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Abstract: Estimating the prevalence of an infectious disease in a big population

typically requires testing a specimen (e.g., blood, urine, or swab) for the disease.

When the disease spreads quickly, time constraints and limited resources often

restrict the number of tests that can be performed. In such cases, if the prevalence is

not too high, the group testing procedure can be employed to save time, money, and

resources. The procedure tests pooled specimens of groups of individuals, rather

than testing each individual for the disease. This technique is also used in other

contexts, for example, to detect abnormalities or contamination in animals, plants,

food, or water. Although methods exist for estimating a prevalence conditional on

the explanatory variables from the group testing data, they require the specimen to

be available for all individuals, which is not always possible. Therefore, we construct

new nonparametric estimators that are consistent when some of the specimens

are missing. We demonstrate the numerical performance of our methods using

simulations and a hepatitis B example.

Key words and phrases: Cost saving, disease monitoring, limited resources, pooling,

time saving.

1. Introduction

Group testing refers to a technique originally introduced by Dorfman (1943)

to reduce costs and accelerate the detection process of syphilis in soldiers during

WWII. The method tests groups of individuals by testing pooled specimens of

the individuals from each group. If a group tests negative, the individuals from

the group are declared negative. If the goal is to detect infected individuals,

all individuals from the positive groups are retested; if the goal is to estimate

prevalence, these individuals may or may not be retested, depending on the

context (see, e.g., Xie (2001)). This technique can significantly reduce the number

of tests that need to be performed, especially when prevalence is low (Bilder et

al. (2020)), such as during the Covid-19 pandemic (see, e.g., Mallapaty (2020);

Mutesa et al. (2021)).

While it is often used in the context of disease infection, group testing is also

used to detect transgenic plants, such as transgenic corn in fields. In this case,

the leaf tissues of plants are pooled, and each pool of ground tissues is tested
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(see, e.g., Montesinos-López et al. (2016)). This approach is also used to detect

a contaminant (e.g., in food or water) when batches are tested at once, and to

preserve the confidentiality of participants in a study (see, e.g., Gastwirth and

Hammick (1989)). For other interesting applications, such as DNA screening or

communication and security networks, see Malinovsky and Albert (2019).

In group testing applications, we are interested in estimating the prevalence

conditional on an explanatory variable X (e.g., age). To do so, various techniques

have been proposed, including parametric methods (Vansteelandt, Goetghebeur

and Verstraeten (2000); Bilder and Tebbs (2009); Chen, Tebbs and Bilder (2009);

Zhang, Bilder and Tebbs (2013); Lin, Wang and Zheng (2019); Chatterjee and

Bandyopadhyay (2020)), nonparametric and semiparametric methods (Delaigle

and Meister (2011); Delaigle and Hall (2012); Wang Zhou and Kulasekera (2013);

Delaigle, Hall and Wishart (2014); Delaigle and Hall (2015); Delaigle and Zhou

(2015); Lin and Wang (2018); Yuan et al. (2021)), and Bayesian methods (e.g.,

McMahan et al. (2017); Joyner et al. (2020); Liu et al. (2021)). However, these

methods usually rely on the specimen and X being fully observed. In practice,

these are sometimes missing for some individuals, and ignoring such missingness

can introduce significant bias into the estimators. Delaigle, Huang and Lei

(2020) developed nonparametric estimators that are valid when X is missing.

In this work, we develop nonparametric consistent estimators of the conditional

prevalence when individual specimens are missing.

Following Rubin (1976) and Little and Rubin (2002), we can distinguish three

main types of missing mechanisms: missing completely at random (MCAR),

where the missing data mechanism is independent of the variables of interest;

missing at random (MAR), where the missingness depends only on the observed

data; and missing not at random (MNAR), where the missingness depends also

on unobserved data. With the MCAR assumption, a complete cases analysis that

applies standard techniques to the fully observed individuals is usually consistent.

However, this assumption is often too strong in practice. When a single variable is

subject to missingness, the MAR assumption is often used to ensure identification

(Little and Rubin (2002); Molenberghs et al. (2014)). There has also been growing

interest in the MNAR assumption. However, in this case, to ensure identification,

one usually requires additional observations, such as a validation sample (Kim

and Yu (2011)), instrumental variables (Sun et al. (2018); Tchetgen Tchetgen and

Wirth (2017)), or shadow variables (Miao, Tchetgen Tchetgen and Geng (2015)),

which is often not possible in practice. Therefore, we develop our methodology

assuming that before being grouped, the unobserved individual specimens are

MAR.

The remainder of this paper is organized as follows. We introduce our model

and data in Section 2, where we discuss three ways in which individual MAR

specimens can affect the grouped data. In Section 3, we summarize existing

nonparametric methods in the standard group testing setting. Then, we examine
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the simplest MAR setting for grouped data in Section 4, where we show that,

as in the nongrouped case, procedures for fully observed grouped data remain

valid when some specimens are MAR before the others are pooled in groups

of nonrandom size. In Section 5, we develop new nonparametric estimators

of the conditional prevalence under the other two scenarios. We investigate

the asymptotic properties of the proposed methods in Section 6, demonstrate

the methods using simulated data in Section 7, and discuss an application in

Section 8. We conclude by discussing some extensions such as the multivariate

case and the use of auxiliary variables in Section 9. The online Supplementary

Material contains our proofs and all technical details.

2. Model and Data

We are interested in estimating the conditional prevalence of a phenomenon

p(x) = P (D = 1|X = x) = E(D|X = x) , (2.1)

where X is a continuous explanatory random variable (e.g., age or weight), and D

is a binary response random variable indicating the presence (D = 1) or absence

(D = 0) of the phenomenon. Often, D is not observed directly and is assessed

using a specimen (e.g., blood, urine, swab, or tissue) test, the outcome of which,

Y = 1{specimen tests positive}, is typically errorprone (i.e., Y is not always

equal to D).

In large population screenings, time constraints and limited resources often

make it impossible to test all individuals. Note that throughout, we use individual

to refer to a unit whose status D is of interest, for example a patient, a plant, or

an animal. A useful approach for estimating the conditional prevalence in this

case is to use group testing, where a sample of, say, N individuals is divided

randomly into J groups of size n1, . . . , nJ , respectively. Using i,j to refer to the

ith individual from the jth group (omitting the index when referring to generic

individuals), we assume that (Xi,j, Di,j) is independent and identically distributed

(i.i.d.), where Di,j is the unobserved true status and Xi,j is an observed covariate

for individual i in group j. In standard group testing, instead of performing

individual tests to assess Di,j, for j = 1, . . . , J , we assess the disease status

D∗st,j = max
i=1,...,nj

Di,j (2.2)

of the jth group by testing pooled specimens of all individuals in the group,

yielding the test result Y ∗st,j. As mentioned in the introduction, this technique is

advantageous only when the overall prevalence θ = P (D = 1) in the population

is relatively small, say up to 15%, or 30% if the groups are small (Kim et al.

(2007); Bilder et al. (2020)). Indeed, because P (D∗st,j = 1) = 1 − (1 − θ)nj , if θ

is large, we can expect most D∗st,j to be equal to one, which is not very useful or
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informative; for example, if θ ≥ 0.78 and nj ≥ 2 or if θ ≥ 0.64 and nj ≥ 3, then

P (D∗st,j = 1) > 0.95. See also Remark 2.

In practice, specimens are not always available for all individuals. For

example, in the case of a disease, some patients may be less likely to provide

specimens because of their age or overall health condition, and in the case of

detection in plants, some plants may die during the experiment. We let RD =

1{specimen is available} indicate whether an individual specimen is available

or not. We know from the literature on nongrouped data that even in the

parametric context, when a single variable is missing, the model is not generally

identifiable without relatively strong identifiability assumptions; see Miao, Ding

and Geng (2016). As noted in the introduction, a common approach to ensure

identifiability is to assume that the missing variable is MAR. An alternative is to

assume that it is MNAR, but this requires either strong additional assumptions or

the availability of instrumental variables, which may not be feasible in practice

(Miao, Ding and Geng (2016)). Following the first approach, we assume that

the individual specimens are MAR, or equivalently, that the unobserved Di,j are

MAR, that is,

P (RD = r|X,D) = P (RD = r|X) , for r = 0 and r = 1 . (2.3)

Thus, the unobserved individual Di,j are MAR. In particular, we do not make

assumptions on their grouped versions defined below. Of course, the MAR D

assumption is not always satisfied in practice, for example, when patients decide

to provide their specimen based on their disease status (e.g., how well they feel).

However, it is a popular approximation because it enables us to identify the

model. It is also milder when more covariates are available; see Section 9 for a

discussion of the multivariate case.

When some specimens are missing, only individuals with available specimens

can contribute to the test performed on each group. If the missing status of all

specimens is known before we start pooling the data, we can create the groups

using only those individuals with nonmissing specimens. In this case, the sample

size N ′ is random, where N ′ is the number of observed specimens in the original

sample of size N . Given N ′, we fix the number of groups J ′ and their sizes

n1, . . . , nJ′ . For j = 1, . . . , J ′, we define the true status of group j as

D̃∗j = max
i=1,...,nj

Di,j|RD
i,j = 1 , (2.4)

where Di,j denotes the unobserved true status of the ith individual from the jth

group. Note that because we keep only individuals whose specimens are observed,

Di,j is conditional on RD
i,j = 1 (as is Xi,j).

If the groups are predetermined for practicality of the experiment or if it

is difficult to identify missing individuals (e.g., because of confidentiality), then
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only the subset of complete cases from each group contributes to the test for the

group. Here, we fix the number of groups J and their respective sizes n1, . . . , nJ ,

and assume that the grouping is independent of the missing data mechanism.

Then, for j = 1, . . . , J , letting Ij = {i = 1, . . . , nj : RD
i,j = 1}, the effective size

of group j is |Ij| =
∑nj

i=1R
D
i,j, which is random. The true status for group j,

computed from |Ij| individuals, is defined as

D∗j =

max
i∈Ij

Di,j |Ij| > 0 ,

−1 |Ij| = 0 .
(2.5)

We use the value −1 in (2.5) to code the case where D∗j is missing, because there

are no complete cases in group j.

Because the tests are usually imperfect, instead of reflecting perfectly the

true group status D̃∗j (resp., D∗j ), the test result Ỹ ∗j (resp., Y ∗j ) of group j (i.e.,

the result of the test applied to the nonmissing pooled specimens from group

j) is prone to two types of errors: false positives, where Ỹ ∗j = 1 when D̃∗j = 0

(resp., Y ∗j = 1 when D∗j = 0); and false negatives, where Ỹ ∗j = 0 when D̃∗j = 1

(resp., Y ∗j = 0 when D∗j = 1). In the setting corresponding to (2.5), if no

specimen is available for group j (D∗j = −1), then no test is performed and we

define Y ∗j = −1. Following Vansteelandt, Goetghebeur and Verstraeten (2000)

and a large part of the literature on group testing, we assume that the known

specificity sp = P (Ỹ ∗j = 0|D̃∗j = 0) = P (Y ∗j = 0|D∗j = 0) and sensitivity se =

P (Ỹ ∗j = 1|D̃∗j = 1) = P (Y ∗j = 1|D∗j = 1) of the test do not depend on the group

sizes, which is usually reasonable when the groups are not too large. Furthermore,

we assume that the test results depend only on the true status. Specifically, for

y = 0, 1,

P (Ỹ ∗j = y|D̃∗j , Xi,j, i = 1, . . . , nj) = P (Ỹ ∗j = y|D̃∗j ) (2.6)

in the setting in (2.4), whereas in the setting in (2.5), we assume that, for y = 0, 1,

P (Y ∗j = y|D∗j , Xi,j, R
D
i,j, i = 1, . . . , nj) = P (Y ∗j = y|D∗j ) . (2.7)

There is no test error when Y ∗j = −1, because no test is performed. In practice,

sp and se are usually estimated before the test used for screening, for example

using a medical diagnosis. This can be done at fast parametric rates, so that

estimating sp and se has no first-order impact on the asymptotic properties of

the nonparametric estimators of p; see, for example, Delaigle and Hall (2015), who

derived such results in a group testing setting involving dilution effects. Because

our results remain valid when sp and se are estimated, for simplicity, we assume

throughout that sp and se are known. We also assume throughout that sp > 0.5

and se > 0.5, otherwise the test result would be less accurate than that obtained

by tossing a coin.
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Because the randomness of the missing specimens affects D̃∗j and D∗j
differently, these two settings require different estimation techniques. In

Section 4, we show that in the first case, we can consistently estimate p by

applying the technique of Delaigle, Hall and Wishart (2014) to the subset of

individuals with nonmissing status. However, this estimator cannot be used in

the second case, which is more widely applicable; in Section 5.1, we develop a

consistent estimator that is valid in this case. In Section 5.2, we also develop a

consistent estimator that can be computed even if we know how many specimens

are missing from each group, but we do not know which ones are missing.

3. Review of Existing Methods Without Missing Data

In this section, we review existing local polynomial regression estimation

techniques in standard settings without missing data.

3.1. Standard local polynomial estimators

In the standard setting with nongrouped data, to estimate a regression

curve g(x) = E(Y |X = x) from i.i.d. data (X1, Y1), . . . , (XN , YN), a popular

nonparametric estimator is the `th-order local polynomial regression estimator

ĝLP,`(x) (Fan and Gijbels (1996)), with ` ≥ 0 an integer. It is obtained by fitting,

locally around x, a polynomial

g`(z) =
∑

0≤k≤`

αk,x(z − x)k (3.1)

to (Xi, Yi). It is equal to ĝLP,`(x) = α̂0,x, where, for each x, α̂k,x is computed by

minimizing the following with respect to αk,x:

N∑
i=1

{
Yi −

∑
0≤k≤`

αk,x(Xi − x)k
}2

Kh(Xi − x) , (3.2)

with K a kernel function, h > 0 a bandwidth, and Kh(x) = h−1K(x/h). This

can be expressed as ĝLP,`(x) = eT1 S
−1T, where S = (Sk,k′)0≤k,k′≤` and T =

(T0, . . . , T`)
T , with Sk,k′ = (Nhk+k

′
)−1

∑N
i=1Kh(Xi − x)(Xi − x)k+k

′
and Tk =

(Nhk)−1
∑N

i=1 YiKh(Xi − x)(Xi − x)k.

3.2. Local polynomial estimators for group testing data

In the standard group testing setting without missing data, considered by

Delaigle and Meister (2011) and Delaigle, Hall and Wishart (2014), we observe

(Xi,j, Y
∗
st,j), for j = 1, . . . , J and i = 1, . . . , nj, where Y ∗st,j is the imperfect

test result that measures the disease status D∗st,j of group j, defined in (2.2).

Combining the fact that the test results depend only on the true disease

status with the fact that P (D∗st,j = 1|Xi,j = x) = 1 − P (Di,j = 0|Xi,j =
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x)
∏
k 6=i P (Dk,j = 0) = 1 − qnj−1{1 − p(x)}, where q = P (D = 0), and letting

Z∗st,j = 1− Y ∗st,j, sp = P (Y ∗st,j = 0|Dst,j = 0), and se = P (Y ∗st,j = 1|Dst,j = 1), the

aforementioned authors deduced that

g(x) = E

{
q1−nj

Z∗st,j + se−1

sp + se−1

∣∣∣Xi,j = x

}
= 1− p(x) . (3.3)

Similarly, P (D∗st,j = 1) = 1− qnj , so that

P (Z∗st,j = 0) = 1− P (Z∗st,j = 1) = se−(sp + se−1)qnj . (3.4)

To estimate p, they first estimated q using a maximum likelihood estimator

(MLE), q̂, obtained by maximizing, with respect to q ∈ [0, 1], the likelihood of

Z∗st,j:

L(q;Z∗st,1, . . . , Z
∗
st,J) =

J∏
j=1

P (Z∗st,j = z∗j ) , (3.5)

where z∗j is the realization of Z∗st,j in the sample, and P (Z∗st,j = k), for k = 0, 1,

as above.

Then, because g is a regression curve, they estimated it using the standard

`th-order local polynomial estimator from Section 3.1, applied to the pairs

{Xi,j, q̂
1−nj (Z∗st,j + se−1)/(sp + se−1)}. Then, they added a group weight ψj

to (3.2) that depends on the group size nj, with the idea that larger groups blur

the information more, and thus should be given less weight. Their estimator

ĝst,`(x) of g(x) is obtained by fitting (3.1), locally around x, to the pairs

{Xi,j, q̂
1−nj (Z∗st,j +se−1)/(sp + se−1)}. Taking K and h as in (3.2), this is equal

to ĝst,`(x) = α̂0,x, where, for each x, α̂k,x is computed by minimizing the following

with respect to αk,x:

J∑
j=1

nj∑
i=1

{
q̂1−nj

Z∗st,j + se−1

sp + se−1
−
∑

0≤k≤`

αk,x(Xi,j − x)k
}2

ψjKh(Xi,j − x) . (3.6)

This can be expressed as ĝst,`(x) = eT1 S
−1
st Tst, where Sst = (Sst,k,k′)0≤k,k′≤` and

Tst = (Tst,0, . . . , Tst,`)
T , with Sst,k,k′ = (Nhk+k

′
)−1

∑J
j=1 ψj

∑nj

i=1Kh(Xi,j − x)

(Xi,j − x)k+k
′

and Tst,k = (Nhk)−1
∑J

j=1 ψj q̂
1−nj (Z∗st,j + se−1)/(sp + se−1)∑nj

i=1Kh(Xi,j − x)(Xi,j − x)k.

Finally, they estimated p as p̂st = 1− ĝst,`.

4. Estimator for Missing Data in the Setting at (2.4)

We start with the simplest case with missing specimens, where the groups are

created after the data are collected, using only the N ′ individuals with nonmissing

specimens out of the N individuals in the study. Here, the sample size N ′ is

random and follows a binomial distribution Bi{N,E(RD)}. Given N ′, we fix the
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number J ′ of groups and the group sizes n1, . . . , nJ′ such that
∑J′

j=1 nj = N ′, and

for i = 1, . . . , nj, j = 1, . . . , J ′, we observe Xi,j|RD
i,j = 1 and Ỹ ∗j defined under

(2.5). To define an estimator for p in this case, a naive approach would be to

apply the estimator p̂st from Section 3.2, replacing (Xi,j, Y
∗
st,j), for j = 1, . . . , J ,

i = 1, . . . , nj, with (Xi,j|RD
i,j = 1, Ỹ ∗j ), for i = 1, . . . , nj, j = 1, . . . , J ′, and

replacing the definition of q in Section 3.2 with the quantity its MLE converges

to when replacing Z∗st,j with Z̃∗j = 1− Ỹ ∗j in (3.5). Compared with the standard

setting from Section 3.2, all variables used here are defined conditional on RD
i,j = 1

and the effective sample size is random; we need to check whether the results from

Section 3.2 still hold in this case.

Recalling how p̂st was constructed, to determine whether the naive approach

is valid, we derive the relationship between E(Z̃∗j |Xi,j = x) and p(x). Let

Z̃∗D,j = 1 − D̃∗j , with D̃∗j given in (2.4). Using a standard decomposition (e.g.,

Delaigle and Meister (2011)), we show in Appendix A.2 that

E(Z̃∗j + se−1|Xi,j = x)

sp + se−1
= E(Z̃∗D,j|Xi,j = x) . (4.1)

Now, we also have

E(Z̃∗D,j|Xi,j = x) = P (D̃∗j = 0|Xi,j = x)

= P (D1,j = · · · = Dnj ,j = 0|Xi,j = x,RD1,j = · · · = RD
nj ,j

= 1)

= P (Di,j = 0|Xi,j = x,RDi,j = 1)

nj∏
k 6=i

P (Dk,j = 0|RD
k,j = 1)

= {1− p(x)}qnj−1
D|R ,

where qD|R = P (D = 0|RD = 1), and we use E(D|X = x,RD = 1) = E(D|X =

x) = p(x), which follows from (2.3). Multiplying these equations by q
1−nj

D|R , we

deduce that m̃(x) ≡ E{q1−nj

D|R (Z̃∗j + se−1)/(sp + se−1)|Xi,j = x} = 1− p(x).

Here, m̃, qD|R, Z̃
∗
j , and Xi,j satisfy the same equation as g, q, Z∗st,j, and Xi,j do

in (3.3). Similarly, we show in Appendix A.1 that P (Z̃∗j = 0) = 1−P (Z̃∗j = 1) =

se−(sp + se−1)q
nj

D|R, which are the same expressions as those in (3.4), but with

Z∗st,j and q replaced with Z̃∗j and qD|R, respectively. Thus, although qD|R 6= q and

Z̃∗j 6= Z∗st,j, we can estimate qD|R by q̂D|R obtained by applying to Z̃∗j the MLE for

q from Section 3.2, that is, by maximizing L(qD|R; Z̃∗1 . . . , Z̃
∗
J′) =

∏J′

j=1 P (Z̃∗j = z∗j )

with respect to qD|R ∈ [0, 1], and where z∗j is the realization of Z̃∗j in the sample.

This suggests that we can estimate p(x) using the “naive” estimator defined

in Section 3.2, applied to the N ′ grouped individuals for which RD
i,j = 1, that is,

p̂1(x) = 1− ˆ̃m(x) , (4.2)
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where the `th-order local polynomial estimator of m̃(x) is given by ˆ̃m(x) =

eT1 S
′−1T′, with eT1 = (1, 0, . . . , 0), S′ = (S′k,k′)0≤k,k′≤`, T

′ = (T ′0, . . . , T
′
`)
T , and

S′k,k′ =
1

N ′hk+k′

J′∑
j=1

ψj

nj∑
i=1

Kh(Xi,j − x)(Xi,j − x)k+k
′
,

T ′k =
1

N ′hk

J′∑
j=1

ψj q̂
1−nj

D|R
Z̃∗j + se−1

sp + se−1

nj∑
i=1

Kh(Xi,j − x)(Xi,j − x)k .

(4.3)

5. Estimators for Missing Data in the Setting in (2.5)

5.1. Known individual missing status

Next, we develop a nonparametric estimator for p when the groups are

determined before knowing the missing status of the specimens. We observe

(Xi,j, Y
∗
j , R

D
i,j), for i = 1, . . . , nj, j = 1, . . . , J , where

∑J
j=1 nj = N , Y ∗j is the

imperfect test result measuring D∗j in (2.5), and RD
i,j = 1 if the corresponding

specimen is observed, and zero otherwise. Unlike Section 4, the number of tested

specimens per group, that is, the effective size |Ij| =
∑nj

i=1R
D
i,j of each group j is

random, because we test only the subset Ij of the nj individuals whose specimens

are available.

As in Section 4, a naive way to estimate p(x) would be to apply p̂st(x)

from Section 3.2 to these data, but omitting the groups for which Z∗j = 2,

where Z∗j = 1 − Y ∗j , because p̂st is defined only for Z∗st,j = 0 or 1. This gives

p̂nai(x) = 1 − ĝnai,`(x), where ĝnai,`(x) = eT1 Ŝ
−1
naiT̂nai with Ŝnai = (Snai,k,k′)0≤k,k′≤`

and T̂nai = (T̂nai,0, . . . , T̂nai,`)
T , and with Ŝnai,k,k′ = (Nhk+k

′
)−1

∑J
j=1 1{Z∗j 6= 2}

ψj
∑nj

i=1Kh(Xi,j − x)(Xi,j − x)k+k
′

and T̂nai,k = (Nhk)−1
∑J

j=1 1{Z∗j 6= 2}ψj
q̂
1−nj

nai (Z∗j + se−1)/(sp + se−1)
∑nj

i=1Kh(Xi,j − x)(Xi,j − x)k . Here, q̂nai is the

naive estimator of q obtained by maximizing L(q;Z∗1 , . . . , Z
∗
J) =

∏J
j=1 Pnai(Z

∗
j =

z∗j )
1{z∗j 6=2} with respect to q ∈ [0, 1], where Pnai(Z

∗
j = 0) = 1 − Pnai(Z

∗
j = 1) =

se−(sp + se−1)qnj are formulae valid for Z∗st,j = 0 or 1 from Section 3.2.

However, using the derivations below, this naive estimator does not con-

sistently estimate p(x), because in this case, our data do not satisfy the same

equations as those of the data from Section 3.2. For example, unlike for Z̃∗j in

Section 4, here Pnai(Z
∗
j = 0) and Pnai(Z

∗
j = 1) are not valid for Z∗j . To derive

a consistent estimator for p, we need to express p in terms of a regression curve

that depends only on the observed data. Then, we can estimate that regression

curve using a standard local polynomial estimator.

Mimicking the derivations in the standard case from Section 3.2, another

approach would be to express E(Z∗j |Xi,j = x) in terms of p(x). However, using

the results from Appendix A.3, it can be proved that E(Z∗j |Xi,j = x) = q
nj−1
RD {1−

b(x)}(sp + se−1)+q
nj−1
R {1−d(x)}(2−sp)+1−se, where b(x) = E(RD

i,jDi,j|Xi,j =
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x), d(x) = E(RD
i,j|Xi,j = x), qRD = P (RDD = 0), and qR = P (RD = 0), which

does not seem helpful for estimating p(x). Instead, our idea is to condition also

on the missing status. Using this approach and the same standard decomposition

as in Section 4 (see Appendix A.2), we first express the test results in terms of

D∗j by writing, for all i ∈ Ij,

E(Z∗j + se−1|Xi,j = x,RDi,j = 1)

sp + se−1
= 1−mj(x) , (5.1)

where mj(x) = P (D∗j = 1|Xi,j = x,RDi,j = 1). The difficulty in expressing this in

terms of p(x) comes from the randomness of the missing specimens within groups

and the missing indicators, thus requiring combinatorial arguments. First, note

that

mj(x) =1− P (D∗j = −1|Xi,j = x,RDi,j = 1)− P (D∗j = 0|Xi,j = x,RDi,j = 1)

=1− P (D∗j = 0|Xi,j = x,RDi,j = 1)

=1−
nj∑
w=1

P
(

max
k∈Ij

Dk,j = 0, |Ij| = w
∣∣Xi,j = x,RDi,j = 1

)
,

because, using (2.5), D∗j = −1⇒ RD
i,j = 0. Letting Ck

n denote the combination of

k items among n, and noting that P (Dk,j = 0, RDk,j = 1) = qRD − qR, we deduce

that

mj(x) =1− P
(
Di,j = 0

∣∣Xi,j = x,RDi,j = 1
) nj∑
w=1

Cw−1
nj−1(qRD − qR)w−1q

nj−w
R

=1− qnj−1
RD {1− E(Di,j|Xi,j = x,RDi,j = 1)} = 1− qnj−1

RD {1− p(x)} , (5.2)

where we use the binomial theorem and (2.3).

We can remove the dependence on j by multiplying the equations by q
1−nj

RD ,

yielding

p(x) = 1−m(x) , (5.3)

where m(x) = E{q1−nj

RD (Z∗j + se−1)/(sp + se−1)|Xi,j = x,RDi,j = 1}. Because m

is a regression curve that depends only on the observed data, we can estimate it

using an `th-order local polynomial, as in Section 3.2, but this time constructed

from the subset of the pairs
(
Xi,j, q̂

1−nj

RD (Z∗j + se−1)/(sp + se−1)
)

corresponding

to individuals for which RD
i,j = 1, and with q̂RD an MLE of qRD, defined below.

This suggests estimating p(x) using

p̂2(x) = 1− eT1 Ŝ−1T̂ , (5.4)
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where m̂(x) = eT1 Ŝ
−1T̂, Ŝ = (Ŝk,k′)0≤k,k′≤`, and T̂ = (T̂0, . . . , T̂`)

T , with

Ŝk,k′ =
1

Nhk+k′

J∑
j=1

ψj

nj∑
i=1

RD
i,jKh(Xi,j − x)(Xi,j − x)k+k

′
, (5.5)

T̂k =
1

Nhk

J∑
j=1

ψj q̂
1−nj

RD

Z∗j + se−1

sp + se−1

nj∑
i=1

RD
i,jKh(Xi,j − x)(Xi,j − x)k , (5.6)

where ψj is a weight that depends on nj (in Section 7.1, we show how to choose

these weights in practice). Note that the individuals with RD
i,j = 0 do not

contribute to the estimator, that is, we do not use their Xi,j, because they do not

add any information about p(x) = E(D|X = x).

It remains to show how to estimate qRD. In Appendix A.1, we show that

P (Z∗j = 2) = q
nj

R , P (Z∗j = 1) = 1−se +(sp + se−1)q
nj

RD−sp q
nj

R , and P (Z∗j = 0) =

1−P (Z∗j = 1)−P (Z∗j = 2). For r = 0, 1, 2, define P̂ (Z∗j = r) obtained by replacing

qR with q̂R = 1 −
∑J

j=1

∑nj

i=1R
D
i,j/N in P (Z∗j = r). We estimate qRD using the

MLE q̂RD obtained by maximizing L(qRD, q̂R;Z∗1 , . . . , Z
∗
J) =

∏J
j=1 P̂ (Z∗j = z∗j )

with respect to qRD ∈ [q̂R, 1], with z∗j the realization of Z∗j in the sample.

5.2. Unknown individual missing status

In some cases, we may not know which individual specimens are missing.

For example, the information may have been masked or may be lost or missing.

Here, we show that it is possible to construct a consistent estimator in this case

too. We observe (Xi,j, Y
∗
j , |Ij|), for i = 1, . . . , nj, j = 1, . . . , J , with Y ∗j and the

number |Ij| of observed specimens in group j as in Section 2. Because we do not

observe RD
i,j, we cannot estimate p in (2.1) as we did in Section 5.1.

Again, the main difficulty is in expressing p in terms of the observed data.

We already know that E(Z∗j |Xi,j = x) is not useful for estimating p(x). Thus,

instead of focusing directly on p, we start by studying functions that depend on

the observed data, and then relate them to p. Because |Ij| =
∑nj

k=1R
D
k,j, we can

write E(|Ij||Xi,j = x) = (nj − 1)(1− qR) + d(x), where d(x) = E(RD
i,j|Xi,j = x).

Recalling that Y ∗j = −1 ⇐⇒ D∗j = −1, using the combinatorial derivations

from Appendix A.3, we also have P (Y ∗j = −1|Xi,j = x) = P (D∗j = −1|Xi,j =

x) = q
nj−1
R {1 − d(x)}. Furthermore, recalling (2.7) and the definition of sp and

se,

P (Y ∗j = 0|Xi,j = x) =
∑
k=0,1

P (Y ∗j = 0, D∗j = k|Xi,j = x)

=sp P (D∗j = 0|Xi,j = x) + (1− se)P (D∗j = 1|Xi,j = x)

=(sp + se−1)q
nj−1
RD {1− b(x)} − sp q

nj−1
R {1− d(x)}+ 1− se ,

where b(x) = E(RD
i,jDi,j|Xi,j = x), with qRD as in (5.2). Using (2.3) and that
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RD and D are Bernoulli variables, we have p(x) = E(Di,j|Xi,j = x,RDi,j =

1) = b(x)/d(x). Together with the above calculations, this suggests that we can

estimate p from our data.

Specifically, it follows from the results above that

d(x) = E{|Ij| − (nj − 1)(1− qR)|Xi,j = x} (5.7)

b(x) = E

{
1− q1−nj

RD

Wj + 1− se

sp + se−1

∣∣∣∣Xi,j = x

}
, (5.8)

where Wj = 1{Y ∗j = 0} + sp 1{Y ∗j = −1}. We can estimate qR using q̂R from

Section 5.1, because we can write q̂R = 1 − N−1
∑J

j=1 |Ij|, which depends only

on the observed |Ij|. Therefore, we can estimate qRD using the MLE q̂RD from

Section 5.1. Then, the regression curves b and d can be estimated from our

data using `th-order local polynomial estimators b̂ and d̂, respectively, similar

to those in Section 5.1. We take b̂(x) = eT1 (Ŝp)−1T̂b and d̂(x) = eT1 (Ŝp)−1T̂d,

where Ŝp = (Spk,k′)0≤k,k′≤`, T̂b = (T̂ b0 , . . . , T̂
b
` )T , and T̂d = (T̂ d0 , . . . , T̂

d
` )T , with,

for s = b and d and letting Ub,j = 1 − q̂
1−nj

RD (Wj − 1 + se)/(sp + se−1) and

Ud,j = |Ij| − (nj − 1)(1− q̂R),

Spk,k′ =
1

Nhk+k′

J∑
j=1

ψj

nj∑
i=1

Kh(Xi,j − x)(Xi,j − x)k+k
′
,

T̂ sk =
1

Nhk

J∑
j=1

Us,j ψj

nj∑
i=1

Kh(Xi,j − x)(Xi,j − x)k . (5.9)

Note that, unlike the estimator p̂2 in Section 5.1, we use all Xi,j, even those

for individuals whose specimens are missing, because we do not know whether

RD
i,j = 0 or 1. Here, we use the same h and ψj for b̂(x) and d̂(x) (see Section 7.1

for how to choose them in practice). Finally, we estimate p(x) using the following

ratio of two correlated local polynomial estimators:

p̂3(x) =
b̂(x)

d̂(x)
=

eT1 (Ŝp)−1T̂b

{eT1 (Ŝp)−1T̂d}
.

6. Asymptotic Properties

In this section, we investigate the asymptotic properties of our estimators.

We treat qR = P (RD = 0) and qRD = P (RDD = 0) as parameters with unknown

true values qR0 and qRD0, respectively, and denote the corresponding value of

qD|R = (qRD − qR)/(1− qR) by qD|R0.

We need the following conditions to establish the theoretical properties of

the estimators p̂1(x) and p̂2(x) from Sections 4 and 5.1, where x ∈ R.
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Condition 1.

(A1) fX|RD(u|1) is twice differentiable for all u, ‖f (k)

X|RD(·|1)‖∞ < ∞, for k =

0, 1, 2, and fX|RD(x|1) > 0.

(A2) K is an even density function such that
∫
|u|2`+3K(u) du <∞, and for some

δ > 0,
∫
|u2`K(u)|2+δ du <∞.

(A3) p is `+ 3 times differentiable and ‖p(k)‖∞ <∞, for k = 0, . . . , `+ 3.

(A4) h→ 0 and Nh→∞ as N →∞.

(A5) 0 < infj ψj ≤ supj ψj <∞.

(A6) supj nj <∞, qR0 < qRD0 < 1.

Conditions (A1) to (A4) are standard in nonparametric regression, and (A5)

and (A6) are standard in group testing. (A1) and (A3) assume only that the

functions are smooth, and (A2), (A4), and (A5) are satisfied easily because we

choose K, h, and ψj (see Section 7.1). In (A6), the boundedness of nj is always

satisfied in practice, and qR0 < qRD0 < 1 is a mild condition used to prevent

pathological cases in which all nonmissing data have the same disease status.

Given N ′, p̂1 from Section 4 is the same as in the nonmissing case studied in

Delaigle and Meister (2011) and Delaigle, Hall and Wishart (2014), except that we

replace (X,D) with (X,D)|RD = 1. Then, the asymptotic normality of p̂1 follows

from the results in those papers, combined with the fact that N ′/N
P→ 1− qR0 as

N → ∞, because N ′ ∼ Bi(N, 1 − qR0). The central limit theorem for a random

sum can be found in, among others, Bethmann (1989). Specifically, let N ′ψ =∑J′

j=1 njψj, µK,j =
∫
ujK(u) du, νj =

∫
ujK2(u) du, µ = (µK,`+1, . . . , µK,2`+1)

T ,

µ̃ = (µK,`+2, . . . , µK,2`+2)
T , m(x) = {m(x), . . . , h`(`!)−1m(`)(x)}, where m = 1−

p, and let S, S̃, and S∗ be (`+1)×(`+1) matrices with the (k+1, k′+1)th element

defined by Sk,k′ = µK,k+k′ , S̃k,k′ = µK,k+k′+1, and S∗k,k′ = νk+k′ , respectively, for

k, k′ = 0, . . . , `. Under Conditions (A1)–(A6), it follows from Delaigle and Meister

(2011) and Delaigle, Hall and Wishart (2014) that

p̂1(x) = p(x) +B(x) +
√
V1(x)NN + op{B(x)}+ op{

√
V1(x)} ,

where NN
D→ N(0, 1) as N → ∞, V1(x) = eT1 S

−1S∗S−1e1
∑J′

j=1 njψ
2
jV1,j(x)/

{(N ′ψ)2hfX|RD(x|1)} ,

with V1,j(x) =
(2 se−1)m(x)

q
nj−1
D|R0(sp + se−1)

+
se− se2

q
2nj−2
D|R0 (sp + se−1)2

−m2(x) ,
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and for ` odd, B(x) = −eT1 S−1µm(`+1)(x)h`+1/(`+ 1)!, while for ` even,

B(x) = eT1 S
−1

{
(S̃S−1µ− µ̃)

m(`+1)(x)f ′X|RD(x|1)

(`+ 1)!fX|RD(x|1)
− µ̃

m(`+2)(x)

(`+ 2)!

}
h`+2 .

Comparing these results with those without missing data from Delaigle and

Meister (2011) and Delaigle, Hall and Wishart (2014), the only difference is that,

here, quantities that depend on X and D are conditional on RD = 1, and our

sample size N ′ ∼ Bi(N, 1−qR0). The “bias” term B is of the same order as in the

case without missing data: B(x) � h`+1 for ` odd, B(x) � h`+2 for ` even. The

“variance” term is also of the same order as in the case without missing data,

because V1(x) � (N ′h)−1 = (N(1 − qR0)h)−1{1 + oP (1)}. The convergence rate

of p̂1 is optimized by taking B(x) �
√
V1(x), that is h � N−1/(2`+3) for ` odd and

h � N−1/(2`+5) for ` even, which gives a rate of order N−(`+1)/(2`+3) for ` odd and

N−(`+2)/(2`+5) for ` even, as in the case without missing data.

The following theorem establishes the asymptotic normality of p̂2(x) from

Section 5.1. See Appendix B.1 for a proof.

Theorem 1. Let Nψ =
∑J

j=1 njψj. Under Conditions (A1)–(A6), we have

p̂2(x) = p(x) +B(x) +
√
V2(x)NN + op{B(x)}+ op{

√
V2(x)} ,

where NN
D→ N(0, 1) as N → ∞, B(x) is as above, and V2(x) = eT1 S

−1S∗S−1e1∑J
j=1 njψ

2
jV2,j(x)/{N2

ψh(1− qR0)fX|RD(x|1)} , with

V2,j(x) =
(2 se−1)m(x)

q
nj−1
RD0 (sp + se−1)

+
se− se2

q
2nj−2
RD0 (sp + se−1)2

−m2(x) .

Here too, the “bias” and “variance” terms, B and V2, respectively, are of the

same order as in the case without missing data (B is the same as for p̂1, and

V2(x) � 1/(Nh)). The optimal convergence rate of p̂2 is the same as that of p̂1,

with h of the same order as for p̂1.

Recall that the advantage of p̂2 is that the groups can be created regardless

of the missing status of the specimens, but it is interesting to compare its

performance with that of p̂1. Both have the same asymptotic bias term B,

but, in general, it is difficult to compare their variance terms V1 and V2,

which differ in the number of groups, nj, qD|R0, and qRD0. We can compare

them when all groups are of equal size, nj = n, because ψj = 1, Nψ = N ,

and N ′ψ = N(1 − qR0){1 + oP (1)}. In that case, p̂2 outperforms p̂1, because

qD|R0 = 1 − (1 − qRD0)/(1 − qR0) ≤ 1 − (1 − qRD0) = qRD0 and V2(x)/V1(x) =

V2,1(x)/V1,1(x) + oP (1), with V2,1(x) ≤ V1,1(x). However if nj is smaller for p̂1
than it is for p̂2 and both estimators use the same number of groups, J ′ = J ,

then p̂1 usually outperforms p̂2.
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We need the following conditions to derive the theoretical properties of p̂3(x)

from Section 5.2.

Condition 2.

(B1) fX is twice differentiable, ||f (k)
X ||∞ <∞, for k = 0, 1, 2 and fX(x) > 0.

(B2) K is an even density function,
∫
|u|2`+3K(u) du <∞ and

∫
|u2`K(u)|3 du <

∞.

(B3) b and d defined in (5.8) and (5.7), respectively, are `+3 times differentiable,

‖b(k)‖∞ <∞, and ‖d(k)‖∞ <∞, for k = 0, . . . , `+ 3, and d(x) > 0.

(B4) to (B6) are defined in the same way as (A4) to (A6), respectively.

(B7) cov{(Ub0,j, |Ij|)|Xi,j = x} =
(
Σj,k`(x)

)
k,`=1,2

is invertible, for j = 1, . . . , J ,

where Ub0,j is the version of Ub,j with q̂RD replaced with qRD0, and the

expressions for Σj,k` are given in Appendices B.3 and B.4.

Conditions (B1)–(B6) are similar to (A1)–(A6), respectively, in Condition

A. Condition (B7) is mild: Ub0,j is a function of Y ∗j and |Ij| is a function of

RD
k,j, so it would be very unusual for their conditional covariance matrix to be

noninvertible. This condition plays the role of the assumption of an invertible

covariance matrix used in the standard multivariate central limit theorem (Rao

(1973); Serfling (2009)), and is used only to establish the asymptotic normality

of p̂3 but is not needed for p̂3 to be consistent.

The next theorem establishes the asymptotic properties of p̂3. Here, for `

even, the bias term of the asymptotic expansion is much more involved than in

the case of p̂2. Therefore, and because in practice it is standard to use odd-order

local polynomial estimators (they have better properties, e.g., near boundaries;

see Remark 3), we establish our theorem only for estimators of odd order. See

Appendix B.2 for a proof.

Theorem 2. Under Conditions (B1)–(B7), if ` is odd, we have p̂3(x) = p(x) +

B3(x)+
√
V3(x)NN+op{B3(x)}+op{

√
V3(x)}, where NN

D−→ N(0, 1) as N →∞,

B3(x) = eT1 S
−1µh`+1d(x)b(`+1)(x)− b(x)d(`+1)(x)

(`+ 1)!d2(x)
,

and V3(x) = {N2
ψh(1 − qR0)fX|RD(x|1)}−1eT1 S−1S∗S−1e1

∑J
j=1 njψ

2
jV3,j(x)/d(x),

with V3,j(x) = Σj,11(x)− 2p(x)Σj,12(x) + p2(x)Σj,22(x) and Σj,k` is defined as in

Condition (B7).

As for Theorem 1, the rate of the “bias” term B3 and the “variance” term

V3 in Theorem 2 are the same as in the case without grouping for odd `, that

is, B3(x) � h`+1 and V3(x) � (Nh)−1. Again, the optimal convergence rate

N−(`+1)/(2`+3) of p̂3 is obtained by taking B3(x) �
√
V3(x), that is, h � N−1/(2`+3).
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However, p̂3(x) is a ratio of two correlated local polynomial estimators, which

makes the asymptotic expressions more involved and difficult to compare with

those for p̂1 and p̂2. We compare these estimators numerically in Section 7.

Remark 1. (Integrated squared error). For each estimator p̂k, for k = 1, 2, 3,

we can also compute an asymptotic weighted mean integrated squared error,

AMISEw =
∫
{B2(x) +Vk(x)}fX|RD(x|1)w(x) dx, where w is an integrable weight

function. AMISEw is commonly used in nonparametric regression problems to

compute a plug-in (PI) bandwidth (see Section 7.1), and is of the same asymptotic

order as its pointwise version, in our case, the quantity B2(x) + Vk(x). For

example, for ` odd and for our three estimators, it is optimized at the rate

N−(`+1)/(2`+3), obtained by taking h � N−1/(2`+3).

Remark 2. (Group sizes). The choice of nj depends on a number of factors,

and involves a trade-off between optimizing the main goal of the study and

remaining within its time, budget, and other constraints. If the main goal is

to estimate p, then an optimal strategy could be to minimize AMISEw from

Remark 1, computed using its optimal bandwidth, under the various constraints

(for ` = 1, the optimal bandwidth is derived in Section 7.1). For example, if

the only constraint is that the number tests that can be performed is equal to a

given number J , then the optimal AMISEw-based strategy is to take nj = n so

that Nψ = N and ψj = 1, and there is a corresponding value n that minimizes

AMISEw. As in the parametric case without missing data studied in Section 3

of Vansteelandt, Goetghebeur and Verstraeten (2000), finding this n requires a

preliminary estimator of p, for example, computed from a small sample. However,

if the main goal of the study is to estimate the nonconditional prevalence, and p is

a side result, then we can replace AMISEw with a criterion for that nonconditional

estimator.

Remark 3. (Boundary case). If fX|RD(·|1) is compactly supported and not

continuous at the endpoints of its support, then unlike kernel density estimators,

we find that local polynomial estimators, and particularly our three estimators,

remain consistent. However, while local polynomial estimators of odd order `

converge at the same rate as in the absence of boundaries, the rate degrades if `

is even. In the latter case, the bias component is of order h`+1 instead of h`+2,

and the convergence rate of the estimator is of order N−(`+1)/(2`+3) instead of

N−(`+2)/(2`+5). For example, a local constant estimator (` = 0) converges at the

rate N−1/3 in the boundary case, instead of the N−2/5 rate in the no-boundary

case, whereas a local linear estimator (` = 1) converges at the rate N−2/5 in both

cases.
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7. Simulation Study

7.1. Computing the estimators in practice

The estimators p̂1, p̂2, and p̂3 all include weight functions ψj and a tuning

parameter h. In this section, we show how to choose these values for the local

linear version (` = 1) of the estimators, which is the most popular version of

the local polynomial estimators, owing to its nice properties at boundaries (see

Remark 3).

As in Delaigle, Hall and Wishart (2014), because ψj does not affect the

asymptotic bias of p̂1, p̂2, and p̂3, we choose it by minimizing
∫
v(x)fX|RD(x|1)

w(x) dx with respect to ψj, with w a weight function (see Section 7.2 for its choice)

and where, for k = 1 to 3, v = Vk is defined as in Section 6. This gives ψk,j ={ ∫
Vk,j(x)w(x) dx

}−1
for p̂k, k = 1, 2, and ψ3,j =

{ ∫
V3,j(x)w(x)/d(x) dx

}−1
for

p̂3, with Vk,j(x) as in Section 6 for k = 1 to 3; see Appendix C.1. In practice,

for k = 1, 2, we estimate ψk,j as ψ̂k,j =
{ ∫

V̂k,j(x)w(x) dx
}−1

, with V̂1,j and

V̂2,j obtained by replacing qD|R with q̂D|R given in Section 4, qRD with q̂RD given

in Section 5.1, and m̃ and m with the pilot estimators ˆ̃mPILOT and m̂PILOT,

respectively, defined by ˆ̃m and m̂ in Sections 4 and 5.1, respectively, with ` = 0,

ψj ≡ 1, and the cross-validation (CV) h from Appendix C.2. Similarly, we

estimate ψ3,j as ψ̂3,j =
{ ∫

V̂3,j(x)w(x)/d̂PILOT(x) dx
}−1

, with V̂3,j obtained by

replacing, in V3,j, qR and qRD with q̂R and q̂RD, respectively, from Section 5.1,

and b and d with b̂PILOT and d̂PILOT, defined by b̂ and d̂, respectively, above (5.9),

with ` = 0, ψj ≡ 1, and the CV bandwidth h from Appendix C.2.

To choose h for p̂2, we use a PI approach, as in Delaigle and Meister (2011).

Let B and V2 be defined as in Theorem 1, w be defined as for ψj, and Θ2,1 =∫
{p′′(x)}2fX|RD(x|1)w(x) dx. We choose h by minimizing, with respect to h, an

estimator of AMISEw =
∫
{B2(x) + V2(x)}fX|RD(x|1)w(x) dx = µ2

K,2Θ2,1h
4/4 +

ν0
∑J

j=1 njψ
2
j

∫
V2,j(x)w(x) dx/

{
h(1 − qR)N2

ψ

}
, obtained by estimating Θ2,1 by

Θ̂2,1 (Appendix C.3), ψj by ψ̂2,j, and qR by q̂R (Section 5.1), resulting in

our PI bandwidth ĥPI,2 = ν
1/5
0

{
(1 − q̂R)µ2

K,2Θ̂2,1

∑J
j=1 njψ̂2,j

}−1/5
. Similarly,

replacing V2 with V1 for p̂1, and B and V2 with B3 and V3, respectively,

for p̂3, and following the same arguments, our PI bandwidth for p̂1 is equal

to ĥPI,1 = ν
1/5
0

(
µ2
K,2Θ̃2,1

∑J′

j=1 njψ̂1,j

)−1/5
, and for p̂3 is equal to ĥPI,3 =

ν
1/5
0

{
(1 − q̂R)µ2

K,2
Θ̂2,2

∑J
j=1 njψ̂3,j

}−1/5
, where Θ̃2,1, Θ2,2, and Θ̂2,2 are defined

in Appendix C.3.

7.2. Simulation results

Here, we apply the local linear versions (` = 1) of our estimators of p from

Sections 4 and 5 to simulated data, with h and ψj chosen as in Section 7.1. We

use the same nj for p̂1 and p̂2 (the groups for p̂2 are created without knowing the

number of missing specimens, and so there is no sensible way to use a different
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Table 1. Simulation results for five nonparametric estimators of p with MAR D for
models (i) to (iv). We show the median (interquartile range) of ISE×103 computed from
200 samples.

Model p̂nai p̂2 p̂1 p̂3 p̂ungr,N p̂ungr,J

J = 250

(1) (i) (A) 8.29 (6.12) 5.68 (6.27) 6.66 (6.79) 7.46 (9.58) 2.96 (3.09)

14.17 (17.39)(B) 7.35 (6.76) 5.80 (5.56) 6.19 (8.12) 7.08 (9.40) 3.00 (3.14)

(C) 6.99 (7.02) 6.10 (6.32) 6.22 (6.27) 7.80 (7.87) 1.62 (1.65)

(ii) (A) 21.21 (14.59) 9.57 (9.47) 11.99 (12.42) 11.67 (14.22) 2.86 (3.10)

13.34 (15.42)(B) 18.67 (14.62) 9.05 (6.93) 10.52 (10.83) 10.89 (13.16) 3.28 (3.19)

(C) 24.14 (21.52) 18.17 (17.14) 20.67 (25.07) 20.29 (26.02) 1.65 (1.45)

(iii) (A) 14.90 (12.58) 5.30 (7.76) 5.87 (7.95) 5.95 (9.52) 1.65 (2.48)

8.49 (14.82)(B) 13.77 (12.67) 4.41 (5.80) 4.86 (7.67) 6.44 (8.37) 1.88 (2.67)

(C) 14.91 (15.64) 5.85 (7.74) 7.14 (9.51) 8.04 (13.66) 1.06 (1.16)

(2) (i) (A) 11.03 (8.58) 6.20 (6.29) 7.92 (9.41) 9.56 (10.76) 3.24 (3.40)

18.46 (21.22)(B) 11.18 (9.37) 6.86 (6.80) 8.33 (8.37) 10.45 (12.87) 3.62 (4.53)

(C) 10.74 (8.41) 6.76 (6.94) 10.62 (12.08) 9.64 (14.83) 1.75 (1.95)

(ii) (A) 37.50 (21.97) 11.07 (13.10) 14.36 (16.39) 14.55 (19.74) 3.83 (4.66)

15.41 (20.12)(B) 40.83 (19.56) 11.68 (11.44) 14.10 (18.15) 14.91 (18.29) 4.69 (4.64)

(C) 42.64 (21.78) 12.88 (12.52) 25.64 (28.92) 18.04 (27.22) 2.14 (2.65)

(iii) (A) 33.19 (16.81) 5.87 (8.66) 5.96 (7.89) 7.14 (11.69) 2.65 (4.11)

13.08 (22.93)(B) 34.81 (17.60) 5.78 (7.27) 6.46 (9.71) 8.55 (10.62) 3.19 (5.31)

(C) 37.21 (17.37) 4.31 (6.57) 8.16 (10.66) 8.17 (16.50) 1.55 (1.80)

J = 2000

(1) (i) (A) 5.48 (2.67) 0.97 (0.89) 1.22 (1.05) 1.54 (1.39) 0.54 (0.57)

2.39 (2.11)(B) 5.59 (2.54) 1.08 (0.87) 1.12 (0.99) 1.36 (1.51) 0.59 (0.65)

(C) 5.27 (2.78) 1.17 (1.02) 1.44 (1.47) 1.70 (1.86) 0.33 (0.30)

(ii) (A) 15.23 (5.71) 2.21 (2.02) 2.48 (2.25) 2.26 (3.04) 0.62 (0.48)

2.42 (2.43)(B) 14.92 (6.36) 1.95 (1.75) 2.24 (1.63) 2.31 (2.80) 0.65 (0.61)

(C) 16.31 (8.88) 3.22 (2.77) 4.84 (4.30) 3.56 (4.57) 0.36 (0.32)

(iii) (A) 13.98 (4.94) 0.94 (1.06) 1.03 (1.29) 1.48 (1.72) 0.37 (0.42)

1.35 (1.54)(B) 14.29 (5.46) 0.99 (1.15) 0.89 (1.12) 1.49 (2.23) 0.39 (0.49)

(C) 13.59 (5.98) 1.10 (1.07) 1.30 (1.81) 1.90 (2.32) 0.21 (0.25)

(2) (i) (A) 8.93 (3.31) 1.12 (1.09) 1.42 (1.15) 1.82 (2.05) 0.61 (0.63)

2.52 (2.89)(B) 9.07 (3.41) 1.16 (1.08) 1.48 (1.41) 1.58 (1.83) 0.70 (0.71)

(C) 9.73 (3.54) 1.23 (1.13) 1.80 (1.79) 1.81 (1.93) 0.32 (0.30)

(ii) (A) 35.12 (7.62) 2.15 (1.96) 3.52 (3.51) 3.23 (3.01) 0.80 (0.63)

3.11 (3.18)(B) 34.88 (7.65) 2.07 (1.89) 3.51 (2.70) 2.98 (2.95) 0.91 (0.89)

(C) 35.73 (9.49) 2.72 (2.41) 6.29 (6.56) 3.81 (3.44) 0.49 (0.46)

(iii) (A) 31.63 (5.70) 0.84 (0.99) 1.15 (1.34) 1.31 (1.52) 0.48 (0.52)

2.07 (2.51)(B) 32.11 (7.38) 0.94 (1.11) 1.24 (1.35) 1.18 (1.51) 0.56 (0.67)

(C) 32.70 (5.84) 0.84 (0.90) 1.45 (1.42) 1.18 (1.87) 0.28 (0.31)

nj). Therefore, the number of groups J ′ for p̂1 is smaller than that, J , for p̂2, and

we expect p̂2 to outperform p̂1 (see the discussion under Theorem 1). Because p̂2
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exploits RD
i,j, whereas p̂3 uses the less informative |Ij| =

∑nj

i=1R
D
i,j, we also expect

p̂2 to outperform p̂3.

Because group testing is based on less information, it is clear that estimators

constructed from J groups of N aggregated specimens are less accurate than an

estimator constructed from N nongrouped specimens. To illustrate how much

information is lost by grouping, we computed the estimator p̂ungr,N , constructed

from N nongrouped specimens, which is equal to p̂2 with nj = 1 and J = N . We

also computed the estimator p̂ungr,J constructed from J nongrouped specimens,

which is equal to p̂2 with nj = 1 and N = J . Here, the estimator p̂2 computed

from J groups of N aggregated specimens can outperform p̂ungr,J , because only

a small fraction of individuals are positive, and so we need the sample to contain

enough positives to obtain a good estimator, and p̂2 uses N individuals rather

than J .

To illustrate why we need to take MAR into account, we compared p̂2 with

the naive estimator p̂nai of p introduced in Section 5.1. Note that we cannot

compare p̂nai with p̂3, which we use only when RD
i,j is not available (i.e., p̂nai is

not computable). There does not seem to be an obvious naive version of p̂3 using

the same data as p̂3. For all estimators, we took the kernel K as the standard

normal density, and w from Section 7.1 equal to w(x) = 1[q0.1,q0.9](x), with qα
the empirical α-quantile of X. For the CV criterion used in Section 7.1, we took

[a, b] = [q0.1, q0.9].

To generate (Xi,j, Ỹ
∗
j , R

D
i,j) and (Xi,j, Y

∗
j , R

D
i,j), we first generated (Xi,j, Di,j,

RD
i,j) and then obtained Ỹ ∗j following (2.4) and (2.6), and Y ∗j following (2.5) and

(2.7), where we took sp = 0.99 and se = 0.85, that is, within ranges reported from

Covid-19 testing (e.g., Arevalo-Rodriguez et al. (2020); Surkova, Nikolayevskyy

and Drobniewski (2020)). We generated (Xi,j, Di,j) from three models: (i) p(x) =

min(x2/8, 1); (ii) p(x) = 1(−∞,−3)(x)+
[
1/{1+exp(2x+4)}+(x−0.4)2 sin(πx)/20+

0.1
]
1[−3,3.08](x); and (iii) p(x) = 1/{1 + exp(2x+ 3)}, where X ∼ N(0, 0.752) and

D|X ∼ Be{p(X)}, a Bernoulli distribution with parameter p(X). Model (i)

was used by Delaigle and Meister (2011) and Delaigle, Hall and Wishart (2014),

model (iii) is a logistic curve, and model (ii) has a few more features. In (i)

and (ii), p is nondifferentiable at two points far in the tails of fX , which does

not affect the overall performance of the estimators. In each case, we generated

RD
i,j in two ways similar to the method of Zhou, Wan and Wang (2008): (1)

RD|X ∼ Be[0.7 + 0.3 sin{(X−1)2}]; and (2) RD|X ∼ Be
(

exp{sin(X) + 0.5}/[1 +

exp{sin(X) + 0.5}]
)
. The average percentage of missing data is 20% (resp. 39%)

in case (1) (resp. (2)); thus, case (2) is the most challenging.

We generated data from all combinations of models (i) to (iii) and (1) and

(2), for J = 250, 500, 1000, and 2000 groups of sizes nj chosen in three ways:

(A) J/2 groups of size nj = 4 and J/2 groups of size nj = 8; (B) J groups of

size nj = 5; and (C) J groups of size nj = 12 (for p̂1 we took the same nj but

replaced J with the random J ′ in each sample). We ran simulations from each
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− − −

− − −

Figure 1. True curve (—), first (- - -), second (- · - · -), and third (· · ·) quartile estimated
curves in the MAR D case. Top: p̂2 (left), p̂ungr,J (middle), and p̂nai (right) for model
(ii) in case (2) with J = 1,000 and grouping (A). Bottom: model (iii) in case (1) with
grouping (A), when J = 500 for p̂2 (left) or p̂3 (middle), and when J = 2,000 for p̂3
(right).

combination 200 times and summarized the results using the integrated squared

error, ISE =
∫ 1.5

−1.5{p̌(x)−p(x)}2 dx, where p̌ denotes any estimator of p, truncated

to [0,1], because we know that p ∈ [0, 1]; note that [−1.5, 1.5] contains about 95%

of Xi.

Table 1 shows, for each estimator, the median and interquartile range of the

200 ISE×103 for J = 250 and 2000; see Table D.1 in Appendix D for the other

values of J . To see what this corresponds to for p̂1, recall that the number J ′

of groups used by p̂1 is random, because it is computed from the number N ′ ∼
Bi(N, 1 − qR) of individuals with nonmissing specimens in each sample, where

N =
∑J

j=1 nj and N ′ =
∑J′

j=1 nj. Unsurprisingly, in general, for all estimators,

the difficulty of the estimating task increases with the amount of missing data. As

expected, p̂1, p̂2, p̂3, and p̂ungr,J improved as J increased, but the inconsistent p̂nai
was very biased and performed poorly. Consistent with our theory in Section 6,

p̂2 performed slightly better (or even much better for grouping (C)) than p̂1 in all

cases. Although p̂3 requires only |Ij| =
∑nj

i=1R
D
i,j for each j, its performance was

not much worse than that of p̂2, which needs the individual RD
i,j. An exception is

model (ii) with grouping (C), where the larger prevalence and group sizes were

more difficult to deal with for p̂3. Furthermore, p̂2 outperformed p̂ungr,J in all cases

(p̂1 and p̂3 did in most cases, but again, not for model (ii) with grouping (C)),

which can be expected in these low prevalence settings where we need to observe
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− − −

Figure 2. True curve (—), first (- - -), second (- · - · -), and third (· · ·) quartile estimated
curves in the MAR D case for model (i) with grouping (B) and J = 1000 in case (2) for
p̂2 (left), and in case (1) for p̂2 (middle) and p̂ungr,J (right).

many individuals to find some positives. Finally, as expected, the estimator

p̂ungr,N that uses N nongrouped individuals significantly outperformed the other

estimators, although the estimators constructed from grouped data performed

well; see the figures below for an illustration. Note that for p̂ungr,N , the sample

size N is larger with grouping (C) than it is with (A), which is itself larger than

that of (B). This explains why it performed much better for grouping (C), and a

bit better for grouping (A), than it did for grouping (B).

To illustrate some of these results visually, we show, for a few cases, the true

curve and three estimated curves corresponding to the samples that gave the first,

second, and third quartile values, respectively, out of the 200 ISEs. We refer to

them as the first, second, and third quartile estimated curves, respectively. The

top row of Fig. 1 compares p̂2, p̂ungr,J , and p̂nai for model (ii) in case (2) with

grouping (A) and J = 1,000. It illustrates the large bias of the inconsistent p̂nai,

which performed poorly in most cases. It also illustrates how p̂2 can outperform

p̂ungr,J . As illustrated in the second row of Fig. 1, p̂2 and p̂3 often performed

similarly; here, we show them for model (iii) in case (1) with grouping (A) and

J = 500. To illustrate that our estimators improve as J increases, we also show

p̂3 for J = 2,000 (we obtained similar results for p̂1 and p̂2). Fig. 2 illustrates the

finite-sample advantage of p̂2 over p̂ungr,J ; we show them for model (i), grouping

(B); and J = 1,000 in case (1). We also see that p̂2 performed worse in case (2)

than it did in case (1), which illustrates the degradation of the estimators when

more data are missing.

8. Real-Data Illustration

As is usual in real-data analyses from the group testing literature, our goal is

to compare our estimators based on grouped data with estimators based on non-

grouped data, to show that group testing can be applied in practice. As in that

literature (e.g., Xie (2001); Chen, Tebbs and Bilder (2009); Zhang, Bilder and

Tebbs (2013)), our data sets include individual test results, which we treated as
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perfect, that is, Di,j ≡ Yi,j (the documentation available for those data suggests

that this is reasonable; see, for example, Maheu-Giroux et al. (2017) for HIV

data). Then, as in the literature, we grouped the individuals into J−1 (resp. J ′−
1) groups of equal size nj = n (we considered two cases (D): n = 8 and (E): n = 4),

and one group of size N−n(J−1), where J = bN/nc (resp. N ′−n(J ′−1), where

J ′ = bN ′/nc), and generated Y ∗j (resp., Ỹ ∗j ) following (2.5) and (2.7) (resp. (2.4)

and (2.6)), for different values of sp and se.

Our data set comes from the National Health and Nutrition Examination

Survey carried out in the United States from 2015 to 2016 (NHANES (2017)).

Note that we use this data set merely for illustration purposes, and ignore the

sampling weights, as often occurs in this case. Our goal is to estimate p(x) =

E(D|X = x), where D is an indicator of the presence of the hepatitis B core

antibody (HBcAb) for a patient, and X is the patient’s age, ranging from 6 to

80 years. The sample size is N = 8,021, D is missing for 897 individuals, so

that N ′ = 7,124, and no X is missing. The results of a point-biserial correlation

coefficient test suggested a strong relationship between X and RD. Thus, it seems

reasonable to assume that the missing data mechanism depends on X, and we

illustrate our techniques with MAR D on these data. Because p is unknown,

we took our target curve to be p̂ideal, the estimator p̂2 computed from Yi,j, with

sp = se = n = 1.

The presence of the HBcAb indicates current or past infection by the hepatitis

B virus. Several factors can influence prevalence in the general population; for

example, baby boomers (people born during 1945–1965, aged 50 to 70 in the data

set) are known to have higher prevalence, because the vaccine was approved in

the United States only in 1982, and further infection controls started around 1992

(see Shing et al. (2020)). Moreover, all other factors being equal, older individuals

have a greater chance of having been exposed to the virus. Reflecting this, the

prevalence curve p̂ideal increases with age, with a striking peak for patients in the

age bracket 50–70, before decreasing again as age increases to 80.

We grouped the individuals as described above, either with sp = se = 1 or, to

illustrate the effect of imperfect tests, with sp = 0.995 and se = 0.95, as in White

et al. (2003). In each case, we randomly created 200 samples of (Xi,j, Ỹ
∗
j , R

D
i,j)

and (Xi,j, Y
∗
j , R

D
i,j), and calculated our estimators, p̂1, p̂2, and p̂3, as well as p̂ungr,J

computed based on J nongrouped individuals selected randomly among N , with

J equal to the number of groups used by p̂2, and the naive estimator p̂nai from

Section 7.2. Recall that p̂1 and p̂2 require knowing each missing status RD
i,j,

whereas p̂3 requires only |Ij| =
∑n

i=1R
D
i,j.

We chose h, ψj, and K as in Section 7.2. To assess the performance of the

estimators, denoted here generically by p̌, we calculated the integrated squared

difference ISD =
∫ b
a
{p̌(x) − p̂ideal(x)}2 dx, with a and b the 2.5% and 97.5%

empirical quantiles, respectively of X. We summarize the ISDs in Table 2. In

this example, p̂2 and p̂3 outperformed p̂1, p̂ungr,J , and p̂nai, especially when n = 4
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Table 2. Estimators of p for the hepatitis B data set with groupings (D) and (E). The
numbers shown are the median (interquartile range) of the ISD×103 computed from 200
samples.

Grouping p̂1 p̂2 p̂3 p̂ungr,J p̂nai
sp = se = 1

(D) 12.78 (12.77) 11.63 (10.95) 11.85 (11.93) 15.76 (17.01) 13.37 (14.33)

(E) 5.65 (5.26) 4.62 (4.14) 5.00 (4.79) 7.54 (7.69) 7.26 (6.54)

sp = 0.995, se = 0.95

(D) 13.51 (13.75) 11.68 (13.09) 12.82 (14.63) 17.30 (20.59) 13.58 (14.38)

(E) 6.09 (5.55) 5.29 (4.34) 5.49 (5.07) 8.67 (8.34) 7.38 (6.66)
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Figure 3. p̂ideal (—) for the hepatitis B data set, first (- - -), second (- · - · -), and third
(· · ·) quartile estimated curves with sp = 0.995 and se = 0.95 for, from left to right, p̂1,
p̂2, and p̂3 in the first row, and p̂ungr,J and p̂nai in the second row, for grouping (E).

and J = 2006. Because the prevalence is low and the sample size is not extremely

large, p̂ungr,J fared worst, because very few of the J individuals were positive,

making the estimation challenging. The same conclusions can be drawn from

Fig. 3, which shows the estimated quartile curves corresponding to the samples

for the first, second, and third quartiles of the 200 ISDs of p̂1, p̂2, p̂3, p̂ungr,J ,

and p̂nai with grouping (E). Overall, all estimators captured the increasing trend

of prevalence with a peak in the bracket 50–70, followed by a decreasing trend.

However, the naive estimator p̂nai, which is biased, tended to flatten the peak,

and p̂3 and p̂ungr,J were more variable, especially p̂ungr,J (because the prevalence

is low, the J individuals contain too few positives to produce reliable estimators).
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9. Extensions

In this section, we discuss a few interesting potential extensions of our

methods. Note that we discuss only the main ideas; details, such as a fully

data-driven implementation, are left for future research.

Our methods can be extended to the multivariate case of a d-dimensional

covariate X ∈ Rd by using a purely nonparametric approach, as in Delaigle and

Meister (2011), or, to avoid the curse of dimensionality, by using single-index or

partially linear models, as in Delaigle, Hall and Wishart (2014). These extensions

are technical, but conceptually straightforward, because the main difficulty is

expressing p in terms of a regression curve estimable from the data, which

is identical to the univariate case explored here. For example, in the purely

nonparametric case, to extend the local linear version of p̂2 to d dimensions,

it suffices to replace X with X = (X1, . . . , Xd)T in (2.3) and (2.7). Then,

for x = (x1, . . . , xd)T , we can estimate p(x) = E(Di,j|Xi,j = x) by p̂2(x) =

1− eT1 Ŝ−1T̂, where eT1 = (1, 0, . . . , 0), Ŝ = (Ŝk,k′)0≤k,k′≤d, and T̂ = (T̂0, . . . , T̂d)T ,

with Ŝk,k′ =
∑J

j=1 ψj
∑nj

i=1R
D
i,jKH(Xi,j − x)(Xi,j,k − xk)δk(Xi,j,k′ − xk′)δk′ , and

T̂k =
∑J

j=1 q̂
nj−1
RD (Z∗j +se−1)/(sp + se−1)ψj

∑nj

i=1R
D
i,jKH(Xi,j−x)(Xi,j,k−xk)δk ,

where δk = 1(k > 0), H = diag(h1, . . . , hd) is the bandwidth matrix (often

taken to be a diagonal rescaled by the standard deviations of Xi,j,k), K is

a d-dimensional kernel (e.g., a d-dimensional standard normal density), and

KH(x) = |H|−1/2K(H−1/2x), with |H| the determinant of H.

Such multivariate estimators may be useful when we can observe additional

auxiliary variables U ∈ Rd−1 for the MAR assumption. See, for example, Wang,

Rotnitzky and Lin (2010) for examples with nongrouped data, where the authors

are interested in estimating a curve p(x) = E(D|X = x), and assume that the

MAR assumption holds with X and U, that is,

P (RD = r|X,U, D) = P (RD = r|X,U) for r = 0, 1 .

They use a parametric model for P (RD = r|X,U) and a doubly robust method

to mitigate the effect of incorrect parametric assumptions. In our case with

grouped data, to avoid this parametric specification, we can use pmult(x,u) =

E(D|X = x,U = u), which can be estimated by p̂mult(x,u), one of the

multivariate estimators discussed in the previous paragraph. Then, noting that

p(x) = E{pmult(X,U)|X = x}, we can estimate p(x) using a locally smoothed

version of p̂mult(x,u), for example, p̂(x) =
∑J

j=1

∑nj

i=1 p̂mult(Xi,j,Ui,j)Kh′(x −
Xi,j)

/∑J
j=1

∑nj

i=1Kh′(x−Xi,j) , with h′ > 0 a bandwidth.

The local constant (` = 0) versions of our three estimators can also

be extended to the case where X is discrete, by replacing the local weights

Kh(x−Xi,j) with discrete weights L(x,Xi,j, h). For example, if X takes c values

0, 1, . . . , c − 1, then following Racine and Li (2004), we can use L(x,Xi,j, h) =
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1{Xi,j = x} + h · 1{Xi,j 6= x}, where h ∈ [0, 1]. More generally, if X has a

natural ordering and |Xi,j − x| is well defined, following Racine and Li (2004),

we can use L(x,Xi,j, h) = h|Xi,j−x|. In the bivariate case, where X = (X1, X2)

with X1 continuous and X2 discrete, to estimate p(x) = E(Y |X = x), we can

rather replace Kh(Xi,j − x) with Kh(Xi,j,1 − x1)L(x2, Xi,j,2, λ), where λ ∈ [0, 1]

and h > 0 are bandwidths.

Another interesting extension is the estimation of the prevalence conditional

on X lying within a range of values [a, b], that is, p(a, b) = P (D = 1|X ∈ [a, b]),

where a, b ∈ R. For example, when X denotes age, it is often of interest

to consider prevalence given an age range. We have p(a, b) =
∫ b
a
P (D =

1|X = x)fX(x) dx/
∫ b
a
fX(x) dx = E{p(X)1[a,b](X)}/{FX(b) − FX(a)}, where

FX denotes the distribution function of X. Therefore, we can estimate p(a, b)

by p̂(a, b) =
∑J

j=1

∑nj

i=1 p̂(Xi,j)1[a,b](Xi,j)/
∑J

j=1

∑nj

i=1 1[a,b](Xi,j), where p̂ = p̂1,

p̂2, or p̂3, depending on whether the setting is that of Section 4, 5.1, or 5.2,

respectively.

Supplementary Material

The online supplementary material contains all technical proofs and numer-

ical details.
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