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Abstract: We typically construct optimal designs based on a single objective

function. To better capture the breadth of an experiment’s goals, we could instead

construct a multiple objective optimal design based on multiple-objective functions.

However, although algorithms have been developed to find such designs (e.g.,

efficiency-constrained and maximin optimal designs), it is far less clear how to

verify the optimality of a solution obtained from these algorithms. In this paper,

we provide theoretical results that characterize optimality for efficiency-constrained

and maximin optimal designs on a discrete design space. Lastly, we demonstrate

how to use our results with linear programming algorithms to verify optimality.
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maximin design, optimality conditions, robustness.

1. Introduction

Consider modeling the output of a designed experiment as:

yi = f(xi,θ) + ϵi, i = 1, . . . , n, (1.1)

where yi is the response variable observed at design point xi ∈ S, for S ⊆ Rp,

θ ∈ Rq is a vector of unknown regression parameters, and ϵi are independent

random errors, with E(ϵi) = 0 and Var(ϵi) = σ2. An optimal design chooses values

of xi to answer the experimental questions of interest as precisely as possible. This

problem is often formulated as a single-objective optimal design problem, where

optimality is defined with respect to a single summary measure of the information,

obtained by fitting a single model to the experimental data. For example, for a

particular choice of regression function f(·, ·) in (1.1) and estimator θ̂, an A-

optimal design minimizes the average variance of θ̂1, . . . , θ̂q.

However, experimenters sometimes have complex goals that cannot be cap-

tured fully by a single-objective optimal design criterion. For example, an

experimenter may fit a single model for inference and prediction, but there

is little overlap between the single-objective optimality criteria that measure

inferential and predictive power. Furthermore, depending on the parameters

being examined, an inference answers different research questions, with varying
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importance to the experimenter (e.g., main effects are more important than

interaction terms, or vice versa). Single-objective optimal design criteria do

not reflect this variation. Another consideration is that experimenters may be

uncertain about the functional form of the relationship between yi and xi. Thus,

they may want a design with good inferential or predictive power for multiple

models, rather than a single model, of the form (1.1).

Multi-objective optimal designs combine several single-objective optimal de-

sign criteria. Here, common formulations include the compound, efficiency-

constrained, and maximin formulations. The compound formulation optimizes

the weighted sum of the criteria for a set of user-specified weights. The

efficiency-constrained formulation optimizes one criterion, while requiring the

design efficiency with respect to the other criteria to be higher than user-

specified values. The maximin formulation maximizes the minimum efficiency

across the set of optimality criteria (Wong, 1999; Wong and Zhou, 2023). Here,

we focus on the efficiency-constrained and maximin formulations, because it is

difficult to interpret the practical significance of the weights in a compound

formulation. Numerous algorithms exist for finding efficiency-constrained and

maximin optimal designs (Huang and Wong, 1998; Imhof and Wong, 2000;

Cheng and Yang, 2019). Wong and Zhou (2023) provide a particularly flexible

algorithm. They formulate many efficiency-constrained and maximin optimal

design problems as convex optimization problems, and then apply an off-the-

shelf convex optimization solver, such as the MATLAB package CVX (Grant and

Boyd, 2014).

We formulate efficiency-constrained and maximin problems as convex opti-

mization problems, following Wong and Zhou (2023). We then consider how to

verify the optimality of an efficiency-constrained or a maximin optimal design

obtained from CVX, providing a complete characterization of optimality for

efficiency-constrained and maximin efficiency designs on a discrete design space.

Related results appear in the literature for efficiency-constrained optimal designs

(Cook and Wong, 1994; Clyde and Chaloner, 1996). To the best of our knowledge,

our characterization of optimality for minimax efficiency designs is new, although

there are related works on minimax and maximin single-objective optimization

problems (Müller and Pázman, 1998; Dette, Haines and Imhof, 2007).

Characterizations of optimality for many popular single-objective optimal

design criteria (e.g., D- and A-) require that the optimal design satisfies a

set of easily computable inequalities. In contrast, our characterizations of

optimality for efficiency-constrained and maximin designs posit the existence

of a set of quantities that satisfy a set of equalities and inequalities involving

the optimal design. These types of results are thought to be impractical for

optimality verification, because it is unclear how to find a suitable set of quantities

efficiently. Previous works on efficiency-constrained optimal design problems

search for a suitable set of quantities using a grid search and bisection search.
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However, the computational complexity of such methods grows exponentially in

the number of objective functions (Cheng and Yang, 2019). We overcome this

challenge of finding a suitable set of quantities by solving linear programming

problems (Luenberger and Ye, 2016), which are a cornerstone of mathematical

optimization, and can be solved accurately and efficiently using off-the-shelf

software.

The rest of the paper is organized as follows. In Section 2, we review

concepts related to single-objective optimality criteria, including the necessary

and sufficient conditions for optimality. In Sections 3 and 4, we describe how to

solve efficiency-constrained and maximin optimal designs, respectively, including

verifying the optimality of the obtained solutions. Several theoretical results are

derived. We apply our approach to several examples in Section 5. Section 6

concludes the paper. Proofs are provided in the Appendix.

2. Single-Objective Optimal Designs

We consider a discrete design space SN = {u1, . . . ,uN} ⊆ S with N points,

where u1, . . . ,uN and S are user-specified. If S is a continuous design space, then

SN approximates S. We denote a design ξ on SN by ξ(w) =

(
u1 u2 · · · uN

w1 w2 · · · wN

)
,

where w is an N -vector, with the ith entry wi representing the proportion of

design points with value ui, for i = 1, 2, . . . , N . Let Ω ≡ {w ∈ RN :
∑N

i=1 wi =

1, wi ≥ 0}.

2.1. Optimality criteria

Let zf (x) be the q-vector with jth entry ∂f(x,θ)/∂θj|θ=θ∗ , where θ∗ is the

true value of θ. The asymptotic covariance matrix of the ordinary least squares

estimator of θ in model (1.1) with regression function f(·, ·) at design ξ(w) is

proportional to I−1
f (w), where

If (w) =
N∑
i=1

wizf (ui)z
T
f (ui) (2.1)

is the expected information matrix for model (1.1) with regression function f(·, ·),
under the assumption of normally distributed errors. If f(x,θ) is nonlinear in

θ, then If (w) may depend on θ∗. If If (w) depends on θ∗, then optimizing the

design criteria involving If (w) yields locally optimal designs. In practice, θ∗

is typically unknown, so we must replace it with a “guess” about its value, for

example, an estimate of θ from a small pilot study.

Many single-objective optimal design criteria on SN can be transformed into

convex optimization problems of the form minw∈ΩΦ(w), where Φ(w) = ϕ{If (w)}
for a convex function ϕ defined on the set of all q × q positive-definite matrices;
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Table 1. Single-objective optimality criteria that solve minw∈Ω Φ(w), where Φ(w) =
ϕ{If (w)} for a convex function ϕ defined on the set of all positive-definite matrices. We
use λmin(M) to denote the smallest eigenvalue of M.

Criteria D- A- c-, for c ∈ Rq L-, for L ∈ Rq×q′ E-

ϕ(M) − log det(M) trace(M−1) cTM−1c trace(LTM−1L) −λmin(M)

Eff(w)
[exp{minw′∈Ω Φ(w′)}

exp {Φ(w)}

]1/q minw′∈Ω Φ(w′)

Φ(w)

minw′∈Ω Φ(w′)

Φ(w)

minw′∈Ω Φ(w′)

Φ(w)

Φ(w)

minw′∈Ω Φ(w′)

see, for example, Table 1. Note that the function Φ(w) is convex as a composition

of a convex function and a linear function. We measure the quality of a design

w using its efficiency relative to the optimal design, denoted as Eff(w).

The MATLAB package CVX (Grant and Boyd, 2014) is a user-friendly option

for solving a special subclass of convex optimization problems that includes the

convex optimization problems described in Table 1; further details on CVX are

provided in Section 3.1. The CVX package has previously been applied to solve

many single-objective optimal design problems; see, for example, Gao and Zhou

(2017), and Wong and Zhou (2019).

2.2. Necessary and sufficient conditions for optimality

All of the criteria in Table 1 lead to convex objective functions, but these

objective functions are not all differentiable everywhere. For example, the

E-optimal design criterion leads to a convex objective function that is non-

differentiable at designs w, such that the smallest eigenvalue of If (w) has

geometric multiplicity greater than one. Thus, the optimality conditions in this

setting rely on subdifferentials, which generalize derivatives to the class of convex

functions. We denote the subdifferential of a convex function Φ : RN → R
at a point w as ∂Φ(w). The following result describes basic properties of

subdifferentials (Mordukhovich and Nam, 2013, Ch. 2).

Lemma 1. Suppose that Φ and Φ′ are two finite-valued convex functions defined

on RN . Then, for any w ∈ RN :

1. If Φ is differentiable at w, then ∂Φ(w) = {∇Φ(w)}, where ∇Φ(v) is the

N -vector with ith entry ∂Φ/∂wi|w=v.

2. If a ≥ 0, then ∂(aΦ)(w) = a∂Φ(w) ≡ {ag : g ∈ ∂Φ(w)}.

3. ∂(Φ + Φ′)(w) = ∂Φ(w) + ∂Φ′(w) ≡ {g + g′ : g ∈ ∂Φ(w),g′ ∈ ∂Φ′(w)}.

Let ei denote the N -vector with ith entry equal to one and all other entries

equal to zero. The following result characterizes optimality for convex single-

objective optimal design criteria on a discrete design space.
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Table 2. Optimality criteria that solve minw∈Ω ϕ{Af (w)} for all differentiable convex
functions ϕ given in Table 1. The formulae for ∇ϕ(M) are from Petersen and Pedersen
(2012).

Criteria D- A- c-, for c ∈ Rq L-, for L ∈ Rq×q′

ϕ(M) − log det(M) trace(M−1) cTM−1c trace(LTM−1L)

∇ϕ(M) −M−1 −M−2 −M−1ccTM−1 −M−1LLTM−1

Theorem 1. Suppose that Φ : RN → R is a convex function. Let w∗ ∈ Ω. Then,

w∗ ∈ argmin
w∈Ω

Φ(w) if and only if

∃ g ∈ ∂Φ(w∗) such that gT (w∗ − ei) ≤ 0, for all i = 1, 2, . . . , N. (2.2)

The rest of this subsection is devoted to results that help us evaluate

condition (2.2) in the special case where Φ(w) = ϕ[If (w)] for a convex function

ϕ. First, if ϕ is convex and differentiable at If (w
∗), then Lemma 1 states that

∂Φ(w∗) = {∇Φ(w∗)}, and condition (2.2) simplifies to

[∇Φ(w∗)]
T
(w∗ − ei) ≤ 0 for all i = 1, 2, . . . , N. (2.3)

The following result follows from the matrix chain rule (Petersen and Pedersen

2012, Sec. 2.8.1), and characterizes the left-hand side of (2.3).

Lemma 2. Let w∗ ∈ Ω. If Φ(w) = ϕ{If (w)} for a convex function ϕ and a

regression function f(·, ·), and ϕ is differentiable at If (w
∗), then

[∇Φ(w∗)]
T
(w∗ − ei) = dϕ,f (ui,w

∗), for all i = 1, 2, . . . , N,

where for all i = 1, 2, . . . , N , we define

dϕ,f (ui,w
∗) ≡ trace

(
[∇ϕ{If (w

∗)}]T
[
If (w

∗)− zf (ui)z
T
f (ui)

])
, (2.4)

and where ∇ϕ(M∗) is the q × q matrix with (j, j′)th entry ∂ϕ/∂Mjj′
∣∣
M=M∗.

It follows from Theorem 1 and Lemma 2 that characterizing optimality for

single-objective optimality criteria with Φ(w) = ϕ{If (w)} for a differentiable

convex function ϕ amounts to checking whether dϕ,f (ui,w
∗) ≤ 0, for all i =

1, 2, . . . , N . Furthermore, dϕ,f (ui,w
∗) is straightforward to compute, given the

formula for ∇ϕ(M∗); see Table 2.

Combining Theorem 1, Lemma 2, and Table 1 yields various classical

equivalence theorems on a discrete design space; see, for example, Kiefer (1974).

In the case of E-optimality, we have Φ(w) = ϕ{If (w)} for a non-

differentiable convex function ϕ (Tbl. 1); thus Lemma 2 does not always apply.

We address this with the following result.
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Lemma 3. Suppose that Φ(w) = −λmin{If (w)} for a regression function f(·, ·).
Let w∗ ∈ Ω and r∗ be the geometric multiplicity of λmin{If (w

∗)}.

1. If r∗ = 1, then ∂Φ(w∗) = {∇Φ(w∗)}, and

[∇Φ(w∗)]T (w∗−ei) = {(v∗)Tzf (ui)}2−λmin{If (w
∗)}, for all i = 1, 2, . . . , N,

where v∗ denotes an arbitrary unit eigenvector associated with λmin{If (w
∗)}.

2. If r∗ > 1, then for any g ∈ ∂Φ(w∗), there exist a1, . . . , ar∗ ≥ 0 such that∑r∗

j=1 aj = 1 and

gT (w∗ − ei) = d−λmin,f,a(ui,w
∗), for all i = 1, 2, . . . , N,

where for all i = 1, 2, . . . , N , we define

d−λmin,f,a(ui,w
∗) ≡

r∗∑
j=1

aj{(v∗
j )

Tzf (ui)}2 − λmin{If (w
∗)}, (2.5)

where v∗
1, . . . ,v

∗
r∗ denotes an arbitrary set of orthonormal eigenvectors

associated with λmin{If (w
∗)}.

Combining Theorem 1 with Lemma 3 yields the equivalence theorem for E-

optimality on a discrete design space (Kiefer, 1974).

3. Efficiency-Constrained Optimal Designs

Suppose that an experimenter is interested primarily in optimizing one

particular single-objective optimality criterion Φ1, without losing too much

efficiency with respect to the other criteria Φ2, . . . ,ΦK , for K ≥ 2. Let

Effk(w) denote the efficiency of the design ξ(w) with respect to criterion Φk,

for k = 1, . . . ,K. Given experimenter-specified constants m2, . . . ,mK ∈ (0, 1),

an efficiency-constrained optimal design on SN solves
min
w∈RN

Φ1(w)

subject to: Effk(w) ≥ mk, k = 2, . . . ,K,
N∑
i=1

wi = 1, wi ≥ 0, i = 1, 2, . . . , N.

 . (3.1)

All designs may fail to satisfy the constraints in (3.1) when the desired minimum

efficiencies m2, . . . ,mK are large.

3.1. Convex optimization problem

Suppose that Φk(w) = ϕk{Ifk(w)} for all k = 1, . . . ,K, where ϕ1, . . . , ϕK

are continuous convex functions chosen from Table 1, and Ifk(w) in (2.1) is the

expected information matrix for a model of the form (1.1) with regression function
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fk(x,θ) for θ ∈ Rqk at design ξ(w). We use the definitions of Effk(w) in Table 1

to rewrite (3.1) as the following problem:
min
w∈RN

Φ1(w)

subject to: Φk(w) ≤ hk(mk), k = 2, . . . ,K,
N∑
i=1

wi = 1, wi ≥ 0, i = 1, 2, . . . , N.

 , (3.2)

where we define hk(m) as

hk(m) =



{
min
w′∈Ω

Φk(w
′)
}
− qk log(m), if Φk(w) = − log det{Ifk(w)},

m
{
min
w′∈Ω

Φk(w
′)
}

if Φk(w) = −λmin{Ifk(w)},
1

m

{
min
w′∈Ω

Φk(w
′)
}
, otherwise.

(3.3)

For all k = 1, 2, . . . ,K, Φk(w) = ϕk{Ifk(w)} is a convex function, because

ϕk is a convex function and Ifk is a linear function. Thus, (3.2) is a convex

optimization problem. Note that our formulation differs from that of Wong and

Zhou (2023) because we use Φk(w) = − log det{Ifk(w)} for D-optimality, rather

than Φk(w) = [det{Ifk(w)}]−1/qk .

In fact, (3.2) is a convex optimization problem that can be solved by using

CVX (Grant and Boyd, 2014), a MATLAB package that works with a special subclass

of optimization problems; see Grant and Boyd (2008) for details on this subclass.

CVX converts (3.2) to a form solvable by a numerical convex optimization solver

(e.g., SDPT3 or SeDuMi), and then translates the numerical results back to the

original form.

3.2. Necessary and sufficient conditions

The following result characterizes optimality for (3.2), under the assumption

that the minimum efficiency inequality constraints can be strictly satisfied.

Theorem 2. Suppose that there exists w ∈ Ω satisfying Effk(w) > mk, for all

k = 2, . . . ,K. Let w∗ be a feasible solution for problem (3.2). Then, w∗ solves

problem (3.2) if and only if there exist η2, . . . , ηK ≥ 0 such that

1. ηk{Φk(w
∗)− hk(mk)} = 0, for all k = 2, . . . ,K, and

2. w∗ ∈ argminw∈Ω{Φ1(w) +
∑K

k=2 ηkΦk(w)}.

Theorem 2 is related to the results of Lee (1988), Cook and Wong (1994),

and Clyde and Chaloner (1996).

We now discuss how to use the results in Section 2.2 to rewrite Theorem

2. First, suppose that ϕ1, . . . , ϕK all correspond to D-, A-, c-, or L-optimality.

Then, it follows from Theorem 1 and Lemma 2 that we can replace Condition 2
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in Theorem 2 with

dϕ1,f1(ui,w
∗) +

K∑
k=2

ηkdϕk,fk(ui,w
∗) ≤ 0, for all i = 1, 2, . . . , N, (3.4)

for dϕ,f (ui,w
∗) defined in (2.4). Table 2 provides formulae for ∇ϕk(M).

Otherwise, we must apply Theorem 1 with Lemma 1 and Lemma 3 to rewrite

Condition 2 in Theorem 2, as shown in the following example.

Example 1. Suppose that ϕ1(M) = −λmin(M), and ϕ2, . . . , ϕK all correspond

to D-, A-, c-, or L-optimality. Then, it follows from Theorem 1 and Lemma 1

that Condition 2 in Theorem 2 holds if and only if there exists g ∈ ∂Φ1(w
∗) such

that

gT (w∗ − ei) +
K∑

k=2

ηkdϕk,fk(ui,w
∗) ≤ 0, for all i = 1, 2, . . . , N, (3.5)

for dϕ,f (ui,w
∗) defined in (2.4). Let r∗ be the geometric multiplicity of

λmin{If1(w
∗)}. It further follows from Lemma 3 that

Case 1 (r∗ = 1) : Condition 2 in Theorem 2 holds if and only if

{(v∗)Tzf1(ui,w
∗)}2 − λmin{If1(w

∗)}+
K∑

k=2

ηkdϕk,fk(ui,w
∗) ≤ 0, ∀ i = 1, . . . , N,

(3.6)

where v∗ denotes an arbitrary unit eigenvector of λmin{If1(w
∗)};

Case 2 (r∗ > 1) : Condition 2 in Theorem 2 holds if and only if there exist

a1, . . . , ar∗ ≥ 0 such that
∑r∗

j=1 aj = 1 and

d−λmin,f1,a(ui,w
∗) +

K∑
k=2

ηkdϕk,fk(ui,w
∗) ≤ 0, ∀ i = 1, . . . , N, (3.7)

where d−λmin,f,a(ui,w
∗) is defined in (2.5).

3.3. Optimality verification using linear programming

Suppose we have obtained w∗ by solving (3.2) numerically, where ϕ1, . . . , ϕK

all correspond to D-, A-, c-, or L-optimality. We know from Theorem 2 that w∗

is optimal if we can find η2, . . . , ηK ≥ 0 such that Conditions 1 and 2 in Theorem

2 are satisfied. However, w∗ is an approximate numerical solution, and is thus

unlikely to satisfy Conditions 1 and 2 exactly. Instead, we check whether w∗ is

“close enough” to optimal by searching for η2, . . . , ηK ≥ 0 such that

ηk {Φk(w
∗)− hk(mk)} ≤ δ, k = 2, . . . ,K, (3.8)

−ηk {Φk(w
∗)− hk(mk)} ≤ δ, k = 2, . . . ,K, (3.9)
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dϕ1,f1(ui,w
∗) +

K∑
k=2

ηkdϕk,fk(ui,w
∗) ≤ δ, i = 1, 2, . . . , N, (3.10)

where δ is a small positive constant (e.g., δ = 10−4). Here, (3.8) and (3.9)

relax Condition 1 in Theorem 2, (3.10) relaxes Condition 2 in Theorem 2, and

δ controls our definition of “close enough” to optimal. Similar ideas appear in

single-objective optimal designs (Wong and Zhou, 2019).

We propose solving the following optimization problem:{
min

η∈RK−1
1T
K−1η

subject to: η ≥ 0K−1,B
T
1 η ≤ b1,C1η ≤ δ1K−1,−C1η ≤ δ1K−1.

}
, (3.11)

where ≤ and ≥ denote component-wise inequality; 1K−1 is a (K − 1)-vector

with every entry equal to one, B1 is a (K − 1) × N matrix with (k, i)th entry

dϕk+1,fk+1
(ui,w

∗), where dϕ,f (ui,w
∗) is defined in (2.4), for k = 1, 2, . . . ,K−1; b1

is an N -vector with ith entry equal to δ−dϕ1,f1(ui,w
∗), and C1 = diag{Φ2(w

∗)−
h2(m2), . . . ,ΦK(w

∗)− hK(mK)}.
If we are able to find a solution η∗ to (3.11), then we know that w∗ and η∗

jointly satisfy (3.8)–(3.10). This would mean that the conditions in Theorem 2

(approximately) hold, and, thus w∗ is optimal for (3.2). Furthermore, (3.11) is

a linear programming problem (Luenberger and Ye, 2016): its objective function

and constraints are all linear. Thus, we can solve (3.11) by simply applying

an off-the-shelf linear programming solver, such as the linprog function in the

Optimization Toolbox of MATLAB.

If one or more of ϕ1, . . . , ϕK correspond to E-optimality, then the following

example shows that we can still verify the conditions in Theorem 2 using linear

programming.

Example 2. Consider Example 1 in Section 3.2, where ϕ1(M) = −λmin(M) and

ϕ2, . . . , ϕK all correspond to D-, A-, c-, or L-optimality. Recall that we defined

r∗ to be the geometric multiplicity of λmin{If1(w
∗)}. We previously showed that

if r∗ = 1, then Condition 2 in Theorem 3 is equivalent to (3.6), which defines a

set of N linear equalities in η2, . . . , ηK . Thus, we can minimize
∑K

k=2 ηk subject

to the 2(K − 1) linear inequalities defined in (3.8) and (3.9) and the following

relaxed version of (3.6):

{(v∗)Tzf1(ui,w
∗)}2 − λmin{If1(w

∗)}+
K∑

k=2

ηkdϕk,fk(ui,w
∗) ≤ δ, ∀ i = 1, . . . , N.

If we can find a solution to this linear programming problem, then we know that

w∗ is an optimal solution.

We also showed in Section 3.2 that if r∗ > 1, then Condition 2 holds if and

only if there exist a1, . . . , ar∗ ≥ 0 and η2, . . . , ηK ≥ 0 such that
∑r∗

j=1 aj = 1 and
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(3.7) holds. Thus, Theorem 2 says that w∗ is optimal for (3.2) if and only if there

exists a1, . . . , ar∗ ≥ 0 and η2, . . . , ηK ≥ 0 such that ηk{Φk(w
∗)− hk(mk)} = 0 for

all k = 2, . . . ,K and (3.7) holds. Observe that (3.7) defines N linear inequalities

in η2, . . . , ηK and in a1, . . . , ar∗ . Thus, we can minimize
∑K

k=2 ηk+
∑r∗

j=1 aj subject

to the 2(K − 1) linear inequalities defined in (3.8) and (3.9) and the following

relaxation of (3.7),

d−λmin,f1,a(ui,w
∗) +

K∑
k=2

ηkdϕk,fk(ui,w
∗) ≤ δ, ∀ i = 1, . . . , N.

Once again, if we are able to find a solution to this linear programming problem,

then we know that w∗ is an optimal solution.

4. Maximin Optimal Designs

Suppose that an experimenter requires a design that yields reasonable

efficiency for all K single-objective optimality criteria. We formulate this

maximin design problem as
max
w∈RN

min{Eff1(w), . . . ,EffK(w)}

subject to:
N∑
i=1

wi = 1, wi ≥ 0, i = 1, 2, . . . , N.

 . (4.1)

4.1. Convex optimization problem

Problem (4.1) is hard to solve directly, because the objective function involves

a minimization. However, we can formulate (4.1) equivalently as
max

w∈RN ,t∈R

1

t

subject to: Effk(w) ≥ 1

t
, k = 1, . . . ,K,

t ≥ 0, wi ≥ 0, i = 1, . . . , N,
N∑
i=1

wi = 1


. (4.2)

This formulation eliminates the minimization from the objective function by

introducing an additional optimization variable (t). Furthermore, when Φk(w) =

ϕk{Ifk(w)}, with ϕ1, . . . , ϕK chosen from the convex functions in Table 1, (4.2)

is equivalent to

min
w∈RN ,t∈R

t

subject to: Φk(w) ≤ hk

(
1

t

)
, k = 1, . . . ,K,

t ≥ 0,
N∑
i=1

wi = 1, wi ≥ 0, i = 1, . . . , N.


, (4.3)
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where hk(·) is defined in (3.3). This is a convex optimization problem, because

hk(1/t) is a concave function of t and Φk(w) is a convex function of w.

Furthermore, we can solve (4.2) using CVX, because it fits into the CVX modeling

framework described in Grant and Boyd (2008). Note that our formulation is

more general than that of Wong and Zhou (2023), because we allow the user to

select any combination of the criteria in Table 1.

4.2. Necessary and sufficient conditions for optimality

The following result characterizes optimality for (4.3).

Theorem 3. Suppose that (w∗, t∗) are feasible for problem (4.3). Then, (w∗, t∗)

solves (4.3) if and only if there exist η1, . . . , ηK ≥ 0 satisfying

1.
∑K

k=1 ηk{dhk(1/t)/dt|t=t∗} = 1.

2. ηk{Φk(w
∗)− hk(1/t

∗)} = 0, for all k = 1, 2, . . . ,K.

3. w∗ ∈ argminw∈Ω{
∑K

k=1 ηkΦk(w)}.

We now show how to use the results in Section 2.2 to rewrite Theorem 3.

First, suppose that ϕ1, . . . , ϕK all correspond toD-, A-, c-, or L-optimality. Then,

it follows from Theorem 1 and Lemma 1 that we can replace Condition 3 in

Theorem 3 with

K∑
k=1

ηkdϕk,fk(ui,w
∗) ≤ 0 for all i = 1, 2, . . . , N, (4.4)

where dϕ,f (ui,w
∗) is given in (2.4), and the formulae for ∇ϕk(M) are given in

Table 2. Otherwise, we need to apply Theorem 1 with Lemma 1 and Lemma 3

to rewrite Condition 3, as shown in the following example.

Example 3. Suppose that ϕ1(M) = −λmin(M), and ϕ2, . . . , ϕK all correspond

to D-, A-, c-, or L-optimality. Then, it follows from Theorem 1 and Lemma 1

that Condition 3 in Theorem 3 holds if and only if there exists g ∈ ∂Φ1(w
∗) such

that

η1g
T (w∗ − ei) +

K∑
k=2

ηkdϕk,fk(ui,w
∗) ≤ 0, ∀ i = 1, 2, . . . , N. (4.5)

Let r∗ be the geometric multiplicity of λmin{If1(w
∗)}. Then, based on Lemma

3, we can consider two cases:

Case 1 (r∗ = 1) : Condition 3 in Theorem 3 holds if and only if

η1{(v∗)Tzf1(ui,w
∗)}2 − η1λmin{If1(w

∗)}+
K∑

k=2

ηkdϕk,fk(ui,w
∗) ≤ δ,

∀ i = 1, . . . , N, (4.6)



214 GAO ET AL.

where v∗ denotes an arbitrary unit eigenvector corresponding to

λmin{If1(w
∗)}.

Case 2 (r∗ > 1) : Condition 3 in Theorem 3 holds if and only if there exist

a1, . . . , ar∗ ≥ 0 such that
∑r∗

j=1 aj = 1 and

η1d−λmin,f1,a(ui,w
∗) +

K∑
k=2

ηkdϕk,fk(ui,w
∗) ≤ 0 for all i = 1, 2, . . . , N,

where d−λmin,f1,a(ui,w
∗) is defined in (2.5).

4.3. Optimality verification using linear programming

Suppose we obtain a candidate solution (w∗, t∗) by solving (4.3) numerically

(e.g., using CVX), where ϕ1, . . . , ϕK all correspond to D-, A-, c-, or L-optimality.

Based on the results in Section 4.2, we need to find η1, . . . , ηK ≥ 0 such that

K∑
k=1

ηk

{
d

dt
hk

(
1

t

)∣∣∣
t=t∗

}
= 1, (4.7)

ηk

{
Φk(w

∗)− hk

(
1

t∗

)}
≤ δ, k = 1, 2, . . . ,K, (4.8)

−ηk

{
Φk(w

∗)− hk

(
1

t∗

)}
≤ δ, k = 1, 2, . . . ,K, (4.9)

K∑
k=1

ηkdϕk,fk(ui,w
∗) ≤ δ, i = 1, 2, . . . , N, (4.10)

where δ is a small positive constant. Here, we have relaxed Conditions 2 and

3 in Theorem 3, because w∗ is an approximate solution, along the lines of the

discussion in Section 3.3. We achieve this goal by solving the following linear

programming problem using the linprog function in MATLAB:{
min
η∈RK

1T
Kη

subject to: η ≥ 0K ,b
T
2 η = 1, BT

2 η ≤ δ1N ,C2η ≤ δ1K ,−C2η ≤ δ1K .

}
,

(4.11)

where b2 is a K-vector with kth entry equal to {dhk(1/t)/dt|t=t∗}, for hk defined

in (3.3), B2 is a K × N matrix with (k, i)th entry equal to dϕk,fk(ui,w
∗), for

dϕ,f (ui,w
∗) defined in (2.4), and C2 = diag{Φ1(w

∗) − h1(m1), . . . ,ΦK(w
∗) −

hK(mK)}.
When one or more of ϕ1, . . . , ϕK correspond to E-optimality, we can still

rewrite Condition 3 in Theorem 3 as a set of linear inequalities; see Example 2.

Thus, we can still verify the conditions in Theorem 3 using linear programming.

We omit the details, because the linear programming problem is similar to that

in Example 1 in Section 3.3.



MULTI-OBJECTIVE DESIGN OPTIMALITY 215

Table 3. For Application 1, single-objective optimal designs and the efficiency-
constrained optimal design with m2 = 0.9 and m3 = 0.8.

ϕ1-optimal ϕ2-optimal ϕ3-optimal efficiency-constrained

points (weights) points (weights) points (weights) points (weights)

0 (0.0591) 0 (0.2500) 0 (0.1339) 0 (0.1339)

0.6300 (0.1315) 0.6600 (0.2500) 0.9600 (0.0663) 0.6600 (0.1513)

2.9400 (0.3126) 2.8800 (0.2500) 3.300 (0.4502) 3.0300 (0.2481)

13.2900 (0.4968) 11.0100 (0.2441) 9.7500 (0.2231) 3.0600 (0.0942)

11.0400 (0.0059) 9.7800 (0.2502) 10.8300 (0.0807)

10.8600 (0.2918)

5. Applications

In all three of the following applications, we set δ = 10−4 when verifying

optimality using linear programming, as described in Sections 3.3 and 4.3. Any

choice of δ larger than 10−6 yields the same results. All computations are

performed on a 2021 M1 Macbook Pro with 10 cores and 16 GB memory.

We provide the MATLAB code to reproduce all numerical results at https:

//github.com/lucylgao/multi-objective-paper-code-2022.

Application 1. Consider a four-parameter compartment model of the form (1.1),

with p = 1, q = 4, f(x,θ) = θ1e
−θ2x+θ3e

−θ4x, and S = [0, 15], where the response

yi represents the concentration level of a drug in compartments and x denotes

the sampling time. This model has been studied in optimal designs for various

optimality criteria, including multi-objective criteria (Huang and Wong, 1998;

Cheng and Yang, 2019).

We seek efficiency-constrained optimal designs that solve (3.1) with Φk(w) =

ϕk[If (w)], for k = 1, 2, 3. As in Cheng and Yang (2019), we let ϕ1 corre-

spond to L-optimality with L = diag(1/θ1, 1/θ2, 1/θ3, 1/θ4), ϕ2 correspond to

D-optimality, and ϕ3 correspond to L-optimality with L = {
∫ 10

2
zf (x,θ

∗)zTf
(x,θ∗)dx}1/2, where zf (x,θ) = (e−θ2x,−θ1xe

−θ2x, e−θ4x,−θ3xe
−θ4x)⊤ and θ∗ =

(5.25, 1.34, 1.75, 0.13)⊤. We discretize the continuous design space S to form SN

with ui = 15(i− 1)/(N − 1), for i = 1, . . . , N .

First, we find the single-objective optimal designs by solving minw∈ΩΦk(w)

for each k = 1, 2, 3 using CVX. Then, we solve (3.1) with m2 = 0.9, m3 = 0.8,

and N = 501 using CVX, and denote the solution as w∗m. We report the single-

objective optimal designs and w∗m in Table 3. The efficiencies at w∗m are close

to those reported in Cheng and Yang (2019).

We then verify the conditions for optimality in Theorem 2 for w∗m by using

the linprog MATLAB function to solve (3.11) with δ = 10−4, as described in

Section 3.3. Solving (3.11) yields η∗
2 = 36.4870 and η∗

3 = 5.0767. Because we

obtain a solution, we know that w∗m is the efficiency-constrained optimal design

https://github.com/lucylgao/multi-objective-paper-code-2022
https://github.com/lucylgao/multi-objective-paper-code-2022
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(a) 𝜙1-optimality (b) 𝜙2-optimality (c) 𝜙3-optimality (d) Mulit-objective
optimality

Figure 1. For (m2,m3) = (0.9, 0.8) in Application 1, panels (a) to (c) display
plots of dϕk,f (ui,w

∗m) for k = 1, 2, 3, and panel (d) displays dϕ1,f (ui,w
∗m) +∑3

k=2 η
∗
kdϕk,f (ui,w

∗m). In panel (d), the dashed line represents the horizontal line y = δ,
for δ = 10−4.

Table 4. For Application 1, efficiencies and η∗2 and η∗3 , for various (m2,m3).

Case (m2,m3) (0.90, 0.80) (0.90, 0.70) (0.70, 0.70) (0.90, 0.90)

η∗2 , η∗3 36.4870, 5.0767 7.2923, 0 0, 0 NA

Eff1(w
∗m) 0.8694 0.9360 1.000 NA

Eff2(w
∗m), Eff3(w

∗m) 0.9000, 0.8000 0.9000, 0.7035 0.7317, 0.7746 NA

(Thm. 2). Figure 1 shows that dϕ1,f (ui,w
∗m)+

∑3
k=2 η

∗
kdϕk,f (ui,w

∗m) ≤ δ, for all

i = 1, 2, . . . , N , showing visually that Condition 2 in Theorem 2 is satisfied for

w∗m, η∗
2 , and η∗

3 . Figure 1 also shows that dϕk,f (ui,w
∗m) is not uniformly non-

negative for all k = 1, 2, 3. Thus, w∗m is not the single-objective optimal design

that minimizes Φ1, Φ2, or Φ3 (Thm. 1 and Lem. 2).

Next, we examine the results of varying m2 and m3; see Table 4. For m2 =

0.90 and m3 = 0.70, we find that η∗
3 = 0, because Φ3(w

∗m) < h3(m3) and η∗
2 , η

∗
3

satisfy Condition 1 in Theorem 2. Similarly, for m2 = 0.70 and m3 = 0.70,

we find that η∗
2 = η∗

3 = 0, because Φk(w
∗m) < hk(mk) (i.e., Effk(w

∗m) > mk)

for k = 2, 3. This implies that the multi-objective optimal design w∗m is also

a single-objective optimal design that maximizes Φ1 (Thm. 1 and Lem. 2). For

m2 = 0.90 and m3 = 0.90, there is no feasible solution.

Computing the optimal designs for (m2,m3) = (0.9, 0.8) took 19.5, 25.6, and

36.2 seconds for N = 101, 501, 1001, respectively. Verifying the optimality of the

efficiency constrained design took less than a second.

Application 2. Several dose response models are popular in clinical dose finding

studies. We consider the four competing regression models of the form (1.1) from

Bretz, Dette and Pinheiro (2010) to construct maximin optimal designs, and to

verify the necessary and sufficient conditions in Theorem 3 for the optimal designs.

The four models are: (i) linear model: f1(x,θ) = θ11 + θ12x; (ii) Emax I model:

f2(x,θ) = θ21+θ22x/(θ23+x); (iii) Emax II model: f3(x,θ) = θ31+θ32x/(θ33+x);
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Table 5. Optimal designs for Application 2.

linear model Emax I Emax II logistic maximin

points (weights) points (weights) points (weights) points (weights) points (weights)

0 (0.5000) 0 (0.3333) 0 (0.3333) 0 (0.2500) 0 (0.2406)

500 (0.5000) 22 (0.3333) 75 (0.3333) 114 (0.2500) 19 (0.1806)

500 (0.3333) 500 (0.3333) 204 (0.1316) 112 (0.1314)

205 (0.2500) 204 (0.1070)

500 (0.2500) 205 (0.0178)

500 (0.3225)

and (iv) Logistic model: f4(x,θ) = θ41+θ42/[1+exp{(θ43−x)/θ44}]. In all models,

x ∈ [0, 500] (µg) is the dose level. Let SN contain N = 501 equally spaced grid

points in [0, 500]. As in Bretz, Dette and Pinheiro (2010), we assume that the true

parameter values for the Emax I , Emax II, and logistic models are, respectively,

(60, 294, 25), (60, 340, 107.14), and (49.62, 290.51, 150, 45.51). (The information

matrix for the linear model does not depend on its true parameter values.)

We let Φk(w) = ϕk[Ifk(w)], with ϕk corresponding to D-optimality (defined

in Tbl. 1), for all k = 1, . . . , 4, and then solve problem (4.3) using CVX, denoting

the solution as w∗mm. The single-objective and maximin D-optimal designs on

SN are given in Table 5. We find that t∗ = 1.1712, Effk(w
∗mm) = 0.8538, for

k = 1, 2, 4, and Eff3(w
∗mm) = 0.8547. Solving problem (4.11) using the MATLAB

function linprog yielded η∗
1 = 0.1983, η∗

2 = 0.1291, η∗
3 = 0, and η∗

4 = 0.0968.

Because we obtain a solution, we know that w∗mm is the maximin D-optimal

design (Thm. 3).

Figure 2 displays plots of dϕk,fk(ui,w
∗mm) for k = 1, . . . , 4 and∑4

k=1 η
∗
kdϕk,fk(uj,w

∗mm). Figure 2(e) confirms that Condition 3 in Theorem

3 is satisfied. Figure 2(a) to (d) show that w∗mm is not the single-objective

D-optimal design for any of the four models (Thm. 1 and Lem. 2).

Computing the optimal designs took 18.2, 31.0, and 48.7 seconds for N =

101, 501, 1001, respectively. Verifying the optimality of the maximin design took

less than a second.

Application 3. Consider the linear model of the form (1.1) with p = 2, q = 5,

f(x;θ) = θ1 + x1θ2 + x2θ3 + x1x2θ4 + x2
2θ5, and S = {0, 1} × [−1, 1]. We let S1

N/2

contain 201 equally spaced points on [−1, 1], and discretize the design space S

to form SN = {0, 1} × S1
N/2, for N = 402. Here, the information matrix does not

depend on the true parameter values.

We let Φk(w) = ϕk[If (w)], for k = 1, 2, 3, with ϕ1 corresponding to

A-optimality, ϕ2 corresponding to E-optimality, and ϕ3 corresponding to c-

optimality with c = (0, 0, 0, 1, 0)T . Then we solve problem (4.3) as described

in Section 4.1 to obtain the maximin optimal design, and denote the solution

as w∗mm
lm . The single-objective and maximin optimal designs on SN are given
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(a) 𝜙1-optimality (b) 𝜙2-optimality (c) 𝜙3-optimality

(d) 𝜙4-optimality (e) Mulit-objective optimality

Figure 2. For Application 2, we display plots of (a) to (d) dϕk,fk(ui,w
∗mm) for k =

1, 2, 3, 4, and (e)
∑4

k=1 η
∗
kdϕk,fk(ui,w

∗mm). In panel (e), the dashed line represents the
horizontal line y = δ, for δ = 10−4.

Table 6. Optimal designs for Application 3.

A-optimal E-optimal c-optimal maximin

points [weights] points [weights] points [weights] points [weights]

(0, -1) [0.1859] (0, -1) [0.2069] (0, -1) [0.2500] (0, -1) [0.1926]

(1, -1) [0.1399] (1, -1) [0.1379] (1, -1) [0.2500] (1, -1) [0.1926]

(0, 0) [0.2287] (0, 0) [0.2414] (0, 1) [0.2500] (0, 0) [0.1679]

(1, 0) [0.1197] (0, 1) [0.0690] (1, 1) [0.2500] (1, 0) [0.0616]

(0, 1) [0.1859] (1, 1) [0.2069] (0, 1) [0.1926]

(1, 1) [0.1399] (1, 1) [0.1926]

in Table 6. We find that t∗ = 1.2979, Eff1(w
∗mm
lm ) = 0.9298, and Eff1(w

∗mm
lm ) =

0.7705, for k = 2, 3. In this case, the geometric multiplicity of λmin{If (w
∗mm
lm )}

is equal to one. Thus, to verify the optimality of w∗mm
lm , we use the linprog

MATLAB function to minimize
∑3

k=1 ηk, subject to the linear inequality constraints

in (4.6) and the linear equality and inequality constraints in (4.7) to (4.9). We

find a solution at η∗
1 = 0, η∗

2 = 0.2445, and η∗
3 = 0.0151. Therefore, the maximin

design is optimal.

Computing the optimal designs took 11.2, 14.5, and 23.2 seconds for N/2 =

101, 201, 401, respectively. Verifying the optimality of the maximin design took

less than a second.

6. Conclusion

In this paper, we have shown how to solve multi-objective optimal design

problems on a discrete design space using convex optimization, and how to verify
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the optimality of the designs using linear programming. Our approach can

be applied to efficiency-constrained or maximin optimal design problems that

combine any of the single-objective criteria shown in Table 1.

The multi-objective optimal design setting offers a natural opportunity to

gain robustness against parameter and/or model misspecification, because we

can include objective functions formulated from a range of guesses for θ∗ and/or

from the information matrices of multiple models. A sequential multi-objective

optimal design setting may offer opportunities for further robustness, because it

would enable us to select design points and weights in stages, and then use the

data from each stage to inform the choice of parameters and/or models used in

the objective functions for the next stage. This may provide a fruitful avenue for

future work.

We were able to achieve the results and algorithms presented here because

the inverse of the asymptotic covariance matrix of the ordinary least squares

estimator under model (1.1) is a linear function of w∗; see equation (2.1). It

would be straightforward to extend the results and algorithms to other models

and estimators that have a similar property. For example, we could allow the

vector of errors in (1.1) to be heteroskedastic or have a block diagonal covariance

structure, and use the generalized least squares estimator. Another example is

generalized linear models with a canonical link function, where we estimate θ

using the maximum likelihood estimator.

Necessary and sufficient conditions for optimality that involve a set of

unknown parameters appear in contexts outside of the multi-objective design

problems we consider here, for example, in any single-objective optimal design

problem involving a convex, but non-differentiable objective function (e.g., single-

objective E-optimality). When the conditions define linear equalities and inequal-

ities in these unknown parameters, we can verify them using linear programming,

as discussed here.

A limitation of our results and algorithms is the assumption of a discrete

design space. An important direction for future work is to develop results and

algorithms under a continuous design space.
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Appendix

A.1. General convex optimization theory

In this section, we review general results on optimality conditions in convex

optimization.
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Proposition 1. Let Φ : RN 7→ R be a convex function and C be a closed convex

set. Then, w∗ ∈ argminw∈CΦ(w) if and only if there exists g ∈ ∂Φ(w∗) such that

gT (w −w∗) ≥ 0, for all w ∈ C, (A.1)

where ∂Φ(w∗) ≡ {g ∈ RN : Φ(w)− Φ(w∗) ≥ gT (w −w∗) ∀ w ∈ RN}.

Proposition 1 is a direct consequence of Theorem 4.14 of Mordukhovich and

Nam (2013). The following result characterizes optimality for constrained convex

optimization problems.

Proposition 2. Define the following convex optimization problem:

min
w∈C

Φ0(w) subject to: Φl(w) ≤ 0, l = 1, . . . , L, (A.2)

where Φ0, . . . ,ΦL : RN → R are convex functions and C is a closed convex set.

Suppose that Slater’s condition holds, i.e. there exists w′ ∈ C such that Φl(w
′) <

0 for all l = 1, . . . , L. Then, a feasible solution w∗ of (A.2) solves (A.2) if and

only if there exists η1, . . . , ηL ≥ 0 such that ηlΦl(w
∗) = 0 for all l = 1, 2, . . . , L

and w∗ ∈ argminw∈C{Φ0(w) +
∑L

l=1 ηkΦl(w)}.

Proof. We assumed that Slater’s condition holds. Thus, Theorem 4.18 of

Mordukhovich and Nam (2013) says that w∗ is optimal for (A.2) if and only if

there exist multipliers η1, . . . , ηL ≥ 0 such that ηlΦl(w
∗) = 0 for all l = 1, 2, . . . , L

and

0 ∈ ∂Φ0(w
∗) +

L∑
l=1

ηl∂Φl(w
∗) +

{
g ∈ RN : gTw∗ ≥ gTw ∀ w ∈ C

}
. (A.3)

Thus, by Lemma 1, (A.3) is equivalent to:

∃g ∈ ∂

(
Φ0 +

L∑
l=1

ηlΦl

)
(w∗) such that gT (w −w∗) ≥ 0 for all w ∈ C.

(A.4)

Finally, it follows from Proposition 1 that (A.4) holds if and only if w∗ ∈
argminw∈C{Φ0(w) +

∑L
l=1 ηlΦl(w)}.

A.2. Proof of Theorem 1

Let w∗ ∈ Ω. Since Φ(w) = ϕ{If (w)} is convex and Ω is a closed convex set,

from Proposition 1, w∗ ∈ argminw∈Ω Φ(w) if and only if

∃g ∈ ∂Φ(w∗) such that gT (w −w∗) ≥ 0, for all w ∈ Ω. (A.5)

Suppose that (A.5) holds. Since ei ∈ Ω for all i = 1, 2, . . . , N , we have that

(2.2) holds. Now suppose that (2.2) holds. Then, because all w ∈ Ω have
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wi ≥ 0 for all i = 1, 2, . . . , N , (2.2) implies that there exists g ∈ ∂Φ(w∗) such

that
∑N

i=1 wig
T (ei − w∗) ≥ 0, for all w ∈ Ω. Observing that gT (w − w∗) =∑N

i=1 wig
T (ei −w∗) completes the proof.

A.3. Proof of Lemma 3

We will start by establishing properties of (−Φ)(w) = λmin{If (w)}, as this
allows us to take advantage of existing theoretical results about the minimum

eigenvalue function λmin(M).

The function (−Φ)(w) is not differentiable at every point in RN . Further-

more, the notion of a subdifferential does not apply to (−Φ)(w), as (−Φ)(w) is

a concave rather than a convex function. However, it has a Clarke subdifferential

(Clarke, 1983), which generalizes the notion of the gradient to the class of locally

Lipschitz continuous functions. The Clarke subdifferential of a locally Lipschitz

continuous function h(w) on RN is defined as:

∂Ch(w) = co
({

v ∈ RN : ∃ {wk}∞k=1

s.t. lim
k→∞

wk exists,∇h(wk) exists, and lim
k→∞

∇h(wk) = v
})

,

where co(S) is the convex hull of the set S, i.e. the intersection of all convex sets

containing S.

We can characterize the Clarke subdifferential ∂C(−Φ)(w) by observing that

(−Φ)(w) is the composition of the non-differentiable concave function λmin with

the linear function If . Thus, it follows from the Clarke subdifferential chain rule

(Clarke, 1983, Thm. 2.3.10) that gc ∈ ∂c(−Φ)(w∗) if and only if there exists

M ∈ ∂cλmin{If (w
∗)} such that for any w ∈ RN ,

gT
c w = trace

[
M

{
N∑
i=1

wizf (ui)z
T
f (ui)

}]
. (A.6)

Furthermore, Corollary 10 of Lewis (1999) says that

∂cλmin{If (w
∗)} =

{
r∗∑
j=1

ajv
∗
j [v

∗
j ]

T : aj ≥ 0,
r∗∑
j=1

aj = 1

}
, (A.7)

recalling that in the statement of Lemma 3 we defined v1, . . . ,vr∗ to be

an arbitrary set of r∗ linearly independent unit eigenvectors associated with

λmin{If (w
∗)} where r∗ is the geometric multiplicity of λmin{If (w

∗)}. It follows
from the definition of If (w

∗) in (2.1), (A.6) and (A.7) that if gc ∈ ∂c(−Φ)(w∗),

then there exists a1, . . . , ar∗ ≥ 0 such that
∑r∗

j=1 aj = 1 and gT
c (ei − w∗) =∑r∗

j=1 aj{[v∗
j ]

Tzf (ui)}2 − λmin{If (w
∗)}, for all i = 1, 2, . . . , N. Furthermore,

∂Φ(w∗) = ∂cΦ(w∗) = −{∂c(−Φ)(w∗)} , where the first equality follows from
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Proposition 2.2.7 of (Clarke, 1983), and the second equality follows from

Proposition 2.3.1 of (Clarke, 1983). Therefore, for any g ∈ ∂Φ(w∗), we know that

−g ∈ ∂c(−Φ)(w∗). Thus, there exists a1, . . . , ar∗ ≥ 0 such that
∑r∗

j=1 aj = 1 and

−gT (ei −w∗) =
∑r∗

j=1 aj{[v∗
j ]

Tzf (ui)}2 − λmin{If (w
∗)}, for all i = 1, 2, . . . , N.

A.4. Proof of Theorem 2

Since we assumed that there exists w ∈ Ω satisfying Effk(w) > mk for all k =

2, . . . ,K, we have that Slater’s condition holds for problem (3.2). Furthermore,

for all k = 1, 2, . . . ,K, Φk(w) = ϕk[Ifk(w)] is a convex function and Ω is a

convex set. Thus, it follows from Proposition 2 that w∗ ∈ Ω solves (3.2) if

and only if there exists η2, . . . , ηK ≥ 0 such that ηk{Φk(w
∗) − hk(mk)} = 0 for

all k = 2, 3, . . . ,K and w∗ ∈ argminw∈Ω[Φ1(w) +
∑K

k=2 ηk{Φk(w) − hk(mk)}].
Observing that

∑K
k=2 ηkhk(mk) does not depend on w completes the proof.

A.5. Proof of Theorem 3

We first confirm that the following restatement of (4.3),

min
w∈Ω,t≥0

t subject to: Φk(w) ≤ hk

(
1

t

)
, k = 1, . . . ,K, (A.8)

satisfies the conditions in Proposition 2. Since Ω and R are closed convex sets,

Ω × R is a closed convex set. Furthermore, for all k = 1, 2, . . . ,K, Φk(w) =

ϕk{Ifk(w)} is a convex function. We also know that for all k = 1, 2, . . . ,K,

hk(1/t) in (3.3) is a concave function of t for all k = 1, 2, . . . ,K, as −λmin(M)/t is

a concave function of t for any positive definite matrix M, t is a linear function,

and qk log(t) is a concave function. To show that Slater’s condition holds, we

need to find w′ ∈ Ω and t′ > 0 with Φk(w
′) < hk(1/t

′) for all k = 1, 2, . . . ,K.

It follows from the definition of the efficiency functions Effk(w
′) in Table 1 that

Φk(w
′) < hk(1/t

′) if and only if Effk(w
′) > 1/t′, and that Effk(w

′) > 0 for allw′ ∈
Ω. Thus, choosing w′ = argminw∈ΩΦ1(w) and t′ = 2/{mink=1,2,...,KEffk(w

′)}
satisfies Slater’s condition.

We can now apply Proposition 2 to (A.8) to yield the following result: a

feasible solution (w∗, t∗) for (A.8) solves problem (A.8) if and only if there exists

ν, η1, . . . , ηK ≥ 0 satisfying:

νt∗ = 0, (A.9)

ηk

{
Φk(w

∗)− hk

(
1

t∗

)}
= 0 for all k = 1, 2, . . . ,K, (A.10)

(w∗, t∗) ∈ argminw∈Ω,t∈R

[
t− νt+

K∑
k=1

ηk

{
Φk(w)− hk

(
1

t

)}]
. (A.11)
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The optimization problem in (A.11) is separable. Thus, (A.11) can be rewritten

as

w∗ ∈ argmin
w∈Ω

{
K∑

k=1

ηkΦk(w)

}
, (A.12)

t∗ ∈ argmin
t∈R

{
t− νt−

K∑
k=1

ηkhk

(
1

t

)}
. (A.13)

Since g(t) = t− νt−
∑K

k=1 ηkhk(1/t) is a convex function, we can rewrite (A.13)

as

1− ν −
K∑

k=1

ηk

[
d

dt
hk

(
1

t

)∣∣∣
t=t∗

]
= 0. (A.14)

This means that there exists ν, η1, . . . , ηK ≥ 0 satisfying (A.9) to (A.11) if and

only if there exists η1, . . . , ηK ≥ 0 satisfying (A.10), (A.12), and

1−
K∑

k=1

ηk

[
d

dt
hk

(
1

t

)∣∣∣
t=t∗

]
≥ 0, t∗

[
1−

K∑
k=1

ηk

{
d

dt
hk

(
1

t

)∣∣∣
t=t∗

}]
= 0. (A.15)

Since (A.10) is Condition 2 in Theorem 3, and (A.12) is Condition 3 in Theorem

3, it remains to show that (A.15) is equivalent to Condition 1 in Theorem 3.

It suffices to show that t∗ > 0. Recall that (A.8) is equivalent to (4.2), so the

optimal value for t in (A.8) is the reciprocal of the maximin efficiency attained

by the optimal design. Efficiencies are bounded between 0 and 1, so the optimal

value for t must be greater than 1, i.e. t∗ > 1.
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