ + y sinϑ and y′ = −x sinϑ + y cosϑ. Here we considered

one qualitative parameter with three qualitative levels. See Table 3 for their

definitions. In short, we took Ω = [−3, 3]2 × {1, 2, 3}.

5.1. Numerical results

We studied the performance of the four variants of SAT-QQ in terms of

relative errors, hit frequency, quantile curves, execution time, and comparison

with random selection.

Relative errors. Let y∗min be the minimal objective function value out of

all possible parameter combinations and y
(t)
min be the observed minimum at the

tth iteration. To measure the solution qualities after SAT-QQ has been iterated

T times, we computed the relative error

eR =
|y(T )min − y∗min|
|y∗min|

. (5.1)

Tables 4 and 5 show that the four methods SDGP-SDEI, SDGP-WDEI, WDQQ-

SDEI, and WDQQ-WDEI achieved similar relative errors after T = 90 iterations

in the four test problems. Most of the relative errors are in the same order. An

exception is TP2-(a), where the infill criterion WDEI significantly outperformed

the SDEI by two orders.

Sub-domain hit frequency. To check whether the algorithms can find the
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Table 5. Results of TP2.

Problem Meas.
SDGP WDQQ

SDEI WDEI SDEI WDEI
(a)

gabor lv3
fhit (%) 16 18 33 96

mean(eR) 1.6619E-01 1.7340E-01 1.3472E-01 1.6012E-02

right sub-domain, we used the sub-domain hit frequency

fhit =
Nhit

N
, (5.2)

where Nhit is the number of SAT-QQ search processes that locate the sub-domain

containing the optimal point, and N is the number of repetitions. Thus the hit

frequency measures the chance that w
(T )
min and w∗ belong to the same sub-domain,

w
(T )
min the argument of the minimal found by the SAT-QQ in the T th iteration,

and w∗ = arg minw∈Ω y(w). In our numerical experiments, w∗ was identified by

searching the possible arguments in Ω. Here the higher fhit is, the better the

result.

Table 4 suggests that WDQQ-SDEI and WDQQ-WDEI have similar perfor-

mances for TP1-(b) and TP1-(c). WDQQ-SDEI is slightly better for TP1-(a) and

TP-(d). For TP1, SDGP-WDEI significantly outperforms the other approaches.

To see why, we plot the “true” response surfaces in Figure 1 for the problem

amg ani cg. The surfaces in each of sub-domain are somewhat simple, there be-

ing main trends of some small vibrations, while the true surface of gabor lv3,

shown in Figure 2, is oscillatory. Under TP1, surrogates can capture the main

trends and therefore search the optimal points on the “right” sub-domain with

a small number of experimental points. In contrast, as shown in Table 5, the

true surfaces of TP2 are oscillatory; WDQQ considers both the qualitative and

quantitative factors and evaluates the WDEI of all the sub-domains, and this

can lead to a better understanding of the surface properties. In the problem

TP1-(b), the fhit are low for all four approaches. As the minimal values in each

sub-domain are close in value, it is hard to distinguish sub-domains in terms of

the objective function values even though the relative errors are small. Thus,

all four variants of SAT-QQ can find good experimental points whose objective

function values are close to optimal.

Quantile curves. Because the performance of the SAT-QQ depends on the

initial designs and number of iterations, we repeated the numerical experiments

N times with different initial space-filling designs and then plot the quantile

curves to analyze how y
(t)
min converges with the iterations. The quantile curves
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(a) (SGS, V) (b) (GS, V)

(c) (SGS, F)
(d) (GS, F)

(e) (SGS, W) (f) (GS, W)

Figure 1. True surface of amg ani cg of each (Smoother, Cycle).

show the 5-percentile, 95-percentile, and median of the N values of y
(t)
min in the

tth iteration. In TP1, SDGP has a better chance of achieving smaller objective
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(a) z = 1 (b) z = 2

(c) z = 3

Figure 2. True surface of gabor lv3 with each qualitative level.

functions with fewer iterations, as shown in the median and 5% quantile curves

presented in Figures 3, 4, 5, and 6. However, it can stick in a “wrong” sub-

domain due to the lack of a global view across the sub-domains. In such cases,

the surrogates of the other sub-domains may not be updated. Consequently, the

objective function values may not decrease as shown in the 95% quantile curves.

Meanwhile, the 95% quantile curves produced by WDQQ decrease if the number

of iterations is large enough. In TP2, the quantile curves due to WDQQ-WDEI

decrease faster than other approaches, as shown in Figures 7. This parallels to

the results and explanations in the discussion of relative errors.

Timing. Table 6 lists the computational cost in time (seconds) for construct-

ing the surrogates of the N = 100 repetitions. The table shows that WDQQ is

much more expensive than SDGP, regardless of whether SDEI or WDEI is used.



778 CHEN ET AL.

(a) SDGP+SIEI

(b) SDGP+SDEI (c) SDGP+WDEI

(d) WDQQ+SDEI (e) WDQQ+WDEI

Figure 3. Quantile curves of amg ani cg.

The main cost of each surrogate construction is the optimization problem for

parameter estimation in SDGP and WDQQ, respectively. Then too, as WDQQ
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(a) SDGP+SIEI

(b) SDGP+SDEI (c) SDGP+WDEI

(d) WDQQ+SDEI (e) WDQQ+WDEI

Figure 4. Quantile curves of amg ani bicgstab.

integrates information from all the sub-domains, the size of the correlation ma-

trix, R, is larger than that of SDGP. Thus it bears a greater computational cost
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(a) SDGP+SIEI

(b) SDGP+SDEI (c) SDGP+WDEI

(d) WDQQ+SDEI (e) WDQQ+WDEI

Figure 5. Quantile curves of amg iso cg.

due to the computation of the inverse of R. The computational complexity is

shown in Section 3.4. If the available tuning resource in time is limited, the
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(a) SDGP+SIEI

(b) SDGP+SDEI (c) SDGP+WDEI

(d) WDQQ+SDEI (e) WDQQ+WDEI

Figure 6. Quantile curves of amg iso bicgstab.

SDGP is preferred for surrogate construction.

Results of a random method. We attempted to solve the target Q&Q
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(d) WDQQ+WDEI

Figure 7. Quantile curves of gabor lv3.

Table 6. Total surrogae construction time (seconds) of N = 100 repetations.

Problem
SDGP WDQQ

SDEI WDEI SDEI WDEI
gabor lv3 195.49 248.38 1,252.90 4,039.98
amg ani cg 100.26 104.09 1,125.21 1,148.83
amg ani bicgstab 101.91 105.37 1,142.38 1,176.22
amg iso cg 97.79 103.57 1,162.95 1,162.90
amg iso bicgstab 97.75 103.86 1,162.02 1,169.26

auto-tuning problem (1.1) by randomly selecting experiment points. In each

of the test problems, we let the total number of experimental points be n0M ,

n0M+T/3, n0M+2T/3, or n0M+T . These experimental points were distributed

into the M sub-domains evenly, and the experimental points were chosen as the

LHD points in each sub-domain. One hundred repetitions were performed in each
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Table 7. Results of randomly selected points.

Test Problems Experimental Points mean(eR) std(eR)

gabor lv3

n0M 0.9997 0.0015
n0M + T/3 0.4860 0.2257
n0M + 2T/3 0.3642 0.1377
n0M + T 0.2778 0.1470

amg ani cg

n0M 1.3126 1.0689
n0M + T/3 0.1850 0.1060
n0M + 2T/3 0.1481 0.0898
n0M + T 0.1481 0.0898

amg ani bicgstab

n0M 0.8426 1.1412
n0M + T/3 0.1603 0.0984
n0M + 2T/3 0.1135 0.1048
n0M + T 0.1135 0.1048

amg iso cg

n0M 1.4279 0.7150
n0M + T/3 0.3155 0.1880
n0M + 2T/3 0.1833 0.1297
n0M + T 0.0794 0.0869

amg iso bicgstab

n0M 0.9754 0.7068
n0M + T/3 0.1166 0.1179
n0M + 2T/3 0.0687 0.0293
n0M + T 0.0559 0.0238

numerical experiment. The means and standard deviations of the corresponding

eR are listed in Table 7. While more experimental points yield better results, the

proposed methods outperform the random results, see Tables 4, 5, and 7.

Results of a straightforward combination of GP and EI. To solve the

target Q&Q auto-tuning problem, we can apply the GP and EI on each subdo-

main and then select the next exploring point as the point with the maximal EI

value among all sub-domains. This approach is different from the SDEI intro-

duced in Section 4.2 and this infill approach can be treated as a straightforward

generalization of EI over multiple sub-domains. We used this straightforward

GP-EI based method to solve the test problem TP1 and report the numerical re-

sults in Table 8. Comparing Tables 4 and 8, the performance of this GP-EI-based

method is mixing. It performs reasonably well in term of fhit for TP1-(b,c,d).

However, for TP1-(a), it performs much worse than the four proposed variants.

Furthermore, this straightforward method does not perform well in term of eR
for all four cases associated with TP1. Numerical results suggest that more

information associated the qualitative factors can improve the computational

performance.
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Table 8. Results of TP1 by a straightforward combination of GP and EI.

Means
(a)

amg ani cg
(b)

amg ani bicgstab
(c)

amg iso cg
(d)

amg iso bicgstab
fhit (%) 55 25 81 77

mean(eR) 1.420E-01 3.690E-02 5.900E-03 1.490E-0.2

Table 9. Results of TP1 by a tree method with EI criterion based on 30 replications.

Means
(a)

amg ani cg
(b)

amg ani bicgstab
(c)

amg iso cg
(d)

amg iso bicgstab
fhit (%) 67 53 73 90

mean(eR) 1.724E-01 7.900E-02 1.280E-02 6.730E-0.3

Results of tree-type methods. Tree-type methods, such as classification

and regression trees (CART) (Breiman et al. (1984); Chipman, George and Mc-

Culloch (1998)), can be used to model the qualitative variables. In such methods,

the qualitative variables are represented by a set of indicator variables. After vari-

able transformation, we use these indicator variables to build the tree and apply

the quantitative variables for model fitting in the leaves of the tree (Gramacy

and Taddy (2010)). For the infill criterion, the EI criterion was adopted to select

the next explored point when revisited the first test problem TP1 to illustrate

the performance of the tree-based methods. A linear model was used to describe

the relationship between the quantitative factors in each leaf of the tree model.

Here the function btlm in the tgp R-package (Gramacy and Taddy (2016)) was

adopted. We repeated this tree method 30 times by randomly generating a Latin

hypercube design. In each replication, we iterated the tree method 90 times.

The results are summarized in Table 9. From Table 9, we see the tree method

performs quite well in the measurement of fhit for all four cases. For the mean

values of eR, however, the proposed approaches outperform the first three cases

TP1-(a), (b), (c). For TP1-(d), the tree method performs better by obtaining

lower eR mean value.

The Bayesian treed Gaussian process model was also used in the leaf of the

tree model. This approach was implemented by the tgp R-package (Gramacy and

Taddy (2016)). In its latest version, the tgp extends the treed Gaussian process

models for Bayesian nonstationary and semiparametric nonlinear regressions and

designs. The tree structure can be constructed based on the qualitative factors.

The stationary or Bayesian non-stationary Gaussian process models in the nodes

were used to describe the relationship between the quantitative factors. Thus, the



QUALITATIVE AND QUANTITATIVE PARAMETERS TUNING 785

Table 10. Results of TP1 by a treed Gaussian process method with EI criterion based
on 30 replications.

Means
(a)

amg ani cg
(b)

amg ani bicgstab
(c)

amg iso cg
(d)

amg iso bicgstab
fhit (%) 100 90 57 60

mean(eR) 0.000E-00 8.116E-03 2.896E-02 2.516E-0.2
CPU time (s) 1,541.08 1,677.38 2,042.08 2,039.19

latest tgp can be used to solve our tuning problems. In tgp, the function btgpllm

was used to implement the tree construction based on the qualitative factors and

the surrogate fitting via the treed Gaussian process for the quantitative factors

in each leaf. The results obtained by 30 replications are summarized in Table 10.

For TP1-(a) and (b), this treed Gaussian process can capture the true model

quite well and achieves extremely high fhit rate and lower eR. The proposed

SAT-QQ shows better performances in TP1-(c) and (d). The table also shows

the execution time taken by the tgp on a PC with Intel Core i7-2600 CPU (faster

than the Intel Xeon X5570 CPU used in other numerical experiments) and 8GB

of memory. Comparing Tables 6, the treed Gaussian process approach takes

longer CPU time for the same number of replications.

6. Conclusion

For the four variants of SAT-QQ, numerical results suggest the following

findings. WDQQ-WDEI leads to good solutions in general. If computational

resources are limited, we suggest using SDGP-WDEI. If we have prior knowledge

that the true response surfaces are “simple and smooth” (rather than oscillatory),

SDGP type methods are recommended. Otherwise, WDQQ is a proper choice

because it considers the correlations between sub-domains.

The variants of SAT-QQ are based on the stationary assumption. Such

information about a data set is usually unknown a priori, and may be costly to

verify. For example, in Gramacy, Taddy and Wild (2013), the non-stationary of

the responses was confirmed based on a large training point set. The proposed

methods remain applicable in some cases. One example is the test problem TP1.

While whether the testing data satisfies the stationary assumption is available,

see Figure 1, the response surfaces clearly demonstrate main trends that are likely

stationary. Consequently, the proposed methods can identify region of interest

that are associated with the lower timing results.

There are several further research directions. In our study, the number of all
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possible cases (M) is small. For large M , WDQQ might be problematic in terms

of the parameter estimation in its correlation matrix. One needs to simplify the

correlation structure based on some prior knowledge. SDGP can be used to fit the

surrogates for all sub-domains, but it ignores the relations between sub-domains.

Numerical results show that the performance of the tree-based methods and the

proposed methods is mixed. Further study could deepen the understanding of

these methods and provide more choices for the auto-tuning problems involving

qualitative and quantitative parameters.

The SAT-QQ can be viewed as a sequential design procedure, because the

next point is selected based on an EI criterion from unexplored point set. The

proposed methods share a similarity with active learning. Active learning is

also a sequential procedure that iteratively adds un-label points to update the

learning model. The point selection criterion is the key. For example, in Deng

et al. (2009), the selection approach is a combination of stochastic approximation

and D-optimal criterion. In particular, one identifies a D-optimal design point

from a small number of candidates based on the learning model fitting. It is

worth investigating whether we can integrate some selection approaches in active

learning with the proposed EI-type criterion to improve computational efficiency,

especially for the case with many candidate experimental points.

A further study could explore modifying SAT-QQ for on-line tuning prob-

lems. Due to the lack of the training set, the key component is still the surrogate

construction. Since the stationary assumption might not hold, the type of the

surrogate model that should be used is a challenge problem. In addition, How

to efficiently update the surrogate in each SAT-QQ iteration will be an issue, es-

pecially for large experimental domains. Please send correspondences regarding

this paper to Ray-Bing Chen (rbchen@mail.ncku.edu.tw) and Weichung Wang

(wwang@ntu.edu.tw).
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