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Abstract: We typically construct optimal designs based on a single objective
function. To better capture the breadth of an experiment’s goals, we could instead
construct a multiple objective optimal design based on multiple-objective functions.
However, although algorithms have been developed to find such designs (e.g.,
efficiency-constrained and maximin optimal designs), it is far less clear how to
verify the optimality of a solution obtained from these algorithms. In this paper,
we provide theoretical results that characterize optimality for efficiency-constrained
and maximin optimal designs on a discrete design space. Lastly, we demonstrate
how to use our results with linear programming algorithms to verify optimality.
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1. Introduction

Consider modeling the output of a designed experiment as:
yi = f(x:,0)+€, 1=1,...,n, (1.1)

where y; is the response variable observed at design point x; € S, for S C RP?,
0 € R? is a vector of unknown regression parameters, and ¢; are independent
random errors, with E(¢;) = 0 and Var(e;) = 0. An optimal design chooses values
of x; to answer the experimental questions of interest as precisely as possible. This
problem is often formulated as a single-objective optimal design problem, where
optimality is defined with respect to a single summary measure of the information,
obtained by fitting a single model to the experimental data. For example, for a
particular choice of regression function f(-,-) in and estimator 6, an A-
optimal design minimizes the average variance of 0,,... , éq.

However, experimenters sometimes have complex goals that cannot be cap-
tured fully by a single-objective optimal design criterion. For example, an
experimenter may fit a single model for inference and prediction, but there
is little overlap between the single-objective optimality criteria that measure
inferential and predictive power. Furthermore, depending on the parameters
being examined, an inference answers different research questions, with varying
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importance to the experimenter (e.g., main effects are more important than
interaction terms, or vice versa). Single-objective optimal design criteria do
not reflect this variation. Another consideration is that experimenters may be
uncertain about the functional form of the relationship between y; and x;. Thus,
they may want a design with good inferential or predictive power for multiple
models, rather than a single model, of the form (1.1

Multi-objective optimal designs combine several single-objective optimal de-
sign criteria. Here, common formulations include the compound, efficiency-
constrained, and maximin formulations. The compound formulation optimizes
the weighted sum of the criteria for a set of user-specified weights. The
efficiency-constrained formulation optimizes one criterion, while requiring the
design efficiency with respect to the other criteria to be higher than user-
specified values. The mazimin formulation maximizes the minimum efficiency
across the set of optimality criteria (Wong, |1999; Wong and Zhou, |2023)). Here,
we focus on the efficiency-constrained and maximin formulations, because it is
difficult to interpret the practical significance of the weights in a compound
formulation. Numerous algorithms exist for finding efficiency-constrained and
maximin optimal designs (Huang and Wong, |1998; [Imhof and Wong, [2000;
Cheng and Yang, [2019). |Wong and Zhou| (2023)) provide a particularly flexible
algorithm. They formulate many efficiency-constrained and maximin optimal
design problems as convex optimization problems, and then apply an off-the-
shelf convex optimization solver, such as the MATLAB package CVX (Grant and
Boyd, 2014).

We formulate efficiency-constrained and maximin problems as convex opti-
mization problems, following |Wong and Zhou| (2023]). We then consider how to
verify the optimality of an efficiency-constrained or a maximin optimal design
obtained from CVX, providing a complete characterization of optimality for
efficiency-constrained and maximin efficiency designs on a discrete design space.
Related results appear in the literature for efficiency-constrained optimal designs
(Cook and Wong, [1994; |Clyde and Chaloner,1996). To the best of our knowledge,
our characterization of optimality for minimax efficiency designs is new, although
there are related works on minimax and maximin single-objective optimization
problems (Miiller and Pazman, [1998; Dette, Haines and Imhof, [2007)).

Characterizations of optimality for many popular single-objective optimal
design criteria (e.g., D- and A-) require that the optimal design satisfies a
set of easily computable inequalities. In contrast, our characterizations of
optimality for efficiency-constrained and maximin designs posit the existence
of a set of quantities that satisfy a set of equalities and inequalities involving
the optimal design. These types of results are thought to be impractical for
optimality verification, because it is unclear how to find a suitable set of quantities
efficiently. Previous works on efficiency-constrained optimal design problems
search for a suitable set of quantities using a grid search and bisection search.
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However, the computational complexity of such methods grows exponentially in
the number of objective functions (Cheng and Yang, 2019). We overcome this
challenge of finding a suitable set of quantities by solving linear programming
problems (Luenberger and Yel |2016|), which are a cornerstone of mathematical
optimization, and can be solved accurately and efficiently using off-the-shelf
software.

The rest of the paper is organized as follows. In Section 2, we review
concepts related to single-objective optimality criteria, including the necessary
and sufficient conditions for optimality. In Sections 3 and 4, we describe how to
solve efficiency-constrained and maximin optimal designs, respectively, including
verifying the optimality of the obtained solutions. Several theoretical results are
derived. We apply our approach to several examples in Section 5. Section 6
concludes the paper. Proofs are provided in the Appendix.

2. Single-Objective Optimal Designs

We consider a discrete design space Sy = {uy,...,uxy} C S with N points,
where uy,...,uy and S are user-specified. If S is a continuous design space, then
Sy approximates S. We denote a design £ on Sy by &(w) = Utz ety ,

wl w2 PR wN
where w is an N-vector, with the ith entry w,; representing the proportion of
design points with value u;, for i = 1,2,...,N. Let Q = {w € RV : Zf\; w; =

2.1. Optimality criteria

Let z¢(x) be the g-vector with jth entry 0f(x,0)/00;|¢—e-, where 6* is the
true value of 8. The asymptotic covariance matrix of the ordinary least squares
estimator of @ in model with regression function f(-,-) at design {(w) is
proportional to Z;*(w), where

Iy(w) = Z wizs(uw;)z; (w;) (2.1)

is the expected information matrix for model with regression function f(-, ),
under the assumption of normally distributed errors. If f(x,8) is nonlinear in
0, then 7;(w) may depend on *. If Z;(w) depends on 6*, then optimizing the
design criteria involving Z;(w) yields locally optimal designs. In practice, 6*
is typically unknown, so we must replace it with a “guess” about its value, for
example, an estimate of @ from a small pilot study.

Many single-objective optimal design criteria on Sy can be transformed into
convex optimization problems of the form mingeo®(w), where ®(w) = ¢{Zs(w)}
for a convex function ¢ defined on the set of all ¢ X ¢ positive-definite matrices;
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Table 1. Single-objective optimality criteria that solve minyco ®(w), where &(w) =
¢{Z;(w)} for a convex function ¢ defined on the set of all positive-definite matrices. We
use Amin(M) to denote the smallest eigenvalue of M.

Criteria D- A- e, forceR?  L- for L e RI*7 E-

o(M) —logdet(M) trace(M™1) cI'M-1c trace(LTM™IL)  —\pin(M)

Eff(w) [exp{minwrgg O(w')}11/4 mingeo ®(wW) mingeco (W) ming ecq B(w') . B(w)
exp{®(w)} D(w) D(w) D(w) miny eo O(W')

see, for example, Table 1. Note that the function ®(w) is convex as a composition
of a convex function and a linear function. We measure the quality of a design
w using its efficiency relative to the optimal design, denoted as Eff(w).

The MATLAB package CVX (Grant and Boyd, 2014) is a user-friendly option
for solving a special subclass of convex optimization problems that includes the
convex optimization problems described in Table 1; further details on CVX are
provided in Section 3.1. The CVX package has previously been applied to solve
many single-objective optimal design problems; see, for example, |(Gao and Zhou
(2017), and Wong and Zhou (2019).

2.2. Necessary and sufficient conditions for optimality

All of the criteria in Table 1 lead to convex objective functions, but these
objective functions are not all differentiable everywhere. For example, the
FE-optimal design criterion leads to a convex objective function that is non-
differentiable at designs w, such that the smallest eigenvalue of Z;(w) has
geometric multiplicity greater than one. Thus, the optimality conditions in this
setting rely on subdifferentials, which generalize derivatives to the class of convex
functions. We denote the subdifferential of a convex function ® : RY — R
at a point w as O0®(w). The following result describes basic properties of
subdifferentials (Mordukhovich and Nam) 2013, Ch. 2).

Lemma 1. Suppose that & and @' are two finite-valued conver functions defined
on RN . Then, for any w € RV :

1. If ® is differentiable at w, then 0®(w) = {V®(w)}, where VO (v) is the
N -vector with ith entry 0P /Ow;|w= -

2. If a >0, then 9(a®)(w) = ad®(w) = {ag : g € 0P(W)}.
3. (P +P')(w) =00(w)+ 00 (w)={g+g :g€0P(w),g €0 (w)}.

Let e; denote the N-vector with ¢th entry equal to one and all other entries
equal to zero. The following result characterizes optimality for convex single-
objective optimal design criteria on a discrete design space.
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Table 2. Optimality criteria that solve minwco ¢{Af(w)} for all differentiable convex
functions ¢ given in Table 1. The formulae for V¢(M) are from [Petersen and Pedersen
(2012).

Criteria D- A- c-, for c € R? L-, for L € R9%9'
o (M) —logdet(M) trace(M~1) c¢IM~lc trace(LTM L)
V(M) —M-! —M2 "M lec™M"! M 'LLTM™!

Theorem 1. Suppose that ® : RY — R is a convex function. Let w* € Q. Then,
w* € argmin ®(w) if and only if
weR
J g € 0®(w*) such that g" (w* —e;) <0, foralli=1,2,...,N. (2.2)

The rest of this subsection is devoted to results that help us evaluate
condition in the special case where ®(w) = ¢[Z;(w)] for a convex function
¢. First, if ¢ is convex and differentiable at Z;(w*), then Lemma 1 states that
0®(w*) = {V®(w*)}, and condition simplifies to

[Vo(w*)]" (w*—e;)<O0foralli=1,2,..., N. (2.3)

The following result follows from the matrix chain rule (Petersen and Pedersen
2012, Sec. 2.8.1), and characterizes the left-hand side of (2.3).

Lemma 2. Let w* € Q. If ®(w) = ¢{Z;(w)} for a convex function ¢ and a
regression function f(-,-), and ¢ is differentiable at Z;(w*), then

Vo(w*)]" (w* —e;) = dy s(u;, w*), foralli=1,2,... N,
where for alli=1,2,...,N, we define
dy,g (i, W) = trace ([VO{Z;(w) N [Zr(w") — 25 (wi)zf (0i)]) , (2.4)

and where Vo(M*) is the g x g matriz with (j,j')th entry 0¢/0M;;

M=M*"

It follows from Theorem 1 and Lemma 2 that characterizing optimality for
single-objective optimality criteria with ®(w) = ¢{Z;(w)} for a differentiable
convex function ¢ amounts to checking whether dy ;(u,;,w*) < 0, for all i =
1,2,...,N. Furthermore, dy ;(u;, w*) is straightforward to compute, given the
formula for V¢(M*); see Table 2.

Combining Theorem 1, Lemma 2, and Table 1 yields various classical
equivalence theorems on a discrete design space; see, for example, Kiefer| (1974).

In the case of FE-optimality, we have ®(w) = ¢{Z;(w)} for a non-
differentiable convex function ¢ (Tbl. 1); thus Lemma 2 does not always apply.
We address this with the following result.



208 GAO ET AL.

Lemma 3. Suppose that ®(w) = =\, {Zs(W)} for a regression function f(-,-).
Let w* € Q and r* be the geometric multiplicity of Apin{Z;(W*)}.

1. If r* =1, then 0®(w*) = {V®(w*)}, and

Vo(w)]"(w*—e;) = {(v) Tz (W)}~ Nnin{Z;(W*)}, foralli=1,2,...,N,
where v* denotes an arbitrary unit eigenvector associated with Xy, {Zs(W*)}.

2. If r* > 1, then for any g € 0®(w*), there exist ay,...,a,» > 0 such that
Sr_ia; =1 and

j=1

gT(W* - ei) = d*)\mm,f,a(th*)a fOT all v = ]-a 2a s 7N7

where for all i =1,2,..., N, we define

d i g0 (Wi W Zag{ )"z (W)} = Amin{Z; (W)}, (2.5)

where vi,..., v’ denotes an arbitrary set of orthonormal eigenvectors

associated with Ay {Z(W*)}.

Combining Theorem 1 with Lemma 3 yields the equivalence theorem for E-
optimality on a discrete design space (Kiefer) 1974)).

3. Efficiency-Constrained Optimal Designs

Suppose that an experimenter is interested primarily in optimizing one
particular single-objective optimality criterion ®;, without losing too much
efficiency with respect to the other criteria ®,,..., P, for K > 2. Let
Effy(w) denote the efficiency of the design {(w) with respect to criterion @y,
for k = 1,..., K. Given experimenter-specified constants mo,...,mg € (0,1),
an efficiency-constrained optimal design on Sy solves

m%Rn Dy (w)
weRN
subject to:  Effy(w) >my, k=2,..., K, ) (3.1)

N
Zwizl,wizQ 121,2,,N
i=1

All designs may fail to satisfy the constraints in (3.1)) when the desired minimum
efficiencies ms, ..., mx are large.

3.1. Convex optimization problem

Suppose that & (w) = ¢p{Z; (W)} for all £ = 1,..., K, where ¢1,..., ¢k
are continuous convex functions chosen from Table 1, and Zy, (w) in (2.1)) is the
expected information matrix for a model of the form (1.1]) with regression function
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fr(x,0) for @ € R%* at design £(w). We use the definitions of Effy(w) in Table 1
to rewrite (3.1) as the following problem:

min D (w)
weRN
subject to:  ®p(w) < hyp(my), k=2,..., K, , (3.2)

N
Zwizl, wiZO, Z:1,2,,N

=1

where we define hy(m) as

{vrglggll @k(w’)} — qrlog(m), if ®x(w) = —logdet{Z;, (w)},

ha(m) = { m{ min &(w") | it Du(W) = ~Amin{Z (W)}, (3.3)
1
E{g}é% CIDk(w/)}, otherwise.

For all k = 1,2,..., K, ®&,(w) = ¢p{Zs (W)} is a convex function, because
¢ is a convex function and Zj, is a linear function. Thus, is a convex
optimization problem. Note that our formulation differs from that of [Wong and
Zhou (2023)) because we use @ (w) = —logdet{Z;, (w)} for D-optimality, rather
than ®,(w) = [det{Z;, (w)}] "1/,

In fact, is a convex optimization problem that can be solved by using
CVX (Grant and Boyd, |[2014), a MATLAB package that works with a special subclass
of optimization problems; see Grant and Boyd| (2008) for details on this subclass.
CVX converts to a form solvable by a numerical convex optimization solver
(e.g., SDPT3 or SeDuMi), and then translates the numerical results back to the
original form.

3.2. Necessary and sufficient conditions

The following result characterizes optimality for (3.2]), under the assumption
that the minimum efficiency inequality constraints can be strictly satisfied.

Theorem 2. Suppose that there exists w € Q satisfying Eff,(w) > my, for all
k=2,...,K. Let w* be a feasible solution for problem (3.2). Then, w* solves
problem (3.2)) if and only if there exist na,...,nx > 0 such that

Lo A ®Pe(W*) — h(my)} =0, forallk=2,...,K, and

2. W € argming co{®:(w) + T, mdu(w)).

Theorem 2 is related to the results of Lee| (1988), |(Cook and Wong] (1994),
and Clyde and Chaloner| (1996).

We now discuss how to use the results in Section 2.2 to rewrite Theorem
2. First, suppose that ¢q,...,¢x all correspond to D-, A-, ¢-, or L-optimality.
Then, it follows from Theorem 1 and Lemma 2 that we can replace Condition 2
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in Theorem 2 with

K
d, 1 (0, Ww*) + and%’fk(ui,w*) <0, foralli=1,2,..., N, (3.4)
k=2
for dg s(u;, w*) defined in (2.4]). Table 2 provides formulae for V¢, (IM).

Otherwise, we must apply Theorem 1 with Lemma 1 and Lemma 3 to rewrite
Condition 2 in Theorem 2, as shown in the following example.

Example 1. Suppose that ¢;(M) = —\,,;;, (M), and ¢s, ..., ¢k all correspond
to D-, A-, ¢-, or L-optimality. Then, it follows from Theorem 1 and Lemma 1
that Condition 2 in Theorem 2 holds if and only if there exists g € 0®;(w™*) such
that

K
gl (w" —e;) + andm,fk(ui,w*) <0, foralli=1,2,..., N, (3.5)
k=2
for dy s(u;,w*) defined in (2.4). Let r* be the geometric multiplicity of
Amin{Zs, (W*)}. It further follows from Lemma 3 that

Case 1 (r* =1) : Condition 2 in Theorem 2 holds if and only if

K
{(V*)Tzﬁ (uiaW*)}Q - )‘min{l—ﬁ (W*)} + and¢k7fk (uivW*) <0, Vi=1,...,N,
k=2

(3.6)
where v* denotes an arbitrary unit eigenvector of A, {Z, (W*)};

Case 2 (r* > 1) : Condition 2 in Theorem 2 holds if and only if there exist
ai,...,ap >0 such that 377, a; = 1 and

K

d_spa(W, W) + ) mpdy, g, (0, W) <0, Vi=1,...,N, (3.7)

k=2
where d_j, . fa(u;, w*) is defined in ([2.5]).
3.3. Optimality verification using linear programming

Suppose we have obtained w* by solving numerically, where ¢4, ..., ¢k
all correspond to D-, A-, ¢-, or L-optimality. We know from Theorem 2 that w*
is optimal if we can find 7, ...,7x > 0 such that Conditions 1 and 2 in Theorem
2 are satisfied. However, w* is an approximate numerical solution, and is thus
unlikely to satisfy Conditions 1 and 2 exactly. Instead, we check whether w* is
“close enough” to optimal by searching for 7,,...,nx > 0 such that

M {Pr(W*) — hy.(my)} <6, k=2,... K, (3.8)
= {Pr(W*) — hp(my)} <9, k=2,...,K,
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K
gy g (Wi, W)+ midy, g (0, w*) <6, i=1,2,...,N, (3.10)

k=2

where ¢ is a small positive constant (e.g., § = 107%). Here, and
relax Condition 1 in Theorem 2, relaxes Condition 2 in Theorem 2, and
& controls our definition of “close enough” to optimal. Similar ideas appear in
single-objective optimal designs (Wong and Zhoul, 2019)).

We propose solving the following optimization problem:

. 1T
negros Kot . (3.11)
subject to: § > 0x_1,BIn <b;,Cin < 01lx_1,—Cimp < 01k_;.

where < and > denote component-wise inequality; 15 ; is a (K — 1)-vector
with every entry equal to one, B; is a (K — 1) x N matrix with (k,7)th entry
Ainerr frr (Wi, W*), where dg ¢ (u;, w*) is defined in (2.4)), for k =1,2,..., K—1; by
is an N-vector with ith entry equal to d —dy, f, (u;, w*), and C; = diag{Ps(w*)—
ho(mg), ..., Px(W*) — hx(mg)}.

If we are able to find a solution n* to (3.11]), then we know that w* and n*
jointly satisfy f. This would mean that the conditions in Theorem 2
(approximately) hold, and, thus w* is optimal for . Furthermore, is
a linear programming problem (Luenberger and Ye, 2016)): its objective function
and constraints are all linear. Thus, we can solve by simply applying
an off-the-shelf linear programming solver, such as the linprog function in the
Optimization Toolbox of MATLAB.

If one or more of ¢1,..., ¢ correspond to F-optimality, then the following
example shows that we can still verify the conditions in Theorem 2 using linear
programming.

Example 2. Consider Example 1 in Section 3.2, where ¢1 (M) = —\,,;,(M) and
¢, ..., ¢k all correspond to D-, A-, c-, or L-optimality. Recall that we defined
r* to be the geometric multiplicity of A, {Zy, (W*)}. We previously showed that
if r* = 1, then Condition 2 in Theorem 3 is equivalent to , which defines a
set of N linear equalities in 7, ...,nx. Thus, we can minimize 2212 7, subject
to the 2(K — 1) linear inequalities defined in (3.8) and and the following
relaxed version of :

K
{(V*)Tzfl(u17W*)}2 - )‘mm{Ifl (W*)} + andm,fk(ui?W*) <6Vi=1,...,N.

k=2
If we can find a solution to this linear programming problem, then we know that
w* is an optimal solution.

We also showed in Section 3.2 that if * > 1, then Condition 2 holds if and
only if there exist ay,...,a,» > 0 and ny,...,mx > 0 such that 37, a; = 1 and
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(3.7) holds. Thus, Theorem 2 says that w* is optimal for (3.2)) if and only if there
exists ai,...,a~ > 0 and na,...,nx > 0 such that n{Pr(w*) — hy(my)} = 0 for
all k=2,..., K and (3.7)) holds. Observe that (3.7 defines NV linear inequalities
. . « . . K r* .
inmny,...,nx andin as,...,a,-. Thus, we can minimize >, _, m+Zj:1 a; subject
to the 2(K — 1) linear inequalities defined in (3.8) and (3.9) and the following
relaxation of ,

K
d_Ammfl,a(u,-,w*) + andm,fk(ui,w*) S 6, V1= 17 N ,N.

k=2

Once again, if we are able to find a solution to this linear programming problem,
then we know that w* is an optimal solution.

4. Maximin Optimal Designs

Suppose that an experimenter requires a design that yields reasonable
efficiency for all K single-objective optimality criteria. We formulate this
mazximin design problem as

(3

max min{Eff; (w), ..., Effx(w)}
e N . (4.1)
subject to: w; =1, w; >0, t=1,2,...,N.

1

4.1. Convex optimization problem

Problem ({4.1]) is hard to solve directly, because the objective function involves
a minimization. However, we can formulate (4.1]) equivalently as

1
max -
weRN teR ¢ )
subject to: Effy(w) > o k=1,...,K, . (4.2)
N
£>0, w,>0i=1,....,N, Sw; =1

This formulation eliminates the minimization from the objective function by
introducing an additional optimization variable (¢). Furthermore, when ®,(w) =
O{Zs, (W)}, with ¢1,..., ¢k chosen from the convex functions in Table 1, (4.2)

is equivalent to

min t
weRN teR
1
subject to: ®5(w) < hy, (t)’ k=1,...,K, 7 (4.3)

N
>0, wi=1, w;>0,i=1,...,N.

=1
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where hy(-) is defined in (3.3). This is a convex optimization problem, because
hi(1/t) is a concave function of ¢ and ®,(w) is a convex function of w.
Furthermore, we can solve using CVX, because it fits into the CVX modeling
framework described in |Grant and Boyd| (2008). Note that our formulation is
more general than that of [Wong and Zhou| (2023), because we allow the user to
select any combination of the criteria in Table 1.

4.2. Necessary and sufficient conditions for optimality
The following result characterizes optimality for (4.3]).

Theorem 3. Suppose that (w*,t*) are feasible for problem (4.3)). Then, (w*,t*)
solves (4.3) if and only if there exist ny,...,nr > 0 satisfying

Lo e {dhi (1)) /dylime } = 1.
2. A @r(w*) — hie(1/t)} =0, for all k =1,2,..., K.

3. w* € argmin,, co {3, mPi(W)}.

We now show how to use the results in Section 2.2 to rewrite Theorem 3.
First, suppose that ¢4, ..., ¢x all correspond to D-, A-, c-, or L-optimality. Then,
it follows from Theorem 1 and Lemma 1 that we can replace Condition 3 in
Theorem 3 with

K
and¢k7fk(ui,w*) <Oforalli=1,2,...,N, (4.4)

k=1

where dg ¢(u;, w*) is given in (2.4]), and the formulae for V¢, (M) are given in
Table 2. Otherwise, we need to apply Theorem 1 with Lemma 1 and Lemma 3
to rewrite Condition 3, as shown in the following example.

Example 3. Suppose that ¢1(M) = —\,.i, (M), and ¢s, ..., ¢k all correspond
to D-, A-, ¢-, or L-optimality. Then, it follows from Theorem 1 and Lemma 1
that Condition 3 in Theorem 3 holds if and only if there exists g € 0P, (w*) such

that
K

mg’ (w" —e;) + and¢k7f,€(u¢,w*) <0,Vi=1,2,...,N. (4.5)
k=2

Let r* be the geometric multiplicity of A,;n{Zs, (w*)}. Then, based on Lemma
3, we can consider two cases:

Case 1 (r* =1) : Condition 3 in Theorem 3 holds if and only if

K
(V) 2, (0, W) = i Ly (W)} + D edi, g (0, W) <6,

k=2

Yi=1,...,N, (4.6)
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where v* denotes an arbitrary unit eigenvector corresponding to
Amin {Ifl (W*)}

Case 2 (r* > 1) : Condition 3 in Theorem 3 holds if and only if there exist
ai,...,a,» >0 such that >3'_, a; = 1 and

K
Md—x, .0 fr.a(Wi, W) + and¢k7fk(ui,w*) <Oforalli=1,2,...,N,
k=2

where d_ .. f,.a(1;, w") is defined in (22.5)).
4.3. Optimality verification using linear programming

Suppose we obtain a candidate solution (w*,¢*) by solving (4.3)) numerically
(e.g., using CVX), where ¢y,..., ¢k all correspond to D-, A-, ¢-, or L-optimality.
Based on the results in Section 4.2, we need to find 7, ...,n7x > 0 such that

K

d 1
Zm {hk ()
— dt t

t:t*} =1, (4.7)

1
_nk{(bk(W*>_hk<ﬁ>} 357 k:1>27"'7K7 (49)
K
> medy, g (0, W) <6, i=1,2,...,N, (4.10)
k=1

where 0 is a small positive constant. Here, we have relaxed Conditions 2 and
3 in Theorem 3, because w* is an approximate solution, along the lines of the
discussion in Section 3.3. We achieve this goal by solving the following linear
programming problem using the linprog function in MATLAB:

2 5 )
subject to: § > 0, blin =1, BIn <1y, Con <01k, —Con < d1. ’

(4.11)
where b, is a K-vector with kth entry equal to {dhy(1/t)/d;|—¢}, for hy defined
in (3.3), By is a K x N matrix with (k,4)th entry equal to dg, s, (u;, w*), for
dy,r(u;, w*) defined in (2.4), and C, = diag{®:(w*) — hi(m),..., Px(W") —
hrx(mg)}.

When one or more of ¢1,...,¢x correspond to E-optimality, we can still
rewrite Condition 3 in Theorem 3 as a set of linear inequalities; see Example 2.
Thus, we can still verify the conditions in Theorem 3 using linear programming.
We omit the details, because the linear programming problem is similar to that
in Example 1 in Section 3.3.
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Table 3. For Application 1, single-objective optimal designs and the efficiency-
constrained optimal design with my = 0.9 and mg = 0.8.

¢1-optimal ¢po-optimal ¢s-optimal efficiency-constrained

points (weights) points (weights) points (weights) points (weights)
0 (0.0591) 0 (0.2500) 0 (0.1339) 0 (0.1339)

0.6300 (0.1315) 0.6600 (0.2500) 0.9600 (0.0663) 0.6600 (0.1513)
2.9400 (0.3126)  2.8800 (0.2500)  3.300 (0.4502)  3.0300 (0.2481)
13.2900 (0.4968) 11.0100 (0.2441)  9.7500 (0.2231)  3.0600 (0.0942)
11.0400 (0.0059) 9.7800 (0.2502)  10.8300 (0.0807)
10.8600 (0.2918)

5. Applications

In all three of the following applications, we set 6 = 10~% when verifying
optimality using linear programming, as described in Sections 3.3 and 4.3. Any
choice of § larger than 107° yields the same results. All computations are
performed on a 2021 M1 Macbook Pro with 10 cores and 16 GB memory.
We provide the MATLAB code to reproduce all numerical results at https:
//github.com/lucylgao/multi-objective-paper-code-2022.

Application 1. Consider a four-parameter compartment model of the form ,
withp =1,q =4, f(z,0) = 6e %% +03¢7 %% and S = |0, 15], where the response
y; represents the concentration level of a drug in compartments and x denotes
the sampling time. This model has been studied in optimal designs for various
optimality criteria, including multi-objective criteria (Huang and Wong} [1998;
Cheng and Yang, 2019)).

We seek efficiency-constrained optimal designs that solve with @, (w) =
¢r[Zs(w)], for £ = 1,2,3. As in |Cheng and Yang| (2019), we let ¢; corre-
spond to L-optimality with L = diag(1/6,,1/6,1/65,1/0,), ¢ correspond to
D-optimality, and ¢3 correspond to L-optimality with L = { f;o zf(ac,H*)z?
(z,0%)dz}'/?, where z;(z,0) = (e %%, —0,xe %% %% —f3ze %*)T and 0" =
(5.25,1.34,1.75,0.13) ". We discretize the continuous design space S to form Sy
with u; = 15(: — 1) /(N — 1), for i =1,..., N.

First, we find the single-objective optimal designs by solving minyco®;(w)
for each k = 1,2,3 using CVX. Then, we solve with my = 0.9, ms = 0.8,
and N = 501 using CVX, and denote the solution as w*™. We report the single-

™ are close

objective optimal designs and w*™ in Table 3. The efficiencies at w*
to those reported in |Cheng and Yang (2019).

We then verify the conditions for optimality in Theorem 2 for w*™ by using
the linprog MATLAB function to solve with 6 = 107*, as described in
Section 3.3. Solving yields n; = 36.4870 and n; = 5.0767. DBecause we

obtain a solution, we know that w*™ is the efficiency-constrained optimal design
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Figure 1. For (mg,ms3) = (0.9,0.8) in Application 1, panels (a) to (c) display
plots of dg, j(u;,w*™) for k& = 1,2,3, and panel (d) displays dg, j(u;, w*™) +
Zi:z Nidey, f(wi, w*™). In panel (d), the dashed line represents the horizontal line y = 9,
for 6 = 1074,

Table 4. For Application 1, efficiencies and n3 and 73, for various (ms, m3).

Case (ma, ms) (0.90, 0.80) (0.90,0.70)  (0.70, 0.70)  (0.90, 0.90)
n, 36.4870, 5.0767 7.2923, 0 0, 0 NA
Eff; (w*™) 0.8694 0.9360 1.000 NA
Eff,(w*™), Effs(w*™) 0.9000, 0.8000 0.9000, 0.7035 0.7317, 0.7746  NA

(Thm. 2). Figure 1 shows that dg, ;(u;, w*™)+ S s_y 0idy, f(us, w*™) < 6, for all
i =1,2,..., N, showing visually that Condition 2 in Theorem 2 is satisfied for
w* ny. and n;. Figure 1 also shows that dg, ;(u;, w*™)
negative for all £k = 1,2,3. Thus, w*™ is not the single-objective optimal design
that minimizes ®;, ®5, or 3 (Thm. 1 and Lem. 2).

Next, we examine the results of varying m, and mg; see Table 4. For m, =
0.90 and m3 = 0.70, we find that n; = 0, because ®3(w*™) < hs(ms) and 715,73
satisfy Condition 1 in Theorem 2. Similarly, for ms; = 0.70 and msz = 0.70,
we find that n; = n5 = 0, because ®p(W*™) < hy(my) (i.e., Effy(w*™) > my)
for k = 2,3. This implies that the multi-objective optimal design w*™ is also
a single-objective optimal design that maximizes ®; (Thm. 1 and Lem. 2). For
mo = 0.90 and ms3 = 0.90, there is no feasible solution.

Computing the optimal designs for (mq, m3) = (0.9,0.8) took 19.5, 25.6, and
36.2 seconds for N = 101,501, 1001, respectively. Verifying the optimality of the
efficiency constrained design took less than a second.

is not uniformly non-

Application 2. Several dose response models are popular in clinical dose finding
studies. We consider the four competing regression models of the form from
Bretz, Dette and Pinheiro| (2010) to construct maximin optimal designs, and to
verify the necessary and sufficient conditions in Theorem 3 for the optimal designs.
The four models are: (i) linear model: f;(z,0) = 617 + 0122; (ii) Emax I model:
fa(x,0) = 021 + 0502/ (023+x); (iii) Emax IT model: f3(x,0) = 03140322/ (033+x);
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Table 5. Optimal designs for Application 2.

linear model Emax I Emax II logistic maximin
points (weights) points (weights) points (welghts) points (weights) points (weights)
0 (0.5000) 0 (0.3333) 0 (0.3333) 0 (0.2500) 0 (0.2406)
500 (0.5000) 22 (0.3333) 75 (0.3333) 114 (0.2500) 9 (0.1806)
500 (0.3333) 500 (0.3333) 204 (0.1316) 112 (0.1314)
205 (0.2500) 204 (0.1070)
500 (0.2500) 205 (0.0178)
500 (0.3225)

and (iv) Logistic model: fy(x,0) = 041 +040/[1+exp{(0s3—x)/044}]. In all models,
€ [0,500] (ug) is the dose level. Let Sy contain N = 501 equally spaced grid
points in [0, 500]. As in|Bretz, Dette and Pinheiro| (2010)), we assume that the true
parameter values for the Emax I | Emax II, and logistic models are, respectively,
(60, 294, 25), (60, 340, 107.14), and (49.62, 290.51, 150, 45.51). (The information
matrix for the linear model does not depend on its true parameter values.)

We let Oy (W) = ¢r[Zy, (W)], with ¢, corresponding to D-optimality (defined
in Thl. 1), for all k =1,...,4, and then solve problem (4.3) using CVX, denoting
the solution as w*™™. The single-objective and maximin D-optimal designs on
Sy are given in Table 5. We find that t* = 1.1712, Effy(w*™™) = 0.8538, for
k =1,2,4, and Eff3(w*™™) = 0.8547. Solving problem using the MATLAB
function linprog yielded n; = 0.1983,75 = 0.1291,n5 = 0, and n; = 0.0968.

Because we obtain a solution, we know that w*™™

design (Thm. 3).
Figure 2 displays plots of dg, s (uw;, w*™™) for k& = 1,...,4 and

is the maximin D-optimal

S midy, g (uj, w*™™).  Figure 2(e) confirms that Condition 3 in Theorem
3 is satisfied. Figure 2(a) to (d) show that w*™™ is not the single-objective
D-optimal design for any of the four models (Thm. 1 and Lem. 2).

Computing the optimal designs took 18.2, 31.0, and 48.7 seconds for N =
101,501, 1001, respectively. Verifying the optimality of the maximin design took
less than a second.

Application 3. Consider the linear model of the form with p =2, ¢ = 5,
f(%;0) = 01 + 2105 + 2903 + 212504 + 7305, and S = {0,1} x [-1,1]. We let Sy,
contain 201 equally spaced points on [—1,1], and discretize the design space S
to form Sy = {0,1} x S}V/Q, for N = 402. Here, the information matrix does not
depend on the true parameter values.

We let ®,(w) = ¢p[Zp(w)], for k£ = 1,2,3, with ¢; corresponding to
A-optimality, ¢, corresponding to F-optimality, and ¢3; corresponding to c-
optimality with ¢ = (0,0,0,1,0)”. Then we solve problem as described
in Section 4.1 to obtain the maximin optimal design, and denote the solution

*Mm

as wjn The single-objective and maximin optimal designs on Sy are given
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Figure 2. For Application 2, we display plots of (a) to (d) dg,, s, (i, w*™™) for k =

1,2,3,4, and (e) Zi:l Medey, . (i, W), In panel (e), the dashed line represents the
horizontal line y = §, for § = 1074

Table 6. Optimal designs for Application 3.

A-optimal E-optimal c-optimal maximin
points [weights] points [weights] points [weights] points [weights]
(0,-1) [0.1859] (0, -1) [0.2069] (0, -1) [0.2500] (0, -1) [0.1926]
(1,-1) [0.1399]  (1,-1) [0.1379] (1, -1) [0.2500] (1, -1) [0.1926]
(0, 0) [0.2287] (0, 0) [0.2414] (0, 1) [0.2500] (0, 0) [0.1679]
(1, 0) [0.1197] (0, 1) [0.0690] (1, 1) [0.2500] (1, 0) [0.0616]
(0, 1) [0.1859] (1, 1) [0.2069] 0, 1) [0.1926]
(1, 1) [0.1399)] (1, 1) [0.1926]

in Table 6. We find that t* = 1.2979, Eff; (w;"™) = 0.9298, and Eff; (w;"™) =
0.7705, for k = 2,3. In this case, the geometric multiplicity of A\, {Zs(W;"™)}
is equal to one. Thus, to verlfy the optimality of w;™ we use the linprog
MATLAB function to minimize Z w—1 Nk, subject to the linear inequality constraints
n and the linear equality and inequality constraints in to (4.9). We
find a solution at nj = 0, n; = 0.2445, and n; = 0.0151. Therefore, the maximin
design is optimal.

Computing the optimal designs took 11.2, 14.5, and 23.2 seconds for N/2 =

101,201,401, respectively. Verifying the optimality of the maximin design took
less than a second.

6. Conclusion

In this paper, we have shown how to solve multi-objective optimal design
problems on a discrete design space using convex optimization, and how to verify
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the optimality of the designs using linear programming. Our approach can
be applied to efficiency-constrained or maximin optimal design problems that
combine any of the single-objective criteria shown in Table 1.

The multi-objective optimal design setting offers a natural opportunity to
gain robustness against parameter and/or model misspecification, because we
can include objective functions formulated from a range of guesses for 8* and/or
from the information matrices of multiple models. A sequential multi-objective
optimal design setting may offer opportunities for further robustness, because it
would enable us to select design points and weights in stages, and then use the
data from each stage to inform the choice of parameters and/or models used in
the objective functions for the next stage. This may provide a fruitful avenue for
future work.

We were able to achieve the results and algorithms presented here because
the inverse of the asymptotic covariance matrix of the ordinary least squares
estimator under model is a linear function of w*; see equation . It
would be straightforward to extend the results and algorithms to other models
and estimators that have a similar property. For example, we could allow the
vector of errors in to be heteroskedastic or have a block diagonal covariance
structure, and use the generalized least squares estimator. Another example is
generalized linear models with a canonical link function, where we estimate 6
using the maximum likelihood estimator.

Necessary and sufficient conditions for optimality that involve a set of
unknown parameters appear in contexts outside of the multi-objective design
problems we consider here, for example, in any single-objective optimal design
problem involving a convex, but non-differentiable objective function (e.g., single-
objective F-optimality). When the conditions define linear equalities and inequal-
ities in these unknown parameters, we can verify them using linear programming,
as discussed here.

A limitation of our results and algorithms is the assumption of a discrete
design space. An important direction for future work is to develop results and
algorithms under a continuous design space.
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Appendix
A.1. General convex optimization theory

In this section, we review general results on optimality conditions in convex
optimization.
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Proposition 1. Let @ : RY +— R be a convex function and C be a closed convex
set. Then, w* € argmin, .- ®(w) if and only if there exists g € 0P(w*) such that

gl(w—w*)>0, foralweC, (A1)
where 0®(w*) = {g e R : &(w) — d(w*) > gl (w —w*) V w e RV}.

Proposition 1 is a direct consequence of Theorem 4.14 of [Mordukhovich and
Nam (2013). The following result characterizes optimality for constrained convex
optimization problems.

Proposition 2. Define the following convexr optimization problem:

melg Oo(w) subject to: y(w) <0, I=1,...,L, (A.2)

where ®q, ..., &, : RN — R are convex functions and C is a closed convex set.
Suppose that Slater’s condition holds, i.e. there exists w' € C' such that ®,(w') <

0 foralll =1,...,L. Then, a feasible solution w* of (A.2)) solves (A.2) if and
only if there exists my,...,nr > 0 such that n®,(w*) =0 for alll =1,2,...,L

and w* € argmin,, . {Po(W) + Zlel NPy (W)}

Proof. We assumed that Slater’s condition holds. Thus, Theorem 4.18 of
Mordukhovich and Nam, (2013) says that w* is optimal for (A.2) if and only if
there exist multipliers 7y, ...,nr > 0 such that n,®;(w*) =0foralll =1,2,...,L
and

L
0 € 0Py(w") + Zm@@l(w*) +{geRV:g"w" >g'wVweC}. (A3)
1=1
Thus, by Lemma 1, (A.3) is equivalent to:

L
dgeo <‘I>0 + Zm(I)l) (w*) such that g’ (w—w*)>0 forallweC.

1=1

(A.4)
Finally, it follows from Proposition 1 that (A.4)) holds if and only if w* €
argmin,, .o {Bo(w) + 2L, 1y (W)}

A.2. Proof of Theorem 1

Let w* € Q. Since ®(w) = ¢{Z;(w)} is convex and €2 is a closed convex set,
from Proposition 1, w* € argming, ., ®(w) if and only if

Jg € 0®(w™) such that g’ (w —w*) > 0, for all w € Q. (A.5)

Suppose that (A.5) holds. Since e; € Q for all @ = 1,2,..., N, we have that
(2.2) holds. Now suppose that (2.2) holds. Then, because all w € Q have
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w; > 0 for all i = 1,2,..., N, (2.2) implies that there exists g € 0®(w*) such
that SN w;gT(e; — w*) > 0, for all w € Q. Observing that g7 (w — w*) =
SN wig”(e; — w*) completes the proof.

A.3. Proof of Lemma 3

We will start by establishing properties of (—®)(w) = \.in{Zs(W)}, as this
allows us to take advantage of existing theoretical results about the minimum
eigenvalue function \,,;, (M).

The function (—®)(w) is not differentiable at every point in RY. Further-
more, the notion of a subdifferential does not apply to (—®)(w), as (—®)(w) is
a concave rather than a convex function. However, it has a Clarke subdifferential
(Clarkel |1983), which generalizes the notion of the gradient to the class of locally
Lipschitz continuous functions. The Clarke subdifferential of a locally Lipschitz
continuous function h(w) on R¥ is defined as:

8 h(w) = co({v eRY : 3 (w2,

s.t. lim wy, exists, Vh(wy) exists, and lim VhA(wy) = V}),
k—ro0 k—r o0
where co(S) is the convex hull of the set S, i.e. the intersection of all convex sets
containing S.

We can characterize the Clarke subdifferential 9°(—®)(w) by observing that
(—®)(w) is the composition of the non-differentiable concave function A,,;, with
the linear function Z;. Thus, it follows from the Clarke subdifferential chain rule
(Clarke, |1983, Thm. 2.3.10) that g. € 0°(—®)(w*) if and only if there exists
M € 9°Amin{Z;(w*)} such that for any w € RY,

gl'w = trace [M {Zwizf(ui)z?(ui)H . (A.6)

Furthermore, Corollary 10 of [Lewis (1999) says that

O Npind{Zy(W")} = {Z a;vilviTa; > O,Zaj = 1} , (A.7)
=1 =1

recalling that in the statement of Lemma 3 we defined vy,...,v,~ to be
an arbitrary set of r* linearly independent unit eigenvectors associated with
Amin{Zs(W*)} where r* is the geometric multiplicity of A, {Z;(w*)}. It follows

from the definition of Z;(w*) in (2.1), (A.6) and (A.7)) that if g. € 0°(—P)(w™),

then there exists aj,...,a,» > 0 such that 32" a; = 1 and gl(e; — w*) =

Sy ai{[vil Tz (w)}? — Amin{Zp(w*)}, foralli = 1,2,...,N. Furthermore,

Jj=

0o(w*) = 0°®(w*) = —{0°(—P)(w*)}, where the first equality follows from



222 GAO ET AL.

Proposition 2.2.7 of (Clarke, |1983), and the second equality follows from
Proposition 2.3.1 of (Clarke], [1983)). Therefore, for any g € 0®(w*), we know that
—g € 0°(—®)(w*). Thus, there exists a,...,a, > 0 such that 377, a; = 1 and

s

—gl(e; —w*) =3 a{[v]]"zs(0)}* — Amin{Zs(w*)}, foralli =1,2,..., N.

j:
A.4. Proof of Theorem 2

Since we assumed that there exists w € Q satisfying Eff,(w) > m;, for all k =
2,..., K, we have that Slater’s condition holds for problem . Furthermore,
for all k = 1,2,...,K, ®,(w) = ¢[Z;,(W)] is a convex function and § is a
convex set. Thus, it follows from Proposition 2 that w* € Q solves if
and only if there exists ns,...,mx > 0 such that 7 {Py(W*) — hx(ms)} = 0 for
all k = 2,3,...,K and w* € argming,o[® (W) + S0, 7e{®r(w) — hy(mi)}].
Observing that Zszz Nrhi(my,) does not depend on w completes the proof.

A.5. Proof of Theorem 3
We first confirm that the following restatement of (4.3)),

wénszi,on t subject to: ®p(w) < hy (1), E=1,...,K, (A.8)
satisfies the conditions in Proposition 2. Since 2 and R are closed convex sets,
Q2 x R is a closed convex set. Furthermore, for all £k = 1,2,..., K, ®,(w) =
Oi{Zs (W)} is a convex function. We also know that for all £ = 1,2,... K,
hi(1/t) in is a concave function of ¢ for all k = 1,2,..., K, as = A, (M) /t is
a concave function of ¢ for any positive definite matrix M, ¢ is a linear function,
and gy log(t) is a concave function. To show that Slater’s condition holds, we
need to find w' € Q and ¢’ > 0 with ®,(w') < h(1/t') for all & = 1,2,... K.
It follows from the definition of the efficiency functions Eff;,(w’) in Table 1 that
Oy (W) < hy(1/t') if and only if Eff,(w') > 1/, and that Eff,(w’) > 0 for all w’ €
2. Thus, choosing w' = argmin,,®;(w) and ¢’ = 2/{min;_, o xEffy(w')}
satisfies Slater’s condition.

We can now apply Proposition 2 to to yield the following result: a
feasible solution (w*,t*) for (A.8]) solves problem if and only if there exists
vy, ..., > 0 satisfying:

vt =0, (A.9)
ﬁk{‘l’k(W*) - hk( !

ﬁ)}:Oforallkzl,Z...,K, (A.10)

(W*,t") € argming g ;er lt —vt+ i nk{q)k(w) — hy <1> }] . (A1)

k=1



MULTI-OBJECTIVE DESIGN OPTIMALITY 223

The optimization problem in (A.11)) is separable. Thus, (A.11]) can be rewritten
as

w" € argmin {Z nk@k(w)} , (A.12)

we 1

K
1

teR P

Since g(t) =t — vt — S, nehi(1/t) is a convex function, we can rewrite (A.13)

as p
d 1
1—v-— —hi| =
v=Y | G (3)
k=1
This means that there exists v,ny,...,nx > 0 satisfying (A.9) to (A.11]) if and
only if there exists ny,...,nx > 0 satisfying (A.10]), (A.12]), and

| _énk [ihkC) t_t*] S0, t {1 _ é”’“ {ihkC) H*}] ~0. (A.15)

Since is Condition 2 in Theorem 3, and is Condition 3 in Theorem
3, it remains to show that is equivalent to Condition 1 in Theorem 3.
It suffices to show that t* > 0. Recall that is equivalent to , so the
optimal value for ¢ in is the reciprocal of the maximin efficiency attained

t_t*] = 0. (A.14)

by the optimal design. Efficiencies are bounded between 0 and 1, so the optimal
value for ¢ must be greater than 1, i.e. t* > 1.
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