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Abstract: Model selection and model averaging are essential to regression anal-

ysis in environmental studies, but determining which of the two approaches is

the more appropriate and under what circumstances remains an active research

topic. In this paper, we focus on geostatistical regression models for spatially ref-

erenced environmental data. For a general information criterion, we develop a

new perturbation-based criterion that measures the uncertainty (or, instability) of

spatial model selection, as well as an empirical rule for choosing between model

selection and model averaging. Statistical inference based on the proposed model

selection instability measure is justified both in theory and via a simulation study.

The predictive performance of model selection and model averaging can be quite

different when the uncertainty in model selection is relatively large, but the perfor-

mance becomes more comparable as this uncertainty decreases. For illustration, a

precipitation data set in the state of Colorado is analyzed.

Key words and phrases: Data perturbation, generalized degrees of freedom, geo-

statistics, information criterion, model complexity, spatial prediction.

1. Introduction

For regression analysis of geostatistical data in many environmental studies,

the response variable of interest is often observed along with a set of covariates at

spatial sampling locations. Selection of a subset of covariates and prediction of

the response at unsampled locations are generally based on fitting spatial linear

regression models and choosing a suitable subset of covariates using a model se-

lection criterion such as the Akaike’s information criterion (AIC) (Akaike (1973)).

To assess the fitted models, stochasticity of both the parameter estimates and

that of the model selection should be considered. In geostatistics, model selection

may involve not only selection of covariates but also determination of the spatial

error structure. In this paper, we restrict our attention to the selection of a suit-

able subset of covariates in a geostatistical model. However, the randomness in

the selection of models (or, selection uncertainty) is often ignored in the statistical
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inference post model selection (e.g., Breiman (1996)). To mitigate the effect of

selection uncertainty, model averaging that pools multiple fitted models is widely

used as it can provide a better prediction than a single best model. Although

model selection and model averaging have been well studied for the standard lin-

ear regression that assumes independent errors (e.g., Shao (1997); Hoeting et al.

(1999); Burnham and Anderson (2002); Claeskens and Hjort (2008)), results are

far fewer for spatial linear regression in geostatistics. We develop a new approach

to geostatistical regression model selection and model averaging for the analysis

of spatial data in the environmental sciences.

With model selection (or, covariate selection), generally a best model (or, a

best subset of covariates) is selected based on a certain criterion and the more

important covariates are identified according to the best model. With model

averaging, however, several candidate models are combined based on estimated

model weights. Although model averaging tends to give better prediction than

model selection, the computational cost is often higher due to the search for suit-

able weights. It is also more challenging to infer the relationship between the

response and the covariates based on an averaged model. Under the Bayesian

framework (e.g., Hoeting et al. (1999); Johnson and Hoeting (2011)), the poste-

rior inclusion probability (PIP) of each covariate provides a measure of impor-

tance of the covariate in relation to the response, for which a prior specification

and Markov chain Monte Carlo (MCMC) for the posterior computation are re-

quired. In addition, some Gibbs sampler based methods are also commonly used

for Bayesian variable selection such as the stochastic search variable selection

(SSVS) algorithm (George and McCulloch (1993)). In this paper, our focus is

to investigate the connection between model selection and model averaging in a

frequentist framework.

It is in general not clear whether one strategy (i.e., model selection or model

averaging) is preferable over the other and under what circumstances. To address

this issue, Yuan and Yang (2005) developed a criterion to capture the uncertainty

of model selection in standard linear regression with independent errors. Ghosh

and Yuan (2009) proposed an L1-norm criterion that measures the instability of

model selection for logistic regression with binary data, as well as an empirical

rule to suggest whether model selection or model averaging is preferable. In

addition, Efron (2014) used a bootstrap-based method to discuss the stability of

an estimator after model selection for independent observations. These results

are useful for evaluating model selection and model averaging, but the response

variables are assumed to be independent.
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In geostatistics, Hoeting et al. (2006) provided some heuristic arguments in

spatial linear regression model selection using AIC. A simulation study indicated

that if the spatial dependence is ignored, some important covariates may not be

selected and hence the prediction errors will be high. Huang and Chen (2007)

developed an approximately unbiased estimator of the mean squared prediction

error (MSPE) for evaluating different spatial predictors based on generalized

degrees of freedom, and derived asymptotic efficiency results for the proposed

method, but here the focus was on selection among different predictors obtained

by different spatial models for prediction rather than selection of covariates. More

recently, Chu, Zhu and Wang (2011) proposed a penalized maximum likelihood

estimation (PMLE) and a one-step sparse approximation to simultaneously select

covariates and estimate parameters in spatial linear regression models, but quan-

tification of model selection uncertainty was not considered. The uncertainty of

model selection has received much attention under the Bayesian approaches (e.g.,

Clyde and George (2004); Johnson and Hoeting (2011)) and can be measured via

posterior inference. To the best of our knowledge, however, foundational ques-

tions of how to evaluate the uncertainty of model selection and the connection

between model selection and model averaging in geostatistical regression settings

have not been adequately addressed under the frequentist framework and will be

explored here.

We develop new methodology for geostatistical regression model selection

and model averaging in the context of two model selection criteria, a generalized

information criterion (GIC) and a conditional generalized information criterion

(CGIC). We propose a novel criterion to measure the uncertainty (or, instabil-

ity) of geostatistical regression model selection based on the selected model and

the corresponding predictor. The resulting predictor after model selection and

parameter estimation is nonlinear, which makes the problem more challenging to

handle than the standard linear regression. Our overall strategy is to develop an

index that quantifies the instability in geostatistical regression model selection

via a perturbation technique. It simultaneously takes into account the uncertain-

ties of model selection and parameter estimation. By normalizing the instability

index, a generalized instability measure is developed which more accurately re-

flects the complexity of a model fitting procedure. In addition, we establish a

theoretical connection between the proposed index of selection instability and

the notion of generalized degrees of freedom for geostatistical regression model

selection using GIC and CGIC. For practical applications, we further develop an

empirical rule that helps to determine whether model selection or model averag-



206 CHUN-SHU CHEN, JUN ZHU AND TINGJIN CHU

ing is preferred under GIC and CGIC.

The remainder of this paper is organized as follows. In Section 2, we describe

the geostatistical regression model and the corresponding spatial predictor. In

Section 3, we derive the properties of various model selection methods for geosta-

tistical regression and some model averaging methods are also introduced. We

then develop an index of model selection instability and a generalized instability

measure. Further, a theoretical result associated with the proposed methodology

is established. In Section 4, we provide an estimation method for the generalized

instability measure and an empirical rule for choosing between model selection

and model averaging. The results of two simulation scenarios and a weather

data example are given in Sections 5 and 6, respectively. We conclude with a

discussion in Section 7, and the technical details are given in the Appendix.

2. Geostatistical Regression Model and Spatial Prediction

2.1. Geostatistical regression model

Let D ⊂ R2 be a continuous and bounded study region, and let s be an

arbitrary location in D. Suppose there are p covariates at location s that are

denoted, together with 1 for the intercept, by x(s) = (1, x1(s), . . . , xp(s))
′. A

spatial random field {S(s) : s ∈ D} of interest is

S(s) = β0 +
∑
j∈M0

βjxj(s) + η(s), (2.1)

where βj for j = 1, . . . , p are regression coefficients, M0 is the index set of the

covariates in the true model, and η(·) is a spatial random error process that

captures the spatial variation of S(·) and can provide a local adjustment to the

mean trend due to unobserved covariates. It is a common practice to assume that

η(·) follows a Gaussian process with mean zero and covariance function K(·;θ)

parameterized by the vector θ. For various covariance functions, see Chapter 4 of

Schabenberger and Gotway (2005). Now, the response variable Z(s) at location

s ∈ D is modeled by

Z(s) = β0 +
∑
j∈M0

βjxj(s) + η(s) + ε(s), (2.2)

where ε(s) ∼ N(0, σ2ε) is a measurement error and is independent of the spatial

error process η(s). We refer to (2.2) as the true geostatistical regression model.

We consider model selection among the p covariates indexed by P = {1, . . . ,
p}. Let M denote a candidate model as a subset of P, and let M ⊆ 2P denote

a class of candidate models. Let Z = (Z(s1), . . . , Z(sn))′ ≡ (Z1, . . . , Zn)′ be the
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data observed at n sampling locations s1, . . . , sn, and let XM = (xM (s1), . . . ,

xM (sn))′ be an n× (|M |+ 1) design matrix for model M with |M | denoting the

number of covariates in M . For a given candidate model M ∈ M, (2.2) can be

rewritten in matrix form as

Z = XMβM + η + ε ∼ N(XMβM ,ΣZ), (2.3)

where βM is the vector of regression coefficients consisting of β0 and {βj : j ∈M},
η = (η(s1), . . . , η(sn))′ is the vector of spatial random errors with a covariance

matrix Ση(θ) = [K(si, si′ ;θ)]ni,i′=1, ε = (ε(s1), . . . , ε(sn))′ ∼ N(0, σ2εI) is the

vector of independent measurement errors, and ΣZ = Ση(θ) +σ2εI is the covari-

ance matrix of the data vector Z.

2.2. Spatial prediction

For predicting the spatial random field {S(s) : s ∈ D} based on the data

vector Z, take S = (S(s1), . . . , S(sn))′ at n sampling locations. By (2.1), we

have

S = XM0
βM0

+ η ∼ N(XM0
βM0

,Ση(θ)). (2.4)

For a given model M ∈ M with known θ and σ2ε , the best linear unbiased

predictor (BLUP) of S(s) at any location s ∈ D is obtained by minimizing

the MSPE (see, e.g., Schabenberger and Gotway (2005)). The BLUP of S(s),

indexed by a given model M , is given by

ŜM (s;θ) = x′M (s)β̃M + cov(η(s),η)Σ−1Z (Z −XM β̃M ), (2.5)

where β̃M = (X ′MΣ−1Z XM )−1X ′MΣ−1Z Z is the generalized least squares estima-

tor of β and cov(η(s),η) = (K(s, s1;θ), . . . ,K(s, sn;θ)). We rewrite the vector

of BLUPs ŜM (θ) = (ŜM (s1;θ), . . . , ŜM (sn;θ))′ as

ŜM (θ) = HM (θ)Z, (2.6)

where HM (θ) = σ2εΣ
−1
Z XM (X ′MΣ−1Z XM )−1X ′MΣ−1Z + Ση(θ)Σ−1Z . It follows

from (2.6) that ŜM (θ) is a linear combination of the data vector Z, given θ and

σ2ε .

In practice, the parameters θ and σ2ε are unknown but can be estimated by,

for example, maximum likelihood (ML), restricted maximum likelihood (REML),

or a Bayesian method (e.g., Schabenberger and Gotway (2005)). Here, we use

likelihood-based methods to estimate model parameters and in particular, the

REML method, because it tends to give less biased estimators than the corre-

sponding ML estimators (McGilchrist (1989); Cressie and Lahiri (1993, 1996)).

Let θ̂M and σ̂2ε,M denote the REML estimates under the candidate model (2.3).



208 CHUN-SHU CHEN, JUN ZHU AND TINGJIN CHU

We have the estimates of the covariance matrix Σ̂Z = Σ̂η(θ̂M ) + σ̂2ε,MI and

the vector of regression coefficients β̂M = (X ′MΣ̂−1Z XM )−1X ′MΣ̂−1Z Z. Together

with (2.5), an empirical predictor of S(s) for any s ∈ D is given by

ŜM (s; θ̂M ) = x′M (s)β̂M + ĉov(η(s),η)Σ̂−1Z (Z −XM β̂M ), (2.7)

where ĉov(η(s),η) = (K̂(s, s1; θ̂M ), . . . , K̂(s, sn; θ̂M )). Analogous to (2.6), the

predictors of S at n sampling locations can be rewritten as

ŜM (θ̂M ) = (ŜM (s1; θ̂M ), . . . , ŜM (sn; θ̂M ))′ = ĤM (θ̂M )Z, (2.8)

where

ĤM (θ̂M ) = σ̂2ε,MΣ̂−1Z XM (X ′MΣ̂−1Z XM )−1X ′MΣ̂−1Z + Σ̂η(θ̂M )Σ̂−1Z . (2.9)

Unlike (2.6), however, the matrix ĤM (θ̂M ) depends on the data vector Z and

hence ŜM (θ̂M ) in (2.8) is no longer a linear predictor.

3. Index of Selection Instability in Geostatistical Regression

3.1. Model selection via GIC and CGIC

Under the candidate model (2.3), we consider the generalized information

criterion (GIC),

GICλ(M) = −2`M
(
β̂M , θ̂M , σ̂

2
ε,M ;Z

)
+ λ(|M |+ |θ|+ 2), (3.1)

where λ > 0 is a penalty parameter, |M | is the number of covariates in model M ,

|θ| is the number of unknown parameters in Ση(θ), `M (·) is the log-likelihood

function of Z based on model M , and β̂M , θ̂M , and σ̂2ε,M are the REML es-

timates. The GIC in (3.1) includes Akaike’s information criterion (AIC) with

λ = 2 (Akaike (1973)), the Bayesian information criterion (BIC) with λ = log(n)

(Schwarz (1978)), the corrected AIC (AICc) criterion with λ = 2n/(n − |M | −
|θ| − 2) (Hurvich and Tsai (1989)), and the risk inflation criterion (RIC) with

λ = 2 log(p) (Foster and George (1994)). For a given λ, the model that has the

smallest value of GICλ is selected as the best model and is denoted by

M̂(λ) = arg min
M∈M

GICλ(M). (3.2)

By (2.8) and (2.9), the corresponding predictor of S is

ŜM̂(λ)(θ̂M̂(λ)) = ĤM̂(λ)(θ̂M̂(λ))Z. (3.3)

In addition, we consider a conditional generalized information criterion (CGIC)

given by

CGICλ(M) = n−1
{
‖Z − ŜM (θ̂M )‖2 + λσ̂2ε tr

(
ĤM (θ̂M )

)}
, (3.4)
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where λ > 0 is a penalty parameter and σ̂2ε is an estimate of σ2ε invariant to

the model choice obtained by, for example, REML based on the full model. The

CGIC in (3.4) includes the conditional Akaike’s information criterion (CAIC)

with λ = 2 and the conditional BIC (CBIC) criterion with λ = log(n) as special

cases (e.g., Vaida and Blanchard (2005); Chen and Huang (2012)). For a given

λ, the selected model based on CGICλ is denoted by

M̂c(λ) = arg min
M∈M

CGICλ(M) (3.5)

and the corresponding predictor of S is

ŜM̂c(λ)
(θ̂M̂c(λ)

) = ĤM̂c(λ)
(θ̂M̂c(λ)

)Z. (3.6)

Compared with the GIC in (3.1), the CGIC in (3.4) not only considers the

size of regression term (i.e., |M |), but also the complexity of spatial dependence

in the model selection procedure. The proof of the following result is given in

the Appendix.

Proposition 1. Under (2.3), (2.8), and (2.9), if |M | is the number of covariates

in model M and Q̂M (θ̂M ) = XM (X ′MΣ̂−1Z XM )−1X ′MΣ̂−1Z with Σ̂Z = Σ̂η(θ̂M )+

σ̂2ε,MI, then, for any λ > 0 and M ∈M, (3.4) can be rewritten as

CGICλ(M) = n−1[‖Z − ŜM (θ̂M )‖2 + λσ̂2ε |M |
+ λσ̂2εtr(Σ̂η(θ̂M )Σ̂−1Z

{
I − Q̂M (θ̂M )

}
)]. (3.7)

The third term on the right side of (3.7) reflects the complexity of spatial

dependence in the model selection procedure. Hence, the CGIC is expected to be

more suitable than the GIC in geostatistical regression model selection, as will

be demonstrated by a simulation study in Section 5.

3.2. Model averaging via GIC and CGIC

Model averaging combines several predictors ŜM (θ̂M ) obtained from candi-

date models for M ∈ M based on estimated model weights. Two approaches

to estimating the model weights are frequentist model averaging (FMA) and

Bayesian model averaging (BMA). We focus on using the FMA. Readers inter-

ested in BMA may refer to Raftery, Madigan and Hoeting (1997) and Hoeting

et al. (1999) for details. We first review a commonly used FMA technique based

on GIC and CGIC (e.g., Burnham and Anderson (2002); Claeskens and Hjort

(2008)). The idea is to consider all the candidate models in M for averaging,

where the weight of each candidate model M is determined by
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ŵλ(M) =
exp {−(1/2)GICλ(M)}∑

M∗∈M exp {−(1/2)GICλ(M∗)}
(3.8)

for GICλ(M), or

ŵcλ(M) =
exp {−(1/2)CGICλ(M)}∑

M∗∈M exp {−(1/2)CGICλ(M∗)}
(3.9)

for CGICλ(M). For a given λ > 0, the model averaging predictors of S based on

GICλ(M) and CGICλ(M) are obtained, and are respectively denoted as

Ŝλ =
∑
M∈M

ŵλ(M)ŜM (θ̂M ), (3.10)

and

Ŝcλ =
∑
M∈M

ŵcλ(M)ŜM (θ̂M ), (3.11)

where ŜM (θ̂M ) is given in (2.8). See Burnham and Anderson (2002) and Claeskens

and Hjort (2008) for a comprehensive review of model averaging.

3.3. Generalized instability measure

If a model selection procedure is unstable, model averaging strategies can be

considered in order to make more accurate predictions. Otherwise, it is relatively

easy to find a best model according to some criterion, and then predictions will

work well based on the selected model. Therefore, a measure of the instability

associated with a model selection procedure is a critical issue when deciding

model selection or model averaging.

We develop new measures of the instability associated with model selection

based on GIC and CGIC. Let ei for i = 1, . . . , n be the ith column of the n× n
identity matrix. For a given penalty parameter λ > 0 (or, a given model selection

criterion), we define an index of selection instability (ISI) as

ISI(λ) = E

(
lim
δ→0

δ−1
n∑
i=1

∣∣∣Ŝγ̂(λ)(si;Z + δei)− Ŝγ̂(λ)(si;Z)
∣∣∣) , (3.12)

where γ̂(λ) denotes a selected model obtained by GICλ or CGICλ according to

the data vector Z. Here, Ŝγ̂(λ)(si;Z+ δei) and Ŝγ̂(λ)(si;Z) are the predictors of

S(si) based on the model γ̂(λ) applied to Z + δei and Z, respectively. It can be

shown that Ŝγ̂(λ)(si;Z) = Ŝγ̂(λ)(si; θ̂γ̂(λ)) and thus, Ŝγ̂(λ)(si;Z) is an alternative

notation of Ŝγ̂(λ)(si; θ̂γ̂(λ)), used here to emphasize that it relies on the data

vector Z.

The ISI is an L1-norm criterion and can be applied to assess the instability

of GICλ(M) of (3.1) and CGICλ(M) of (3.4). If a model selection procedure
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is unstable, a minor perturbation in Z has a high chance to select a very dif-

ferent model, say γ̂∗(λ) and γ̂∗(λ) 6= γ̂(λ). As a result, the difference between

Ŝγ̂(λ)(si;Z + δei) and Ŝγ̂(λ)(si;Z) under the same model γ̂(λ) is expected to be

large. Thus, the predictors based on the selected model tend to have large vari-

ances and the ISI value of (3.12) is expected to be larger. Unlike the standard

regression models with independent responses (Ghosh and Yuan (2009)), our

focus is on geostatistical regression models with spatially dependent responses

and the predictors in (3.12) are nonlinear after model selection and parameter

estimation.

The following proposition provides an alternative expression for ISI(λ); the

proof is in the Appendix.

Proposition 2. Under (2.3), (2.4), (2.8), and (2.9), if γ̂(λ) is obtained from

GICλ(M) of (3.1) or CGICλ(M) of (3.4) with corresponding predictors Ŝγ̂(λ)
(θ̂γ̂(λ)) = (Ŝγ̂(λ)(s1; θ̂γ̂(λ)), . . . , Ŝγ̂(λ)(sn; θ̂γ̂(λ)))

′ of S, and if
∑n

i=1E(|Ŝγ̂(λ)(si;
θ̂γ̂(λ))||S) < ∞ almost surely, then, ISI(λ) of (3.12) is given by

ISI(λ) =

n∑
i=1

E

(
∂

∂S(si)
E
(
Ŝγ̂(λ)(si; θ̂γ̂(λ))

∣∣S)) . (3.13)

With λ > 0, ISI(λ) at (3.13) can be interpreted as the expected sum of

sensitivities of the spatial predictor Ŝγ̂(λ)(·) with respect to the underlying process

S(·). Thus, a larger ISI value indicates that the corresponding model selection

criterion has a higher selection instability. Although it is consistent with the

interpretation of the definition of ISI(λ) at (3.12), (3.13) gives a more intuitive

interpretation regarding the instability of a model selection criterion.

The ISI(λ) at (3.13) is akin to a generalized degrees of freedom which can

be used to measure the complexity of a model fitting procedure (e.g., Ye (1998);

Huang and Chen (2007)). In the absence of spatial dependence, ISI(λ) reduces

to the generalized degrees of freedom (GDF) in Ye (1998).

For fairer comparison among various model selection criteria, we normalize

the ISI(λ) and define a generalized instability measure (GIM) as

GIM(λ) =
ISI(λ)

|γ̂(λ)|+ |θ|+ 2
, (3.14)

where γ̂(λ) is the model selected by GICλ or CGICλ, |γ̂(λ)| is the number of

covariates in model γ̂(λ), |θ| is the number of unknown parameters in Ση(θ),

and the additional 2 is for the intercept β0 and the noise variance σ2ε . We use

GIM(λ) to measure the instability of a model selection criterion under geostatis-

tical regression settings.
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4. Practical Considerations

4.1. Estimation of the generalized instability measure

In general, ISI(λ) and GIM(λ) are unknown and need to be estimated. For

this purpose, we obtain an approximately unbiased estimator ÎSI(λ) of ISI(λ)

based on a data perturbation technique (Huang and Chen (2007)). Here, we use

GICλ(M) of (3.1) to illustrate how to estimate ISI(λ), a similar procedure can

be applied to CGICλ(M) of (3.4).

We consider model selection among the p covariates indexed by P = {1, . . . , p}.
Let M denote a candidate model as a subset of P and letM⊆ 2P denote a class

of candidate models. For a given data vectorZ and a selection criterion GICλ(M)

with λ > 0 and M ∈M, the estimation procedure of ISI(λ) comprises four steps.

1. Based on (3.1) and (3.2), select a model M̂(λ) with |M̂(λ)| covariates from

M.

2. Generate a set of perturbed data vectors Z∗(t) = (Z
∗(t)
1 , . . . , Z

∗(t)
n )′ = Z +

τξ(t) for t = 1, . . . , T , with ξ(t) ∼ N(0, σ̂2εI) independent of Z and τ ∈ (0, 1]

the size of perturbation.

3. Based on (3.1) and (3.2), select a model M̂∗(t)(λ) fromM for each perturbed

data vector Z∗(t); t = 1, . . . , T , where the corresponding predictor of S is

denoted as Ŝ
∗(t)
M̂∗(t)(λ)

(θ̂
∗(t)
M̂∗(t)(λ)

) = (Ŝ
∗(t)
M̂∗(t)(λ)

(s1; θ̂
∗(t)
M̂∗(t)(λ)

), . . . , Ŝ
∗(t)
M̂∗(t)(λ)

(sn;

θ̂
∗(t)
M̂∗(t)(λ)

))′.

4. With S̄∗(si) ≡ T−1
∑T

t=1 Ŝ
∗(t)
M̂∗(t)(λ)

(si; θ̂
∗(t)
M̂∗(t)(λ)

) and Z̄∗i ≡ T−1
∑T

t=1 Z
∗(t)
i

for i = 1, . . . , n, approximate ISI(λ) by

ÎSI(λ) =
1

(T − 1)τ2σ̂2ε

n∑
i=1

T∑
t=1

(Ŝ
∗(t)
M̂∗(t)(λ)

(si; θ̂
∗(t)
M̂∗(t)(λ)

)− S̄∗(si))(Z∗(t)i − Z̄∗i ).

From ÎSI(λ), an estimator ĜIM(λ) of GIM(λ) for GICλ is then

ĜIM(λ) =
ÎSI(λ)

|M̂(λ)|+ |θ|+ 2
. (4.1)

Henceforth, we use ĜIM(λ) to measure the instability of a model selection crite-

rion when fitting a geostatistical regression model.

4.2. An empirical rule

We propose an empirical rule based on GIM(λ) to roughly estimate the size
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of the underlying true model. For j = 1, . . . , p, let Pj be the class of all subsets

of size j that can be selected from P = {1, . . . , p}. Let γ̂j(λ) be the best subset

among Pj selected by GICλ or CGICλ. Let P0 be the subset that contains the

intercept-only model. Based on (3.14), take the instability measure for Pj as

GIMj(λ) =
ISIj(λ)

j + |θ|+ 2
, (4.2)

where ISIj(λ) is akin to ISI(λ) at (3.12) but selects models from Pj . The estimate

ĜIMj(λ) of GIMj(λ) can be obtained by the estimation procedure of GIM(λ),

whereM is replaced with Pj . Intuitively, if the true model M0 ∈ Pj∗ , the value of

GIMj(λ) is expected to decrease as j increases for 0 ≤ j < j∗ and is expected to be

stable for j∗ ≤ j ≤ p. To see the pattern of change in
{

ĜIMj(λ) : j = 0, 1, . . . , p
}

more clearly, we define a relative difference of generalized instability measures

between Pj and Pj−1 as

ReGIMj(λ) =
∣∣GIMj(λ)−GIMj−1(λ)

∣∣; j = 1, . . . , p. (4.3)

In practice, we judge the size of the underlying true model according to the

pattern of
{

R̂eGIMj(λ) : j = 1, . . . , p
}

.

5. Simulation Study

We conducted two simulation scenarios to evaluate the performance of the

generalized instability measure ĜIM(λ) in (4.1) for geostatistical regression model

selection and model averaging.

We considered an isotropic and stationary process for the spatial random

error process η(·) with a Matérn covariance function K(sA, sB;θ) ≡ σ2ηρ(sA, sB;

a, ν) and θ ≡ (σ2η, a, ν)′, where ρ(sA, sB; a, ν) is a Matérn correlation function

(Matérn (2013)) defined by

ρ(sA, sB; a, ν) =
‖sA − sB‖ν

Γ(ν)aν2ν−1
Kν(a−1‖sA − sB‖). (5.1)

In (5.1), ‖sA−sB‖ > 0 is Euclidean distance, Kν(·) is a modified Bessel function

of the second kind with order ν > 0, ν is a smoothness parameter, a > 0 is

a range parameter, and σ2η is the variance of η(·). A larger ν value indicates

a smoother spatial process, while a larger a value indicates a stronger spatial

dependence.

We considered simulation scenarios I (strong spatial dependence) and II

(weak spatial dependence). All results were based on B = 200 simulation repli-

cates.
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ν

Figure 1. Realizations of η(·) for (σ2
η, a, ν) = (1, 0.1, 0.5) (left) and (σ2

η, a, ν) = (1, 1,
0.5) (right).

5.1. Simulation scenario I

Under the true model (2.2), we took D ≡ [0, 1]2 in R2 and N = 100× 100 =

10, 000 regular grid points, with the coordinate of the ith grid point denoted

by si = (si1, si2)
′ for i = 1, . . . , N . In our simulation scenario, a total of p =

9 covariates {x1(s), . . . , x9(s); s ∈ D} were considered and each covariate was

independently generated from the standard Gaussian. The spatial random error

process η(·) was a zero-mean Gaussian stationary process, where the covariance

matrix was the exponential covariance function (i.e., ν = 0.5 in (5.1)) with θ =

(1, 1, 0.5)′. The right side of Figure 1 shows a realization of η(·) that corresponds

to a stronger spatial dependence. The measurement error variance σ2ε = 1 in

(2.2) was assumed known throughout simulation scenario I. We considered five

different M0 as the underlying true models in the forms of β0 +
∑k

j=1 βjxj(s) for

k = 1, 3, 5, 7, and 9. For each k, the regression coefficients were set to be β0 = 1,

β1 = · · · = βk = (3/k)1/2, and βk+1 = · · · = βp = 0, so that the signal-to-noise

ratio (SNR) was kept at 4, where the SNR is defined as the ratio of the variance

of the signal S(·) to the noise variance σ2ε .

In each simulated data set, a sample size of n = 50 was drawn from the

10, 000 grid points based on a simple random sampling scheme. For each of
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k = 1, 3, 5, 7, and 9, we applied six model selection criteria, AIC, BIC, AICc,

RIC, CAIC, and CBIC, to select models amongM, whereM = 2{1,...,9} consists

of all the possible combinations of covariates x1, x2, . . . , x9, with M = ∅ ∈ M
representing the intercept-only model. Throughout simulation scenario I, the

model parameters were estimated by REML.

To assess the instability of model selection based on AIC, BIC, AICc, RIC,

CAIC, and CBIC, the corresponding values of ĜIM(λ) in (4.1) were computed.

The perturbed sample size was set to T = 50 and the perturbation size was set

to τ = 0.1 for computing ÎSI(λ).

To compare with six model selection criteria, predictions based on model

averaging methods were also conducted. For each of k = 1, 3, 5, 7, and 9,

the model averaging methods based on (3.8)–(3.11) are referred to as AIC-MA,

BIC-MA, AICc-MA, RIC-MA, CAIC-MA, and CBIC-MA.

5.2. Simulation result I

We compared the prediction performance of various model selection and

model averaging methods by examining an average squared prediction error

(ASPE):

ASPE = B−1
B∑
b=1

[
n−1

n∑
i=1

{
Ŝ(b)(si)− S(b)(si)

}2
]
, (5.2)

where Ŝ(b)(s) is a generic predictor of S(b)(s) corresponding to (3.3), (3.6), (3.10),

or (3.11) for the bth simulated data set and S(b)(s) is an underlying random

variable of interest at the location s for the bth simulation replicate. In addition,

we examined the performance of variable selection for GICλ and CGICλ under

five true models. Table 1 shows the ASPE values for the six model selection

criteria, AIC, BIC, AICc, RIC, CAIC, and CBIC, and the six model averaging

methods, AIC-MA, BIC-MA, AICc-MA, RIC-MA, CAIC-MA, and CBIC-MA,

for k = 1, 3, 5, 7, and 9. The corresponding variable selection results for the

model selection criteria are given in Table 2. For ease of comparison, the ASPE

values in Table 1 are also plotted in Figure 2(a), where we omit the results of

AICc, AICc-MA, RIC, and RIC-MA because the patterns are similar.

Table 1 and Figure 2(a) indicate that the CGICλ performs well in most

cases, as it is closely related to the MSPE. For example, the CAIC is an unbiased

estimator of the MSPE plus the noise variance when the model parameters are

known (Vaida and Blanchard (2005)). Comparing AIC versus AIC-MA, BIC

versus BIC-MA, etc. in terms of the ASPE values, we find that k = 1, 3, or
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Table 1. Average squared prediction errors of six model selection criteria (AIC, BIC,
AICc, RIC, CAIC, CBIC) and six model averaging methods (AIC-MA, BIC-MA, AICc-
MA, RIC-MA, CAIC-MA, CBIC-MA) under five true models (k) based on 200 simulation
replicates for simulation scenario I. The values in parentheses are the corresponding
standard errors.

Criterion k
1 3 5 7 9

AIC 0.5357 0.5318 0.5264 0.5201 0.5172
(0.0193) (0.0189) (0.0188) (0.0184) (0.0184)

AIC-MA 0.4598 0.4739 0.4814 0.4944 0.5130
(0.0184) (0.0180) (0.0174) (0.0161) (0.0150)

BIC 0.5044 0.5055 0.5029 0.5082 0.5379
(0.0216) (0.0205) (0.0200) (0.0188) (0.0187)

BIC-MA 0.4352 0.4568 0.4693 0.4924 0.5267
(0.0190) (0.0184) (0.0175) (0.0151) (0.0134)

AICc 0.5284 0.5241 0.5057 0.5123 0.5325
(0.0204) (0.0203) (0.0197) (0.0190) (0.0186)

AICc-MA 0.4461 0.4627 0.4722 0.4912 0.5205
(0.0187) (0.0182) (0.0175) (0.0154) (0.0137)

RIC 0.4876 0.4993 0.4842 0.5079 0.5488
(0.0217) (0.0207) (0.0191) (0.0188) (0.0182)

RIC-MA 0.4303 0.4540 0.4677 0.4945 0.5359
(0.0192) (0.0185) (0.0175) (0.0148) (0.0131)

CAIC 0.3866 0.4086 0.4263 0.4300 0.4580
(0.0155) (0.0158) (0.0141) (0.0111) (0.0114)

CAIC-MA 0.3650 0.3749 0.3974 0.4198 0.4660
(0.0159) (0.0126) (0.0118) (0.0094) (0.0101)

CBIC 0.3720 0.4416 0.4482 0.4699 0.5508
(0.0164) (0.0199) (0.0169) (0.0141) (0.0145)

CBIC-MA 0.3538 0.4092 0.4190 0.4597 0.5303
(0.0162) (0.0175) (0.0136) (0.0116) (0.0111)

5 with fewer covariates in our simulation, the ASPE values of model selection

and model averaging give quite different prediction results. For example, AIC

with an average ASPE value 0.5357 and a standard error 0.0193 is significantly

different to AIC-MA which has an average ASPE value 0.4598 with a standard

error 0.0184 (see, e.g., k = 1 in Table 1). In general, model averaging outperforms

model selection. However, the prediction results of model selection and model

averaging are more comparable for k = 7 and 9 here.

In terms of the rate of selecting the true model (Table 2), a model selection

criterion with a larger penalty parameter (e.g., BIC, RIC, and CBIC) penalizes

more for a model with more covariates and hence tends to have a higher rate of
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Table 2. Frequencies of the number of selected covariates for six information criteria
(AIC, BIC, AICc, RIC, CAIC, CBIC) under five true models (k) based on 200 simulation
replicates for simulation scenario I. The symbol “∗” indicates that the true model is
selected.

k Criterion Number of covariates Average number
0 1 2 3 4 5 6 7 8 9 of selected

covariates
1 AIC 0 0* 0 0 3 12 12 24 34 115 8.10

BIC 0 48* 79 55 13 5 0 0 0 0 2.24
AICc 0 1* 19 57 77 43 3 0 0 0 3.76
RIC 0 76* 85 32 6 1 0 0 0 0 1.86

CAIC 0 28* 55 60 31 17 4 4 1 0 2.94
CBIC 0 78* 63 24 15 11 3 4 2 0 2.27

3 AIC 0 0 0 0* 0 2 13 22 35 128 8.37
BIC 0 0 0 70* 84 43 2 1 0 0 3.90
AICc 0 0 0 10* 72 82 31 5 0 0 4.75
RIC 0 0 0 106* 67 26 1 0 0 0 3.61

CAIC 0 0 2 45* 73 52 21 6 1 0 4.34
CBIC 0 0 12 98* 61 18 5 4 2 0 3.63

5 AIC 0 0 0 0 0 1* 4 11 44 140 8.59
BIC 0 0 0 0 0 103* 77 19 1 0 5.59
AICc 0 0 0 0 0 58* 101 36 5 0 5.94
RIC 0 0 0 0 1 129* 60 10 0 0 5.40

CAIC 0 0 1 0 15 79* 72 29 4 0 5.62
CBIC 0 0 0 3 31 113* 43 8 2 0 5.14

7 AIC 0 0 0 0 0 0 0 4* 36 160 8.78
BIC 0 0 0 0 0 1 6 140* 51 2 7.24
AICc 0 0 0 0 0 0 2 118* 75 5 7.42
RIC 0 0 0 0 0 1 11 151* 35 2 7.13

CAIC 0 0 0 0 1 4 32 106* 52 5 7.10
CBIC 0 0 0 1 2 12 50 110* 24 1 6.71

9 AIC 0 0 0 0 0 0 0 0 2 198* 8.99
BIC 0 0 0 0 0 0 3 5 30 162* 8.76
AICc 0 0 0 0 0 0 0 2 31 167* 8.83
RIC 0 0 0 0 0 0 4 9 46 141* 8.62

CAIC 0 0 0 0 0 1 6 16 56 121* 8.45
CBIC 0 0 0 0 1 8 17 31 72 71* 7.89

selecting the true model when the underlying true model has fewer covariates,

and vice versa. By Proposition 1, CGICλ considers the complexity of a spa-

tial dependence in its selection procedure. As expected, CGICλ outperforms the

corresponding GICλ. Somewhat surprisingly, the RIC criterion tends to have a

relatively high rate of selecting the true model. Besides the conditional informa-
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Figure 2. (a) Average squared prediction error (ASPE) versus five true models (k) for
four information criteria (AIC, BIC, CAIC, CBIC) and four model averaging methods
(AIC-MA, BIC-MA, CAIC-MA, CBIC-MA) based on 200 simulation replicates under
simulation scenario I; (b) Average value of generalized instability measure (GIM) versus
five true models (k) for six information criteria (AIC, BIC, AICc, RIC, CAIC, CBIC)
based on 200 simulation replicates under simulation scenario I.

tion criteria and our empirical rule, RIC is a suitable criterion for determining

the size of the underlying true model.

The left panel of Table 3 shows the generalized instability measure under the

AIC, BIC, AICc, RIC, CAIC, and CBIC criteria by computing ĜIM(λ) of (4.1),

and the corresponding results are plotted in Figure 2(b). CAIC and CBIC tend

to have smaller GIM values than AIC, BIC, AICc, and RIC under geostatisti-

cal regression model selection; this agrees with Proposition 1. The conditional

information criteria are more stable and thus are more suitable in geostatistical

regression model selection, as shown in Tables 1 and 2. From a prediction point

of view and for a given model selection criterion, Figures 2(a) and 2(b) show that

model selection and model averaging can be quite different when model selection

uncertainty is relatively large, but tend to be more similar as model selection

uncertainty decreases.

We performed a sensitivity analysis to evaluate the effect of the perturbation

size τ on the computation of ĜIM(λ). The average values of ĜIM(λ) based on

k = 5 and 200 simulation replicates are shown in the right panel of Table 3,

along with standard errors. The numerical results indicate that the computation

of ĜIM(λ) is not sensitive to the choice of τ . Huang and Chen (2007) and

Chen, Yang and Li (2014) also showed that model selection and weight selection
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Table 3. Average values of generalized instability measure (GIM) of six information
criteria (AIC, BIC, AICc, RIC, CAIC, CBIC) under five true models (k) (left panel)
for simulation scenario I and sensitivity analysis of the proposed generalized instability
measure (GIM) with respect to various perturbation sizes τ for k = 5 (right panel) based
on 200 simulation replicates under simulation scenario I. The values in parentheses are
the corresponding standard errors.

Criterion k τ
1 3 5 7 9 0.1 0.3 0.5 0.7 0.9

AIC 1.92 1.83 1.74 1.67 1.62 1.74 1.69 1.68 1.70 1.70
(0.11) (0.10) (0.10) (0.09) (0.09) (0.10) (0.08) (0.07) (0.06) (0.05)

BIC 3.76 2.86 2.23 1.86 1.68 2.23 2.23 2.22 2.26 2.29
(0.27) (0.18) (0.14) (0.11) (0.09) (0.14) (0.12) (0.10) (0.09) (0.08)

AICc 3.16 2.64 2.17 1.85 1.68 2.17 2.20 2.19 2.22 2.25
(0.18) (0.15) (0.13) (0.11) (0.09) (0.13) (0.11) (0.10) (0.08) (0.08)

RIC 3.91 2.94 2.19 1.87 1.73 2.19 2.23 2.22 2.26 2.30
(0.28) (0.19) (0.14) (0.11) (0.09) (0.14) (0.12) (0.10) (0.09) (0.08)

CAIC 2.10 1.63 1.41 1.31 1.28 1.41 1.38 1.38 1.35 1.32
(0.11) (0.08) (0.07) (0.05) (0.04) (0.07) (0.05) (0.04) (0.03) (0.03)

CBIC 1.87 1.36 1.16 1.15 1.25 1.16 1.17 1.17 1.15 1.14
(0.13) (0.06) (0.04) (0.03) (0.03) (0.04) (0.02) (0.02) (0.02) (0.02)

of model averaging using the data perturbation approach are not sensitive to

the choice of τ under the frameworks of geostatistical models. Therefore, a

nonadaptive τ = 0.1 throughout the simulation scenario I was acceptable. Shen

and Huang (2006) further developed a methodology about the adaptive choice of

τ or the optimal choice of τ under different data sets, although the computation

is more time-consuming.

5.3. Simulation scenario II

To evaluate the performance of ĜIM(λ) in (4.1) for geostatistical regression

model selection more realistically, the second simulation scenario was designed

based on a data example.

We considered a weather data set in the state of Colorado (Reich and Davis

(2008); Chu, Zhu and Wang (2011)), where the response variable is the March

mean precipitation (inches per 24-hour period) on the log scale, from 261 weather

stations. For each weather station, p = 10 covariates are available. In addition to

elevation (x1), slope (x2), and aspect (x3), seven spectral bands from a MODIS

satellite imagery, B1M–B7M, are available and denoted by x4, x5, x6, x7, x8,

x9, and x10. Under (2.2) with the covariance matrix of η(·) defined in (5.1), we

considered the underlying true models β0 +
∑k

j=1 βjxj(s) for k = 1, 5, and 9.
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Table 4. Regression coefficients of three true models (k) of simulation scenario II based
on the precipitation data set.

Regression coefficients
k β0 β1 β2 β3 β4 β5 β6 β7 β9 β9
1 1.2950 0.5716 0 0 0 0 0 0 0 0
5 1.2948 0.4554 0.0344 −0.0027 −0.1395 0.0139 0 0 0 0
9 1.3105 0.4425 0.0317 −0.0085 0.1902 −0.0108 −0.0265 −0.2487 0.1269 −0.1769

Table 5. Parameter values in the covariance matrix of the data vector and the SNR
values for three true models (k) of simulation scenario II based on the precipitation data
set.

Parameter values
k a ν σ2

η σ2
ε SNR

1 0.0985 0.5 0.2153 0.2119 2.56
5 0.1220 0.5 0.1497 0.2281 1.66
9 0.1435 0.5 0.1745 0.2281 2.27

For each k, the regression coefficients, θ = (σ2η, a, ν)′, and σ2ε were estimated by

REML based on the precipitation data set. These estimated parameter values are

displayed in Tables 4 and 5, and were used as the true parameter values of (2.2)

when simulating new responses. In simulation scenario II, the spatial random

error process η(·) was a zero-mean Gaussian stationary process, with covariance

matrix based on the exponential covariance function, ν = 0.5 in (5.1), with the

range parameter a being around 0.1 ∼ 0.14 as shown in Table 5. The left side of

Figure 1 shows a realization of η(·) with (σ2η, a, ν) = (1, 0.1, 0.5). Compared with

scenario I, scenario II corresponds to a weaker spatial dependence. In addition,

the SNR values for k = 1, 5, and 9 are shown in Table 5. Compared with the

SNR = 4 in scenario I, the SNR value in scenario II is smaller, indicating that

the noise is stronger.

In each simulated data set, a sample size of n = 100 was drawn from 261

weather stations based on a simple random sampling scheme. For each of k = 1,

5, and 9, we applied six model selection criteria, AIC, BIC, AICc, RIC, CAIC,

and CBIC, to select models among all the possible combinations of covariates.

For CAIC and CBIC, special cases of the CGIC in (3.4), an estimate σ̂2ε of σ2ε
was obtained by REML based on the full model, and so is invariant to the model

choice. The estimate σ̂2ε was used in the data perturbation procedure when

computing ĜIM(λ) of (4.1). Throughout scenario II, the model parameters were

estimated by REML.
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Table 6. Average values of generalized instability measure (GIM) of six information
criteria (AIC, BIC, AICc, RIC, CAIC, CBIC) under three true models (k) (left panel)
for simulation scenario II and sensitivity analysis of the proposed generalized instability
measure (GIM) with respect to various perturbation sizes τ for k = 5 (right panel) based
on 200 simulation replicates and the precipitation data set under simulation scenario II.
The values in parentheses are the corresponding standard errors.

Criterion k τ
1 5 9 0.1 0.5 0.9

AIC 4.12 3.88 3.18 3.88 3.64 3.54
(0.39) (0.35) (0.27) (0.35) (0.24) (0.17)

BIC 4.85 4.67 3.54 4.67 4.16 4.00
(0.50) (0.45) (0.30) (0.45) (0.32) (0.23)

AICc 4.19 3.98 3.24 3.98 3.73 3.64
(0.40) (0.36) (0.27) (0.36) (0.25) (0.18)

RIC 4.81 4.63 3.48 4.63 4.07 3.90
(0.49) (0.44) (0.30) (0.44) (0.31) (0.21)

CAIC 2.49 2.22 1.56 2.22 2.11 1.98
(0.23) (0.21) (0.16) (0.21) (0.14) (0.10)

CBIC 1.41 1.59 1.24 1.59 1.64 1.63
(0.16) (0.18) (0.14) (0.18) (0.13) (0.09)

5.4. Simulation result II

To assess the instability of model selection based on AIC, BIC, AICc, RIC,

CAIC, and CBIC, the corresponding values of ĜIM(λ) in (4.1) were computed

based on the data perturbation illustrated in Section 4.1; the perturbation size

was set to τ = 0.1 for computing ÎSI(λ). The left panel of Table 6 shows the

results of ĜIM(λ) under the AIC, BIC, AICc, RIC, CAIC, and CBIC criteria for

k = 1, 5, and 9 based on 200 replicates. The conditional information criteria,

CAIC and CBIC, tend to have smaller GIM values than unconditional informa-

tion criteria in this simulation. This indicates that the conditional information

criteria are more stable, and thus are more suitable, than unconditional informa-

tion criteria in the geostatistical regression model selection. We again conclude

that model selection and model averaging give more comparable results as the

uncertainty of model selection decreases.

We performed a sensitivity analysis to evaluate the effect of the perturbation

size τ on the computation of ĜIM(λ). The average values of ĜIM(λ) and the

corresponding standard errors based on k = 5 and 200 simulation replicates are

given in the right panel of Table 6. For a given model selection criterion, the

numerical results indicate that the computation of ĜIM(λ) is not sensitive to

the different choices of τ . An approximately unbiased estimator ÎSI(λ) of ISI(λ)



222 CHUN-SHU CHEN, JUN ZHU AND TINGJIN CHU

can be obtained based on a data perturbation technique as τ → 0+ (Huang and

Chen (2007)), but it may produce numerical instability if τ is too small (e.g.,

τ = 10−10). Therefore, we used τ = 0.1 throughout the simulation scenarios I

and II, resulting in a somewhat larger bias but a smaller variance (e.g., Shen and

Huang (2006); Huang and Chen (2007); Chen, Yang and Li (2014)).

The results from simulation scenarios I and II suggest that the size of the

underlying true model impacts the instability of geostatistical regression model

selection. In practice, we can combine the conditional information criteria (e.g.,

CAIC and CBIC), the RIC criterion, and the empirical rule in Section 4.2 to

jointly infer the size of the underlying true model. If the number of covariates

in the underlying true model is relatively small, a model selection procedure is

relatively unstable and a model averaging method is preferred for more accurate

spatial prediction, while the conditional information criterion or the RIC criterion

is recommended for variable selection. When selection uncertainty decreases

(see, e.g., the left panel of Table 3 and Figure 2(b)), model selection and model

averaging give comparable prediction results (see, e.g., Table 1 and Figure 2(a)).

Thus, prediction and variable selection might be based on a model selection

criterion, where the conditional information criteria are still preferable.

6. Precipitation Data Example

We applied our proposed methodology to the precipitation data set in the

state of Colorado (Reich and Davis (2008); Chu, Zhu and Wang (2011)) as illus-

trated in Section 5.3. We considered all possible combinations of covariates to

investigate the size of the underlying geostatistical regression model.

Guided by the simulation study, we applied RIC, CAIC, CBIC, and the em-

pirical rule developed in Section 4.2 to jointly estimate the size of the underlying

geostatistical regression model. Table 7 provides the three best models selected

by RIC, CAIC, and CBIC among 210 candidate models. The estimated results

of ReGIMj(λ) of (4.3) for j = 1, . . . , 10 are shown in Figure 3. For estimating

ReGIMj(λ), an estimate of GIMj(λ) of (4.2) was computed based on the estima-

tion procedure of GIM(λ) in Section 4.1 with M replaced by Pj ; j = 1, . . . , 10.

The results in Table 7 indicate that there should be 2 to 3 important covariates

in the geostatistical regression model for precipitation. Two covariates (eleva-

tion and B4M) were selected by RIC, which agrees with a previous analysis (Chu,

Zhu and Wang (2011)), whereas three covariates (elevation, slope and B1M) were

selected by CAIC and two covariates (slope and B7M) were selected by CBIC.
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Table 7. Selected models with the corresponding covariates (“Yes”) among 210 candidate
models for RIC, CAIC, and CBIC applied to the precipitation data example.

Criterion Covariate
Elevation Slope Aspect B1M B2M B3M B4M B5M B6M B7M

RIC Yes - - - - - Yes - - -
CAIC Yes Yes - Yes - - - - - -
CBIC - Yes - - - - - - - Yes

Figure 3. Estimates of relative difference of generalized instability measures (ReGIM)
for RIC, CAIC, and CBIC applied to the precipitation data example.

It is clear that R̂eGIMj(λ) becomes more stable when j is more than 2, as the

elbow pattern in Figure 3 indicates. These results suggest that the size of the

underlying geostatistical regression model for this data set is relatively small and

thus model averaging would be more suitable for predicting precipitation at un-

sampled locations. Further, RIC, CAIC, and CBIC are the recommended model

selection criteria for choosing important covariates.

7. Conclusions and Discussion

In this paper, a GIM criterion is proposed to measure the instability of geo-

statistical regression model selection. The proposed criterion takes into account

the uncertainties of model selection and parameter estimation and thus more

accurately reflects the complexity of a given model fitting procedure.

From the results of two simulation scenarios and a data example, we recom-
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mend that the conditional information criteria (e.g., CAIC and CBIC), the RIC

criterion, and the empirical rule developed in Section 4.2 can be used together

in practice to estimate the size of the underlying geostatistical regression model.

When model selection uncertainty is relatively large, model averaging method is

preferred when spatial prediction is the main interest, and the conditional infor-

mation criterion or the RIC criterion is recommended for identifying important

covariates. As model selection uncertainty decreases, the predictive performance

by model selection and model averaging tends to be similar. Thus, prediction

and selection of covariates can both be obtained from a model selection criterion,

where the conditional information criterion is preferable.

Although our GIM criterion is developed in the setting of geostatistical re-

gression models, it could also explore model selection or model averaging under

such frameworks as linear mixed-effects models. For parameter estimation, it is

known that parameters in the Matérn correlation function cannot be estimated

well, even when increasing amounts of data are collected densely in a fixed do-

main. Irvine, Gitelman and Hoeting (2007) have compared the performance of

ML and REML estimates of spatial covariance parameters under various sam-

pling designs via simulation studies and showed that these estimates still have

room for improvement. While our focus is on the selection of covariates, the in-

stability of the estimation of spatial covariance parameters is an important issue

to address and could be explored based on our GIM criterion.

A limitation of the proposed method is its computational intensity when

dealing with massive data sets or a large number of covariates, because the esti-

mation procedure of GIM(λ) in Section 4.1 involves inverting an n×n covariance

matrix and selecting a best model from a large class of candidate models. Compu-

tationally more efficient methods can be considered such as least angle regression

(e.g., Efron et al. (2004)), covariance tapering (e.g., Furrer, Genton and Nychka

(2006)), and low-rank methods (e.g., Cressie and Johannesson (2008)).
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Appendix

Proof of Proposition 1. Since Q̂M (θ̂M ) = XM (X ′MΣ̂−1Z XM )−1X ′MΣ̂−1Z , we

rewrite ĤM (θ̂M ) of (2.9) as

ĤM (θ̂M ) = σ̂2ε,MΣ̂−1Z XM (X ′MΣ̂−1Z XM )−1X ′MΣ̂−1Z + Σ̂η(θ̂M )Σ̂−1Z

= σ̂2ε,MΣ̂−1Z Q̂M (θ̂M ) + Σ̂η(θ̂M )Σ̂−1Z

= Σ̂η(θ̂M )Σ̂−1Z − Σ̂η(θ̂M )Σ̂−1Z Q̂M (θ̂M ) + Σ̂η(θ̂M )Σ̂−1Z Q̂M (θ̂M )

+σ̂2ε,MΣ̂−1Z Q̂M (θ̂M )

= Σ̂η(θ̂M )Σ̂−1Z
(
I − Q̂M (θ̂M )

)
+ (Σ̂η(θ̂M )

+σ̂2ε,MI)(Σ̂η(θ̂M ) + σ̂2ε,MI)−1Q̂M (θ̂M )

= Σ̂η(θ̂M )Σ̂−1Z
(
I − Q̂M (θ̂M )

)
+ Q̂M (θ̂M ) .

It follows that

tr
(
ĤM (θ̂M )

)
= tr

(
Σ̂η(θ̂M )Σ̂−1Z

(
I − Q̂M (θ̂M )

))
+ tr

(
Q̂M (θ̂M )

)
= tr

(
Σ̂η(θ̂M )Σ̂−1Z

(
I − Q̂M (θ̂M )

))
+ |M | .

Combining this with (3.4), we obtain the desired result.

Proof of Proposition 2. Following (3.3), (3.6), and the definition of ISI(λ) in

(3.12), we have

δ−1
{
Ŝγ̂(λ)(si;Z + δei)− Ŝγ̂(λ)(si;Z)

}
= δ−1

{[
Ĥγ̂(λ)(θ̂γ̂(λ))(Z + δei)

]
i
−
[
Ĥγ̂(λ)(θ̂γ̂(λ))Z

]
i

}
=
[
Ĥγ̂(λ)(θ̂γ̂(λ))

]
ii

= σ̂2ε,γ̂(λ)

[
Σ̂−1Z Xγ̂(λ)

{
X ′γ̂(λ)Σ̂

−1
Z Xγ̂(λ)

}−1
X ′γ̂(λ)Σ̂

−1
Z

]
ii

+
[
Σ̂η(θ̂γ̂(λ))Σ̂

−1
Z

]
ii
,

where Σ̂Z = Σ̂η(θ̂γ̂(λ)) + σ̂2ε,γ̂(λ)I, [A]i denotes the ith element of vector A, and

[B]ii denotes the ith diagonal element of matrix B. Let P and G be n × n

positive definite matrices and let R be an n × m matrix with rank(R) = m.

Basic properties of positive definite matrices (e.g., Harville (1997)) are used in

proving Proposition 2: (i) P−1 and G−1 are positive definite; (ii) R′PR and

R′GR are positive definite; (iii) PGP and GPG are positive definite; (iv) If

PG = GP , then PG is also positive definite. Because Σ̂η(θ̂γ̂(λ)) and Σ̂Z are

n × n positive definite matrices and Xγ̂(λ) is an n × (|γ̂(λ)| + 1) design ma-

trix with rank(Xγ̂(λ)) = |γ̂(λ)| + 1, Σ̂−1Z Xγ̂(λ)(X
′
γ̂(λ)Σ̂

−1
Z Xγ̂(λ))

−1X ′γ̂(λ)Σ̂
−1
Z is
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positive definite by (i)-(iii), and Σ̂η(θ̂γ̂(λ))Σ̂
−1
Z is positive definite by (i) and

(iv). As a consequence,
[
Σ̂−1Z Xγ̂(λ)(X

′
γ̂(λ)Σ̂

−1
Z Xγ̂(λ))

−1X ′γ̂(λ)Σ̂
−1
Z

]
ii
> 0 and[

Σ̂η(θ̂γ̂(λ))Σ̂
−1
Z

]
ii
> 0 for i = 1, . . . , n. Thus,

ISI(λ) = E

[
lim
δ→0

δ−1
n∑
i=1

∣∣∣Ŝγ̂(λ)(si;Z + δei)− Ŝγ̂(λ)(si;Z)
∣∣∣]

=

n∑
i=1

lim
δ→0

δ−1E
[
Ŝγ̂(λ)(si;Z + δei)− Ŝγ̂(λ)(si;Z)

]
=

n∑
i=1

lim
δ→0

δ−1
[
EE

(
Ŝγ̂(λ)(si;Z + δei)

∣∣S)− EE(Ŝγ̂(λ)(si;Z)
∣∣S)]

=

n∑
i=1

E

[
lim
δ→0

δ−1
(
E
(
Ŝγ̂(λ)(si;Z + δei)

∣∣S)− E(Ŝγ̂(λ)(si;Z)
∣∣S))]

=

n∑
i=1

E

(
∂

∂S(si)
E
(
Ŝγ̂(λ)(si;Z)

∣∣S)) ,
where Ŝγ̂(λ)(si;Z) and Ŝγ̂(λ)(si; θ̂γ̂(λ)) are the same as in (3.12). This completes

the proof.
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