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Abstract: Real-life data are almost never really real. By the time the data arrive at 
an investigator’s desk or disk, the raw data, however defined, have most likely gone 
through at least one “cleaning” process, such as standardization, re-calibration, 
imputation, or de-sensitization. Dealing with such a reality scientifically requires a 
more holistic multi-phase perspective than is permitted by the usual framework of 
“God’s model versus my model.” This article provides an in-depth look, from this 
broader perspective, into multiple-imputation (MI) inference (Rubin (1987)) under 
uncongeniality (Meng (1994)). We present a general estimating-equation decom-

position theorem, resulting in an analytic (asymptotic) description of MI inference 
as an integration of the knowledge of the imputer and the analyst, and establish a 
characterization of self-efficiency (Meng (1994)) for regulating estimation proce-
dures. These results help to reveal how the quality of and relationship between 
the imputer’s model and analyst’s procedure affect MI inference, including how a 
seemingly perfect procedure under the “God-versus-me” paradigm is actually in-
admissible when God’s, imputer’s, and analyst’s models are uncongenial to each 
other. Our theoretical investigation also leads to useful procedures that are as 
trivially implementable as Rubin’s combining rules, yet with confidence coverage 
guaranteed to be minimally the nominal level, under any degree of uncongeniality. 
We reveal that the relationship is very complex between the validity of approaches 
taken for individual phases and the validity of the final multi-phase inference, and 
indeed that it is a nontrivial matter to quantify or even qualify the meaning of va-
lidity itself in such settings. These results and many open problems are presented 
to raise the general awareness that the multi-phase inference paradigm is an un-
congenial forest populated by thorns, as well as some fruits, many of which are still 
low-hanging.
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1. Multi-phase Inference: An Expanded Paradigm

With the dramatic increases in the size, diversity, and complexity of

data available for scientific discoveries, medical advances, education reforms and
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evidence-based policy making, to name a few, the entire enterprise of scientific

quantitative inquiry has been presented with unprecedented challenges and op-

portunities. In particular, many current quantitative inquiries are not made by

one or even two teams (i.e., data collectors and analysts), but rather by multiple

teams/parties entering the process over several phases, such as data collection,

processing, curation, and analysis. Due to constraints such as resource limi-

tations and confidentiality, each team may not have adequate knowledge of or

are unable to utilize the assumptions made by, and resources available to, those

coming before or after its phase. Even in cases where several different phases

involve a single team, the complexity of the data and different purposes of these

phases often encourage or even force the team to adopt incompatible setups and

assumptions across different phases.

This was the case for example in the area of estimating survival distributions

using data from AIDS surveillance systems, which suffered from substantial re-

porting delay (see Tu, Meng, and Pagano (1993); Bouman, Dukic, and Meng

(2005)). In theory, an encompassing model can be set up to estimate the sur-

vival distribution and reporting delay distribution simultaneously. But practi-

cally, the complexity of the data and the need to perform standard Cox regression

for the survival distributions, compelled us to adopt a two-phase strategy. We

first adopted a multiple imputation approach via a Bayesian modelling to impute

the delayed cases, and then we performed the Cox regression using the observed

and imputed cases. Neither the models nor the inference perspectives in these

two phases were constrained to be the same, even though there was only one

team involved, as documented in Tu, Meng, and Pagano (1993).

Therefore, by multi-phase inference, we mean an inference process where the

ultimate conclusions are a result of several phases carried out in a sequential

order, each phase with its own goal, assumptions, and methods, not necessar-

ily compatible across different phases. The emphasis here is on the sequential

nature of how the inferential conclusions are built upon a sequence of not nec-

essarily (theoretically) compatible phases. As such inference processes become

increasingly common in this age of Big Data, they compel us to rethink the tra-

ditional paradigms for statistical analysis and data preservation (see Blocker and

Meng (2013)). From this expanded perspective, this article takes a critical look

at Rubin’s (1987) multiple imputation (MI) inference under uncongeniality, as

formulated in Meng (1994). MI inference explicitly acknowledges the impact of

an intermediate phase, namely the imputation phase, and hence it demonstrates

nicely the necessity, intricacy, and opportunities of theoretical investigation of

multi-phase inference.
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1.1. Why is an expanded paradigm necessary?

Much of the statistical literature assumes data are generated by a “God’s

model”, and then postulates one or multiple model classes for the purpose of

inferring aspects of God’s model and its implications. Here by “God’s model”,

we mean the true status of nature, not a posited model class. In contrast, by

multiple model classes we mean multiple sets of assumptions (hence, not neces-

sarily parametric models), which are mathematically compatible within each set

but incompatible across different sets—if they are not mathematically incompat-

ible then we are merely postulating a larger model class. Whereas many model

classes may be entertained, the commonly accepted paradigm explicitly identifies

“my model”, the ones used by an analyst, to approximate the (unknown) God’s

model. However, reality is far more complicated, compelling us to distinguish

between analyst’s data from God’s data, the realizations from God’s model that

the analyst’s data were collected to approximate. Any attempt to mathemati-

cally define such concepts is doomed to fail, but it is important to distinguish the

two forms of data because the approximation process introduces an additional

inference phase or even phases.

For example, in physical and biological sciences, the analyst’s data typically

are results of a series of pre-processing steps to deal with limitations or irregu-

larities in recording God’s data (e.g., discarding “outliers”, re-calibration), yet

typically the analyst at best has only partial information about this process. For

social and behavioral sciences, many variables are “constructed variables”, typi-

cally from a deterministic algorithm converting a set of questionnaire responses

to an index, say, that whether a subject has depression. The algorithm is often

a pitch black box because the analyst is unaware of what variables were used to

produce the index. For large-scale public-use data files, virtually all data sets

contain imputations because of non-responses or other forms of missing data,

which means someone has “fixed the holes” in the data before releasing.

In all these examples, the key issue is that during the journey from God’s data

to the analyst’s data, a set of assumptions have been introduced deliberately or

accidentally. There is no “assumption-free” pre-processing; any attempt to make

the data “better” or “more usable” implies that a judgement has been made.

Under the God-versus-me paradigm, this intermediate “data cleaning” process

has to be considered either as part of God’s model, or of the analyst’s model

class, or of both, by somehow separating aspects of the process. Regardless of

how we conceptualize, we are in an extremely muddy situation. If aspects of

this intermediate process are considered to be part of God’s model, then the

analyst’s inference is not merely about God’s model but also about someone

else’s assumptions about it. If we relegate the pre-processing to the analyst’s

model class, then the analyst will need good information about the process.
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Whereas understanding the entire data forming mechanism is a critical on-going

emphasis of our profession, the reality is that for the vast majority of real-life

data sets, especially large-scale ones, it is simply impossible to trace how the

data were collected or pre-processed. Indeed, many such processes are nowhere

documented, and some are even protected by confidentiality constraints.

Such “data cleaning” pre-processes motivate the multi-phase inference

paradigm. The key distinction between the multi-phase paradigm and the God-

versus-me paradigm is not that the former involves multiple model classes or even

multiple investigating teams. Rather, in the multi-phase paradigm, we explicitly

acknowledge the sequential nature of the phases and that the assumptions made

at different phases are permitted to be different or even contradictory. The key

aims here are (I) to understand the consequences of permitting such discrepancy

and contradictions, and (II) to develop methods with theoretical validity and

even optimality for the ultimate inference results in such complex but realistic

settings.

1.2. Multiple imputation under uncongenality

A great example of multi-phase inference is the MI inference (Rubin (1987))

under uncongeniality (Meng (1994)). In a nutshell, uncongeniality means that

the imputation model class and the analyst’s model class are incompatible. There

are many reasons for such incompatibility, including different aims of imputation

(where one wants to use as many variables as possible even if causal directions

are incorrectly specified) and of analysis (where one may be interested only in

a subset of variables with specified causal directions). In this paper we assume

that the imputer’s model class is (approximately) valid, which means that it

has properly taken into account the missing data mechanism (MDM), regardless

of whether it is ignorable such as missing at random (MAR) or non-ignorable

(Rubin (1976)). Indeed, the more sophisticated handling by the imputer is often

a source of uncongenality because subsequent users of the imputed data do not

possess the necessary knowledge or resource to properly handle the missing data

themselves.

Rubin’s MI inference, a general approach for addressing serious defects of

single imputation, was originally justified from the Bayesian perspective (Rubin

(1987)) under the (implicit) assumption of congeniality. Specifically, let Zcom

denote the complete data, Zobs and Zmis respectively the observed and missing

data, and θ the analyst’s estimand (e.g., a population quantity). The imputer

uses a Bayesian method (or its equivalent) to fill in the missing values by drawing

independently m times from the predictive distribution pI(Z̃mis|Zobs). This pro-

duces m complete data sets Z̃
(ℓ)
com = (Zobs, Z̃

(ℓ)
mis), ℓ = 1, . . . ,m available for any

potential analysis. The superscript I signifies that the imputation is done under
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the Imputer’s model class. In the analyzing phase, the analyst applies a chosen

complete-data procedure Pc = [θ̂A(Zcom), U
A(Zcom)], where θ̂A(Zcom) is the an-

alyst’s point estimator of his/her estimand θ and UA(Zcom) is its associated vari-

ance estimator, to each Z̃
(ℓ)
com to produce θ̂(ℓ) ≡ θ̂A(Z̃

(ℓ)
com) and U (ℓ) ≡ UA(Z̃

(ℓ)
com),

for ℓ = 1, . . . ,m.

Rubin’s MI inference refers to the use of Rubin’s (1987) rules that estimate

θ by the average of the m individual estimators and its variance as the sum of

two terms:

θ̄m =
1

m

m∑
ℓ=1

θ̂(ℓ) and Tm = Ūm +

(
1 +

1

m

)
Bm , (1.1)

where Ūm and Bm are the estimated within- and between-imputation variances

Ūm =
1

m

m∑
ℓ=1

U (ℓ) and Bm =
1

m− 1

m∑
ℓ=1

(θ̂(ℓ) − θ̄m)(θ̂(ℓ) − θ̄m)⊤.

The factor (1+1/m) in (1.1) is due to the finite number of imputations. For our

theoretical investigation later, we will focus on m = ∞, in order to study the per-

formance of Rubin’s MI inference in the absence of Monte Carlo errors. In a nut-

shell, Rubin’s MI is simply a size m Monte Carlo simulation from pI(Z̃mis|Zobs),

with the ultimate estimands

θ̄∞ = lim
m→∞

θ̄m, and T∞ = Ū∞ +B∞ : (1.2)

Ū∞ = lim
m→∞

Ūm = EI [UA(Z̃com)|Zobs]; (1.3)

B∞ = lim
m→∞

Bm = V I [θ̂A(Z̃com)|Zobs]. (1.4)

Justifying Rubin’s combining rules is easy under congeniality as formulated

by Meng (1994):

(I) The complete-data analysis procedure can be embedded into a Bayesian

model class with

θ̂A(Z̃com) = EA(θ|Z̃com) and UA(Z̃com) = V A(θ|Z̃com), for all Z̃com, (1.5)

where the superscript A indexes expectation with respect to the analyst’s

model class;

(II) The imputation model class and the analysis (embedding) model class are

the same for the purposes of predicting missing data:

P I(Z̃mis|Zobs) = PA(Z̃mis|Zobs), for all Z̃mis (but the given Zobs). (1.6)
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Under (I) and (II), the MI inference P∞ = [θ̄∞, T∞] is the same as the pos-

terior mean and variance of θ under the analyst’s (embedded) model class given

Zobs. That is, [θ̄∞, T∞] ≡ P∞ = Pobs ≡ [EA(θ|Zobs), V
A(θ|Zobs)], a fact that can

be verified by using iterative expectations. That is, under congeniality, Rubin’s

MI can be viewed as performing Monte Carlo integration for the analyst to ob-

tain Pobs, without any knowledge of it, using only the complete-data procedure

Pc.

When the imputation model class and the (embedded) analyst’s model class

differ, the behavior of Rubin’s rules becomes very complicated, capable of pro-

ducing inconsistent variance estimators, a matter that has received recurrent

criticisms (Fay (1991, 1992); Kott (1995); Nielsen (2003)). To address such crit-

icisms, Meng (1994) identified the concept uncongeniality as the key ingredient

for studying the complex behavior of Rubin’s MI inference. It is worth empha-

sizing that the uncongenality as defined by (I) and (II) is a form of estimation

uncongenality or more generally inferential uncongenality, because (I) is deter-

mined by a particular estimation procedure. For example, suppose both imputer

and analyst adopt the same N(θ, 1) model (and the imputer adopts a constant

prior on θ), yet the analyst decides to estimate θ by both the sample mean and

the sample median, the latter being an attempt to robustify. Then the imputer’s

model is congenial to analyst’s sample-mean procedure, but not to the sample-

median procedure, because for the latter the embedding (sampling) model class

is not N(θ, 1), but rather (say) Laplace L(θ, 1).

Meng (1994) obtained some initial theory under this inferential uncongenial-

ity, including conditions for Rubin’s MI inference to be confidence valid, i.e., the

interval estimator has at least the nominal coverage. In particular, this theory

indicates that the bias in Rubin’s variance estimator is caused by a lack of or-

thogonality in an ANOVA-type decomposition under uncongeniality, confirming

and explaining counterexamples in several previous studies (Fay (1992); Kott

(1995)). Consequently, several proposals (e.g., Robins and Wang (2000); Kim et

al. (2006)) were made to correct the bias, assuming that the imputer provides

information beyond the imputed values.

Here we revisit these issues in light of a series of theoretical results discov-

ered through our study under the multi-phase inference paradigm, and the results

here extend Meng’s (1994) both in scope (e.g., covering multi-dimensions) and

in depth (e.g., showing how MI estimators integrate the imputer’s and analyst’s

knowledge). Section 2 illustrates the complexities of multi-phase inference and

summarizes our major findings. Section 3 presents a general decomposition of an

estimator resulting from a decomposable estimating equation. The result then is

applied in Section 4 to Rubin’s MI point estimator to arrive at a matrix-weighted

representation, a result which in turn is applied in Section 5 for variance calcu-

lations and for deriving an exceedingly simlple standard-error combining rule,
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as well as a variance doubling rule, for confidence validity under uncongeniality.

Revealing a hidden implication of Rubin’s variance combining rule that makes

the assumption of self-efficiency important, Section 6 presents a general result

about when an estimating equation is self-efficient. Armed with these results,

Section 7 then characterizes Rubin’s variance combining rules under nested mod-

els. Section 8 explores issues such as measuring the degree of uncongeniality and

possible cancellation of errors from different phases, issues that are unique to the

multi-phase paradigm and need to be addressed before its fruitful foundation can

be established in general.

1.3. But what is Validity in multi-phase inference and for whom?

We have already invoked the phrase “valid” several times, but as a reviewer

rightly pointed out, its meaning requires careful qualification and quantification.

Since our ultimate goal is to infer aspects of God’s model, validity apparently

must mean that our inferential conclusions should be consistent with God’s spec-

ifications if we had an unlimited amount of data. But such consistency require-

ment is only one part of statistical validity, which also regulates uncertainty

assessments in our inferential statements. These uncertainty assessments, such

as confidence coverage and hypothesis testing errors, give rise to more ambiguity

in the multi-phase setting than in the familiar God-vs-me paradigm, as revealed

in the MI setting.

Whereas there are many inferential perspectives (Bayesian, frequentist, like-

lihood, fiducial, etc; see Liu and Meng (2016)), there is essentially only one

scientific way to evaluate and compare statistical procedures — show how they

work when applied repeatedly, in reality, via simulation or in thought experi-

ments. Therefore, assessing uncertainty or more generally quality of any statisti-

cal procedure is inherently a frequentist endeavor, even for Bayesians (see Rubin

(1984)). The key question then is over what replications we should evaluate our

procedures.

Under the familiar God-vs-me paradigm, a well accepted replication scheme

is for me to imagine that God uses the same process G(D) that generated my

data, denoted by D0, to produce many more identically distributed data sets,

either independently, or conditionally (on some ancillary feature of D0 for exam-

ple) independently, of D0. Denoting these hypothetical date sets by {Di, i ∈ I}
and the procedure under evaluation by Pro, I can compute whatever operating

characteristics of Pro that are of interest (e.g., variance, coverage, Type I errors)

by statistically summarizing {Pro(Di), i ∈ I}; or theoretically, I can calculate

the property of Pro(D) over the God’s model/process G(D) I perceive. How to

perceive a relevant God process G(D) for my particular data set D0 is nontrivial

and indeed is at the heart of any statistical inference, as argued in Liu and Meng
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assessments in our inferential statements. These uncertainty assessments, such

as confidence coverage and hypothesis testing errors, give rise to more ambiguity

in the multi-phase setting than in the familiar God-vs-me paradigm, as revealed

in the MI setting.

Whereas there are many inferential perspectives (Bayesian, frequentist, like-

lihood, fiducial, etc; see Liu and Meng (2016)), there is essentially only one

scientific way to evaluate and compare statistical procedures — show how they

work when applied repeatedly, in reality, via simulation or in thought experi-

ments. Therefore, assessing uncertainty or more generally quality of any statisti-

cal procedure is inherently a frequentist endeavor, even for Bayesians (see Rubin

(1984)). The key question then is over what replications we should evaluate our

procedures.

Under the familiar God-vs-me paradigm, a well accepted replication scheme

is for me to imagine that God uses the same process G(D) that generated my

data, denoted by D0, to produce many more identically distributed data sets,

either independently, or conditionally (on some ancillary feature of D0 for exam-

ple) independently, of D0. Denoting these hypothetical date sets by {Di, i ∈ I}
and the procedure under evaluation by Pro, I can compute whatever operating

characteristics of Pro that are of interest (e.g., variance, coverage, Type I errors)

by statistically summarizing {Pro(Di), i ∈ I}; or theoretically, I can calculate

the property of Pro(D) over the God’s model/process G(D) I perceive. How to

perceive a relevant God process G(D) for my particular data set D0 is nontrivial

and indeed is at the heart of any statistical inference, as argued in Liu and Meng
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(2016). Nevertheless, there is only one God process I need to contemplate and

only I, wearing the hat as an analyst, need to contemplate.

In a multi-phase setting, a complication arises because either there will be

multiple “God” processes I need to contemplate, or there will be multiple “I”s

doing the contemplation, or both. For example, in the MI setting, in addition

to me as an analyst, there will be the imputer (which could just be me but

wearing a different hat). From me the analyst’s perspective, my interest is not

that different from me as in the God-vs-me paradigm — I want to ensure my

inference is valid in the same sense as before, with the complication that I now

need to include the imputation process as a part of the God’s model; or more

precisely to treat the imputer as a Demigod, and add the Demigod process to

the God process to form a Super God process. Using the notation of Section 1.2,

we can express this Super God’s process as G(Zobs)
∏m

ℓ=1 P
I(Z̃

(ℓ)
mis|Zobs), yielding

my data D0 = {Zobs, Z̃
(1)
mis, · · · , Z̃

(m)
mis }.

But from the imputer’s perspective, especially those who are responsible for

producing public-use data files for many analysts, the validity is no longer about

a particular me, but to ensure that the imputation quality is such that as many

subsequent analysts will be able to reach the validity they care about without

having to worry (too much) about how the imputation was done. This is no dif-

ferent from the perspective of a data collector for public-use data files. Indeed,

for large-scale public-use data files, such as those put out by the US Census

Bureau, it is beyond virtually any analysis team’s capacity to assess the data

quality, be observed or imputed. This effectively means that subsequent analysts

would have to invoke the aforementioned “Super God” perspective, however sub-

consciously or involuntarily, in their contemplations of relevant replications for

assessing uncertainty and validity. Although they typically have little interest in

inferring any aspect of the Demigod model, they need to treat the imputation

process as a “nuisance process”, affecting the quality of the inference they care

about.

Therefore, a key consideration of validity from the imputer’s perspective

must be to ensure that the imputation process is as small a nuisance as possible

to as many subsequent analyses as possible. This means that to assume the

imputation model as precisely consistent with God’s specific model for producing

Zobs as the imputer believes can actually be very harmful. This is because the

more precise a specification (e.g., setting a regression coefficient to zero), the fewer

analysts would include it in their contemplations. Therefore, a more restrictive

imputation model will typically do more harm to more subsequent analyses,

especially considering the analysts have essentially zero chance to correct the

problem or even to suspect that there is a problem.

MULTIPLE IMPUTATION FROM A MULTI-PHASE INFERENCE PERSPECTIVE 9

It is therefore well understood from the early days of the debate on MI

inference, as documented in Meng (1994), that the imputation model class should

be as saturated as practically feasible, when it is compared with the analysts’

(embedding) model classes. The theoretical results in this paper further support

this general advice, which is applicable even when the same team carries out both

the imputation and analysis phases. This is because the need for separating the

two phases in the first place typically means that the team has faced practical

or theoretical constraints that have compelled it to take care of the missing data

problem before performing any desired analyses. Consequently, it is in the team’s

interest to not unduly tie its own hands by using an overly restrictive imputation

model, so it can perform more subsequent analyses at the analysis phase without

having to regret or even redo the imputation.

However, there has been virtually no study of how to quantify or even qualify

the types of analysis to be conducted on any public-data file, nor is it clear how

to meaningfully conduct such studies given the on-going methodological evolu-

tion after the release of any specific data set. Therefore, since a primary goal of

this paper is to investigate theoretically the consequences of having uncongenial

models via the perspective of multi-phase inference, we must put the imputation

model and analysis procedure on an equal footing in order to study how their

relationships and interactions would influence the final MI inference. We do so by

investigating how a single class of imputation models interacts with a single class

of analysis models, as an effective building block for understanding the interac-

tions between multiple classes of imputation and analysis models. Consequently,

the notion of validity in this article is with respect to the original God’s pro-

cess that creates what we observe, i.e., G(Zobs), where G encompasses the entire

process of creating Zobs, including God’s missing-data mechanism. The issue of

imputation uncertainty due to a finite m disappears in our theoretical results,

because we assume m = ∞ to separate the complication due to uncongenality

from Monte-Carlo errors because of a finite m.

Furthermore, the central controversy about MI has been the possibility of an

invalid inference, under God’s G(Zobs), when both the imputation and analysis

model classes are correctly specified. We therefore restrict ourselves to such

a setting as well, by assuming both classes contain God’s model as a special

case. The cases where one or both model classes are misspecified are of greater

practical interest, just as in reality essentially all model classes are misspecified.

Nevertheless, theoretical insights are typically developed by first studying what

can go wrong under controlled environments. As we reveal below, even within

our restrictive environments, the findings are substantially more intricate than

previously anticipated. Such intricacies seem to be the rule rather than exception

in multi-phase inference (see Blocker and Meng (2013)), and we hope they can
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Bureau, it is beyond virtually any analysis team’s capacity to assess the data

quality, be observed or imputed. This effectively means that subsequent analysts

would have to invoke the aforementioned “Super God” perspective, however sub-

consciously or involuntarily, in their contemplations of relevant replications for

assessing uncertainty and validity. Although they typically have little interest in

inferring any aspect of the Demigod model, they need to treat the imputation

process as a “nuisance process”, affecting the quality of the inference they care

about.

Therefore, a key consideration of validity from the imputer’s perspective

must be to ensure that the imputation process is as small a nuisance as possible

to as many subsequent analyses as possible. This means that to assume the

imputation model as precisely consistent with God’s specific model for producing

Zobs as the imputer believes can actually be very harmful. This is because the

more precise a specification (e.g., setting a regression coefficient to zero), the fewer

analysts would include it in their contemplations. Therefore, a more restrictive

imputation model will typically do more harm to more subsequent analyses,

especially considering the analysts have essentially zero chance to correct the
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this general advice, which is applicable even when the same team carries out both

the imputation and analysis phases. This is because the need for separating the
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or theoretical constraints that have compelled it to take care of the missing data

problem before performing any desired analyses. Consequently, it is in the team’s

interest to not unduly tie its own hands by using an overly restrictive imputation

model, so it can perform more subsequent analyses at the analysis phase without

having to regret or even redo the imputation.

However, there has been virtually no study of how to quantify or even qualify

the types of analysis to be conducted on any public-data file, nor is it clear how

to meaningfully conduct such studies given the on-going methodological evolu-

tion after the release of any specific data set. Therefore, since a primary goal of

this paper is to investigate theoretically the consequences of having uncongenial

models via the perspective of multi-phase inference, we must put the imputation

model and analysis procedure on an equal footing in order to study how their

relationships and interactions would influence the final MI inference. We do so by

investigating how a single class of imputation models interacts with a single class

of analysis models, as an effective building block for understanding the interac-

tions between multiple classes of imputation and analysis models. Consequently,

the notion of validity in this article is with respect to the original God’s pro-

cess that creates what we observe, i.e., G(Zobs), where G encompasses the entire

process of creating Zobs, including God’s missing-data mechanism. The issue of

imputation uncertainty due to a finite m disappears in our theoretical results,

because we assume m = ∞ to separate the complication due to uncongenality

from Monte-Carlo errors because of a finite m.

Furthermore, the central controversy about MI has been the possibility of an

invalid inference, under God’s G(Zobs), when both the imputation and analysis

model classes are correctly specified. We therefore restrict ourselves to such

a setting as well, by assuming both classes contain God’s model as a special

case. The cases where one or both model classes are misspecified are of greater

practical interest, just as in reality essentially all model classes are misspecified.

Nevertheless, theoretical insights are typically developed by first studying what

can go wrong under controlled environments. As we reveal below, even within

our restrictive environments, the findings are substantially more intricate than

previously anticipated. Such intricacies seem to be the rule rather than exception

in multi-phase inference (see Blocker and Meng (2013)), and we hope they can
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entice those with adventurous spirit to explore with us this essentially virgin

forest of multi-phase inference.

2. Summarizing and Illustrating Key Findings

Uncongenial models complicate our life. To help readers to decide if they

want explore such a complicated life style, here we use three simple but informa-

tive examples to illustrate general guidelines, with precise theoretical conditions

and statements given in Section 7.

• The validity of both the imputer’s and analyst’s model/procedure does not

guarantee the validity of the resulting MI inference, especially when the ana-

lyst’s procedure is completely unregulated (e.g., when it is not self-efficient);

• When the imputer’s model is more saturated than the model underlying the

analyst’s procedure and the analyst’s procedure is self-efficient, Rubin’s rules

are confidence proper (i.e., with the correct coverage) and possess good ro-

bustness properties;

• When the imputer’s model is less saturated than the analyst’s (embedding)

model and the analyst’s procedure is self-efficient, Rubin’s rules achieve super

efficiency when the fractions of missing information for all parameters are the

same; otherwise confidence validity (i.e., with at least the nominal coverage)

is not guaranteed;

• In general, uncongenality should be regarded as the rule rather than the ex-

ception, and a simple confidence valid procedure to combat any degree of

uncongenality is to double Rubin’s MI variance estimate. For univariate es-

timand, a less conservative but still confidence valid approach is to apply

Rubin’s additive combining rule in terms the standard errors instead of vari-

ances — to form the MI standard error as the sum of the with-imputation

standard error and the between-imputation standard error.

A key reason that the validity of individual models does not necessarily guar-

antee the overall validity is that “a valid model” here really means “a valid model

class”. They all share the completely specified God’s model (including MDM)

as a special case, but can differ in any other aspects, including having different

parameter spaces. Consequently, we use a superscript to denote whether a model

parameter θ, as a generic notation, comes from the analyst’s model (θA) or from

the imputer’s model (θI). Although from this point on we adopt the common

practice of not distinguishing between “models” (completely known) and “model

classes” (which contains unknowns), our examples illustrate the complications

caused by the flexibility of a valid model class. These analytical tractable ex-

amples demonstrate well the intricate nature of dealing with even the simplest
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two-phase inference with two uncongenial model classes (imputation and anal-

ysis), and with God’s model being nested within each. Real-life situations are

far more complex than these stylistic examples, as the regression example given

in the on-line supplement demonstrates (also see Section 8.3), even though the

regression example itself is on the simplistic side.

2.1. Example 1: Illustrating uncongeniality and self-efficiency

In the first example, we assume that the complete data are N independent

normal observations with mean θ0, which is arbitrary but fixed. However, the

first n (< N) observed ones have variance 1 and the remaining N − n missing

ones have variance σ2
0. The imputer’s model correctly captures this unequal

variance setting, but it is unknown to the analyst. Nevertheless, the analyst’s

complete-data procedure is still valid. Specifically, we assume

• God’s Model : Zobs = (Y1, . . . , Yn) with Yi
i.i.d.∼ N(θ0, 1) for i = 1, . . . , n and

Zmis = (Yn+1, . . . , YN ) with Yi
i.i.d.∼ N(θ0, σ

2
0) for i = n+ 1, . . . , N .

• Imputer’s Model : Yi
i.i.d.∼ N(θ, 1) for i = 1, . . . , n and Yi

i.i.d.∼ N(θ, σ2
0) for

i = n + 1, . . . , N ; prior p(θ) ∝ 1; imputed values are obtained as posterior

predictive draws by sampling

θ̃|Zobs ∼ N(Ȳn, n
−1) and then Ỹi|θ̃

i.i.d.∼ N(θ̃, σ2
0), for i = n+ 1, . . . , N,

where Ȳn is the average of the observed sample: Zobs = (Y1, . . . , Yn).

• Analyst’s Complete-data Procedure:

θ̂Acom = ȲN , V̂ A
com = V̂ (θ̂Acom) =

1

N
S2
N ,

where ȲN and S2
N are the sample mean and sample variance of Zcom =

{Y1, . . . , YN}.

To simplify the algebra, we replace V̂ A
com by its asymptotic equivalent

Ū∞ =
1

N
[(1− f) + fσ2

0], where f =
N − n

N
, (2.1)

because V̂ A
com − Ū∞ = Op(N

−3/2), assuming the fraction of missing data f = 1−
n/N is bounded away from 1 as N → ∞. Thus, for our asymptotic comparisons

where we ignore anything of op(N
−1) order, we can assume Pc = [ȲN , Ū∞] with

Ū∞ given by (2.1) even though the analyst is unaware of the heteroscedasticity

in the observations.

Given the above setup, it is straightforward to verify that θ̄∞ = Ȳn and

T∞ = Ū∞ +B∞ =
1

N

[
(1− f) + fσ2

0

]
+

f

N

[
f

1− f
+ σ2

0

]
. (2.2)
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timand, a less conservative but still confidence valid approach is to apply
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ances — to form the MI standard error as the sum of the with-imputation
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antee the overall validity is that “a valid model” here really means “a valid model

class”. They all share the completely specified God’s model (including MDM)

as a special case, but can differ in any other aspects, including having different

parameter spaces. Consequently, we use a superscript to denote whether a model

parameter θ, as a generic notation, comes from the analyst’s model (θA) or from

the imputer’s model (θI). Although from this point on we adopt the common
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Clearly, T∞ differs in general from the sampling variance of θ̄∞, V∞ ≡ V (Ȳn) =

1/n, resulting in an asymptotic bias

∆n ≡ n(T∞ − V∞) = 2f(1− f)(σ2
0 − 1). (2.3)

Other than the trivial case when f = 0, we see that ∆n is zero if and only if

σ2
0 = 1 (we have assumed f < 1), namely, if and only if Pc is congenial to the

imputer’s model.

When σ2
0 ̸= 1, the bias in T∞ can be either positive or negative. It also

illustrates something more subtle. Because θ̄∞ is the same as analyst’s procedure

applied to Zobs, i.e., θ̄∞ = Ȳn = θ̂Aobs, if Rubin’s rule T∞ = Ū∞ + B∞ were to

provide the correct variance for θ̄∞ = Ȳn, it would imply that (asymptotically

under God’s model)

V (θ̂Aobs) = V (Ȳn) = T∞ = Ū∞ +B∞ ≥ Ū∞ = V (ȲN ) = V (θ̂Acom). (2.4)

One might take (2.4) for granted, since ȲN is based on more observations than

Ȳn. But (2.4) is true in general only when {Y1, . . . , YN} are exchangeable, which

clearly is not the case under heteroscedasticity. Indeed, V (Ȳn) = 1/n and

V (ȲN ) = (1 − f + fσ2
0)/N . Hence, the inequality (2.4) holds if and only if

σ2
0 ≤ 1 + (1 − f)−1 (assuming f > 0). If σ2

0 is too big, then the analyst would

obtain a more efficient estimator with fewer observations.

This seemingly paradoxical phenomenon arises because the analyst’s proce-

dure, which gives all observations equal weight, is optimal only when all obser-

vations deserve to be weighted equally. Otherwise, by giving those observations

with large variabilities more weights than they deserve, we actually can hurt

ourselves with more observations because their large variabilities outweigh the

gain in sample size; see Meng and Xie (2014) for a general discussion of such

phenomenon. This implies that for Rubin’s variance combining rule to hold,

we minimally need to impose (2.4). Actually, as shown in Meng (1994), to

avoid this “paradoxical phenomenon” we need to require the analyst’s proce-

dure to be self-efficient, i.e., θ̂Acom needs to be most efficient among the class

{λθ̂Aobs + (1− λ)θ̂Acom : λ ∈ R} with respect to mean-squared loss. This assump-

tion is violated here when σ2
0 ̸= 1, because then

λ =
(1− f)(σ2

0 − 1)

σ2
0(1− f) + f

(2.5)

will render λθ̂Aobs + (1 − λ)θ̂Acom = λȲn + (1 − λ)ȲN = θ̂MLE. Here θ̂MLE is

the complete-data MLE of θ under the correct imputer’s model, which is more

efficient than the analyst’s θ̂A(Zcom) = ȲN under God’s model whenever σ2
0 ̸= 1.

(Recall σ2
0 is known.)
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Linking Rubin’s variance combining rule to the self-efficient formulation al-
lows us to investigate when T∞ is a conservative estimator or anti-conservative
estimator, a useful distinction for investigating confidence validity; see Section 7.
We notice that the bias ∆n of (2.3) and the λ of (2.5) have identical sign, con-
firming the corresponding general result of Meng (1994). In particular, here T∞
is conservative if and only if σ2

0 > 1. We illustrate in the next two examples that
this conservative tendency is a general phenomenon when the imputer’s model
and analyst’s (embedding) model form a nested relationship in either direction,
although the two directions have different flavors of conservatism. (For the cur-
rent example, N(θ, 1) and N(θ, σ2

0) do not form a nested pair in either direction
when σ2

0 ̸= 1.)
Before we proceed, we illustrate a remarkable and practical finding that

will be proved in Section 5.2. Although T∞ may underestimate V∞, 2T∞ turns
out will never be below V∞. Indeed, a shaper upper bound for V∞ exists for a
univariate estimand; the sum of the within-imputation standard error

√
Ū∞ and

between-imputation standard error
√
B∞ is never below the standard error of

θ̄∞,
√
V∞. (This is sharper because (

√
Ū∞ +

√
B∞)2 ≤ 2(Ū∞ + B∞) = 2T∞).

Thus they provide us with very simple ways to obtain confidence valid inference
regardless of the degree of uncongenality and such inferences are sharp in the
multi-phase inference paradigm when we need to protect ourselves from any
degree of incompatibility between phases (Section 5.2).

To verify this in the current example, we need only show that√
Ū∞ +

√
B∞ ≥

√
V∞ (2.6)

holds for all values of σ2
0, which governs the degree of uncongenality in this case.

But it’s easy to see from (2.2) that the left-hand side of (2.6), as a function of
σ2
0, achieves its minimum when σ2

0 = 0. This minimum value is given by, using
the fact 1− f = n/N ,√

1− f

N
+

f√
N(1− f)

=
1√

N(1− f)
=

1√
n
, (2.7)

which is exactly the right-hand side of (2.6).

2.2. Example 2: Hidden robustness—When analyst assumes more

Here we assume that the complete data are two normal samples that actually
can be treated as one. This fact is used by the analyst, but not by the imputer,
who models each sample with its own mean. But both model classes contains
God’s model as a sub-model, as depicted in Figure 1.

Specifically, maintaining the notation Zcom and Zobs for complete data and
observed data, respectively (and hence here Zcom = {Xcom, Ycom} and Zobs =
{Xobs, Yobs}), we have
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Clearly, T∞ differs in general from the sampling variance of θ̄∞, V∞ ≡ V (Ȳn) =

1/n, resulting in an asymptotic bias

∆n ≡ n(T∞ − V∞) = 2f(1− f)(σ2
0 − 1). (2.3)

Other than the trivial case when f = 0, we see that ∆n is zero if and only if

σ2
0 = 1 (we have assumed f < 1), namely, if and only if Pc is congenial to the

imputer’s model.

When σ2
0 ̸= 1, the bias in T∞ can be either positive or negative. It also
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V (ȲN ) = (1 − f + fσ2
0)/N . Hence, the inequality (2.4) holds if and only if

σ2
0 ≤ 1 + (1 − f)−1 (assuming f > 0). If σ2

0 is too big, then the analyst would

obtain a more efficient estimator with fewer observations.

This seemingly paradoxical phenomenon arises because the analyst’s proce-

dure, which gives all observations equal weight, is optimal only when all obser-

vations deserve to be weighted equally. Otherwise, by giving those observations

with large variabilities more weights than they deserve, we actually can hurt

ourselves with more observations because their large variabilities outweigh the
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we minimally need to impose (2.4). Actually, as shown in Meng (1994), to
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{λθ̂Aobs + (1− λ)θ̂Acom : λ ∈ R} with respect to mean-squared loss. This assump-

tion is violated here when σ2
0 ̸= 1, because then

λ =
(1− f)(σ2

0 − 1)

σ2
0(1− f) + f

(2.5)

will render λθ̂Aobs + (1 − λ)θ̂Acom = λȲn + (1 − λ)ȲN = θ̂MLE. Here θ̂MLE is

the complete-data MLE of θ under the correct imputer’s model, which is more

efficient than the analyst’s θ̂A(Zcom) = ȲN under God’s model whenever σ2
0 ̸= 1.

(Recall σ2
0 is known.)

MULTIPLE IMPUTATION FROM A MULTI-PHASE INFERENCE PERSPECTIVE 13

Linking Rubin’s variance combining rule to the self-efficient formulation al-
lows us to investigate when T∞ is a conservative estimator or anti-conservative
estimator, a useful distinction for investigating confidence validity; see Section 7.
We notice that the bias ∆n of (2.3) and the λ of (2.5) have identical sign, con-
firming the corresponding general result of Meng (1994). In particular, here T∞
is conservative if and only if σ2

0 > 1. We illustrate in the next two examples that
this conservative tendency is a general phenomenon when the imputer’s model
and analyst’s (embedding) model form a nested relationship in either direction,
although the two directions have different flavors of conservatism. (For the cur-
rent example, N(θ, 1) and N(θ, σ2

0) do not form a nested pair in either direction
when σ2

0 ̸= 1.)
Before we proceed, we illustrate a remarkable and practical finding that

will be proved in Section 5.2. Although T∞ may underestimate V∞, 2T∞ turns
out will never be below V∞. Indeed, a shaper upper bound for V∞ exists for a
univariate estimand; the sum of the within-imputation standard error

√
Ū∞ and

between-imputation standard error
√
B∞ is never below the standard error of

θ̄∞,
√
V∞. (This is sharper because (

√
Ū∞ +

√
B∞)2 ≤ 2(Ū∞ + B∞) = 2T∞).

Thus they provide us with very simple ways to obtain confidence valid inference
regardless of the degree of uncongenality and such inferences are sharp in the
multi-phase inference paradigm when we need to protect ourselves from any
degree of incompatibility between phases (Section 5.2).

To verify this in the current example, we need only show that√
Ū∞ +

√
B∞ ≥

√
V∞ (2.6)

holds for all values of σ2
0, which governs the degree of uncongenality in this case.

But it’s easy to see from (2.2) that the left-hand side of (2.6), as a function of
σ2
0, achieves its minimum when σ2

0 = 0. This minimum value is given by, using
the fact 1− f = n/N ,√

1− f

N
+

f√
N(1− f)

=
1√

N(1− f)
=

1√
n
, (2.7)

which is exactly the right-hand side of (2.6).

2.2. Example 2: Hidden robustness—When analyst assumes more

Here we assume that the complete data are two normal samples that actually
can be treated as one. This fact is used by the analyst, but not by the imputer,
who models each sample with its own mean. But both model classes contains
God’s model as a sub-model, as depicted in Figure 1.

Specifically, maintaining the notation Zcom and Zobs for complete data and
observed data, respectively (and hence here Zcom = {Xcom, Ycom} and Zobs =
{Xobs, Yobs}), we have
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Figure 1. The scenario where the imputer assumes less.

• God’s Model: Xcom = {Xobs, Xmis} ≡ {(X1, . . . , Xnx), (Xnx+1, . . . , XNx)}
and Ycom = {Yobs, Ymis} ≡ {(Y1, . . . , Yny), (Yny+1, . . . , YNy)} with Xi

i.i.d.∼
N(θ0, 1) and Yi

i.i.d.∼ N(θ0, 1); the X sample and Y sample are independent,

denoted by X⊥Y.

• Imputer’s Model : Xi
i.i.d.∼ N(θx, 1) and Yi

i.i.d.∼ N(θy, 1), and X ⊥ Y ; prior

p(θx, θy) ∝ 1; MIs are obtained as posterior predictive draws by sampling

θ̃x ∼ N(X̄nx , n
−1
x ) and then X̃i|θ̃x

i.i.d.∼ N(θ̃x, 1), for i = nx + 1, . . . , Nx;

θ̃y ∼ N(Ȳny , n
−1
y ) and then Ỹi|θ̃y

i.i.d.∼ N(θ̃y, 1), for i = ny + 1, . . . , Ny.

• Analyst’s Complete-data Procedure: Analyst’s underlying model: Xi
i.i.d.∼

N(θ, 1) and Yi
i.i.d.∼ N(θ, 1), and X⊥Y ; the corresponding procedure for infer-

ring θ then is

θ̂com = w(c)
x X̄Nx + w(c)

y ȲNy , V (θ̂com) ≡ Ū∞ =
1

N
, (2.8)

where N = Nx +Ny, w
(c)
x = Nx/N , and w

(c)
y = Ny/N.

Given this setting, it is straightforward to verify that Rubin’s rules yield

θ̄∞ = w(c)
x X̄nx + w(c)

y Ȳny and T∞ = Ū∞ +B∞ =
[w

(c)
x ]2

nx
+

[w
(c)
y ]2

ny
. (2.9)

But T∞ is exactly the variance of θ̄∞ (conditioning on nx and ny) so Rubin’s T∞
remains consistent for V (θ̄∞) even though the analyst’s model and the imputer’s

model are uncongenial. The reason is that the analyst’s complete-data proce-

dure provides the best possible answer under either the analyst’s model or the

imputer’s model, a condition that is sufficient (but not necessary) for the validity

of P∞ = [θ̄∞, T∞] (see Theorem 5 of Section 7).

What are the consequences of being uncongenial then? From the standard

paradigm perspective, a negative consequence is that P∞ = [θ̄∞, T∞] given by

(2.9) is not optimal in general, since the MLE for θ under the analyst’s model

given Zobs is

θ̂Aobs = w(o)
x X̄nx + w(o)

y Ȳny , (2.10)
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where w
(o)
x = nx/n and w

(o)
y = ny/n. Clearly the variance of θ̂Aobs is 1/n (condi-

tioning on the size n), smaller than T∞ except when w
(o)
x = w

(c)
x (and w

(o)
y = w

(c)
y ),

in which case θ̄∞ = θ̂Aobs. The difference between θ̄∞ of (2.9) and θ̂Aobs of (2.10)

lies in their weights. Using the complete-data proportion w
(c)
x is not as effi-

cient as using the observed w
(o)
x when the analyst’s assumption of common mean

holds. However, a positive consequence of not using this assumption is robust-
ness. When the assumption fails, θ̄∞ is still a consistent estimator of the overall
mean of the combined population, but θ̂Aobs is not. This is a standard bias-
variance tradeoff, with the twist that the robustness was built into MI, enjoyed
by the analyst but without necessarily knowing it.

Indeed, from the multi-phase inference perspective, this hidden benefit of
θ̄∞ may outweigh the gain in efficiency by θ̂Aobs. To see this, suppose an analyst
wants to estimate the average income of Asian Americans in United States from a
survey. Unknown to the analyst, both the income level and response probability
depend substantially on US born versus foreign born, which is not provided,
rendering consistent estimates of the average income impossible based on the
observed responses alone. However, the nativity data are made available to the
imputer, who therefore imputes the income levels for the two groups separately.
Since (2.8) does not require nativity, the analyst can use Rubin’s rules to reach
the valid inference (2.9) without ever knowing the nativity. Clearly, the fact
that there could be a more efficient θ̂Aobs if the analyst were given the nativity
information is irrelevant in this multi-phase inference setting. Such a separation
of information is particularly important for preserving data confidentiality (e.g.,
Reiter (2009a,b)).

In Section 7, we show that the phenomenon reported here is general. Under
the scenario depicted by Figure 1, and the assumption that the analyst’s pro-
cedure is self-efficient (plus some regularity conditions), Rubin’s P∞ = [θ̄∞, T∞]
is consistent. Furthermore, V (θ̄∞) ≥ V (θ̂Aobs) because the efficiency due to the
analyst’s additional assumption is not used by the imputer, a necessary premium
for the robustness built into the imputation. These results are obtained by an
asymptotic decomposition of θ̄∞, as illustrated below.

Let f = 1−n/N and w
(m)
x = (Nx−nx)/(N−n) be the proportion of missing

data that belong to the X sample, and w
(m)
y = 1 − w

(m)
x . Rubin’s θ̄∞ then can

be re-written as

θ̄∞ = (1− f)
(
w(o)
x X̄nx + w(o)

y Ȳny

)
+ f

(
w(m)
x , w(m)

y

)(
X̄nx

Ȳny

)

≡ (1− F )θ̂Aobs + FKθ̂Iobs. (2.11)

Therefore, θ̄∞ is a weighted sum of two estimators: θ̂Aobs of (2.10)—the analyst’s
observed-data estimator, and Kθ̂Iobs—the projection of the imputer’s observed-
data estimator, θ̂Iobs = (X̄nx , Ȳny)

⊤. The role played by the projection matrix
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Figure 1. The scenario where the imputer assumes less.

• God’s Model: Xcom = {Xobs, Xmis} ≡ {(X1, . . . , Xnx), (Xnx+1, . . . , XNx)}
and Ycom = {Yobs, Ymis} ≡ {(Y1, . . . , Yny), (Yny+1, . . . , YNy)} with Xi

i.i.d.∼
N(θ0, 1) and Yi

i.i.d.∼ N(θ0, 1); the X sample and Y sample are independent,

denoted by X⊥Y.

• Imputer’s Model : Xi
i.i.d.∼ N(θx, 1) and Yi

i.i.d.∼ N(θy, 1), and X ⊥ Y ; prior

p(θx, θy) ∝ 1; MIs are obtained as posterior predictive draws by sampling

θ̃x ∼ N(X̄nx , n
−1
x ) and then X̃i|θ̃x

i.i.d.∼ N(θ̃x, 1), for i = nx + 1, . . . , Nx;

θ̃y ∼ N(Ȳny , n
−1
y ) and then Ỹi|θ̃y

i.i.d.∼ N(θ̃y, 1), for i = ny + 1, . . . , Ny.

• Analyst’s Complete-data Procedure: Analyst’s underlying model: Xi
i.i.d.∼

N(θ, 1) and Yi
i.i.d.∼ N(θ, 1), and X⊥Y ; the corresponding procedure for infer-

ring θ then is

θ̂com = w(c)
x X̄Nx + w(c)

y ȲNy , V (θ̂com) ≡ Ū∞ =
1

N
, (2.8)

where N = Nx +Ny, w
(c)
x = Nx/N , and w

(c)
y = Ny/N.

Given this setting, it is straightforward to verify that Rubin’s rules yield

θ̄∞ = w(c)
x X̄nx + w(c)

y Ȳny and T∞ = Ū∞ +B∞ =
[w

(c)
x ]2

nx
+

[w
(c)
y ]2

ny
. (2.9)

But T∞ is exactly the variance of θ̄∞ (conditioning on nx and ny) so Rubin’s T∞
remains consistent for V (θ̄∞) even though the analyst’s model and the imputer’s

model are uncongenial. The reason is that the analyst’s complete-data proce-

dure provides the best possible answer under either the analyst’s model or the

imputer’s model, a condition that is sufficient (but not necessary) for the validity

of P∞ = [θ̄∞, T∞] (see Theorem 5 of Section 7).

What are the consequences of being uncongenial then? From the standard

paradigm perspective, a negative consequence is that P∞ = [θ̄∞, T∞] given by

(2.9) is not optimal in general, since the MLE for θ under the analyst’s model

given Zobs is

θ̂Aobs = w(o)
x X̄nx + w(o)

y Ȳny , (2.10)
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where w
(o)
x = nx/n and w

(o)
y = ny/n. Clearly the variance of θ̂Aobs is 1/n (condi-

tioning on the size n), smaller than T∞ except when w
(o)
x = w

(c)
x (and w

(o)
y = w

(c)
y ),

in which case θ̄∞ = θ̂Aobs. The difference between θ̄∞ of (2.9) and θ̂Aobs of (2.10)

lies in their weights. Using the complete-data proportion w
(c)
x is not as effi-

cient as using the observed w
(o)
x when the analyst’s assumption of common mean

holds. However, a positive consequence of not using this assumption is robust-
ness. When the assumption fails, θ̄∞ is still a consistent estimator of the overall
mean of the combined population, but θ̂Aobs is not. This is a standard bias-
variance tradeoff, with the twist that the robustness was built into MI, enjoyed
by the analyst but without necessarily knowing it.

Indeed, from the multi-phase inference perspective, this hidden benefit of
θ̄∞ may outweigh the gain in efficiency by θ̂Aobs. To see this, suppose an analyst
wants to estimate the average income of Asian Americans in United States from a
survey. Unknown to the analyst, both the income level and response probability
depend substantially on US born versus foreign born, which is not provided,
rendering consistent estimates of the average income impossible based on the
observed responses alone. However, the nativity data are made available to the
imputer, who therefore imputes the income levels for the two groups separately.
Since (2.8) does not require nativity, the analyst can use Rubin’s rules to reach
the valid inference (2.9) without ever knowing the nativity. Clearly, the fact
that there could be a more efficient θ̂Aobs if the analyst were given the nativity
information is irrelevant in this multi-phase inference setting. Such a separation
of information is particularly important for preserving data confidentiality (e.g.,
Reiter (2009a,b)).

In Section 7, we show that the phenomenon reported here is general. Under
the scenario depicted by Figure 1, and the assumption that the analyst’s pro-
cedure is self-efficient (plus some regularity conditions), Rubin’s P∞ = [θ̄∞, T∞]
is consistent. Furthermore, V (θ̄∞) ≥ V (θ̂Aobs) because the efficiency due to the
analyst’s additional assumption is not used by the imputer, a necessary premium
for the robustness built into the imputation. These results are obtained by an
asymptotic decomposition of θ̄∞, as illustrated below.

Let f = 1−n/N and w
(m)
x = (Nx−nx)/(N−n) be the proportion of missing

data that belong to the X sample, and w
(m)
y = 1 − w

(m)
x . Rubin’s θ̄∞ then can

be re-written as

θ̄∞ = (1− f)
(
w(o)
x X̄nx + w(o)

y Ȳny

)
+ f

(
w(m)
x , w(m)

y

)(
X̄nx

Ȳny

)

≡ (1− F )θ̂Aobs + FKθ̂Iobs. (2.11)

Therefore, θ̄∞ is a weighted sum of two estimators: θ̂Aobs of (2.10)—the analyst’s
observed-data estimator, and Kθ̂Iobs—the projection of the imputer’s observed-
data estimator, θ̂Iobs = (X̄nx , Ȳny)

⊤. The role played by the projection matrix
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Figure 2. The scenario where the imputer assumes more.

K = (w
(m)
x , w

(m)
y ) is crucial because θI and θA may live in different spaces.

The weight is determined here by the fraction of missing information F , whose

general expression will be given in Section 4.

The decomposition in (2.11) can also be derived from the viewpoint of es-

timating equations (EEs). In this example, Rubin’s MI estimator θ̄∞ can be

derived from EE

hn(Zobs; θ) = un(Zobs; θ) + vn(Zobs; θ) = 0,

where un(Zobs; θ) = nxX̄nx + nyȲny − nθ , (2.12)

and vn(Zobs; θ) = (Nx − nx)X̄nx + (Ny − ny)Ȳny − (N − n)θ.

Here un(Zobs; θ) = 0 and vn(Zobs; θ) = 0 can be viewed as the analyst’s and

imputer’s EEs because they respectively yield θ̂Aobs and Kθ̂Iobs, as in (2.11). In

Section 4, we show that this (asymptotical) correspondence between estimator

and EE decompositions is indeed general.

2.3. Example 3: Super efficiency—When the imputer assumes more

This example adopts the same God’s model as in Example 2, but with the

imputer’s model and the analyst’s (embedding) model being switched, as depicted

in Figure 2. Adopting the same notation as in Example 2, we have

• God’s model: Xcom = {Xobs, Xmis} ≡ {(X1, . . . , Xnx), (Xnx+1, . . . , XNx)} and

Ycom = {Yobs, Ymis} ≡ {(Y1, . . . , Yny), (Yny+1, . . . , YNy)} with Xi
i.i.d.∼ N(θ0, 1)

and Yi
i.i.d.∼ N(θ0, 1); and the two samples are independent.

• Imputer’s Model : Xi
i.i.d.∼ N(θ, 1) and independently Yi

i.i.d.∼ N(θ, 1); prior

p(θ) ∝ 1; multiple imputations are obtained as the posterior predictive draws

by sampling

θ̃|Zobs ∼ N(θ̂Iobs, n
−1), and then X̃i|θ̃

i.i.d∼ N(θ̃, 1), Ỹi|θ̃
i.i.d∼ N(θ̃, 1), (2.13)

where, as in Example 2, n = nx + ny, and

θ̂Iobs = w(o)
x X̄nx + w(o)

y Ȳny . (2.14)
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• Analyst’s Complete-data Procedure: Analyst’s underlying model: Xi
i.i.d.∼

N(θx, 1) and independently Yi
i.i.d.∼ N(θy, 1). The resulting complete-data

procedure is

θ̂Acom ≡

(
θ̂Ax,com
θ̂Ay,com

)
=

(
X̄Nx

ȲNy

)
, V (θ̂Acom) ≡ Ū∞ =

(
1
Nx

0

0 1
Ny

)
. (2.15)

Let fx = 1 − nx/Nx and fy = 1 − ny/Ny. Adopting other notations in

Example 2, we have

θ̄∞ =

(
(1− fx)X̄nx + fxθ̂

I
obs

(1− fy)Ȳny + fy θ̂
I
obs

)
, T∞ =

(
1−f2

x
nx

+ f2
x
n

fxfy
n

fxfy
n

1−f2
y

ny
+

f2
y

n

)
. (2.16)

It can also be verified directly that the sampling variance of θ̄∞ is given by

V∞ =

(
(1−fx)2

nx
+ fx(2−fx)

n
fx+fy−fxfy

n
fx+fy−fxfy

n
(1−fy)2

ny
+

fy(2−fy)
n

)
. (2.17)

Consequently, unless fx = fy = 0, Rubin’s T∞ has a non-vanishing asymptotic

bias

∆n = n(T∞ − V∞) =

(
2fx(1− fx)

(
1
nx

− 1
n

)
2fxfy − fx − fy

2fxfy − fx − fy 2fy(1− fy)
(

1
ny

− 1
n

)
)
. (2.18)

Here we see that the two diagonal entries in (2.18) are always non-negative,

implying that for estimating individual components of θA = (θx, θy)
⊤, Rubin’s

T∞ is conservative and hence the actual converge is no less than the nominal

coverage. However, the matrix ∆n is not non-negative definite in general; e.g.,

when fx = 0, det(∆n) = −f2
y < 0, as long as the Y sample is not fully observed.

From the standard paradigm perspective, this conservatism means that Ru-

bin’s procedure is not optimal. However, from the perspective of multi-phase

inference, this conservatism is inevitable when the analyst complete-data proce-

dure is derived without the benefit of the imputer’s extra information. In Exam-

ple 2, adopting P∞ = [θ̄∞, T∞] makes it possible for the analyst to benefit from

the robustness built into the MIs while only using a complete-data procedure.

In the same vein, for the current example, adopting P∞ = [θ̄∞, T∞] permits the

analyst to benefit from the extra efficiency built into the imputations without

being aware of it.

To see this clearly, we write θ̄∞ = (θ̂x,∞, θ̂y,∞)⊤, and let Tx,∞ and Ty,∞ be

the diagonal elements of T∞ of (2.16). Consider the X component. Evidently,

without MIs, the analyst’s estimator for θx will be X̄nx , with variance V (X̄nx) =
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Figure 2. The scenario where the imputer assumes more.

K = (w
(m)
x , w

(m)
y ) is crucial because θI and θA may live in different spaces.

The weight is determined here by the fraction of missing information F , whose

general expression will be given in Section 4.

The decomposition in (2.11) can also be derived from the viewpoint of es-

timating equations (EEs). In this example, Rubin’s MI estimator θ̄∞ can be

derived from EE

hn(Zobs; θ) = un(Zobs; θ) + vn(Zobs; θ) = 0,

where un(Zobs; θ) = nxX̄nx + nyȲny − nθ , (2.12)

and vn(Zobs; θ) = (Nx − nx)X̄nx + (Ny − ny)Ȳny − (N − n)θ.

Here un(Zobs; θ) = 0 and vn(Zobs; θ) = 0 can be viewed as the analyst’s and

imputer’s EEs because they respectively yield θ̂Aobs and Kθ̂Iobs, as in (2.11). In

Section 4, we show that this (asymptotical) correspondence between estimator

and EE decompositions is indeed general.

2.3. Example 3: Super efficiency—When the imputer assumes more

This example adopts the same God’s model as in Example 2, but with the

imputer’s model and the analyst’s (embedding) model being switched, as depicted

in Figure 2. Adopting the same notation as in Example 2, we have

• God’s model: Xcom = {Xobs, Xmis} ≡ {(X1, . . . , Xnx), (Xnx+1, . . . , XNx)} and

Ycom = {Yobs, Ymis} ≡ {(Y1, . . . , Yny), (Yny+1, . . . , YNy)} with Xi
i.i.d.∼ N(θ0, 1)

and Yi
i.i.d.∼ N(θ0, 1); and the two samples are independent.

• Imputer’s Model : Xi
i.i.d.∼ N(θ, 1) and independently Yi

i.i.d.∼ N(θ, 1); prior

p(θ) ∝ 1; multiple imputations are obtained as the posterior predictive draws

by sampling

θ̃|Zobs ∼ N(θ̂Iobs, n
−1), and then X̃i|θ̃

i.i.d∼ N(θ̃, 1), Ỹi|θ̃
i.i.d∼ N(θ̃, 1), (2.13)

where, as in Example 2, n = nx + ny, and

θ̂Iobs = w(o)
x X̄nx + w(o)

y Ȳny . (2.14)
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• Analyst’s Complete-data Procedure: Analyst’s underlying model: Xi
i.i.d.∼

N(θx, 1) and independently Yi
i.i.d.∼ N(θy, 1). The resulting complete-data

procedure is

θ̂Acom ≡

(
θ̂Ax,com
θ̂Ay,com

)
=

(
X̄Nx

ȲNy

)
, V (θ̂Acom) ≡ Ū∞ =

(
1
Nx

0

0 1
Ny

)
. (2.15)

Let fx = 1 − nx/Nx and fy = 1 − ny/Ny. Adopting other notations in

Example 2, we have

θ̄∞ =

(
(1− fx)X̄nx + fxθ̂

I
obs

(1− fy)Ȳny + fy θ̂
I
obs

)
, T∞ =

(
1−f2

x
nx

+ f2
x
n

fxfy
n

fxfy
n

1−f2
y

ny
+

f2
y

n

)
. (2.16)

It can also be verified directly that the sampling variance of θ̄∞ is given by

V∞ =

(
(1−fx)2

nx
+ fx(2−fx)

n
fx+fy−fxfy

n
fx+fy−fxfy

n
(1−fy)2

ny
+

fy(2−fy)
n

)
. (2.17)

Consequently, unless fx = fy = 0, Rubin’s T∞ has a non-vanishing asymptotic

bias

∆n = n(T∞ − V∞) =

(
2fx(1− fx)

(
1
nx

− 1
n

)
2fxfy − fx − fy

2fxfy − fx − fy 2fy(1− fy)
(

1
ny

− 1
n

)
)
. (2.18)

Here we see that the two diagonal entries in (2.18) are always non-negative,

implying that for estimating individual components of θA = (θx, θy)
⊤, Rubin’s

T∞ is conservative and hence the actual converge is no less than the nominal

coverage. However, the matrix ∆n is not non-negative definite in general; e.g.,

when fx = 0, det(∆n) = −f2
y < 0, as long as the Y sample is not fully observed.

From the standard paradigm perspective, this conservatism means that Ru-

bin’s procedure is not optimal. However, from the perspective of multi-phase

inference, this conservatism is inevitable when the analyst complete-data proce-

dure is derived without the benefit of the imputer’s extra information. In Exam-

ple 2, adopting P∞ = [θ̄∞, T∞] makes it possible for the analyst to benefit from

the robustness built into the MIs while only using a complete-data procedure.

In the same vein, for the current example, adopting P∞ = [θ̄∞, T∞] permits the

analyst to benefit from the extra efficiency built into the imputations without

being aware of it.

To see this clearly, we write θ̄∞ = (θ̂x,∞, θ̂y,∞)⊤, and let Tx,∞ and Ty,∞ be

the diagonal elements of T∞ of (2.16). Consider the X component. Evidently,

without MIs, the analyst’s estimator for θx will be X̄nx , with variance V (X̄nx) =
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n−1
x (conditioning on nx). Although Tx,∞ overestimates V (θ̂x,∞), it is easy to

verify from the expression of T∞ in (2.16) that

V (X̄nx)− Tx,∞ = f2
x

(
1

nx
− 1

n

)
=

f2
xny

nnx
≥ 0, (2.19)

which is zero if and only if either fx = 0, no missing X’s, or ny = 0, no Y sample
to help. The inequality (2.19) implies that any (asymptotic) confidence interval
estimator for θx based on the analyst’s observed-data procedure is inadmissible.
For example, although (X̄nx − 1.96n

−1/2
x , X̄nx + 1.96n

−1/2
x ) has the correct 95%

coverage, it is at least as wide as (θ̂x,∞ − 1.96T
1/2
x,∞, θ̂x,∞ + 1.96T

1/2
x,∞) because of

(2.19), yet the latter has at least 95% coverage because Tx,∞ ≥ V (θ̂x,∞). This
seemingly paradoxical phenomenon is because θ̂x,∞ is more efficient than X̄nx ,
and the over-estimation by Tx,∞ for V (θ̂x,∞) still does not exceed the added
variance in X̄nx compared with that of θ̂x,∞, i.e., V (X̄nx)− V (θ̂x,∞).

Since the conservativeness result holds for individual components, shouldn’t
it also hold for any linear combination of them? After all, we can always re-
parameterize. To see why this is not the case, we write, analogous to (2.11),

θ̄∞ =

(
(1− fx)X̄nx + fxθ̂

I
obs

(1− fy)Ȳny + fy θ̂
I
obs

)
≡ (I − F )θ̂Aobs + FKθ̂Iobs, (2.20)

where θ̂Iobs is given by (2.14), and

F =

(
fx 0

0 fy

)
, K =

(
1

1

)
, θ̂Aobs =

(
X̄nx

Ȳny

)
. (2.21)

Again we find that θ̄∞ is a matrix weighted sum of θ̂Aobs, the analyst’s observed-
data estimator and Kθ̂Iobs, a projection of the imputer’s observed-data estimator.
As in Section 2.2, the decomposition (2.20) has its corresponding EEs for θ̄∞,
θ̂Aobs and Kθ̂Iobs as

hn(Zobs; θ) = un(Zobs; θ) + vn(Zobs; θ),

un(Zobs; θ) =

(
nxX̄nx − nxθ

nyȲny − nyθ

)
, (2.22)

vn(Zobs; θ) =

(
(Nx − nx)θ̂

I
obs − (Nx − nx)θ

(Ny − ny)θ̂
I
obs − (Ny − ny)θ

)
.

Now consider a re-parametrization ϕ = Cθ under the analyst’s model, where
C is a 2×2 matrix. From (2.20), unless F is proportional to the identity matrix,
the matrices C and F (and hence (I − F )) generally do not commute. Conse-
quently, in general,

ϕ̄∞ = Cθ̄∞ ̸= (I − F )Cθ̂Aobs + F [CKθ̂Iobs] = (I − F )ϕ̂A
obs + F [CKθ̂Iobs].
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That is, the matrix-weighted decomposition is not invariant even to linear trans-

formations.

This lack of invariance reflects the inherent complexity of missing-data mech-

anism, which can easily affect different parameters differently. To illustrate, sup-

pose the analyst’s estimand is ϕ = θx+θy. From (2.16), the Rubin’s MI estimator

for ϕ is

ϕ̂∞ = θ̂x,∞ + θ̂y,∞ = [(1− fx)X̄nx + (1− fy)Ȳny ] + (fx + fy)θ̂
I
obs. (2.23)

Because the MLE under the analyst’s observed-data model is ϕ̂A
obs = X̄nx + Ȳny

and under the imputer’s model is ϕ̂I
obs = 2θ̂Iobs with θ̂Iobs given by (2.14), the

different weights for X̄nx and Ȳny as seen in (2.23) make it impossible to express

ϕ̂∞ of (2.23) as (1 − F )ϕ̂A
obs + Fϕ̂I

obs for some scalar quantity F , unless fx = fy
(exactly or asymptotically). This impossibility is a consequence of the fact that,

under the analyst’s complete-data model, pA(Zcom|Zobs; θx, θy) depends on both

θx and θy, unless fx = fy, in which case, trivially, it depends on ϕ only.

Consequently, the bias in Rubin’s variance estimator for ϕ is not guaranteed

to be non-negative. For example, in the simple case where fx = 0 and Nx = Ny/2

(i.e., the Y sample is twice as large as theX sample when both are fully observed),

the asymptotic bias in Rubin’s variance estimator for ϕ is given by −fy. However,

the variance estimator derived from using 2T∞, 2c⃗⊤T∞c⃗, will serve as an upper

bound for V (ϕ̂∞) = c⃗⊤V∞c⃗, where c⃗ = (1, 1)⊤. This is because ∆̃∞ ≡ 2T∞ −V∞
is non-negative definite, since by (2.16)−(2.17) both diagonal elements of ∆̃∞
are bounded below by n−1 for n ≥ max{nx, ny}, yet the absolute value of its

off-diagonal element is bounded above by n−1 because |fx + fy − 3fxfy| ≤ 1 for

all 0 ≤ fx, fy ≤ 1.

Compounded by the issue of uncongenality, which typically implies that the

imputer’s model and analyst’s (embedding) model have different (nuisance) pa-

rameters, greater caution is therefore in order when generalizing univariate results

to multivariate ones. In what follows, we exercise such caution by carefully laying

out key assumptions and regularity conditions, although for greater statistical in-

sights, we do not strive for the weakest possible technical conditions. Nor do we

claim all the technical derivations or results are really new. Indeed, a few of the

results below can be obtained via direct asymptotic calculations (e.g., Robins

and Wang (2000)). We adopt the decomposing approach because it permits us

to gain deeper, and newer, theoretical insights on how different phases contribute

to the final results.

3. General Decomposition of Estimating Equations

The general decomposition result in this section is instrumental to our un-

derstanding of Rubin’s MI inference as an integration of the knowledge of the
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n−1
x (conditioning on nx). Although Tx,∞ overestimates V (θ̂x,∞), it is easy to

verify from the expression of T∞ in (2.16) that

V (X̄nx)− Tx,∞ = f2
x

(
1

nx
− 1

n

)
=

f2
xny

nnx
≥ 0, (2.19)

which is zero if and only if either fx = 0, no missing X’s, or ny = 0, no Y sample
to help. The inequality (2.19) implies that any (asymptotic) confidence interval
estimator for θx based on the analyst’s observed-data procedure is inadmissible.
For example, although (X̄nx − 1.96n

−1/2
x , X̄nx + 1.96n

−1/2
x ) has the correct 95%

coverage, it is at least as wide as (θ̂x,∞ − 1.96T
1/2
x,∞, θ̂x,∞ + 1.96T

1/2
x,∞) because of

(2.19), yet the latter has at least 95% coverage because Tx,∞ ≥ V (θ̂x,∞). This
seemingly paradoxical phenomenon is because θ̂x,∞ is more efficient than X̄nx ,
and the over-estimation by Tx,∞ for V (θ̂x,∞) still does not exceed the added
variance in X̄nx compared with that of θ̂x,∞, i.e., V (X̄nx)− V (θ̂x,∞).

Since the conservativeness result holds for individual components, shouldn’t
it also hold for any linear combination of them? After all, we can always re-
parameterize. To see why this is not the case, we write, analogous to (2.11),

θ̄∞ =

(
(1− fx)X̄nx + fxθ̂

I
obs

(1− fy)Ȳny + fy θ̂
I
obs

)
≡ (I − F )θ̂Aobs + FKθ̂Iobs, (2.20)

where θ̂Iobs is given by (2.14), and

F =

(
fx 0

0 fy

)
, K =

(
1

1

)
, θ̂Aobs =

(
X̄nx

Ȳny

)
. (2.21)

Again we find that θ̄∞ is a matrix weighted sum of θ̂Aobs, the analyst’s observed-
data estimator and Kθ̂Iobs, a projection of the imputer’s observed-data estimator.
As in Section 2.2, the decomposition (2.20) has its corresponding EEs for θ̄∞,
θ̂Aobs and Kθ̂Iobs as

hn(Zobs; θ) = un(Zobs; θ) + vn(Zobs; θ),

un(Zobs; θ) =

(
nxX̄nx − nxθ

nyȲny − nyθ

)
, (2.22)

vn(Zobs; θ) =

(
(Nx − nx)θ̂

I
obs − (Nx − nx)θ

(Ny − ny)θ̂
I
obs − (Ny − ny)θ

)
.

Now consider a re-parametrization ϕ = Cθ under the analyst’s model, where
C is a 2×2 matrix. From (2.20), unless F is proportional to the identity matrix,
the matrices C and F (and hence (I − F )) generally do not commute. Conse-
quently, in general,

ϕ̄∞ = Cθ̄∞ ̸= (I − F )Cθ̂Aobs + F [CKθ̂Iobs] = (I − F )ϕ̂A
obs + F [CKθ̂Iobs].
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That is, the matrix-weighted decomposition is not invariant even to linear trans-

formations.

This lack of invariance reflects the inherent complexity of missing-data mech-

anism, which can easily affect different parameters differently. To illustrate, sup-

pose the analyst’s estimand is ϕ = θx+θy. From (2.16), the Rubin’s MI estimator

for ϕ is

ϕ̂∞ = θ̂x,∞ + θ̂y,∞ = [(1− fx)X̄nx + (1− fy)Ȳny ] + (fx + fy)θ̂
I
obs. (2.23)

Because the MLE under the analyst’s observed-data model is ϕ̂A
obs = X̄nx + Ȳny

and under the imputer’s model is ϕ̂I
obs = 2θ̂Iobs with θ̂Iobs given by (2.14), the

different weights for X̄nx and Ȳny as seen in (2.23) make it impossible to express

ϕ̂∞ of (2.23) as (1 − F )ϕ̂A
obs + Fϕ̂I

obs for some scalar quantity F , unless fx = fy
(exactly or asymptotically). This impossibility is a consequence of the fact that,

under the analyst’s complete-data model, pA(Zcom|Zobs; θx, θy) depends on both

θx and θy, unless fx = fy, in which case, trivially, it depends on ϕ only.

Consequently, the bias in Rubin’s variance estimator for ϕ is not guaranteed

to be non-negative. For example, in the simple case where fx = 0 and Nx = Ny/2

(i.e., the Y sample is twice as large as theX sample when both are fully observed),

the asymptotic bias in Rubin’s variance estimator for ϕ is given by −fy. However,

the variance estimator derived from using 2T∞, 2c⃗⊤T∞c⃗, will serve as an upper

bound for V (ϕ̂∞) = c⃗⊤V∞c⃗, where c⃗ = (1, 1)⊤. This is because ∆̃∞ ≡ 2T∞ −V∞
is non-negative definite, since by (2.16)−(2.17) both diagonal elements of ∆̃∞
are bounded below by n−1 for n ≥ max{nx, ny}, yet the absolute value of its

off-diagonal element is bounded above by n−1 because |fx + fy − 3fxfy| ≤ 1 for

all 0 ≤ fx, fy ≤ 1.

Compounded by the issue of uncongenality, which typically implies that the

imputer’s model and analyst’s (embedding) model have different (nuisance) pa-

rameters, greater caution is therefore in order when generalizing univariate results

to multivariate ones. In what follows, we exercise such caution by carefully laying

out key assumptions and regularity conditions, although for greater statistical in-

sights, we do not strive for the weakest possible technical conditions. Nor do we

claim all the technical derivations or results are really new. Indeed, a few of the

results below can be obtained via direct asymptotic calculations (e.g., Robins

and Wang (2000)). We adopt the decomposing approach because it permits us

to gain deeper, and newer, theoretical insights on how different phases contribute

to the final results.

3. General Decomposition of Estimating Equations

The general decomposition result in this section is instrumental to our un-

derstanding of Rubin’s MI inference as an integration of the knowledge of the
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imputer and the analyst. As illustrated by (2.11) and (2.20), the key here is

to express an estimator as a matrix-weighted combination of two relevant esti-

mators. For example, a complete data procedure can be written as the sum of

a (projected) marginal procedure based on the observed data and a (residual)

conditional one based on the missing data given the observed. Such decomposi-

tions are essential for studying multi-phase inferences because they explicate the

impacts from different phases.

Let Z be a generic notation for the data we have and

hn(Z; θ) = 0 (3.1)

be the d-dimensional EE we adopt, where θ ∈ Θ ⊂ Rd, and n is a deterministic

index of the information in Z under our posited assumptions such that it is (prob-

abilistically) meaningful to postulate limiting behavior (e.g., consistency) when

n is permitted to grow indefinitely. We can view the EE in (3.1) as having been

properly normalized by a positive sequence {an, n ≥ 1} such that its derivative

with respect to θ is proportional to n asymptotically – see Definition 1 below

for a precise statement. (Due to space limitation, we omit discussion of the vast

related literature on EEs, other than mentioning a very readable overview article

by Desmond (1997).)

Now suppose for hn(Z; θ) we have the decomposition

hn(Z; θ) = un(Z; θ) + vn(Z; θ) , (3.2)

where un(Z; θ) and vn(Z; θ) are also EEs, as in (2.12) and (2.22). It is logical

to expect a certain relationship, at least asymptotically, among the three corre-

sponding roots. To rigorously establish this relationship, we need notation and

(standard) regularity conditions. Hereafter, EG (similarly “V G” and “CovG”)

denotes an expectation with respect to God’s model. Since God’s model does

not involve any unknown parameter (to God), the “true value” θ0 below refers

to the value of our model parameter θ such that f(Z|θ0) coincides with God’s

model. For simplicity, we adopt the L2 norm for vectors and matrices, and the

shorthand ∂
∂θf(θ0) for

∂
∂θf(θ)|θ=θ0 .

Definition 1. Second-Order Regularity (SOR). We say an EE gn(Z; θ) = 0

satisfies Weak SOR if

(i) gn(Z; θ) is twice differentiable with respect to θ for any given Z;

(ii) Asymptotically gn(Z; θ) is unbiased, EG[gn(Z; θ0)] = o(
√
n), and it has the

unique root θ̂g, which is
√
n-consistent,

√
n∥θ̂g − θ0∥ = Op(1), where θ0 is

the true value of θ;
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(iii)There exists a finite Jg(θ0) satisfying (almost surely)

lim
n→∞

− 1

n

∂

∂θ
gn(Z; θ0) = lim

n→∞
− 1

n
EG

[
∂

∂θ
gn(Z; θ0)

]
= Jg(θ0),

where Jg(θ0) is continuous at θ0 and its determinant satisfies 0 < |Jg(θ0)| <
∞.

(iv) There exist some ϵ > 0 and Mn(Z) such that EG[Mn(Z)] < K for some
K < ∞ and����

∂2

∂θ2
gn(Z; θ)

���� ≤ nMn(Z) for any θ such that ||θ − θ0|| ≤ ϵ.

We say gn satisfies SOR if in addition to (i)−(iv), the following hold:

(v) There exists some ϵ > 0 and M < ∞ such that EG
[√

n∥θ̂g − θ0∥
]2+ϵ

< M

for any n.

(vi) There exists some ϵ > 0 and M < ∞ such that EG [∥gn(Z; θ)∥/
√
n]

2+ϵ
< M

for any n.

The following lemma links the EE and its root, and serves as a building
block for Theorem 1, which provides our key decomposition result. (All proofs
are given in the on-line Appendix I.)

Lemma 1. If an EE gn(Z; θ) = 0 satisfies Weak SOR, then we have for its root
θ̂g,

Rn �
√
n
[(

θ̂g − θ0

)
− [nJg(θ0)]

−1 gn(Z; θ0)
]

p→ 0. (3.3)

If it also satisfies SOR, then Rn
L2

→ 0.

Theorem 1. Assume EEs hn(Z; θ), un(Z; θ) and vn(Z; θ) all satisfy Weak SOR
and

hn(Z; θ) = un(Z; θ) + vn(Z; θ).

Then their corresponding roots θ̂h, θ̂u, and θ̂v obey the asymptotic relationship

Dn �
√
n
[
θ̂h −

(
(I − F )θ̂u + F θ̂v

)]
p→ 0,

where F = Jh(θ0)
−1Jv(θ0) is the “fraction of information” contained in vn(Z; θ).

If in addition all three EEs satisfy SOR, then Dn
L2

→ 0.

Here the fraction of information contained in vn reduces to the conventional
fraction of missing information in the context of EM algorithm when hn is the
complete-data score function and un is the observe-data score function (and hence
vn = hn − un captures the missing information).

There are circumstances where un(Z; θ) and vn(Z; θ) are (asymptotically)
orthogonal, resulting in θ̂u and θ̂v being uncorrelated. One important class is
captured below.
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imputer and the analyst. As illustrated by (2.11) and (2.20), the key here is

to express an estimator as a matrix-weighted combination of two relevant esti-

mators. For example, a complete data procedure can be written as the sum of

a (projected) marginal procedure based on the observed data and a (residual)

conditional one based on the missing data given the observed. Such decomposi-

tions are essential for studying multi-phase inferences because they explicate the

impacts from different phases.

Let Z be a generic notation for the data we have and

hn(Z; θ) = 0 (3.1)

be the d-dimensional EE we adopt, where θ ∈ Θ ⊂ Rd, and n is a deterministic

index of the information in Z under our posited assumptions such that it is (prob-

abilistically) meaningful to postulate limiting behavior (e.g., consistency) when

n is permitted to grow indefinitely. We can view the EE in (3.1) as having been

properly normalized by a positive sequence {an, n ≥ 1} such that its derivative

with respect to θ is proportional to n asymptotically – see Definition 1 below

for a precise statement. (Due to space limitation, we omit discussion of the vast

related literature on EEs, other than mentioning a very readable overview article

by Desmond (1997).)

Now suppose for hn(Z; θ) we have the decomposition

hn(Z; θ) = un(Z; θ) + vn(Z; θ) , (3.2)

where un(Z; θ) and vn(Z; θ) are also EEs, as in (2.12) and (2.22). It is logical

to expect a certain relationship, at least asymptotically, among the three corre-

sponding roots. To rigorously establish this relationship, we need notation and

(standard) regularity conditions. Hereafter, EG (similarly “V G” and “CovG”)

denotes an expectation with respect to God’s model. Since God’s model does

not involve any unknown parameter (to God), the “true value” θ0 below refers

to the value of our model parameter θ such that f(Z|θ0) coincides with God’s

model. For simplicity, we adopt the L2 norm for vectors and matrices, and the

shorthand ∂
∂θf(θ0) for

∂
∂θf(θ)|θ=θ0 .

Definition 1. Second-Order Regularity (SOR). We say an EE gn(Z; θ) = 0

satisfies Weak SOR if

(i) gn(Z; θ) is twice differentiable with respect to θ for any given Z;

(ii) Asymptotically gn(Z; θ) is unbiased, EG[gn(Z; θ0)] = o(
√
n), and it has the

unique root θ̂g, which is
√
n-consistent,

√
n∥θ̂g − θ0∥ = Op(1), where θ0 is

the true value of θ;
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(iii)There exists a finite Jg(θ0) satisfying (almost surely)

lim
n→∞

− 1

n

∂

∂θ
gn(Z; θ0) = lim

n→∞
− 1

n
EG

[
∂

∂θ
gn(Z; θ0)

]
= Jg(θ0),

where Jg(θ0) is continuous at θ0 and its determinant satisfies 0 < |Jg(θ0)| <
∞.

(iv) There exist some ϵ > 0 and Mn(Z) such that EG[Mn(Z)] < K for some
K < ∞ and����

∂2

∂θ2
gn(Z; θ)

���� ≤ nMn(Z) for any θ such that ||θ − θ0|| ≤ ϵ.

We say gn satisfies SOR if in addition to (i)−(iv), the following hold:

(v) There exists some ϵ > 0 and M < ∞ such that EG
[√

n∥θ̂g − θ0∥
]2+ϵ

< M

for any n.

(vi) There exists some ϵ > 0 and M < ∞ such that EG [∥gn(Z; θ)∥/
√
n]

2+ϵ
< M

for any n.

The following lemma links the EE and its root, and serves as a building
block for Theorem 1, which provides our key decomposition result. (All proofs
are given in the on-line Appendix I.)

Lemma 1. If an EE gn(Z; θ) = 0 satisfies Weak SOR, then we have for its root
θ̂g,

Rn �
√
n
[(

θ̂g − θ0

)
− [nJg(θ0)]

−1 gn(Z; θ0)
]

p→ 0. (3.3)

If it also satisfies SOR, then Rn
L2

→ 0.

Theorem 1. Assume EEs hn(Z; θ), un(Z; θ) and vn(Z; θ) all satisfy Weak SOR
and

hn(Z; θ) = un(Z; θ) + vn(Z; θ).

Then their corresponding roots θ̂h, θ̂u, and θ̂v obey the asymptotic relationship

Dn �
√
n
[
θ̂h −

(
(I − F )θ̂u + F θ̂v

)]
p→ 0,

where F = Jh(θ0)
−1Jv(θ0) is the “fraction of information” contained in vn(Z; θ).

If in addition all three EEs satisfy SOR, then Dn
L2

→ 0.

Here the fraction of information contained in vn reduces to the conventional
fraction of missing information in the context of EM algorithm when hn is the
complete-data score function and un is the observe-data score function (and hence
vn = hn − un captures the missing information).

There are circumstances where un(Z; θ) and vn(Z; θ) are (asymptotically)
orthogonal, resulting in θ̂u and θ̂v being uncorrelated. One important class is
captured below.
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Corollary 1. Suppose that un(Z; θ) and vn(Z; θ) in Theorem 1 have the form

un(Z; θ) = un(Z1; θ) and vn(Z; θ) = vn(Z1, Z2; θ), where

EG[vn(Z1, Z2; θ0)|Z1] = 0. (3.4)

Then CovG(θ̂u, θ̂v) = o
(
n−1

)
. In particular, θ̂v is asymptotically uncorrelated

with any consistent estimator θ̂u(Z1) such that
√
n(θ̂u(Z1)− θ0) converges in L2

to a mean-zero variable.

An important application has θ̂Acom(Zcom) as the root of an EE defined by

SA(Zcom; θ):

hAn (Zcom; θ) ≡ SA(Zcom; θ) = 0. (3.5)

We can then write hAn (Zcom; θ) as the sum of the two EEs

uAn (Zobs; θ) = EA
[
SA(Zcom; θ)|Zobs; θ

]
and (3.6)

vAn (Zcom; θ) = SA(Zcom; θ)− EA
[
SA(Zcom; θ)|Zobs; θ

]
. (3.7)

The roots corresponding to hAn = 0, uAn = 0 and vAn = 0 are respectively denoted

by θ̂Acom(Zcom), θ̂
A
obs(Zobs) and θ̂Amis(Zcom). Theorem 1 then allows us to write

θ̂Acom(Zcom) = (I − FA)θ̂Aobs(Zobs) + FAθ̂Amis(Zcom) +
RA

n√
n
, (3.8)

where RA
n

L2

→ 0, and FA is given by Theorem 1 with all its ingredients specified by

the two terms given in (3.6)−(3.7). Corollary 1 then tells us that asymptotically

θ̂Aobs(Zobs) and θ̂Amis(Zcom) are uncorrelated because (3.4) follows from (3.6)−(3.7).

Consequently

V G(θ̂Acom) = (I−FA)V G(θ̂Aobs)(I−FA)⊤+FAV G(θ̂Amis)(F
A)⊤+o

(
n−1

)
, (3.9)

a decomposition that plays an important role in Section 5. When SA(Zcom; θ) is

a complete-data score function, uAn (Zobs; θ) of (3.6) is simply the observed-data

score function SA(Zobs; θ) because of the Fisher identity EA[SA(Zcom; θ)|Zobs; θ]

= SA(Zobs; θ), the key identity underlying the EM algorithm — see Meng and

van Dyk (1997). Clearly (3.4) then follows.

4. Application of the Key Decomposition to MI Inference

4.1. A theoretical setup and simplification

In order to apply the general decomposition result in Section 3 to study

Rubin’s MI inference, we need to adopt a theoretical simplification. Specifically,

consider two ways of imputation.
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Table 1. Four different multiple imputation estimators.

Averaging Estimates Averaging EEs

Posterior Predictive θ̄
(11)
∞ θ̄

(12)
∞

Plug-in Predictive θ̄
(21)
∞ θ̄

(22)
∞

(i) Posterior Predictive: Draw θ̃ from the posterior distribution pI(θ|Zobs) and

then draw the predictive value Z̃mis of Zmis from pI(Z̃mis|Zobs; θ̃).

(ii) Plug-in Predictive: Draw the predictive value Z̃mis of Zmis from the “plug-

in” distribution pI(Z̃mis|Zobs; θ̂
I
obs), where θ̂Iobs is the imputer’s estimator of

θ (e.g., MLE).

In general the proper way of performing MI is to use (i), whereas draws from

(ii) generally lead to under-dispersion, as discussed in Kim (2011). However, for

theoretical studies of the point-estimator θ̄∞ (but not for its variance estimator

T∞), (i) and (ii) are equivalent under the usual regularity conditions that ensure

Bayesian and likelihood inferences are asymptotically equivalent. Regardless of

how imputations are drawn, there are (at least) two ways to form θ̄∞.

(a) Averaging Estimators: Compute individual estimators θ̂(ℓ) and then take

the average:

θ̄∞ = lim
m→∞

1

m

m∑
ℓ=1

θ̂(ℓ) = EI [θ̂A(Z̃com)].

(b) Averaging EEs : Form the average EE first and then compute θ̄∞ as its

root:

0 = EI [SA(Z̃com; θ)] = lim
m→∞

1

m

m∑
ℓ=1

SA(Z̃(ℓ)
com; θ).

Rubin’s rules adopt (a), but (b) is easier for applying the decomposition result

in Section 3.

In a nutshell, by crossing (i)−(ii) with (a)−(b), we have four ways of con-

structing θ̄∞, as summarized in Table 1. Rubin’s (1987) original proposal is

θ̄
(11)
∞ , but Wang and Robins (1998) and Robins and Wang (2000) considered the

estimator from the following EE

EI [SA(Z̃com; θ)|Zobs; θ̂
I
obs] = 0 , (4.1)

which is θ̄
(22)
∞ in Table 1. They argued that their estimator is asymptotically the

same as θ̄
(11)
∞ . Indeed, all four estimators in Table 1 are asymptotically equivalent

under suitable regularity conditions, especially the assumption that SOR is pre-

served when God’s Zcom in SA(Zcom; θ) = 0 is replaced by the “completed-data”

Z̃com = {Zobs, Z̃mis} (similar to the “Super God” perspective in Section 1.3)
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Corollary 1. Suppose that un(Z; θ) and vn(Z; θ) in Theorem 1 have the form

un(Z; θ) = un(Z1; θ) and vn(Z; θ) = vn(Z1, Z2; θ), where

EG[vn(Z1, Z2; θ0)|Z1] = 0. (3.4)

Then CovG(θ̂u, θ̂v) = o
(
n−1

)
. In particular, θ̂v is asymptotically uncorrelated

with any consistent estimator θ̂u(Z1) such that
√
n(θ̂u(Z1)− θ0) converges in L2

to a mean-zero variable.

An important application has θ̂Acom(Zcom) as the root of an EE defined by

SA(Zcom; θ):

hAn (Zcom; θ) ≡ SA(Zcom; θ) = 0. (3.5)

We can then write hAn (Zcom; θ) as the sum of the two EEs

uAn (Zobs; θ) = EA
[
SA(Zcom; θ)|Zobs; θ

]
and (3.6)

vAn (Zcom; θ) = SA(Zcom; θ)− EA
[
SA(Zcom; θ)|Zobs; θ

]
. (3.7)

The roots corresponding to hAn = 0, uAn = 0 and vAn = 0 are respectively denoted

by θ̂Acom(Zcom), θ̂
A
obs(Zobs) and θ̂Amis(Zcom). Theorem 1 then allows us to write

θ̂Acom(Zcom) = (I − FA)θ̂Aobs(Zobs) + FAθ̂Amis(Zcom) +
RA

n√
n
, (3.8)

where RA
n

L2

→ 0, and FA is given by Theorem 1 with all its ingredients specified by

the two terms given in (3.6)−(3.7). Corollary 1 then tells us that asymptotically

θ̂Aobs(Zobs) and θ̂Amis(Zcom) are uncorrelated because (3.4) follows from (3.6)−(3.7).

Consequently

V G(θ̂Acom) = (I−FA)V G(θ̂Aobs)(I−FA)⊤+FAV G(θ̂Amis)(F
A)⊤+o

(
n−1

)
, (3.9)

a decomposition that plays an important role in Section 5. When SA(Zcom; θ) is

a complete-data score function, uAn (Zobs; θ) of (3.6) is simply the observed-data

score function SA(Zobs; θ) because of the Fisher identity EA[SA(Zcom; θ)|Zobs; θ]

= SA(Zobs; θ), the key identity underlying the EM algorithm — see Meng and

van Dyk (1997). Clearly (3.4) then follows.

4. Application of the Key Decomposition to MI Inference

4.1. A theoretical setup and simplification

In order to apply the general decomposition result in Section 3 to study

Rubin’s MI inference, we need to adopt a theoretical simplification. Specifically,

consider two ways of imputation.
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Table 1. Four different multiple imputation estimators.

Averaging Estimates Averaging EEs

Posterior Predictive θ̄
(11)
∞ θ̄

(12)
∞

Plug-in Predictive θ̄
(21)
∞ θ̄

(22)
∞

(i) Posterior Predictive: Draw θ̃ from the posterior distribution pI(θ|Zobs) and

then draw the predictive value Z̃mis of Zmis from pI(Z̃mis|Zobs; θ̃).

(ii) Plug-in Predictive: Draw the predictive value Z̃mis of Zmis from the “plug-

in” distribution pI(Z̃mis|Zobs; θ̂
I
obs), where θ̂Iobs is the imputer’s estimator of

θ (e.g., MLE).

In general the proper way of performing MI is to use (i), whereas draws from

(ii) generally lead to under-dispersion, as discussed in Kim (2011). However, for

theoretical studies of the point-estimator θ̄∞ (but not for its variance estimator

T∞), (i) and (ii) are equivalent under the usual regularity conditions that ensure

Bayesian and likelihood inferences are asymptotically equivalent. Regardless of

how imputations are drawn, there are (at least) two ways to form θ̄∞.

(a) Averaging Estimators: Compute individual estimators θ̂(ℓ) and then take

the average:

θ̄∞ = lim
m→∞

1

m

m∑
ℓ=1

θ̂(ℓ) = EI [θ̂A(Z̃com)].

(b) Averaging EEs : Form the average EE first and then compute θ̄∞ as its

root:

0 = EI [SA(Z̃com; θ)] = lim
m→∞

1

m

m∑
ℓ=1

SA(Z̃(ℓ)
com; θ).

Rubin’s rules adopt (a), but (b) is easier for applying the decomposition result

in Section 3.

In a nutshell, by crossing (i)−(ii) with (a)−(b), we have four ways of con-

structing θ̄∞, as summarized in Table 1. Rubin’s (1987) original proposal is

θ̄
(11)
∞ , but Wang and Robins (1998) and Robins and Wang (2000) considered the

estimator from the following EE

EI [SA(Z̃com; θ)|Zobs; θ̂
I
obs] = 0 , (4.1)

which is θ̄
(22)
∞ in Table 1. They argued that their estimator is asymptotically the

same as θ̄
(11)
∞ . Indeed, all four estimators in Table 1 are asymptotically equivalent

under suitable regularity conditions, especially the assumption that SOR is pre-

served when God’s Zcom in SA(Zcom; θ) = 0 is replaced by the “completed-data”

Z̃com = {Zobs, Z̃mis} (similar to the “Super God” perspective in Section 1.3)
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from p(Zobs|θ0)p(Z̃mis|Zobs; θ̂
I
obs). This assumption (apparently new) reflects the

intuition that in order for the MI inference to be valid, the imputed data must

capture enough probabilistic properties of the actual unobserved data. Under

these assumptions, the asymptotic equivalence of all estimators in Table 1 is

proved in Appendix I; we thus can use a generic θ̄∞.

To apply Theorem 1, we write

hn(Zobs; θ) = un(Zobs; θ) + vn(Zobs; θ), (4.2)

where

hn(Zobs; θ) = EI
[
SA(Zobs, Z̃mis; θ)

���Zobs; θ̂
I
obs

]
, (4.3)

un(Zobs; θ) = EA
[
SA(Zobs, Zmis; θ) |Zobs; θ

]
, (4.4)

vn(Zobs; θ) = EI
[
SA(Zobs, Z̃mis; θ)|Zobs; θ̂

I
obs

]

−EA
[
SA(Zobs, Zmis; θ)|Zobs; θ

]
, (4.5)

assuming all expectations are well defined (but see Section 7.2 for a counterexam-

ple). As with (3.6), solving un(Z; θ) = 0 is interpreted as the analyst’s observed-

data procedure, the projection of the analyst’s complete-data procedure onto

the observed-data space under the analyst’s (embedding) model. The vn(Z; θ)

term, in contrast to the vAn term defined in (3.7), is more complicated because

it depends on both the analyst’s model and the imputer’s model. However, as

Theorem 3 below will show, its root can be interpreted as a projection of the

imputer’s observed-data estimator θ̂Iobs onto the analyst’s parameter space. This

is particularly clear from the regression example presented in Section 8.3, and

more fully in the on-line Appendix II.

4.2. Key results on integrating the imputer’s and analyst’s knowledge

With the setup in Section 4.1, we now present our key result.

Theorem 2. Let hn(Zobs; θ), un(Zobs; θ), and vn(Zobs; θ) be the EEs defined in

(4.2)−(4.5) and θ̄∞, θ̂Aobs, and θ̂Hobs, be their corresponding roots. Assuming that

the three EEs satisfy SOR, we have

√
n
[
θ̄∞ −

(
(I − F )θ̂Aobs + F θ̂Hobs

)]
L2

→ 0, (4.6)

where F is the “fraction of missing information” given by

F = Icom(θ0)
−1Imis(θ0) = [Iobs(θ0) + Imis(θ0)]

−1 Imis(θ0), (4.7)

with Icom(θ0) = Jh(θ0), Imis(θ0) = Jv(θ0) and Iobs(θ0) = Ju(θ0), where the J

matrix is provided in condition (iii) of Definition 1.
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Unlike in (3.8), the decomposition in Theorem 2 is not orthogonal. Indeed,

here both θ̂Hobs and θ̂Aobs are functions of Zobs only and they are inherently depen-

dent, where the superscript H stands for hybrid because θ̂Hobs is based on both

the imputer’s model and the analyst’s (embedding) model. When the same para-

metric model is used by the analyst and the imputer and both adopt the MLE

approach, it is easy to see that θ̂Iobs is also a root of vn(Zobs; θ) = 0. Consequently,

given our assumption that the root is unique, θ̂Hobs = θ̂Iobs = θ̂Aobs and hence the

decomposition reduces to the congenial case where θ̄∞ = θ̂Aobs. This is also ex-

pected from the perspective of the EM algorithm, because under congeniality,

performing MI with an infinite number of imputations (and with the “plug-in”

predictive imputation) is the same as carrying out the final EM iteration.

Theorem 2 would be sufficient if our goal were merely to derive the asymp-

totic variance of θ̄∞. (In fact the asymptotic variance can be derived directly as

in Wang and Robins (1998) and Robins and Wang (2000)). However, to study

Rubin’s T∞ of (1.2), we need to understand how the imputer’s knowledge enters

into θ̂Hobs. This turns out to be a challenging task, with several subtleties. For

example, there is not necessarily a direct link between θA and θI ; both the im-

puter and the analyst are free to adopt whatever serves their purposes, especially

when they do not share information. Nevertheless, θA and θI can be linked in-

directly through moments of the data, or more generally common distributional

summaries (e.g., percentiles) or even the entire predictive distribution under each

model. For example, suppose the analyst’s interest is a population mean, express-

ible via EA(Z|θA) ≡ µA(θA). If under the imputer’s model, EI(Z|θI) ≡ µI(θI)

is also well defined, then µA(θA) = µI(θI) serves as a natural map between θA

and θI .

Clearly any single map is not always one-to-one, and in general there are

infinitely many such maps by equating EA[g(Z)|θA] = EI [g(Z)|θI ] and varying g.

How to construct a suitable set of maps will depend on the objective of the study.

Here we raise the issue of mapping to help to understand the following theorem,

which will link θ̂Hobs, an estimator of θA, to θ̂Iobs, an estimator of θI . The link below

is linear because we have assumed both θA and θI are of continuous type living

in Euclidian spaces, and we are concerned only with asymptotical results for

which the usual linearization via Taylor expansion takes place. Generalizations

to other type of parameters, such as discrete ones arising in model selection, are

open problems.

Theorem 3. Under regularity conditions stated in the proof (see Appendix I),

we have
√
n
[
(θ̂Hobs − θA0 )−K(θ̂Iobs − θI0)

]
L2

→ 0,

1508 XIANCHAO XIE AND XIAO-LI MENG



24 XIANCHAO XIE AND XIAO-LI MENG

from p(Zobs|θ0)p(Z̃mis|Zobs; θ̂
I
obs). This assumption (apparently new) reflects the

intuition that in order for the MI inference to be valid, the imputed data must

capture enough probabilistic properties of the actual unobserved data. Under

these assumptions, the asymptotic equivalence of all estimators in Table 1 is

proved in Appendix I; we thus can use a generic θ̄∞.

To apply Theorem 1, we write

hn(Zobs; θ) = un(Zobs; θ) + vn(Zobs; θ), (4.2)

where

hn(Zobs; θ) = EI
[
SA(Zobs, Z̃mis; θ)

���Zobs; θ̂
I
obs

]
, (4.3)

un(Zobs; θ) = EA
[
SA(Zobs, Zmis; θ) |Zobs; θ

]
, (4.4)

vn(Zobs; θ) = EI
[
SA(Zobs, Z̃mis; θ)|Zobs; θ̂

I
obs

]

−EA
[
SA(Zobs, Zmis; θ)|Zobs; θ

]
, (4.5)

assuming all expectations are well defined (but see Section 7.2 for a counterexam-

ple). As with (3.6), solving un(Z; θ) = 0 is interpreted as the analyst’s observed-

data procedure, the projection of the analyst’s complete-data procedure onto

the observed-data space under the analyst’s (embedding) model. The vn(Z; θ)

term, in contrast to the vAn term defined in (3.7), is more complicated because

it depends on both the analyst’s model and the imputer’s model. However, as

Theorem 3 below will show, its root can be interpreted as a projection of the

imputer’s observed-data estimator θ̂Iobs onto the analyst’s parameter space. This

is particularly clear from the regression example presented in Section 8.3, and

more fully in the on-line Appendix II.

4.2. Key results on integrating the imputer’s and analyst’s knowledge

With the setup in Section 4.1, we now present our key result.

Theorem 2. Let hn(Zobs; θ), un(Zobs; θ), and vn(Zobs; θ) be the EEs defined in

(4.2)−(4.5) and θ̄∞, θ̂Aobs, and θ̂Hobs, be their corresponding roots. Assuming that

the three EEs satisfy SOR, we have

√
n
[
θ̄∞ −

(
(I − F )θ̂Aobs + F θ̂Hobs

)]
L2

→ 0, (4.6)

where F is the “fraction of missing information” given by

F = Icom(θ0)
−1Imis(θ0) = [Iobs(θ0) + Imis(θ0)]

−1 Imis(θ0), (4.7)

with Icom(θ0) = Jh(θ0), Imis(θ0) = Jv(θ0) and Iobs(θ0) = Ju(θ0), where the J

matrix is provided in condition (iii) of Definition 1.
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Unlike in (3.8), the decomposition in Theorem 2 is not orthogonal. Indeed,

here both θ̂Hobs and θ̂Aobs are functions of Zobs only and they are inherently depen-

dent, where the superscript H stands for hybrid because θ̂Hobs is based on both

the imputer’s model and the analyst’s (embedding) model. When the same para-

metric model is used by the analyst and the imputer and both adopt the MLE

approach, it is easy to see that θ̂Iobs is also a root of vn(Zobs; θ) = 0. Consequently,

given our assumption that the root is unique, θ̂Hobs = θ̂Iobs = θ̂Aobs and hence the

decomposition reduces to the congenial case where θ̄∞ = θ̂Aobs. This is also ex-

pected from the perspective of the EM algorithm, because under congeniality,

performing MI with an infinite number of imputations (and with the “plug-in”

predictive imputation) is the same as carrying out the final EM iteration.

Theorem 2 would be sufficient if our goal were merely to derive the asymp-

totic variance of θ̄∞. (In fact the asymptotic variance can be derived directly as

in Wang and Robins (1998) and Robins and Wang (2000)). However, to study

Rubin’s T∞ of (1.2), we need to understand how the imputer’s knowledge enters

into θ̂Hobs. This turns out to be a challenging task, with several subtleties. For

example, there is not necessarily a direct link between θA and θI ; both the im-

puter and the analyst are free to adopt whatever serves their purposes, especially

when they do not share information. Nevertheless, θA and θI can be linked in-

directly through moments of the data, or more generally common distributional

summaries (e.g., percentiles) or even the entire predictive distribution under each

model. For example, suppose the analyst’s interest is a population mean, express-

ible via EA(Z|θA) ≡ µA(θA). If under the imputer’s model, EI(Z|θI) ≡ µI(θI)

is also well defined, then µA(θA) = µI(θI) serves as a natural map between θA

and θI .

Clearly any single map is not always one-to-one, and in general there are

infinitely many such maps by equating EA[g(Z)|θA] = EI [g(Z)|θI ] and varying g.

How to construct a suitable set of maps will depend on the objective of the study.

Here we raise the issue of mapping to help to understand the following theorem,

which will link θ̂Hobs, an estimator of θA, to θ̂Iobs, an estimator of θI . The link below

is linear because we have assumed both θA and θI are of continuous type living

in Euclidian spaces, and we are concerned only with asymptotical results for

which the usual linearization via Taylor expansion takes place. Generalizations

to other type of parameters, such as discrete ones arising in model selection, are

open problems.

Theorem 3. Under regularity conditions stated in the proof (see Appendix I),

we have
√
n
[
(θ̂Hobs − θA0 )−K(θ̂Iobs − θI0)

]
L2

→ 0,
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where K is a projection matrix given by

K = [IAmis(θ
A
0 )]

−1 × lim
n→∞

1

n
EG

[
vAn (Zcom; θ

A
0 )

{
∂

∂θI
log pI(Zmis|Zobs; θ

I
0)

}⊤ ]
,

with IAmis(θ
A
0 ) = JvA(θ

A
0 ) and vAn (Zcom; θ

A) is given by (3.7).

4.3. Results for nested cases and a subtlety

When θA and θI measure the same population quantity, one may expect the

“link matrix” K in Theorem 3 to be the identity matrix. This turns out to be

false in general, owing to a subtle issue in defining the meaning of “measuring

the same population quantity”—do we mean the exact value used in God’s data-

generating distribution or more generally the “population parameter”, for which

the actual value used by God is only one realization?

To see why this distinction matters, consider an example where God’s model

is N(0, 1) and the imputer’s model is N(µ, 1). However, the analyst’s procedure

is
SA(Zcom;µ) =

∑
i

(Z3
i − µ) = 0. (4.8)

Hence µ̂H
obs = Z̄3

obs + 3Z̄obs and µ̂I
obs = Z̄obs, implying

√
n[(µ̂H

obs − µ0) − 3(µ̂I
obs

−µ0)]
p→ 0 when the true value µ0 = 0. Here, the projection matrix K is 3

instead of 1.

The problem here is that the analyst’s procedure is valid only when µ0 =

0. Had God used a slightly different µ0, it would fail to lead to a consistent

estimator. The real estimand in (4.8) should be θ ≡ θ(µ) = µ3 + 3µ = E(Z3),

even though θ(µ) = µ when µ = 0. For θ, it is easy to verify that θ̂Hobs =

Z̄3
obs + 3Z̄obs = θ̂Iobs, and therefore trivially

√
n
[
(θ̂Hobs − θ0)− (θ̂Iobs − θ0)

]
p→ 0

regardless of the actual value of θ0, restoring the projection matrix K for θ to

be 1.

This seemingly contrived example reveals an important issue for studying

multi-phase inference — it may be insufficient to assume that models at all phases

are correctly specified, by which we typically mean that they are all consistent with

the God’s model that generates our current data. For features of the models we

declare to be the same, we may need to assume that “sameness” holds even when

God’s model is somewhat perturbed from the one that generates the our data.

Such assumptions are implicit in many asymptotic studies under the standard

paradigm (e.g., regularity conditions imposed in an ϵ-neighbor of the true value),

but for multi-phase inferences, they may play more critical roles than serving

merely as “technical regularities”.

For many applications, it is possible to construct a class of distributions

indexed by a vector parameter θ̆ ∈ Θ̆ such that both the analyst’s (embedding)
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model and the imputer’s model are subclasses of F = {fθ̆(Z) : θ̆ ∈ Θ̆} in the

sense that both θA and θI are sub-vectors of θ̆. Thus the analyst’s parameter

space and the imputer’s one can be divided into a trichotomy: (i) the overlapping

part θI∩A, which may be empty; (ii) the leftover part for the imputer: θI\A; and

(iii) the leftover part for the analyst: θA\I . By imposing essentially a “smooth

transition” condition on the imputation model with respect to the overlapping

θI∩A, we can ensure a broader “sameness” for estimating θI∩A, and hence avoid

the complications demonstrated by the example above.

Definition 2. Imputation Validity Under Perturbation. Let ṽ(Zobs; θ
I∩A,

θA\I , θI\A) be the projection of the analyst’s EE (3.7) under the imputer’s model,

ṽ(Zobs; θ
I∩A, θA\I , θI\A) ≡ EI

[
vAn (Zcom; {θI∩A, θA\I}) | Zobs; {θI∩A, θI\A}

]
.

(4.9)

We say the imputation model pI(Ỹmis|Zobs; θ
I) is valid under perturbation with

respect to the analyst’s complete-data (second-order regular) EE SA(Zcom; θ
A) =

0 if there exists an ϵ > 0 such that for all θI∩A satisfying ||θI∩A − θI∩A0 || ≤ ε, we

have

ṽ(Zobs; θ
I∩A, θ

A\I
0 , θ

I\A
0 ) = op(n

1/2) and
∂ṽ(Zobs; θ

I∩A, θ
A\I
0 , θ

I\A
0 )

∂θI∩A
= op(n),

where the subscript “0” on any parameter indicates its true value.

We can now simplify the matrix K in Theorem 3 when the parameter spaces

are nested.

Corollary 2. Assuming the imputation model is valid under perturbation, then

under the regularity conditions of Theorem 3, we have

(1) If θI is a sub-parameter of θA, then K = [II ,0]
⊤ , where II is the identity

matrix with dimension corresponding to θI .

(2) If θA is a sub-parameter of θI , then K = [IA, B], where IA is the identity

matrix with dimension corresponding to θA and

B = [IAmis(θ
A
0 )]

−1 × lim
n→∞

1

n
EG

[
vAn (Zcom; θ

A
0 )

{
∂

∂θI\A
log pI(Zmis|Zobs; θ

I
0)

}⊤ ]
.

5. Biases in and Bounds on MI Variance Estimators

In a nutshell, the developments in Section 3 and Section 4 — especially (3.8),

Theorem 2, and Theorem 3 — give us two key asymptotic decompositions:

θ̂Acom − θA0 = (I − FA)(θ̂Aobs − θA0 ) + FA(θ̂Amis − θA0 ) (5.1)

and
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where K is a projection matrix given by
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A
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n→∞

1

n
EG
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A
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I
0)
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,
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A
0 ) and vAn (Zcom; θ
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the actual value used by God is only one realization?

To see why this distinction matters, consider an example where God’s model

is N(0, 1) and the imputer’s model is N(µ, 1). However, the analyst’s procedure

is
SA(Zcom;µ) =

∑
i

(Z3
i − µ) = 0. (4.8)

Hence µ̂H
obs = Z̄3

obs + 3Z̄obs and µ̂I
obs = Z̄obs, implying

√
n[(µ̂H

obs − µ0) − 3(µ̂I
obs

−µ0)]
p→ 0 when the true value µ0 = 0. Here, the projection matrix K is 3

instead of 1.

The problem here is that the analyst’s procedure is valid only when µ0 =

0. Had God used a slightly different µ0, it would fail to lead to a consistent

estimator. The real estimand in (4.8) should be θ ≡ θ(µ) = µ3 + 3µ = E(Z3),

even though θ(µ) = µ when µ = 0. For θ, it is easy to verify that θ̂Hobs =

Z̄3
obs + 3Z̄obs = θ̂Iobs, and therefore trivially

√
n
[
(θ̂Hobs − θ0)− (θ̂Iobs − θ0)

]
p→ 0

regardless of the actual value of θ0, restoring the projection matrix K for θ to

be 1.

This seemingly contrived example reveals an important issue for studying

multi-phase inference — it may be insufficient to assume that models at all phases

are correctly specified, by which we typically mean that they are all consistent with

the God’s model that generates our current data. For features of the models we

declare to be the same, we may need to assume that “sameness” holds even when

God’s model is somewhat perturbed from the one that generates the our data.

Such assumptions are implicit in many asymptotic studies under the standard

paradigm (e.g., regularity conditions imposed in an ϵ-neighbor of the true value),

but for multi-phase inferences, they may play more critical roles than serving

merely as “technical regularities”.

For many applications, it is possible to construct a class of distributions

indexed by a vector parameter θ̆ ∈ Θ̆ such that both the analyst’s (embedding)
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model and the imputer’s model are subclasses of F = {fθ̆(Z) : θ̆ ∈ Θ̆} in the

sense that both θA and θI are sub-vectors of θ̆. Thus the analyst’s parameter

space and the imputer’s one can be divided into a trichotomy: (i) the overlapping

part θI∩A, which may be empty; (ii) the leftover part for the imputer: θI\A; and

(iii) the leftover part for the analyst: θA\I . By imposing essentially a “smooth

transition” condition on the imputation model with respect to the overlapping

θI∩A, we can ensure a broader “sameness” for estimating θI∩A, and hence avoid

the complications demonstrated by the example above.

Definition 2. Imputation Validity Under Perturbation. Let ṽ(Zobs; θ
I∩A,

θA\I , θI\A) be the projection of the analyst’s EE (3.7) under the imputer’s model,

ṽ(Zobs; θ
I∩A, θA\I , θI\A) ≡ EI

[
vAn (Zcom; {θI∩A, θA\I}) | Zobs; {θI∩A, θI\A}

]
.

(4.9)

We say the imputation model pI(Ỹmis|Zobs; θ
I) is valid under perturbation with

respect to the analyst’s complete-data (second-order regular) EE SA(Zcom; θ
A) =

0 if there exists an ϵ > 0 such that for all θI∩A satisfying ||θI∩A − θI∩A0 || ≤ ε, we

have

ṽ(Zobs; θ
I∩A, θ

A\I
0 , θ

I\A
0 ) = op(n

1/2) and
∂ṽ(Zobs; θ

I∩A, θ
A\I
0 , θ

I\A
0 )

∂θI∩A
= op(n),

where the subscript “0” on any parameter indicates its true value.

We can now simplify the matrix K in Theorem 3 when the parameter spaces

are nested.

Corollary 2. Assuming the imputation model is valid under perturbation, then

under the regularity conditions of Theorem 3, we have

(1) If θI is a sub-parameter of θA, then K = [II ,0]
⊤ , where II is the identity

matrix with dimension corresponding to θI .

(2) If θA is a sub-parameter of θI , then K = [IA, B], where IA is the identity

matrix with dimension corresponding to θA and

B = [IAmis(θ
A
0 )]

−1 × lim
n→∞

1

n
EG

[
vAn (Zcom; θ

A
0 )

{
∂

∂θI\A
log pI(Zmis|Zobs; θ

I
0)

}⊤ ]
.

5. Biases in and Bounds on MI Variance Estimators

In a nutshell, the developments in Section 3 and Section 4 — especially (3.8),

Theorem 2, and Theorem 3 — give us two key asymptotic decompositions:

θ̂Acom − θA0 = (I − FA)(θ̂Aobs − θA0 ) + FA(θ̂Amis − θA0 ) (5.1)

and
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θ̄∞ − θA0 = (I − F )(θ̂Aobs − θA0 ) + FK(θ̂Iobs − θI0), (5.2)

with all the quantities as previously defined. In particular, θ̂Amis is asymptoti-

cally uncorrelated with either θ̂Aobs or θ̂
I
obs. These two decompositions apparently

employ different measures of fraction of missing information, i.e., the FA used

in (3.8) and the F of (4.7). They differ in the definition of Imis(θ0) = Jv(θ0)

(see (4.7)) because F uses the vn defined by (4.5) but FA uses the vAn of (3.7).

However, a closer inspection of (4.5) and (3.7) reveals that the difference, for

calculating Imis, is only in the two (limiting) expectations of the same partial

derivative,

lim
n→∞

1

n
EG

[
∂

∂θ
SA(Zcom; θ0)

]
versus lim

n→∞

1

n
EG

[
EI

(
∂

∂θ
SA(Zcom; θ0)

���Zobs; θ̂
I
obs

)]
.

(5.3)

But under mild regularity conditions, the θ̂Iobs in the second expectation can be

replaced by its limiting value θ0 without affecting the limiting expectation. It

follows that the limits in (5.3) are actually the same and therefore we will use F

and FA interchangeably.

Decomposition (5.2) allows us to derive the asymptotic variance of θ̄∞, and

the two decompositions also permit us to understand and measure the bias in

Rubin’s T∞, as shown below.

5.1. Bias in Rubin’s variance estimator under uncongeniality

To apply (5.2), we need a stronger condition than SOR to ensure that the

asymptotic variance of θ̄∞ is the variance of its asymptotic distribution.

Definition 3. Strong SOR. We say the estimating equation (3.1) satisfies

Strong SOR if in addition to the SOR conditions given in Definition 1, we have

(vii) The estimator θ̂g is asymptotically normally distributed as

√
n(θ̂g − θ0)

L2

→ N(0, Vg),

where

Vg = lim
n→∞

J−1
g (θ0)×

[
V G(gn(Y ; θ0))

n

]
×
[
J−1
g (θ0)

]⊤
.

This assumption guarantees the following result, first obtained by Robins

and Wang (2000).

Corollary 3. Under Strong SOR, the asymptotic variance of θ̄∞ is given by

V∞ = (I − F )V A
obs(I − F⊤) + FKV I

obsK
⊤F⊤ + (I − F )CA,I

obsK
⊤F⊤

+FK(CA,I
obs )

⊤(I − F⊤) + o
(
n−1

)
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with V A
obs, V

I
obs and CA,I

obs being the asymptotic variances of θ̂Aobs and of θ̂Iobs, and

their covariance.

The potential bias of Rubin’s T∞ = Ū∞ + B∞ is then best understood by

expressing θ̄∞ = θ̂Acom + (θ̄∞ − θ̂Acom). It follows that

V∞ ≡ V G(θ̄∞) = V G(θ̂Acom) + V G(θ̄∞ − θ̂Acom)−D∞ −D⊤
∞, (5.4)

where D∞=CovG(θ̂Acom, θ̂
A
com− θ̄∞). Under the congeniality assumption (I)−(II)

of Section 1.2, D∞ vanishes, Ū∞ and B∞ are, respectively, consistent estimators

of V G(θ̂Acom) and V G(θ̄∞− θ̂Acom), and hence Rubin’s T∞ = Ū∞+B∞ is consistent

for V G(θ̄∞).

Under uncongeniality, the consistency of either Ū∞ or B∞ is unaffected, as

discussed below. However, the cross term D∞ is no longer negligible as n →
∞ because the orthogonality underlying “Total Variance = Within Variance +

Between Variance” is destroyed by uncongeniality, as emphasized by Kott (1995).

We can therefore adopt D∞, or better, the correlation (matrix)

Cun = CorrG(θ̂Acom, θ̂
A
com − θ̄∞) (5.5)

as a measure of uncongeniality with respect to estimand θ; see Section 8.2.

Intuitively, the consistency of Ū∞ remains under uncongeniality because Ū∞
is the average of the analyst’s complete-data variance estimator, denoted by

UA(Zcom), calculated on each imputed data set. Therefore, as long as UA(Zcom)

is consistent for V G(θ̂A(Zcom)) in the sense that UA(Zcom) = V G(θ̂A(Zcom)) +

op(N
−1), and that the imputer’s model is correctly specified (which we always

assume, but see Section 8.4), the consistency of Ū∞ follows under mild regularity

conditions. In addition, the decomposition (3.8) implies that

Ū∞ = (I − F )V A
obs(I − F )⊤ + FV A

misF
⊤ + op

(
n−1

)
, (5.6)

where V A
obs and V A

mis denote respectively V G(θ̂Aobs) and V G(θ̂Amis).

Connecting B∞ with V G(θ̄∞ − θ̂Acom) is a bit more involved because this

is where we cannot use the approximation based on the plug-in predictive im-

putation, which would lead to under-dispersion in the imputation value. But

for its intended estimand, V G(θ̄∞ − θ̂Acom), (5.1) and (5.2) together imply that

(asymptotically)

θ̄∞ − θ̂Acom = FKθ̂Iobs − F θ̂Amis − F [KθI0 − θA0 ]. (5.7)

Because θ̂Iobs and θ̂Amis are asymptotically orthogonal, a consequence of Corol-

lary 1, we have

V G(θ̄∞ − θ̂Acom) = FKV I
obsK

⊤F⊤ + FV A
misF

⊤ + o
(
n−1

)
, (5.8)
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θ̄∞ − θA0 = (I − F )(θ̂Aobs − θA0 ) + FK(θ̂Iobs − θI0), (5.2)

with all the quantities as previously defined. In particular, θ̂Amis is asymptoti-

cally uncorrelated with either θ̂Aobs or θ̂
I
obs. These two decompositions apparently

employ different measures of fraction of missing information, i.e., the FA used

in (3.8) and the F of (4.7). They differ in the definition of Imis(θ0) = Jv(θ0)

(see (4.7)) because F uses the vn defined by (4.5) but FA uses the vAn of (3.7).

However, a closer inspection of (4.5) and (3.7) reveals that the difference, for

calculating Imis, is only in the two (limiting) expectations of the same partial

derivative,

lim
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versus lim
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n
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���Zobs; θ̂
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obs
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.

(5.3)

But under mild regularity conditions, the θ̂Iobs in the second expectation can be

replaced by its limiting value θ0 without affecting the limiting expectation. It

follows that the limits in (5.3) are actually the same and therefore we will use F

and FA interchangeably.

Decomposition (5.2) allows us to derive the asymptotic variance of θ̄∞, and

the two decompositions also permit us to understand and measure the bias in

Rubin’s T∞, as shown below.

5.1. Bias in Rubin’s variance estimator under uncongeniality

To apply (5.2), we need a stronger condition than SOR to ensure that the

asymptotic variance of θ̄∞ is the variance of its asymptotic distribution.

Definition 3. Strong SOR. We say the estimating equation (3.1) satisfies

Strong SOR if in addition to the SOR conditions given in Definition 1, we have

(vii) The estimator θ̂g is asymptotically normally distributed as

√
n(θ̂g − θ0)

L2

→ N(0, Vg),

where

Vg = lim
n→∞

J−1
g (θ0)×

[
V G(gn(Y ; θ0))

n

]
×
[
J−1
g (θ0)

]⊤
.

This assumption guarantees the following result, first obtained by Robins

and Wang (2000).

Corollary 3. Under Strong SOR, the asymptotic variance of θ̄∞ is given by

V∞ = (I − F )V A
obs(I − F⊤) + FKV I

obsK
⊤F⊤ + (I − F )CA,I
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⊤F⊤

+FK(CA,I
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⊤(I − F⊤) + o
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n−1
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with V A
obs, V

I
obs and CA,I

obs being the asymptotic variances of θ̂Aobs and of θ̂Iobs, and

their covariance.

The potential bias of Rubin’s T∞ = Ū∞ + B∞ is then best understood by

expressing θ̄∞ = θ̂Acom + (θ̄∞ − θ̂Acom). It follows that

V∞ ≡ V G(θ̄∞) = V G(θ̂Acom) + V G(θ̄∞ − θ̂Acom)−D∞ −D⊤
∞, (5.4)

where D∞=CovG(θ̂Acom, θ̂
A
com− θ̄∞). Under the congeniality assumption (I)−(II)

of Section 1.2, D∞ vanishes, Ū∞ and B∞ are, respectively, consistent estimators

of V G(θ̂Acom) and V G(θ̄∞− θ̂Acom), and hence Rubin’s T∞ = Ū∞+B∞ is consistent

for V G(θ̄∞).

Under uncongeniality, the consistency of either Ū∞ or B∞ is unaffected, as

discussed below. However, the cross term D∞ is no longer negligible as n →
∞ because the orthogonality underlying “Total Variance = Within Variance +

Between Variance” is destroyed by uncongeniality, as emphasized by Kott (1995).

We can therefore adopt D∞, or better, the correlation (matrix)

Cun = CorrG(θ̂Acom, θ̂
A
com − θ̄∞) (5.5)

as a measure of uncongeniality with respect to estimand θ; see Section 8.2.

Intuitively, the consistency of Ū∞ remains under uncongeniality because Ū∞
is the average of the analyst’s complete-data variance estimator, denoted by

UA(Zcom), calculated on each imputed data set. Therefore, as long as UA(Zcom)

is consistent for V G(θ̂A(Zcom)) in the sense that UA(Zcom) = V G(θ̂A(Zcom)) +
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−1), and that the imputer’s model is correctly specified (which we always

assume, but see Section 8.4), the consistency of Ū∞ follows under mild regularity

conditions. In addition, the decomposition (3.8) implies that

Ū∞ = (I − F )V A
obs(I − F )⊤ + FV A

misF
⊤ + op

(
n−1

)
, (5.6)

where V A
obs and V A

mis denote respectively V G(θ̂Aobs) and V G(θ̂Amis).

Connecting B∞ with V G(θ̄∞ − θ̂Acom) is a bit more involved because this

is where we cannot use the approximation based on the plug-in predictive im-

putation, which would lead to under-dispersion in the imputation value. But

for its intended estimand, V G(θ̄∞ − θ̂Acom), (5.1) and (5.2) together imply that

(asymptotically)

θ̄∞ − θ̂Acom = FKθ̂Iobs − F θ̂Amis − F [KθI0 − θA0 ]. (5.7)

Because θ̂Iobs and θ̂Amis are asymptotically orthogonal, a consequence of Corol-

lary 1, we have
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⊤ + o
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)
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where V I
obs = V G(θ̂Iobs). The consistency of B∞ is then established by proving

that asymptotically the two terms on the righthand side of (5.8) correspond to

the two steps in the construction of B∞: the posterior draw of θ based on the

imputation model and the imputed missing values given the draw θ; see Appendix

I for details.

Given the consistency of both Ū∞ and B∞ under uncongeniality, assessing

the bias in T∞ amounts to calculating the D∞ term in (5.4). Using the fact

that θ̂Amis is asymptotically uncorrelated with both θ̂Iobs and θ̂Aobs (again because

of Corollary 1), we have

D∞ = FV A
misF

⊤ − (I − F )CA,I
obsK

⊤F⊤, (5.9)

where CA,I
obs = CovG(θ̂Aobs, θ̂

I
obs). The bias in T∞ for estimating V∞ is then given

by

T∞ − V∞ = D∞ +D⊤
∞ + op

(
n−1

)
. (5.10)

5.2. A standard error combining rule under multi-phase paradigm

Evidently, the bias given in (5.10) is essentially impossible to eliminate in

practice without further knowledge/assumptions about the nature of the uncon-

geniality. Requiring the analyst to investigate such issues would largely defeat

the main purpose of MI, that is, to permit the analyst to reach valid inferences

without having to deal with the missing data problem. The central question then

is that, given {θ̄∞, U∞, B∞} only, is it still possible to produce a statistical pro-

cedure that enjoys some validity regardless of the degree of uncongeniality? The

answer is no if we insist on validity as defined by consistent variance estimators,

as demonstrated previously. However, as discussed in Meng (1994) and Rubin

(1996), in the context of constructing confidence intervals, confidence validity

permits the actual coverage to exceed the nominal level (Neyman (1937)), and

hence a conservative variance is accordingly acceptable.

Accepting such confidence validity, we can obtain a simple procedure that is

valid for θ of any dimension—we simply double Rubin’s variance estimator T∞,

which has a similar flavor as doubling the variance in Copas and Eguchi (2005)

to deal with model mis-specification. To see this, we note that (5.6) and (5.8),

respectively, imply

(I − F )V A
obs(I − F )⊤ ≤ Ū∞ and FKV I

obsK
⊤F⊤ ≤ B∞, (5.11)

where ≤ is defined such that A ≤ B for two squared matrices if B − A is non-

negative definite. Using (5.11) and the simple fact that V (X + Y ) ≤ 2[V (X) +

V (Y )], we have

V∞ = V G(θ̄∞) = V G
(
(I − F )θ̂Aobs + FKθ̂Iobs

)
≤ 2(Ū∞ +B∞) = 2T∞. (5.12)
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To illustrate, consider again Example 1, where

Ū∞(σ2
0) =

1

N

[
(1− f) + fσ2

0

]
and B∞(σ2

0) =
f

N

[
f

1− f
+ σ2

0

]
. (5.13)

From (2.3), T∞ over-estimates (under-estimates) V∞ = n−1 if and only if σ2
0 > 1

(σ2
0 < 1). Because both Ū∞(σ2

0) and B∞(σ2
0) are monotone increasing functions

of σ2
0, whenever T∞(σ2

0) = Ū∞(σ2
0) +B∞(σ2

0) overestimates, the amount of over-

estimation is unbounded as σ2
0 increases. However, whenever T∞(σ2

0) underesti-

mates, T∞(σ2
0) ≤ V∞ ≤ 2T∞(σ2

0), and hence the normal confidence interval using

2T∞ with nominal coverage 95% will have coverage between 95% and 99.5%, the

latter corresponding to 1.96
√
2 = 2.77 standard deviations. This is a general

result for doubling T∞ whenever it under-estimates.

In the case of scalar estimands, we can reduce the conservativeness in (5.12).

Specifically, suppose our estimand is ϕ = cθA ,where c is a row vector (hence θA

can be of any dimension) . Using the (scalar) inequality V (X +Y ) ≤ [
√
V (X)+√

V (Y )]2, we have

V ϕ
∞ ≡ V (cθ̄∞) ≤

[√
cŪ∞c⊤ +

√
cB∞c⊤

]2
≡

[√
Ūϕ
∞ +

√
Bϕ

∞

]2
, (5.14)

which gives a tighter bound than (5.12).

These results lead to extremely simple procedures for MI under uncongenial-

ity with a finite number of imputations, m. The “doubling-variance” rule (5.12)

simply replaces Tm of (1.1) by 2Tm. For the “Combining-Standard-Errors” rule

for univariate Tm, we let

T̃m =
(√

Ūm +
√
Bm

)2
+

1

m
Bm (5.15)

and substitute T̃m for Tm in MI inference. Because the orthogonal ANOVA

decomposition V (θ̄m) = V (θ̄m − θ̄∞) + V (θ̄∞) holds regardless of uncongeniality

(due to the fact that EI(θ̄m|Zobs) = θ̄∞), we need only to add the Bm/m term

to the finite-m counterpart of (5.14) in order to take into account the Monte

Carlo error. However, the right-hand side of (5.15) is bounded above by (
√
Ūm+√

(1 +m−1)Bm)2, hence it is acceptable to take square root of the two terms in

Rubin’s original variance rule (1.1) when forming the standard error combining

rule. But (5.15) is shaper, especially when the fraction of missing information is

low.

Although doubling variance or adding up standard errors may be viewed as

extremely conservative under the “God-versus-me” paradigm, we emphasize that

under the multi-phase inference paradigm it is likely to be a necessary premium

to insure us against the unknown degrees of uncongeniality. Of course, more
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where V I
obs = V G(θ̂Iobs). The consistency of B∞ is then established by proving

that asymptotically the two terms on the righthand side of (5.8) correspond to

the two steps in the construction of B∞: the posterior draw of θ based on the

imputation model and the imputed missing values given the draw θ; see Appendix

I for details.

Given the consistency of both Ū∞ and B∞ under uncongeniality, assessing

the bias in T∞ amounts to calculating the D∞ term in (5.4). Using the fact

that θ̂Amis is asymptotically uncorrelated with both θ̂Iobs and θ̂Aobs (again because

of Corollary 1), we have

D∞ = FV A
misF

⊤ − (I − F )CA,I
obsK

⊤F⊤, (5.9)

where CA,I
obs = CovG(θ̂Aobs, θ̂

I
obs). The bias in T∞ for estimating V∞ is then given

by

T∞ − V∞ = D∞ +D⊤
∞ + op

(
n−1

)
. (5.10)

5.2. A standard error combining rule under multi-phase paradigm

Evidently, the bias given in (5.10) is essentially impossible to eliminate in

practice without further knowledge/assumptions about the nature of the uncon-
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hence a conservative variance is accordingly acceptable.

Accepting such confidence validity, we can obtain a simple procedure that is

valid for θ of any dimension—we simply double Rubin’s variance estimator T∞,

which has a similar flavor as doubling the variance in Copas and Eguchi (2005)

to deal with model mis-specification. To see this, we note that (5.6) and (5.8),

respectively, imply

(I − F )V A
obs(I − F )⊤ ≤ Ū∞ and FKV I

obsK
⊤F⊤ ≤ B∞, (5.11)

where ≤ is defined such that A ≤ B for two squared matrices if B − A is non-

negative definite. Using (5.11) and the simple fact that V (X + Y ) ≤ 2[V (X) +

V (Y )], we have

V∞ = V G(θ̄∞) = V G
(
(I − F )θ̂Aobs + FKθ̂Iobs

)
≤ 2(Ū∞ +B∞) = 2T∞. (5.12)
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To illustrate, consider again Example 1, where

Ū∞(σ2
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and B∞(σ2
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f
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1− f
+ σ2

0

]
. (5.13)

From (2.3), T∞ over-estimates (under-estimates) V∞ = n−1 if and only if σ2
0 > 1

(σ2
0 < 1). Because both Ū∞(σ2

0) and B∞(σ2
0) are monotone increasing functions

of σ2
0, whenever T∞(σ2

0) = Ū∞(σ2
0) +B∞(σ2

0) overestimates, the amount of over-

estimation is unbounded as σ2
0 increases. However, whenever T∞(σ2

0) underesti-

mates, T∞(σ2
0) ≤ V∞ ≤ 2T∞(σ2

0), and hence the normal confidence interval using

2T∞ with nominal coverage 95% will have coverage between 95% and 99.5%, the

latter corresponding to 1.96
√
2 = 2.77 standard deviations. This is a general

result for doubling T∞ whenever it under-estimates.

In the case of scalar estimands, we can reduce the conservativeness in (5.12).

Specifically, suppose our estimand is ϕ = cθA ,where c is a row vector (hence θA

can be of any dimension) . Using the (scalar) inequality V (X +Y ) ≤ [
√

V (X)+√
V (Y )]2, we have

V ϕ
∞ ≡ V (cθ̄∞) ≤

[√
cŪ∞c⊤ +

√
cB∞c⊤

]2
≡

[√
Ūϕ
∞ +

√
Bϕ

∞

]2
, (5.14)

which gives a tighter bound than (5.12).

These results lead to extremely simple procedures for MI under uncongenial-

ity with a finite number of imputations, m. The “doubling-variance” rule (5.12)

simply replaces Tm of (1.1) by 2Tm. For the “Combining-Standard-Errors” rule

for univariate Tm, we let

T̃m =
(√

Ūm +
√

Bm

)2
+

1

m
Bm (5.15)

and substitute T̃m for Tm in MI inference. Because the orthogonal ANOVA

decomposition V (θ̄m) = V (θ̄m − θ̄∞) + V (θ̄∞) holds regardless of uncongeniality

(due to the fact that EI(θ̄m|Zobs) = θ̄∞), we need only to add the Bm/m term

to the finite-m counterpart of (5.14) in order to take into account the Monte

Carlo error. However, the right-hand side of (5.15) is bounded above by (
√
Ūm+√

(1 +m−1)Bm)2, hence it is acceptable to take square root of the two terms in

Rubin’s original variance rule (1.1) when forming the standard error combining

rule. But (5.15) is shaper, especially when the fraction of missing information is

low.

Although doubling variance or adding up standard errors may be viewed as

extremely conservative under the “God-versus-me” paradigm, we emphasize that

under the multi-phase inference paradigm it is likely to be a necessary premium

to insure us against the unknown degrees of uncongeniality. Of course, more
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research is needed to investigate the general properties of these bounds, especially

their effect on estimating fractions of missing information.

6. Self-efficiency and Strong Efficiency

Example 1 demonstrates the need to regulate the analyst’s complete-data

procedure in order to avoid the seemingly counter-intuitive phenomena that more

data actually lead to less efficient estimators. Further demonstrations are given

in the on-line Appendix III, as well as in Meng and Xie (2014). Such phenomena

have been discussed in the literature, e.g., Chernoff (1983); Meng (2001, 2005),

but their negative consequences are particularly pronounced for multi-phase in-

ferences. Actually, we need to regulate the procedure further to prevent other

counter-intuitive phenomena from happening, the idea of which is captured by

the notion of self-efficiency (Meng (1994)) defined in terms Mean Squared Error

(MSE), recast below for θ of arbitrary dimension.

Definition 4. Self-Efficiency. Let Zcom be a data set and Zobs be a subset

of Zcom created by a selection mechanism. An estimation procedure θ̂(·) for θ

is said to be self-efficient (with respect to the selection mechanism) if, for any

λ ∈ (−∞,∞), θ̂com dominates λθ̂obs + (1− λ)θ̂com in terms of MSE.

This concept of comparing two estimators can be generalized to the following

notion.

Definition 5. Strong Efficiency. Suppose two estimators θ̂u and θ̂v of the

same θ are
√
n-consistent in L2, and their covariance is well defined. We say that

θ̂u is (asymptotically) strongly more efficient than θ̂v, denoted as θ̂u ≻ θ̂v, if the

orthogonality relationship θ̂u ⊥ (θ̂v − θ̂u) holds asymptotically,

CovG(θ̂u, θ̂v − θ̂u) = o
(
n−1

)
. (6.1)

When θ̂u is an estimator of a sub-vector of θ, θ̂u ≻ θ̂v is to be understood as

(θ̂u, θ
v\u
0 )⊤ ≻ θ̂v, where θ

v\u
0 is the true value of the part of θ that is estimated

by θ̂v, but not by θ̂u.

Given this definition, self-efficiency amounts to requiring θ̂com be strongly

more efficient than θ̂obs, when both of them are
√
n-consistent in L2 . Strong effi-

ciency is also closely related to Rao-Blackwellization. If θ̂u is a Rao-Blackwellized

θ̂v, E(θ̂v|S) = θ̂u, where S is a (correctly specified) sufficient statistic, then θ̂u
must be strongly more efficient than θ̂v, because E

G(θ̂uθ̂v) = EG[E(θ̂v|S)E(θ̂v|S)]
implies CovG(θ̂u, θ̂v − θ̂u) = 0. Conversely, letting D = θ̂v − θ̂u, we see that

if the delta method is applicable to linearize EG(D|θ̂u) as a function of θ̂u,

then (6.1) implies V [EG(D|θ̂u)] ≡ Cov[D,EG(D|θ̂u)] = o(n−1). Consequently,

EG(θ̂v|θ̂u) = c+ θ̂u + op(n
−1/2), for some constance c, which must be zero when
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both θ̂u and θ̂v are
√
n-consistent in L2. Therefore, θ̂u can be viewed as a Rao-

Blackwellization of θ̂v with θ̂u itself serving as the “sufficient statistic”. It is in

this sense we say θ̂u is strongly more efficient than θ̂v. We remark that strong

efficiency is not a total ordering and can even be non-transitive. Nevertheless, as

we will show in Section 7, it is a useful concept for Rubin’s MI inference under

uncongeniality.

One subtlety in formulating self-efficiency lies in the definition of θ̂obs. A

principled method such as MLE or Bayesian analysis is applicable for all data

patterns. However, for an arbitrary complete-data procedure, it is generally un-

clear what the corresponding procedure would be when the data are incomplete.

In fact, mathematically speaking, the notation θ̂(·) in Definition 4 is ambiguous

because of the varying dimension of its argument while moving from Zcom to

Zobs.

When an analyst adopts an EE SA(Zcom; θ) = 0, the corresponding observed-

data EE can be defined as its projection

SA(Zobs; θ) ≡ EA[SA(Zcom; θ)|Zobs; θ] = 0. (6.2)

Caution is needed in defining this projection when there is a nuisance parameter

ξ, in which case (6.2) may not be a meaningful EE for θ because the projec-

tion EA[SA(Zcom; θ)|Zobs; θ, ξ] can depend on ξ. This can cause problems; see

Section 7.2.

As expected, a fully efficient procedure such as an MLE or a Bayes estimator

is self-efficient, under the assumption that no new information is introduced

to the missing-data mechanism that can improve the complete-data estimators

(Rubin (1976)). Self-efficiency is a weaker requirement, as we will show shortly.

Nevertheless, as Example 1 demonstrates, self-efficiency does exclude certain

seemingly ideal estimators.

The orthogonality between θ̂com and θ̂obs− θ̂com as rendered by self-efficiency

plays a critical role in establishing some general theoretical results in Section 7.

The following result is particularly useful in building insights regarding the be-

havior of T∞.

Lemma 2. Assume the analyst’s procedure is self-efficient. Then

2FV A
misF

⊤ = (I − F )V A
obsF

⊤ + FV A
obs(I − F )⊤ + o

(
n−1

)
. (6.3)

Consequently, (5.9) is simplified to

D∞ = (I − F )
[
V A
obs − CA,I

obsK
⊤
]
F⊤. (6.4)

Thus, T∞ is (asymptotically) unbiased if and only if (assuming F and I − F are

of full rank)

V A
obs = CA,I

obsK
⊤ + op

(
n−1

)
. (6.5)
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research is needed to investigate the general properties of these bounds, especially

their effect on estimating fractions of missing information.

6. Self-efficiency and Strong Efficiency

Example 1 demonstrates the need to regulate the analyst’s complete-data

procedure in order to avoid the seemingly counter-intuitive phenomena that more

data actually lead to less efficient estimators. Further demonstrations are given

in the on-line Appendix III, as well as in Meng and Xie (2014). Such phenomena

have been discussed in the literature, e.g., Chernoff (1983); Meng (2001, 2005),

but their negative consequences are particularly pronounced for multi-phase in-

ferences. Actually, we need to regulate the procedure further to prevent other

counter-intuitive phenomena from happening, the idea of which is captured by

the notion of self-efficiency (Meng (1994)) defined in terms Mean Squared Error

(MSE), recast below for θ of arbitrary dimension.

Definition 4. Self-Efficiency. Let Zcom be a data set and Zobs be a subset

of Zcom created by a selection mechanism. An estimation procedure θ̂(·) for θ

is said to be self-efficient (with respect to the selection mechanism) if, for any

λ ∈ (−∞,∞), θ̂com dominates λθ̂obs + (1− λ)θ̂com in terms of MSE.

This concept of comparing two estimators can be generalized to the following

notion.

Definition 5. Strong Efficiency. Suppose two estimators θ̂u and θ̂v of the

same θ are
√
n-consistent in L2, and their covariance is well defined. We say that

θ̂u is (asymptotically) strongly more efficient than θ̂v, denoted as θ̂u ≻ θ̂v, if the

orthogonality relationship θ̂u ⊥ (θ̂v − θ̂u) holds asymptotically,

CovG(θ̂u, θ̂v − θ̂u) = o
(
n−1

)
. (6.1)

When θ̂u is an estimator of a sub-vector of θ, θ̂u ≻ θ̂v is to be understood as

(θ̂u, θ
v\u
0 )⊤ ≻ θ̂v, where θ

v\u
0 is the true value of the part of θ that is estimated

by θ̂v, but not by θ̂u.

Given this definition, self-efficiency amounts to requiring θ̂com be strongly

more efficient than θ̂obs, when both of them are
√
n-consistent in L2 . Strong effi-

ciency is also closely related to Rao-Blackwellization. If θ̂u is a Rao-Blackwellized

θ̂v, E(θ̂v|S) = θ̂u, where S is a (correctly specified) sufficient statistic, then θ̂u
must be strongly more efficient than θ̂v, because E

G(θ̂uθ̂v) = EG[E(θ̂v|S)E(θ̂v|S)]
implies CovG(θ̂u, θ̂v − θ̂u) = 0. Conversely, letting D = θ̂v − θ̂u, we see that

if the delta method is applicable to linearize EG(D|θ̂u) as a function of θ̂u,

then (6.1) implies V [EG(D|θ̂u)] ≡ Cov[D,EG(D|θ̂u)] = o(n−1). Consequently,

EG(θ̂v|θ̂u) = c+ θ̂u + op(n
−1/2), for some constance c, which must be zero when
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both θ̂u and θ̂v are
√
n-consistent in L2. Therefore, θ̂u can be viewed as a Rao-

Blackwellization of θ̂v with θ̂u itself serving as the “sufficient statistic”. It is in

this sense we say θ̂u is strongly more efficient than θ̂v. We remark that strong

efficiency is not a total ordering and can even be non-transitive. Nevertheless, as

we will show in Section 7, it is a useful concept for Rubin’s MI inference under

uncongeniality.

One subtlety in formulating self-efficiency lies in the definition of θ̂obs. A

principled method such as MLE or Bayesian analysis is applicable for all data

patterns. However, for an arbitrary complete-data procedure, it is generally un-

clear what the corresponding procedure would be when the data are incomplete.

In fact, mathematically speaking, the notation θ̂(·) in Definition 4 is ambiguous

because of the varying dimension of its argument while moving from Zcom to

Zobs.

When an analyst adopts an EE SA(Zcom; θ) = 0, the corresponding observed-

data EE can be defined as its projection

SA(Zobs; θ) ≡ EA[SA(Zcom; θ)|Zobs; θ] = 0. (6.2)

Caution is needed in defining this projection when there is a nuisance parameter

ξ, in which case (6.2) may not be a meaningful EE for θ because the projec-

tion EA[SA(Zcom; θ)|Zobs; θ, ξ] can depend on ξ. This can cause problems; see

Section 7.2.

As expected, a fully efficient procedure such as an MLE or a Bayes estimator

is self-efficient, under the assumption that no new information is introduced

to the missing-data mechanism that can improve the complete-data estimators

(Rubin (1976)). Self-efficiency is a weaker requirement, as we will show shortly.

Nevertheless, as Example 1 demonstrates, self-efficiency does exclude certain

seemingly ideal estimators.

The orthogonality between θ̂com and θ̂obs− θ̂com as rendered by self-efficiency

plays a critical role in establishing some general theoretical results in Section 7.

The following result is particularly useful in building insights regarding the be-

havior of T∞.

Lemma 2. Assume the analyst’s procedure is self-efficient. Then

2FV A
misF

⊤ = (I − F )V A
obsF

⊤ + FV A
obs(I − F )⊤ + o

(
n−1

)
. (6.3)

Consequently, (5.9) is simplified to

D∞ = (I − F )
[
V A
obs − CA,I

obsK
⊤
]
F⊤. (6.4)

Thus, T∞ is (asymptotically) unbiased if and only if (assuming F and I − F are

of full rank)

V A
obs = CA,I

obsK
⊤ + op

(
n−1

)
. (6.5)
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The proof of this lemma relies on the following characterization of EEs

that produce self-efficient estimators. For simplicity below, we write EG(a) =

EG[a(Y ; θ0)].

Theorem 4. Suppose a complete-data estimator θ̂com is given by hcom(Zcom; θ) =

0, and the observed-data estimator θ̂obs is given by hobs(Zobs; θ) = 0, and that both

hcom(Zcom; θ) and hobs(Zobs; θ) satisfy SOR. Then the corresponding estimating

procedure is self-efficient (asymptotically) if and only if

[
EG

(
∂hobs
∂θ

)]−1

EG
(
hobsh

⊤
com

)
=

[
EG

(
∂hcom
∂θ

)]−1

EG
(
hcomh

⊤
com

)
+ o(1),

(6.6)

where all h functions and their derivatives are evaluated at θ = θ0.

The following is a class of EEs that satisfies (6.6), yet it does not necessarily

lead to fully efficient estimators. Let Zcom = (Y1, . . . , YN ) be a sequence of i.i.d.

random variables and Zobs = (Y1, . . . , Yn). Choose h such that the EEs

hobs(Zobs; θ) =

n∑
i=1

h(Yi; θ) and hcom(Zcom; θ) =

N∑
i=1

h(Yi; θ) (6.7)

satisfy SOR. An additional property the EEs in (6.7) enjoy is that EG[hobs(hcom−
hobs)

⊤] = 0. The following corollary gives a characterization of self-efficient EEs

in such cases.

Corollary 4. If in addition to the conditions stated in Theorem 4, we have that[
EG

(
∂hobs
∂θ

)]−1

EG
[
hobs(hcom − hobs)

⊤
]
= o(1) ,

then the corresponding estimating procedure is self-efficient (asymptotically) if

and only if[
EG

(
∂hobs
∂θ

)]−1

EG
(
hobsh

⊤
obs

)
=

[
EG

(
∂hcom
∂θ

)]−1

EG
(
hcomh

⊤
com

)
+ o(1).

(6.8)

When we adopt MLEs, the above equality can be shown by noticing that[
E

(
∂hobs
∂θ

)]−1

E
(
hobsh

⊤
obs

)
= I =

[
E

(
∂hcom
∂θ

)]−1

E
(
hcomh

⊤
com

)
, (6.9)

where I is the identity matrix, because of the familiar second Bartlett identity

for likelihood. In (6.9) the expectation operator E is with respect to the same

class of models that underlies the likelihood, and hence it does not have the

superscript G on it. Therefore, we can view (6.8) and, more generally, (6.6), as
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generalizations of the second Bartlett identity for EEs, when we replace their EG

operator by E. The value of Theorem 4 is that it provides a practical way to

construct, identify, and verify self-efficient estimation procedures.

7. General Behavior of Rubin’s Variance Combining Rule

In this section we first establish a necessary and sufficient condition for the

consistency of Rubin’s variance estimator. We then investigate two contrast-

ing scenarios: (i) the analyst’s estimator dominates the imputer’s in terms of

strong efficiency, θ̂Aobs ≻ θ̂Iobs, (ii) the imputer’s estimator dominates the ana-

lyst’s, θ̂Iobs ≻ θ̂Aobs. Given these scenarios and assuming self-efficiency of the

analyst’s procedure, we identify circumstances where Rubin’s variance estimator

is consistent or conservative. The validity of Theorem 5 relies on that of the

previous theorems and corollaries, whose regularity conditions are needed but

not repeated below for brevity.

Theorem 5. The MI variance estimator T∞ is consistent for V∞ if and only if

θ̂Acom ≻ θ̄∞.

The proof of this result requires the regularity conditions for Theorem 2

and (5.10), but the intuitive argument is rather immediate. By definition, θ̂Acom
is (asymptotically) strongly more efficient than θ̄∞ if and only if we can write

(asymptotically)

V∞ = V G(θ̄∞) = V G(θ̂Acom) + V G(θ̄∞ − θ̂Acom). (7.1)

But as discussed in Section 5.1, the two terms on the right-hand side of (7.1) are

consistently estimated, respectively, by Ū∞ and by B∞, hence the consistency of

T∞.

Whereas technically verifying θ̂Acom ≻ θ̄∞ typically is no easier than directly

verifying the consistency of T∞, Theorem 5 leads to an important insight. It

establishes that if the analyst uses fully efficient complete-data estimators, such

as MLE, then T∞ will be consistent as long as the imputer’s model does not bring

in “secret information” unused in forming the analyst’s complete-data estimator

(e.g., such as the imputer’s information on equal means in Example 3). This

result therefore provides a concrete two-part practical guideline: (A) the analyst

should adopt a fully efficient estimator (under the analyst’s model) as much as

is possible, and (B) the imputer should employ an imputation model that is

as saturated as feasible. Point (B) has been well emphasized throughout the

MI literature (e.g., Rubin (1987, 1996), and Meng (1994)), but point (A) has

received much less emphasis.

This imbalance seems to be due to the desire to allow users the complete

freedom to apply their favorite methods to the imputed data sets. Just as in
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The proof of this lemma relies on the following characterization of EEs

that produce self-efficient estimators. For simplicity below, we write EG(a) =

EG[a(Y ; θ0)].

Theorem 4. Suppose a complete-data estimator θ̂com is given by hcom(Zcom; θ) =

0, and the observed-data estimator θ̂obs is given by hobs(Zobs; θ) = 0, and that both

hcom(Zcom; θ) and hobs(Zobs; θ) satisfy SOR. Then the corresponding estimating

procedure is self-efficient (asymptotically) if and only if

[
EG

(
∂hobs
∂θ

)]−1

EG
(
hobsh

⊤
com

)
=

[
EG

(
∂hcom
∂θ

)]−1

EG
(
hcomh

⊤
com

)
+ o(1),

(6.6)

where all h functions and their derivatives are evaluated at θ = θ0.

The following is a class of EEs that satisfies (6.6), yet it does not necessarily

lead to fully efficient estimators. Let Zcom = (Y1, . . . , YN ) be a sequence of i.i.d.

random variables and Zobs = (Y1, . . . , Yn). Choose h such that the EEs

hobs(Zobs; θ) =

n∑
i=1

h(Yi; θ) and hcom(Zcom; θ) =

N∑
i=1

h(Yi; θ) (6.7)

satisfy SOR. An additional property the EEs in (6.7) enjoy is that EG[hobs(hcom−
hobs)

⊤] = 0. The following corollary gives a characterization of self-efficient EEs

in such cases.

Corollary 4. If in addition to the conditions stated in Theorem 4, we have that[
EG

(
∂hobs
∂θ

)]−1

EG
[
hobs(hcom − hobs)

⊤
]
= o(1) ,

then the corresponding estimating procedure is self-efficient (asymptotically) if

and only if[
EG

(
∂hobs
∂θ

)]−1

EG
(
hobsh

⊤
obs

)
=

[
EG

(
∂hcom
∂θ

)]−1

EG
(
hcomh

⊤
com

)
+ o(1).

(6.8)

When we adopt MLEs, the above equality can be shown by noticing that[
E

(
∂hobs
∂θ

)]−1

E
(
hobsh

⊤
obs

)
= I =

[
E

(
∂hcom
∂θ

)]−1

E
(
hcomh

⊤
com

)
, (6.9)

where I is the identity matrix, because of the familiar second Bartlett identity

for likelihood. In (6.9) the expectation operator E is with respect to the same

class of models that underlies the likelihood, and hence it does not have the

superscript G on it. Therefore, we can view (6.8) and, more generally, (6.6), as
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generalizations of the second Bartlett identity for EEs, when we replace their EG

operator by E. The value of Theorem 4 is that it provides a practical way to

construct, identify, and verify self-efficient estimation procedures.

7. General Behavior of Rubin’s Variance Combining Rule

In this section we first establish a necessary and sufficient condition for the

consistency of Rubin’s variance estimator. We then investigate two contrast-

ing scenarios: (i) the analyst’s estimator dominates the imputer’s in terms of

strong efficiency, θ̂Aobs ≻ θ̂Iobs, (ii) the imputer’s estimator dominates the ana-

lyst’s, θ̂Iobs ≻ θ̂Aobs. Given these scenarios and assuming self-efficiency of the

analyst’s procedure, we identify circumstances where Rubin’s variance estimator

is consistent or conservative. The validity of Theorem 5 relies on that of the

previous theorems and corollaries, whose regularity conditions are needed but

not repeated below for brevity.

Theorem 5. The MI variance estimator T∞ is consistent for V∞ if and only if

θ̂Acom ≻ θ̄∞.

The proof of this result requires the regularity conditions for Theorem 2

and (5.10), but the intuitive argument is rather immediate. By definition, θ̂Acom
is (asymptotically) strongly more efficient than θ̄∞ if and only if we can write

(asymptotically)

V∞ = V G(θ̄∞) = V G(θ̂Acom) + V G(θ̄∞ − θ̂Acom). (7.1)

But as discussed in Section 5.1, the two terms on the right-hand side of (7.1) are

consistently estimated, respectively, by Ū∞ and by B∞, hence the consistency of

T∞.

Whereas technically verifying θ̂Acom ≻ θ̄∞ typically is no easier than directly

verifying the consistency of T∞, Theorem 5 leads to an important insight. It

establishes that if the analyst uses fully efficient complete-data estimators, such

as MLE, then T∞ will be consistent as long as the imputer’s model does not bring

in “secret information” unused in forming the analyst’s complete-data estimator

(e.g., such as the imputer’s information on equal means in Example 3). This

result therefore provides a concrete two-part practical guideline: (A) the analyst

should adopt a fully efficient estimator (under the analyst’s model) as much as

is possible, and (B) the imputer should employ an imputation model that is

as saturated as feasible. Point (B) has been well emphasized throughout the

MI literature (e.g., Rubin (1987, 1996), and Meng (1994)), but point (A) has

received much less emphasis.

This imbalance seems to be due to the desire to allow users the complete

freedom to apply their favorite methods to the imputed data sets. Just as in
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other cases of robustness and efficiency trade-off, there is a price to be paid for

this “applicability robustness”, namely, the potential bias in T∞. However, in the

context of variance estimation, it is often acceptable or even preferable to have

a certain degree of over-estimation as a way to mitigate the negative effect from

the usual tendency of under-assessing the overall uncertainty (e.g., due to model

uncertainty). Somewhat remarkably, as demonstrated below, as long as the an-

alyst’s procedure is self-efficient, T∞ has a tendency to overestimate rather than

to underestimate. The rationale for invoking self-efficiency has been discussed

previously, but its relevance can also be seen in Theorem 5, which obviously

is applicable in the special case of congeniality. However, under congeniality,

θ̄∞ = θ̂Aobs, and hence θ̂Acom ≻ θ̄∞ is the same as requiring the analyst’s procedure

to be self-efficient.

7.1. The scenario where the analyst assumes more than the imputer

Moving beyond the congenial case, we first discuss the circumstance in which

the analyst makes more assumptions than the imputer so that θ̂Aobs ≻ θ̂Iobs. This

occurs, for example, when the analyst’s model is nested within the imputer’s,

and both parties adopt the MLE approach. In such cases, θA is a sub-parameter

of θI , and hence θ̂Aobs ≻ θ̂Iobs is understood as having {θ̂Aobs, θ
I\A
0 } dominate θ̂Iobs,

as discussed before. Theorem 6 below states that if in addition the analyst’s

procedure is self-efficient, then Rubin’s T∞ is consistent and hence confidence

proper. At the same time, because the additional (correct) information assumed

by the analyst is unknown/unknowable to the imputer, the MI estimator θ̄∞ can-

not be more efficient than the analyst’s estimator based directly on the observed

data, θ̂Aobs (e.g., the observed-data MLE). Again, the validity of Lemma 3 and

Theorem 6 requires the (unlisted) conditions underlying the previous results.

Lemma 3. θ̂Aobs ≻ θ̂Iobs implies θ̂Aobs ≻ θ̂Hobs.

Theorem 6. Assuming that θ̂Aobs ≻ θ̂Iobs, we have

(i) Rubin’s variance estimator T∞ is consistent if the analyst’s procedure is self-

efficient.

(ii) The MI estimator θ̄∞ cannot be more efficient than θ̂Aobs, V∞ ≥ V A
obs.

This result provides a general theoretical guarantee of the “hidden robust-

ness” phenomenon illustrated in Section 2.2. Because strong efficiency is about

orthogonality, the geometric insight for (i) of Theorem 6 is as follows. First,

Theorem 1 allows us to place the relevant estimators in a Euclidean space as in

Figure 3. Second, respectively, Corollary 1, Lemma 3 and the self-efficiency of
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Figure 3. A geometric interpretation for Theorem 6.

θ̂Acom imply (1), (2) and (3) below, leading to

(1)(θ̂Aobs−θ̂Hobs)⊥ θ̂Amis

(2)(θ̂Aobs−θ̂Hobs)⊥ θ̂Aobs

}
⇒(θ̂Aobs−θ̂Hobs)⊥ θ̂Acom

(3) θ̂Acom ≻ θ̂Aobs ⇒(θ̂Aobs−θ̂Acom)⊥ θ̂Acom



⇒Span{θ̂Aobs−θ̂Hobs, θ̂Aobs−θ̂Acom}⊥ θ̂Acom.

Thus, θ̂Acom is perpendicular to the plane formed by the three dashed lines in

Figure 3. It is then clear that θ̂Acom ≻ θ̄∞, implying that T∞ is consistent because

of Theorem 5.

7.2. The scenario where the imputer assumes more than the analyst

Next we assume θ̂Iobs ≻ θ̂Aobs. This holds, for example, when both analyst

and imputer adopt MLEs, but with the imputer’s model being a sub-model of

the analyst’s. Unlike in Theorem 6, which guarantees that T∞ is consistent,

here we can only guarantee that it is conservative, and even this less precise

result is obtained under the restrictive assumption that the fraction of missing

information is the same for all parameters.

Theorem 7. Assuming that θ̂Iobs ≻ θ̂Aobs, we have the following asymptotical

results.

(i) The MI estimator θ̄∞ is no less efficient than the analyst’s estimator θ̂Aobs,

V∞ ≤ V A
obs.

(ii) If we also assume the analyst’s procedure is self-efficient, then T∞ ≤ V A
obs.

1520 XIANCHAO XIE AND XIAO-LI MENG



36 XIANCHAO XIE AND XIAO-LI MENG

other cases of robustness and efficiency trade-off, there is a price to be paid for
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a certain degree of over-estimation as a way to mitigate the negative effect from

the usual tendency of under-assessing the overall uncertainty (e.g., due to model
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alyst’s procedure is self-efficient, T∞ has a tendency to overestimate rather than
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previously, but its relevance can also be seen in Theorem 5, which obviously

is applicable in the special case of congeniality. However, under congeniality,

θ̄∞ = θ̂Aobs, and hence θ̂Acom ≻ θ̄∞ is the same as requiring the analyst’s procedure

to be self-efficient.
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Moving beyond the congenial case, we first discuss the circumstance in which

the analyst makes more assumptions than the imputer so that θ̂Aobs ≻ θ̂Iobs. This

occurs, for example, when the analyst’s model is nested within the imputer’s,

and both parties adopt the MLE approach. In such cases, θA is a sub-parameter

of θI , and hence θ̂Aobs ≻ θ̂Iobs is understood as having {θ̂Aobs, θ
I\A
0 } dominate θ̂Iobs,

as discussed before. Theorem 6 below states that if in addition the analyst’s

procedure is self-efficient, then Rubin’s T∞ is consistent and hence confidence

proper. At the same time, because the additional (correct) information assumed

by the analyst is unknown/unknowable to the imputer, the MI estimator θ̄∞ can-

not be more efficient than the analyst’s estimator based directly on the observed

data, θ̂Aobs (e.g., the observed-data MLE). Again, the validity of Lemma 3 and

Theorem 6 requires the (unlisted) conditions underlying the previous results.

Lemma 3. θ̂Aobs ≻ θ̂Iobs implies θ̂Aobs ≻ θ̂Hobs.

Theorem 6. Assuming that θ̂Aobs ≻ θ̂Iobs, we have

(i) Rubin’s variance estimator T∞ is consistent if the analyst’s procedure is self-

efficient.

(ii) The MI estimator θ̄∞ cannot be more efficient than θ̂Aobs, V∞ ≥ V A
obs.

This result provides a general theoretical guarantee of the “hidden robust-

ness” phenomenon illustrated in Section 2.2. Because strong efficiency is about

orthogonality, the geometric insight for (i) of Theorem 6 is as follows. First,

Theorem 1 allows us to place the relevant estimators in a Euclidean space as in

Figure 3. Second, respectively, Corollary 1, Lemma 3 and the self-efficiency of
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Figure 3. A geometric interpretation for Theorem 6.

θ̂Acom imply (1), (2) and (3) below, leading to

(1)(θ̂Aobs−θ̂Hobs)⊥ θ̂Amis

(2)(θ̂Aobs−θ̂Hobs)⊥ θ̂Aobs

}
⇒(θ̂Aobs−θ̂Hobs)⊥ θ̂Acom

(3) θ̂Acom ≻ θ̂Aobs ⇒(θ̂Aobs−θ̂Acom)⊥ θ̂Acom


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⇒Span{θ̂Aobs−θ̂Hobs, θ̂Aobs−θ̂Acom}⊥ θ̂Acom.

Thus, θ̂Acom is perpendicular to the plane formed by the three dashed lines in

Figure 3. It is then clear that θ̂Acom ≻ θ̄∞, implying that T∞ is consistent because

of Theorem 5.

7.2. The scenario where the imputer assumes more than the analyst

Next we assume θ̂Iobs ≻ θ̂Aobs. This holds, for example, when both analyst

and imputer adopt MLEs, but with the imputer’s model being a sub-model of

the analyst’s. Unlike in Theorem 6, which guarantees that T∞ is consistent,

here we can only guarantee that it is conservative, and even this less precise

result is obtained under the restrictive assumption that the fraction of missing

information is the same for all parameters.

Theorem 7. Assuming that θ̂Iobs ≻ θ̂Aobs, we have the following asymptotical

results.

(i) The MI estimator θ̄∞ is no less efficient than the analyst’s estimator θ̂Aobs,

V∞ ≤ V A
obs.

(ii) If we also assume the analyst’s procedure is self-efficient, then T∞ ≤ V A
obs.
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(iii) In addition to these conditions, if the fraction of missing information matrix

F defined in (4.7) is proportional to an identity matrix, then T∞ is conser-

vative, V∞ ≤ T∞.

Theorem 7 provides a theoretical backbone for the “super efficiency” phe-

nomenon illustrated in Example 3 . There is, however, a subtlety in applying

Theorem 7 to that example, because the F there is generally not proportional to

the identity matrix I2 when we consider θ = (θx, θy)
⊤ as the analyst’s parameter.

However, we can apply Theorem 7 to θx and θy separately because the un(Zobs; θ)

of (4.4) can be decomposed into two “self-contained” projections for estimating

θx and θy individually:

EA [S(Zcom; θ)|Zobs; θ]

=



EA [S(Zcom; θx)|Zobs; θx]

EA [S(Zcom; θy)|Zobs; θy]


 =



EA

[
X̄nx − θx

��Xobs; θx]

EA
[
Ȳny − θy

��Yobs; θy]


 . (7.2)

However, for ϕ = θx + θy, the complete-data EE is

SA(Xcom, Ycom;ϕ) = X̄Nx + ȲNy − ϕ = 0, (7.3)

for which the “self-contained” projection EA[SA(Xcom, Ycom;ϕ)|Xcom, Ycom, ϕ]

does not exist under the analyst’s model, because when fx ̸= fy, the required

conditional expectation will depend on individual values of θx and θy. Hence,

Theorem 7 is inapplicable.

Technically, one may be tempted to get around this problem by re-defining

the projection in (4.4)−(4.5), replacing the EA operator by a projection that

is consistent with God’s model. Recall for Example 3, God’s model assumes

θx = θy and hence both of them equal to ϕ/2. Using such a projection, E, we

have

E[SA(Xcom, Ycom;ϕ)|Xobs, Yobs;ϕ]

=
nxX̄nx + (Nx − nx)ϕ/2

Nx
+

nyȲny + (Ny − ny)ϕ/2

Ny
− ϕ,

which, upon being set to zero, leads to the observed-data estimator

ϕ̂obs =
2[(1− fx)X̄nx + (1− fy)Ȳny ]

(1− fx) + (1− fy)
. (7.4)

This re-definition of (4.4)−(4.5) however does not solve but only postpones

our problem. This is because the “self-efficiency” condition ϕ̂com ≻ ϕ̂obs no longer

holds whenever fx ̸= fy. We must put “self-efficiency” in quotes here because

MULTIPLE IMPUTATION FROM A MULTI-PHASE INFERENCE PERSPECTIVE 39

the construction of ϕ̂obs violates the spirit of the original formulation of self-

efficiency, since the derivation of (7.4) has used the imputer’s knowledge θx = θy,

unavailable to the analyst. This also explains that, although ϕ̂com is the MLE of

ϕ under the analyst’s model, it does not dominate ϕ̂obs precisely because ϕ̂com is

not the MLE under the additional assumption that θx = θy.

The proportionality assumption in (iii) of Theorem 7 holds when the missing

data are missing completely at random (MCAR; see Rubin (1976)) in the regres-

sion example given in Appendix II. Exploring such connections in general is one

of many open problems that are worth investigating. Even though this assump-

tion appears to be rather restrictive, it is only a sufficient instead of necessary

condition.

8. Subtleties and Open Problems

The results reported so far have helped us to decipher the complex behavior

of Rubin’s MI inference under uncongeniality, providing a valuable exploration

of the multi-phase inference paradigm. Nevertheless, our expedition into the un-

congenial forest has encountered several “subtlety traps.” We share some stories

here in hoping to entice readers to join our adventure.

8.1. Example 4: Complications with multi-phase inference

In discussing Theorem 5, we made a point that self-efficiency is a sufficient

and necessary condition for T∞ to be consistent under congeniality. However,

neither self-efficiency nor congeniality is a necessary condition for T∞ to be con-

sistent in general, because the lack of self-efficiency can be somehow compensated

by uncongeniality. To demonstrate this “two wrongs make a right” complexity

of multi-phase inference, we follow the setting of Example 1 but replace N(θ, σ2)

by Laplace L(θ, τ) : p(y|θ, τ) = (1/2τ) exp (−|y − θ|/τ).

• God’s Model : Zobs = (Y1, . . . , Yn) with Yi
i.i.d.∼ L(θ0, 1) for i = 1, . . . , n, and

Zmis = (Yn+1, . . . , YN ) with Yi
i.i.d.∼ L(θ0, τ0) for i = n+ 1, . . . , N .

• Imputer’s Model : Yi
i.i.d.∼ L(θ, 1) for i = 1, . . . , n and Yi

i.i.d.∼ L(θ, τ0) for

i = n+1, . . . , N ; prior p(θ) ∝ 1; MI draws are obtained by first sampling θ̃ from

p(θ|Zobs) ∝ exp (−
∑n

i=1 |yi − θ|) , and then sampling Ỹi
i.i.d.∼ L(θ̃, τ0) for i =

n+ 1, . . . , N. For asymptotic calculations, we use p(θ|Zobs) ≈ N(Y(n/2), n
−1),

where Y(n/2) is the median of {Y1, . . . , Yn}, which is the MLE of θ under

L(θ, τ).

• Analyst’s Complete-data Procedure: θ̂Acom = ȲN and V̂ A
com = V̂ (θ̂Acom) =

N−1S2
N .
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(iii) In addition to these conditions, if the fraction of missing information matrix
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SA(Xcom, Ycom;ϕ) = X̄Nx + ȲNy − ϕ = 0, (7.3)

for which the “self-contained” projection EA[SA(Xcom, Ycom;ϕ)|Xcom, Ycom, ϕ]

does not exist under the analyst’s model, because when fx ̸= fy, the required

conditional expectation will depend on individual values of θx and θy. Hence,

Theorem 7 is inapplicable.

Technically, one may be tempted to get around this problem by re-defining

the projection in (4.4)−(4.5), replacing the EA operator by a projection that

is consistent with God’s model. Recall for Example 3, God’s model assumes

θx = θy and hence both of them equal to ϕ/2. Using such a projection, E, we

have

E[SA(Xcom, Ycom;ϕ)|Xobs, Yobs;ϕ]

=
nxX̄nx + (Nx − nx)ϕ/2

Nx
+

nyȲny + (Ny − ny)ϕ/2
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− ϕ,

which, upon being set to zero, leads to the observed-data estimator

ϕ̂obs =
2[(1− fx)X̄nx + (1− fy)Ȳny ]

(1− fx) + (1− fy)
. (7.4)

This re-definition of (4.4)−(4.5) however does not solve but only postpones

our problem. This is because the “self-efficiency” condition ϕ̂com ≻ ϕ̂obs no longer

holds whenever fx ̸= fy. We must put “self-efficiency” in quotes here because
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ϕ under the analyst’s model, it does not dominate ϕ̂obs precisely because ϕ̂com is

not the MLE under the additional assumption that θx = θy.

The proportionality assumption in (iii) of Theorem 7 holds when the missing

data are missing completely at random (MCAR; see Rubin (1976)) in the regres-

sion example given in Appendix II. Exploring such connections in general is one

of many open problems that are worth investigating. Even though this assump-

tion appears to be rather restrictive, it is only a sufficient instead of necessary
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8. Subtleties and Open Problems

The results reported so far have helped us to decipher the complex behavior
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of the multi-phase inference paradigm. Nevertheless, our expedition into the un-
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• God’s Model : Zobs = (Y1, . . . , Yn) with Yi
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i=1 |yi − θ|) , and then sampling Ỹi
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n+ 1, . . . , N. For asymptotic calculations, we use p(θ|Zobs) ≈ N(Y(n/2), n
−1),

where Y(n/2) is the median of {Y1, . . . , Yn}, which is the MLE of θ under
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As in Example 1, the analyst’s procedure is not self-efficient whenever τ0 ̸= 1.

Nor could it be congenial to the imputer’s model because the MLE of θ is the

sample median, which is not asymptotically equivalent to the sample mean. We

thus have θ̂Aobs = Ȳn , θ̂Iobs = θ̂Hobs = Y(n/2), and θ̄∞ = (1 − f)θ̂Aobs + fKθ̂Iobs with

f = (N − n)/N and K = 1, verifying Theorems 2 and 3.

Because here θ̂Iobs is the MLE under the correct model, we have θ̂Iobs ≻ θ̂Aobs,

in the realm of Theorem 7. To verify its (i), we note the variance of L(θ, τ) is

2τ2, and hence V A
obs = V G(Ȳn) = 2/n. For V∞ ≡ V G(θ̄∞), the expression of θ̄∞

above implies that asymptotically

V∞ =
1

n
[1 + (1− f)2] ≤ 2

n
= V A

obs. (8.1)

Formula (8.1) verifies (i) of Theorem 7, and it also shows that the efficiency of θ̄∞
is an increasing function of the fraction of missing data f for fixed n. This is no

surprise because as f increases, the percentage (f) of the imputer’s θ̂Iobs = Y(n/2)
in θ̄∞ increases while the percentage (1−f) of the doubly more variable θ̂Aobs = Ȳn
decreases, effectively reducing the impact of a defect in θ̂com.

Because the first two-moment calculations of N(θ, σ2) and L(θ, τ) are iden-

tical once we equate σ2 = 2τ2, we can obtain the current T∞ from (2.2), after

substituting 1 by 2 for the variance of any observed Yi’s and σ2
0 by 2τ20 for any

unobserved Yi’s; that is,

T∞ = Ū∞ +B∞ =
1

N

[
2(1− f) + 2fτ20

]
+

f

N

[
f

1− f
+ 2τ20

]
. (8.2)

From (8.1)−(8.2), simple algebra yields

n(V A
obs − T∞) = f2 + 4f(1− f)(1− τ20 ); (8.3)

n(T∞ − V∞) = 2f(1− f)(2τ20 − 1). (8.4)

Therefore, without further conditions on τ20 , the conclusion is that neither (ii)

nor (iii) of Theorem 7 can hold. However, (ii) of Theorem 7 also assumes that

the analyst’s procedure is self-efficient, which means τ20 = 1 in the current case.

But when τ20 = 1, (8.3) and (8.4) are non-negative, verifying both (ii) and (iii) of

Theorem 7. Also, as expected and following a similar inequality as in (2.7), the

inequality (2.6) is verified directly, demonstrating again its applicability.

Less expected is that when τ20 = 1/2, T∞ = V∞ even though τ20 = 1/2

corresponds to neither self-efficiency nor congeniality. We do not have an insight

why τ20 = 1/2 is special, other than the observation that τ20 = 1/2 leads to

the posterior predictive variance 1 + n−1 (asymptotically), the same as that

under congeniality for the normal setting in Example 1. It seems to suggest an
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“effective” congeniality of some sort, though currently we are unable to ascertain

what it is.

8.2. Measuring uncongeniality and the use of partial knowledge

Since in practical situations, the analysis model happens to be congenial

to the imputer’s model is an event with very small (zero?) probability, the

central question of interest is not much about detecting whether uncongenality

has occurred (it has!), but rather to what degree. The Example 4 above indicates

that measuring uncongeniality is both an important and challenging task, even

for a univariate estimand (which we assume here).

For Example 4, the uncongeniality index (for estimating θ) defined in (5.5)

is given by (due to (8.2) and (8.4))

Cun =
η√

(2− f)/f + η
√
1/(1− f) + η

, where η = 2τ20 − 1. (8.5)

We see that as τ20 varies from 0 to ∞, η varies from −1 to ∞ , and Cun moves

monotonically from −1/
√
2 to 1. Here we can use Cun to index the degree of the

bias in Rubin’s variance combining rule, as well as our standard error combining

rule (5.15) (with m = ∞). In general, (5.4)−(5.5) and the consistency of Ū∞
and B∞ imply that asymptotically we have

V∞ = Ū∞ +B∞ − 2Cun

√
Ū∞B∞ = T∞ − 2Cun

√
Ū∞B∞. (8.6)

Therefore, as long as Cun ≥ 0, Rubin’s T∞ will overestimate V∞, with Cun = 1

indexing the most extreme overestimation, for then V∞ reaches its lower bound

given by

(
√
Ū∞ −

√
B∞)2 ≤ V∞ ≤ (

√
Ū∞ +

√
B∞)2. (8.7)

Similarly, when Cun < 0, T∞ underestimates with Cun = −1 representing the ex-

treme bias, although in the case of (8.5), the upper bound in (8.7) is unreachable

because Cun ≥ −1/
√
2.

This example indicates the possibility for the analyst to derive a lower (or

upper) bound on Cun by examining extreme cases of uncongeniality without

full knowledge of the imputer’s model. Here bounds are derived using only the

trivial knowledge that 0 ≤ τ20 < ∞ (in addition to the form of Cun). Such partial

knowledge can help to reduce the confidence over-coverage. Knowing Cun > Cmin

permits us to replace our standard error combining rule by

S̃∞ =
[
Ū∞ +B∞ − 2Cmin

√
Ū∞B∞

]1/2
= R

(√
Ū∞ +

√
B∞

)
, (8.8)

where
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thus have θ̂Aobs = Ȳn , θ̂Iobs = θ̂Hobs = Y(n/2), and θ̄∞ = (1 − f)θ̂Aobs + fKθ̂Iobs with

f = (N − n)/N and K = 1, verifying Theorems 2 and 3.

Because here θ̂Iobs is the MLE under the correct model, we have θ̂Iobs ≻ θ̂Aobs,

in the realm of Theorem 7. To verify its (i), we note the variance of L(θ, τ) is

2τ2, and hence V A
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0 by 2τ20 for any

unobserved Yi’s; that is,
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+
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From (8.1)−(8.2), simple algebra yields

n(V A
obs − T∞) = f2 + 4f(1− f)(1− τ20 ); (8.3)

n(T∞ − V∞) = 2f(1− f)(2τ20 − 1). (8.4)

Therefore, without further conditions on τ20 , the conclusion is that neither (ii)

nor (iii) of Theorem 7 can hold. However, (ii) of Theorem 7 also assumes that

the analyst’s procedure is self-efficient, which means τ20 = 1 in the current case.

But when τ20 = 1, (8.3) and (8.4) are non-negative, verifying both (ii) and (iii) of

Theorem 7. Also, as expected and following a similar inequality as in (2.7), the

inequality (2.6) is verified directly, demonstrating again its applicability.

Less expected is that when τ20 = 1/2, T∞ = V∞ even though τ20 = 1/2

corresponds to neither self-efficiency nor congeniality. We do not have an insight

why τ20 = 1/2 is special, other than the observation that τ20 = 1/2 leads to

the posterior predictive variance 1 + n−1 (asymptotically), the same as that

under congeniality for the normal setting in Example 1. It seems to suggest an
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“effective” congeniality of some sort, though currently we are unable to ascertain

what it is.

8.2. Measuring uncongeniality and the use of partial knowledge

Since in practical situations, the analysis model happens to be congenial

to the imputer’s model is an event with very small (zero?) probability, the

central question of interest is not much about detecting whether uncongenality

has occurred (it has!), but rather to what degree. The Example 4 above indicates

that measuring uncongeniality is both an important and challenging task, even

for a univariate estimand (which we assume here).

For Example 4, the uncongeniality index (for estimating θ) defined in (5.5)

is given by (due to (8.2) and (8.4))

Cun =
η√

(2− f)/f + η
√
1/(1− f) + η

, where η = 2τ20 − 1. (8.5)

We see that as τ20 varies from 0 to ∞, η varies from −1 to ∞ , and Cun moves

monotonically from −1/
√
2 to 1. Here we can use Cun to index the degree of the

bias in Rubin’s variance combining rule, as well as our standard error combining

rule (5.15) (with m = ∞). In general, (5.4)−(5.5) and the consistency of Ū∞
and B∞ imply that asymptotically we have

V∞ = Ū∞ +B∞ − 2Cun

√
Ū∞B∞ = T∞ − 2Cun

√
Ū∞B∞. (8.6)

Therefore, as long as Cun ≥ 0, Rubin’s T∞ will overestimate V∞, with Cun = 1

indexing the most extreme overestimation, for then V∞ reaches its lower bound

given by

(
√
Ū∞ −

√
B∞)2 ≤ V∞ ≤ (

√
Ū∞ +

√
B∞)2. (8.7)

Similarly, when Cun < 0, T∞ underestimates with Cun = −1 representing the ex-

treme bias, although in the case of (8.5), the upper bound in (8.7) is unreachable

because Cun ≥ −1/
√
2.

This example indicates the possibility for the analyst to derive a lower (or

upper) bound on Cun by examining extreme cases of uncongeniality without

full knowledge of the imputer’s model. Here bounds are derived using only the

trivial knowledge that 0 ≤ τ20 < ∞ (in addition to the form of Cun). Such partial

knowledge can help to reduce the confidence over-coverage. Knowing Cun > Cmin

permits us to replace our standard error combining rule by

S̃∞ =
[
Ū∞ +B∞ − 2Cmin

√
Ū∞B∞

]1/2
= R

(√
Ū∞ +

√
B∞

)
, (8.8)

where
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R =

[
1− 1 + Cmin

2
γ

]1/2
with γ =

4
√
Ū∞B∞(√

Ū∞ +
√
B∞

)2 (8.9)

is a deflation factor on the over-estimation (for the worst possible scenario) by

the standard error combining rule. Because γ ∈ [0, 1], R ∈ [0, 1]. For our current

example, we can show that for a given f , γ reaches its maximal possible value 1

when τ20 → ∞, but its minimal possible value is bounded away from zero, as it

is achieved when τ20 = 0, yielding

γmin = 4
√
2

[√
2
1− f

f
+

√
f

1− f

]−2

.

Consequently, recalling Cmin = −1/
√
2 , we see for any given f

[1+√
2

2
√
2

]1/2
=
[1−Cmin

2

]1/2
≤R≤

[
1− 1 + Cmin

2
γmin

]1/2
=

[
1−

√
2−1

2
√
2

γmin

]1/2
.

(8.10)

Therefore, when, say, f = 1/3, γmin = 0.772, leading to 0.924 ≤ R ≤ 0.942.

This calculation demonstrates a stability of an apparently very conservative

rule, seeing how close R is to 1. This is not to suggest extrapolation (from a toy

example) but rather exploration. We need to explore general methods for esti-

mating the degree of uncongeniality, how such estimates can be used with (8.8),

how the finite number of imputation enters the picture, etc. Another practical

issue needs be addressed is how conservativeness in variance estimation affects

our estimates of fraction of missing information, which is a key part in deriving

approximate distributions for confidence intervals and hypothesis testing; see, for

example, Li et al. (1991); Li, Raghunathan, and Rubin (1991), Meng and Rubin

(1992), Barnard and Rubin (1999).

8.3. Difficulties with non-nested cases

Our theoretical results, up to Section 6, do not require any assumption about

the relationship between the imputer’s model and analysis model. However,

we have not been able to obtain theoretical results that can render statistical

acumen, such as those given in Section 7, without making assumptions about

this relationship. This is particularly frustrating for us, because strong efficiency

is a strong condition, albeit in cases of nested models, it is often satisfied, as

in Examples 2-3. (But Example 4 shows that model nesting is not a necessary

condition for strong efficiency dominance.) Here we present a simple case of

non-nested models to illustrate the difficulties.
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Consider a regression setting Y = X1θ1+X2θ2+ ϵ with ϵ ∼ N(0, IN ), where
the covariates X are fully observed but the response Y is missing at random
(MAR), i.e., the missing-data mechanism can depend on X but not on Y itself.
Without loss of generality, we write

Y1 :X1,1 X1,2
...

...
...

Yn :Xn,1 Xn,2





Xobs;

? :Xn+1,1 Xn+1,2
...

...
...

? : XN,1 XN,2





Xmis,

where “?” indicates that the value is missing. That is, only the first n of {Yi, i =
1, . . . , N} are observed.

Assume that God’s model here is the null model, with both θ1 and θ2 are zero,
whereas the analyst sets θ2 = 0 and θA = θ1, but the imputer adopts θ1 = 0 and
θI = θ2. The estimators θ̂Aobs and θ̂Iobs are taken to be the least square estimator
under the corresponding model. Because we assume MAR, the plug-in predictive
imputation model is simply the linear regression model Y = XI

misθ̂
I
obs + ϵ, and

hence the averaged/projected estimating equation is
(

n∑
i=1

xi,1yi +

N∑
i=n+1

xi,1xi,2θ̂
I
obs

)
−

(
N∑
i=1

x2i,1

)
θA = 0 ,

which can be decomposed as
[(

n∑
i=1

xi,1yi

)
−

(
n∑

i=1

x2i,1

)
θA

]
+

[(
N∑

i=n+1

xi,1xi,2θ̂
I
obs

)
−

(
N∑

i=n+1

x2i,1

)
θA

]
= 0.

The corresponding decomposition of θ̄∞ is θ̄∞ = (1− f)θ̂Aobs + fKθ̂Iobs where

f =

N∑
i=n+1

x2i,1

N∑
i=1

x2i,1

and K =

N∑
i=n+1

xi,1xi,2

N∑
i=n+1

x2i,1

,

which verifies Theorems 2 and 3. Clearly f is the fraction of missing information
under the analyst’s model because it is the same as 1 − [V (θ̂Acom)/V (θ̂Aobs)], the
relative loss of precision (the reciprocal of variance) due to missing Y ’s. And
K is the project coefficient from θI to θA because it is the regression coefficient
estimator, β̂

(2,1)
mis , from regressing X2 on X1 using these units with missing Y ′s.

To evaluate the bias of T∞, simple algebra yields

T∞ − V∞ = 2f(1− f)

[( n∑
i=1

x2i,1

)−1
−K

n∑
i=1

xi,1xi,2

n∑
i=1

x2i,1

( n∑
i=1

x2i,2

)−1
]

(8.11)

= 2f(1− f)[V G(θ̂Aobs)− β̂
(2,1)
mis β̂

(2,1)
obs V G(θ̂Iobs)], (8.12)
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R =
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Ū∞ +

√
B∞

)2 (8.9)

is a deflation factor on the over-estimation (for the worst possible scenario) by

the standard error combining rule. Because γ ∈ [0, 1], R ∈ [0, 1]. For our current

example, we can show that for a given f , γ reaches its maximal possible value 1

when τ20 → ∞, but its minimal possible value is bounded away from zero, as it

is achieved when τ20 = 0, yielding

γmin = 4
√
2

[√
2
1− f

f
+

√
f

1− f

]−2

.

Consequently, recalling Cmin = −1/
√
2 , we see for any given f

[1+√
2

2
√
2

]1/2
=
[1−Cmin

2

]1/2
≤R≤
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1− 1 + Cmin

2
γmin
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√
2−1

2
√
2

γmin
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.

(8.10)

Therefore, when, say, f = 1/3, γmin = 0.772, leading to 0.924 ≤ R ≤ 0.942.

This calculation demonstrates a stability of an apparently very conservative

rule, seeing how close R is to 1. This is not to suggest extrapolation (from a toy

example) but rather exploration. We need to explore general methods for esti-

mating the degree of uncongeniality, how such estimates can be used with (8.8),

how the finite number of imputation enters the picture, etc. Another practical

issue needs be addressed is how conservativeness in variance estimation affects

our estimates of fraction of missing information, which is a key part in deriving

approximate distributions for confidence intervals and hypothesis testing; see, for

example, Li et al. (1991); Li, Raghunathan, and Rubin (1991), Meng and Rubin

(1992), Barnard and Rubin (1999).

8.3. Difficulties with non-nested cases

Our theoretical results, up to Section 6, do not require any assumption about

the relationship between the imputer’s model and analysis model. However,

we have not been able to obtain theoretical results that can render statistical

acumen, such as those given in Section 7, without making assumptions about

this relationship. This is particularly frustrating for us, because strong efficiency

is a strong condition, albeit in cases of nested models, it is often satisfied, as

in Examples 2-3. (But Example 4 shows that model nesting is not a necessary

condition for strong efficiency dominance.) Here we present a simple case of

non-nested models to illustrate the difficulties.
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Consider a regression setting Y = X1θ1+X2θ2+ ϵ with ϵ ∼ N(0, IN ), where
the covariates X are fully observed but the response Y is missing at random
(MAR), i.e., the missing-data mechanism can depend on X but not on Y itself.
Without loss of generality, we write

Y1 :X1,1 X1,2
...

...
...

Yn :Xn,1 Xn,2
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Xobs;

? :Xn+1,1 Xn+1,2
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...
...

? : XN,1 XN,2


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Xmis,

where “?” indicates that the value is missing. That is, only the first n of {Yi, i =
1, . . . , N} are observed.

Assume that God’s model here is the null model, with both θ1 and θ2 are zero,
whereas the analyst sets θ2 = 0 and θA = θ1, but the imputer adopts θ1 = 0 and
θI = θ2. The estimators θ̂Aobs and θ̂Iobs are taken to be the least square estimator
under the corresponding model. Because we assume MAR, the plug-in predictive
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I
obs + ϵ, and

hence the averaged/projected estimating equation is
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I
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−
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−
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I
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−
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The corresponding decomposition of θ̄∞ is θ̄∞ = (1− f)θ̂Aobs + fKθ̂Iobs where

f =
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and K =
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,

which verifies Theorems 2 and 3. Clearly f is the fraction of missing information
under the analyst’s model because it is the same as 1 − [V (θ̂Acom)/V (θ̂Aobs)], the
relative loss of precision (the reciprocal of variance) due to missing Y ’s. And
K is the project coefficient from θI to θA because it is the regression coefficient
estimator, β̂

(2,1)
mis , from regressing X2 on X1 using these units with missing Y ′s.

To evaluate the bias of T∞, simple algebra yields
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−K

n∑
i=1

xi,1xi,2
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)−1
]
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where β̂
(2,1)
obs is the counterpart of β̂

(2,1)
mis but it is based on those units where Y

is observed. This verifies (5.10), but it is less clear how to use it to generate

practical advice for either the imputer or analyst. But it does imply that in the

case X1 and X2 are uncorrelated either among the sub-population where Y ’s

is observed (β̂
(2,1)
obs = 0) or where it is missing (β̂

(2,1)
mis = 0), Rubin’s T∞ will be

conservative. This suggests that the confidence validity results in Section 7 can

be generalized to the non-nested cases under additional conditions, but currently

it is not clear what these conditions are other than the tautological ones such

as directly assuming V G(θ̂Aobs) ≥ β̂
(2,1)
obs β̂

(2,1)
mis V G(θ̂Iobs). In contrast, as shown in

Appendix II using a general regression setting, for nested models, we will have

either T∞−V∞ = 0 (when the covariates used in analysis model form a subset of

those used in the imputation model) or T∞ − V∞ ≥ 0 (when the covariates used

in imputer’s model is a subset of those used in the analysis model and when the

fraction of missing information is the same for all components of Y ), verifying

the general results in Section 7.

8.4. Ultimate challenges

An even harder problem is to obtain general results when the imputer and/or

the analyst have misspecified their models. Our intuition says that in general the

resulting MI inference would be invalid. However, as discussed in Section 2.2,

one case in which our results continue to hold in the presence of model mis-

specification lies in a slight twist of Example 2. Specifically, if God’s model in

Example 2 is changed to have different population means in the two groups, even

though the analyst’s model then becomes mis-specified, all the derivations there

remain valid as long as the analyst’s parameter of interest is the overall popu-

lation mean. On the other hand, defects in the imputation model may cause

great damage, as they can affect any subsequence analysis, as emphasized in Sec-

tion 1.3. But how do we quantify or even formulate this intuition? Furthermore,

what conditions do we need in order to capture the type of scenarios suggested by

Example 4 when σ2
0 = 1/2, two or more mis-specifications may somehow cancel

each other?

Finally, all such questions are relevant for general multi-phase inferences. De-

fects incurred in earlier phases may cause more damages, just as problems caused

by the data collection phase are usually harder to deal with than problems in

the analysis phase, especially when some of those phases are “irreversible”. In-

deed, the question of “what to keep” has been much discussed and debated in the

rapidly growing literature on data curation (e.g., Borgman (2010); Edwards et al.

(2011)). Currently there is little participation of statisticians in such discussions.

We venture that the lack of statisticians’ participation is partially due to the fact
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that our current “God-versus-me” paradigm is inadequate to address many crit-

ical problems in that emerging literature. We believe the multi-phase inference

paradigm would allow us to be a part of the dialogues that can directly affect

“scientific standards and reliability” because “we really are thinking about the

same problem from different perspectives!” (Borgman, personal communication).

Indeed, Blocker and Meng (2013) were able to make some headway in formulat-

ing a class of preprocessing theory under the multi-phase perspective, but clearly

that was a small step. In general, as argued in Meng (2014), multi-phase infer-

ence, is one of the three large classes of problems with increasing frequencies and

urgency in this age of Big Data (the other two being multi-resolution inference

and multi-source inference) and, as such, much more need to be done and can

be done. So please join us!

Acknowledgement

The main theoretical results in this article formed a part of Xie’s Ph.D. the-

sis under the supervision of Meng. The discussion of multi-phase inference in

Section 1 also formed a basis for the entry on “Multi-Party Inference and Un-

congeniality” by Meng in International Encyclopedia of Statistical Science (2011,

Springer), for which he thanks the Editor Miodrag Lovric for the invitation. (But

here we have adopted the more encompassing term, multi-phase inference). Both

authors thank colleagues, especially Alex Blocker, Christian Borgman, Jan Han-

nig and Donald Rubin, for helpful exchanges, Steven Finch and Kin Wai Chan for

careful editing and proofreading, reviewers for very encouraging and constructive

comments, and NSF (US) for partial financial support.

Appendix I: Technical Proofs

Proof of Lemma 1. Whereas we believe this lemma is a standard result and

similar arguments have been invoked in many papers (e.g., Copas and Eguchi

(2005)), we are unable to find a direct reference and hence provide a proof for

completeness. To simplify notation, we assume θ to be scalar. By Taylor ex-

panding 0 = gn(Z, θ̂g) around θ0, we have

0 = gn(Z; θ0) + g′n(Z, θ0)(θ̂g − θ0) +
1

2
g′′n(Z, θ

∗)(θ̂g − θ0)
2,

with θ∗ lying between θ0 and θ̂g. Dividing both sides by g′n(Z, θ0) (assuming it

is not zero) yields

(θ̂g − θ0) +
gn(Z; θ0)

g′n(Z, θ0)
= − 1

2n

g′′n(Z, θ
∗)/n

g′n(Z, θ0)/n
×
(√

n(θ̂g − θ0)
)2

.
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where β̂
(2,1)
obs is the counterpart of β̂

(2,1)
mis but it is based on those units where Y

is observed. This verifies (5.10), but it is less clear how to use it to generate

practical advice for either the imputer or analyst. But it does imply that in the

case X1 and X2 are uncorrelated either among the sub-population where Y ’s

is observed (β̂
(2,1)
obs = 0) or where it is missing (β̂

(2,1)
mis = 0), Rubin’s T∞ will be

conservative. This suggests that the confidence validity results in Section 7 can

be generalized to the non-nested cases under additional conditions, but currently

it is not clear what these conditions are other than the tautological ones such

as directly assuming V G(θ̂Aobs) ≥ β̂
(2,1)
obs β̂

(2,1)
mis V G(θ̂Iobs). In contrast, as shown in

Appendix II using a general regression setting, for nested models, we will have

either T∞−V∞ = 0 (when the covariates used in analysis model form a subset of

those used in the imputation model) or T∞ − V∞ ≥ 0 (when the covariates used

in imputer’s model is a subset of those used in the analysis model and when the

fraction of missing information is the same for all components of Y ), verifying

the general results in Section 7.

8.4. Ultimate challenges

An even harder problem is to obtain general results when the imputer and/or

the analyst have misspecified their models. Our intuition says that in general the

resulting MI inference would be invalid. However, as discussed in Section 2.2,

one case in which our results continue to hold in the presence of model mis-

specification lies in a slight twist of Example 2. Specifically, if God’s model in

Example 2 is changed to have different population means in the two groups, even

though the analyst’s model then becomes mis-specified, all the derivations there

remain valid as long as the analyst’s parameter of interest is the overall popu-

lation mean. On the other hand, defects in the imputation model may cause

great damage, as they can affect any subsequence analysis, as emphasized in Sec-

tion 1.3. But how do we quantify or even formulate this intuition? Furthermore,

what conditions do we need in order to capture the type of scenarios suggested by

Example 4 when σ2
0 = 1/2, two or more mis-specifications may somehow cancel

each other?

Finally, all such questions are relevant for general multi-phase inferences. De-

fects incurred in earlier phases may cause more damages, just as problems caused

by the data collection phase are usually harder to deal with than problems in

the analysis phase, especially when some of those phases are “irreversible”. In-

deed, the question of “what to keep” has been much discussed and debated in the

rapidly growing literature on data curation (e.g., Borgman (2010); Edwards et al.

(2011)). Currently there is little participation of statisticians in such discussions.

We venture that the lack of statisticians’ participation is partially due to the fact
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that our current “God-versus-me” paradigm is inadequate to address many crit-

ical problems in that emerging literature. We believe the multi-phase inference

paradigm would allow us to be a part of the dialogues that can directly affect

“scientific standards and reliability” because “we really are thinking about the

same problem from different perspectives!” (Borgman, personal communication).

Indeed, Blocker and Meng (2013) were able to make some headway in formulat-

ing a class of preprocessing theory under the multi-phase perspective, but clearly

that was a small step. In general, as argued in Meng (2014), multi-phase infer-

ence, is one of the three large classes of problems with increasing frequencies and

urgency in this age of Big Data (the other two being multi-resolution inference

and multi-source inference) and, as such, much more need to be done and can

be done. So please join us!
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Appendix I: Technical Proofs

Proof of Lemma 1. Whereas we believe this lemma is a standard result and

similar arguments have been invoked in many papers (e.g., Copas and Eguchi

(2005)), we are unable to find a direct reference and hence provide a proof for

completeness. To simplify notation, we assume θ to be scalar. By Taylor ex-

panding 0 = gn(Z, θ̂g) around θ0, we have

0 = gn(Z; θ0) + g′n(Z, θ0)(θ̂g − θ0) +
1

2
g′′n(Z, θ

∗)(θ̂g − θ0)
2,

with θ∗ lying between θ0 and θ̂g. Dividing both sides by g′n(Z, θ0) (assuming it

is not zero) yields

(θ̂g − θ0) +
gn(Z; θ0)

g′n(Z, θ0)
= − 1

2n

g′′n(Z, θ
∗)/n

g′n(Z, θ0)/n
×
(√

n(θ̂g − θ0)
)2

.
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The regularity conditions (ii), (iii), and (iv) of Definition 1 together then imply

√
n

(
θ̂g − θ0 +

gn(Z; θ0)

g′n(Z, θ0)

)
= Op

(
1√
n

)
. (A.1)

Noting
√
n(θ̂g − θ0) = Op(1), we know

√
ngn(Z; θ0)

g′n(Z, θ0)
= Op(1),

which, together with (iii) in Definition 1, implies

√
ngn(Z; θ0)

g′n(Z, θ0)

(
−g′n(Z, θ0)

nJg(θ0)
− 1

)
p→ 0. (A.2)

Adding (A.1) and (A.2), we then have

Rn =
√
n

[
(θ̂g − θ0)−

gn(Z; θ0)

nJg(θ0)

]
p→ 0.

To prove convergence in L2, since conditions (v) and (vi) imply that [
√
n(θ̂g−θ0)]2

and [gn(Z; θ0)/
√
nJg(θ0)]

2 are uniformly integrable, so is R2
n . Hence R2

n
p→ 0

implies Rn
L2

→ 0.

Proof of Theorem 1. For simplicity, assume θ to be scalar. From Lemma 1

and our assumption that the three EEs satisfy SOR, we know

Rh
n =

√
n

[(
θ̂h − θ0

)
− hn(Z; θ0)

nJh(θ0)

]
p→ 0;

Ru
n =

√
n

[(
θ̂u − θ0

)
− un(Z; θ0)

nJu(θ0)

]
p→ 0;

Rv
n =

√
n

[(
θ̂v − θ0

)
− vn(Z; θ0)

nJv(θ0)

]
p→ 0;

hn(Z; θ) = un(Z; θ) + vn(Z; θ) and Jh(θ0) = Ju(θ0) + Jv(θ0).

With some simple manipulations, we obtain
√
n
[
(θ̂h − θ0)−

(
(I − F )(θ̂u − θ0) + F (θ̂v − θ0)

)]

=
[
Rh

n − ((I − F )Ru
n + FRv

n)
]

p→ 0.

If the three EEs also satisfy condition (v) and (vi), the remainder terms Rh
n, R

u
n,

and Rv
n are then known to converge to zero in L2, which implies

√
n
[
θ̂h −

(
(I − F )θ̂u + F θ̂v

)]
L2

→ 0.
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Proof of Corollary 1. From the properties of conditional expectations and the

assumption EG(vn(Z1, Z2; θ0)|Z1) = 0, we have

CovG(un(Z; θ0), vn(Z; θ0)) = EG(un(Z; θ0)vn(Z; θ0))

= EG(EG(un(Z1; θ0))vn(Z1, Z2; θ0)|Z1)

= EG(un(Z1; θ0)E
G(vn(Z1, Z2; θ0)|Z1)) = 0.

From SOR and Lemma 1, we have

θ̂u = θ0 +
un(Z; θ0)

nJu(θ0)
+

Ru
n√
n
,

θ̂v = θ0 +
vn(Z; θ0)

nJv(θ0)
+

Rv
n√
n
,

with Ru
n

L2

→ 0 and Rv
n

L2

→ 0, implying V G(un(Z; θ0)) = O(n), V G(vn(Z; θ0)) =

O(n) and

CovG(θ̂u, θ̂v) = CovG
(
un(Z; θ0)

nJu(θ0)
+

Ru
n√
n
,
vn(Z; θ0)

nJv(θ0)
+

Rv
n√
n

)

= CovG
(
un(Z; θ0)

nJu(θ0)
,
Rv

n√
n

)
+ CovG

(
Ru

n√
n
,
vn(Z; θ0)

nJv(θ0)

)

+CovG
(
Ru

n√
n
,
Rv

n√
n

)
.

Applying the Cauchy-Schwarz inequality to each of the terms above, it is then

obvious Cov(θ̂u, θ̂v) = o (1/n). As for the last assertion of the Corollary, in

the proof above, we used regularity conditions to ensure Ru
n

L2

→ 0. Thus, when

θ̂u − θ0 = Ru
n/

√
n with Ru

n
L2

→ 0, the proof will be valid as well.

Proof of Theorem 2. It is proved by applying Theorem 1 to hn(Zobs; θ) =

un(Zobs; θ) + vn(Zobs; θ).

Proof of Theorem 3. By a Taylor expansion, we have∫
vAn (Zcom; θ̂

H
obs)p

I(Zmis|Zobs; θ̂
I
obs)dZmis

=

∫
vAn (Zcom; θ

A
0 )p

I(Zmis|Zobs; θ
I
0)dZmis

+

∫
∂

∂θA
vAn (Zcom; θ

A
0 )p

I(Zmis|Zobs; θ
I
0)dZmis × (θ̂Hobs − θA0 )

+

∫
vAn (Zcom; θ

A
0 )

[
∂

∂θI
pI(Zmis|Zobs; θ

I
0)

]⊤
dZmis × (θ̂Iobs − θI0) +Rn.

But by the definition of θ̂Hobs and vAn (Zcom; θ
A), we have
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The regularity conditions (ii), (iii), and (iv) of Definition 1 together then imply

√
n

(
θ̂g − θ0 +

gn(Z; θ0)

g′n(Z, θ0)

)
= Op

(
1√
n

)
. (A.1)

Noting
√
n(θ̂g − θ0) = Op(1), we know

√
ngn(Z; θ0)

g′n(Z, θ0)
= Op(1),

which, together with (iii) in Definition 1, implies

√
ngn(Z; θ0)

g′n(Z, θ0)

(
−g′n(Z, θ0)

nJg(θ0)
− 1

)
p→ 0. (A.2)

Adding (A.1) and (A.2), we then have

Rn =
√
n

[
(θ̂g − θ0)−

gn(Z; θ0)

nJg(θ0)

]
p→ 0.

To prove convergence in L2, since conditions (v) and (vi) imply that [
√
n(θ̂g−θ0)]2

and [gn(Z; θ0)/
√
nJg(θ0)]

2 are uniformly integrable, so is R2
n . Hence R2

n
p→ 0

implies Rn
L2

→ 0.

Proof of Theorem 1. For simplicity, assume θ to be scalar. From Lemma 1

and our assumption that the three EEs satisfy SOR, we know

Rh
n =

√
n

[(
θ̂h − θ0

)
− hn(Z; θ0)

nJh(θ0)

]
p→ 0;

Ru
n =

√
n

[(
θ̂u − θ0

)
− un(Z; θ0)

nJu(θ0)

]
p→ 0;

Rv
n =

√
n

[(
θ̂v − θ0

)
− vn(Z; θ0)

nJv(θ0)

]
p→ 0;

hn(Z; θ) = un(Z; θ) + vn(Z; θ) and Jh(θ0) = Ju(θ0) + Jv(θ0).

With some simple manipulations, we obtain
√
n
[
(θ̂h − θ0)−

(
(I − F )(θ̂u − θ0) + F (θ̂v − θ0)

)]

=
[
Rh

n − ((I − F )Ru
n + FRv

n)
]

p→ 0.

If the three EEs also satisfy condition (v) and (vi), the remainder terms Rh
n, R

u
n,

and Rv
n are then known to converge to zero in L2, which implies

√
n
[
θ̂h −

(
(I − F )θ̂u + F θ̂v

)]
L2

→ 0.
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Proof of Corollary 1. From the properties of conditional expectations and the

assumption EG(vn(Z1, Z2; θ0)|Z1) = 0, we have

CovG(un(Z; θ0), vn(Z; θ0)) = EG(un(Z; θ0)vn(Z; θ0))

= EG(EG(un(Z1; θ0))vn(Z1, Z2; θ0)|Z1)

= EG(un(Z1; θ0)E
G(vn(Z1, Z2; θ0)|Z1)) = 0.

From SOR and Lemma 1, we have

θ̂u = θ0 +
un(Z; θ0)

nJu(θ0)
+

Ru
n√
n
,

θ̂v = θ0 +
vn(Z; θ0)

nJv(θ0)
+

Rv
n√
n
,

with Ru
n

L2

→ 0 and Rv
n

L2

→ 0, implying V G(un(Z; θ0)) = O(n), V G(vn(Z; θ0)) =

O(n) and

CovG(θ̂u, θ̂v) = CovG
(
un(Z; θ0)

nJu(θ0)
+

Ru
n√
n
,
vn(Z; θ0)

nJv(θ0)
+

Rv
n√
n

)

= CovG
(
un(Z; θ0)

nJu(θ0)
,
Rv

n√
n

)
+ CovG

(
Ru

n√
n
,
vn(Z; θ0)

nJv(θ0)

)

+CovG
(
Ru

n√
n
,
Rv

n√
n

)
.

Applying the Cauchy-Schwarz inequality to each of the terms above, it is then

obvious Cov(θ̂u, θ̂v) = o (1/n). As for the last assertion of the Corollary, in

the proof above, we used regularity conditions to ensure Ru
n

L2

→ 0. Thus, when

θ̂u − θ0 = Ru
n/

√
n with Ru

n
L2

→ 0, the proof will be valid as well.

Proof of Theorem 2. It is proved by applying Theorem 1 to hn(Zobs; θ) =

un(Zobs; θ) + vn(Zobs; θ).

Proof of Theorem 3. By a Taylor expansion, we have∫
vAn (Zcom; θ̂

H
obs)p

I(Zmis|Zobs; θ̂
I
obs)dZmis

=

∫
vAn (Zcom; θ

A
0 )p

I(Zmis|Zobs; θ
I
0)dZmis

+

∫
∂

∂θA
vAn (Zcom; θ

A
0 )p

I(Zmis|Zobs; θ
I
0)dZmis × (θ̂Hobs − θA0 )

+

∫
vAn (Zcom; θ

A
0 )

[
∂

∂θI
pI(Zmis|Zobs; θ

I
0)

]⊤
dZmis × (θ̂Iobs − θI0) +Rn.

But by the definition of θ̂Hobs and vAn (Zcom; θ
A), we have
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EI
[
vAn (Zcom; θ̂

H
obs)|Zobs; θ̂

I
obs

]
=

∫
vAn (Zcom; θ̂

H
obs)p

I(Zmis|Zobs; θ̂
I
obs)dZmis = 0,

∫
vAn (Zcom; θ

A
0 )p

I(Zmis|Zobs; θ
I
0)dZmis = 0.

Consequently, we have
∫

∂

∂θA
vAn (Zcom; θ

A
0 )p

I(Zmis|Zobs; θ
I
0)dZmis × (θ̂Hobs − θA0 )

+

∫
vAn (Zcom; θ

A
0 )

[
∂

∂θI
pI(Zmis|Zobs; θ

I
0)

]⊤
dZmis × (θ̂Iobs − θI0) +Rn = op(n

1/2).

Assuming regularity conditions that the limit

lim
n→∞

1

n

∫
vAn (Zcom; θ

A
0 )

[
∂

∂θI
pI(Zmis|Zobs; θ

I
0)

]⊤
dZmis

exists, and the remaining term Rn satisfies Rn = op(n
1/2), we have

√
n
[
(θ̂Hobs − θA0 )−K(θ̂Iobs − θI0)

]
p→ 0.

Finally, assuming that the square of the difference is uniformly integrable, we

have the convergence in L2.

Proof of Corollary 2. From the validity under perturbation assumption, we

know
∂

∂θI∩A

∫
vAn (Zcom; θ

I∩A, θ
A\I
0 )pI(Zmis|Zobs; θ

I∩A, θ
I\A
0 )dZmis = op(n)

for any θI∩A such that ||θI∩A − θI∩A0 || ≤ ε. Assuming the exchangeability of

differentiation and integration, we know
∫

∂

∂θI∩A
vAn (Zcom; θ

I∩A, θ
A\I
0 )pI(Zmis|Zobs; θ

I∩A, θ
I\A
0 )dZmis

+

∫
vAn (Zcom; θ

I∩A, θ
A\I
0 )

∂

∂θI∩A
pI(Zmis|Zobs; θ

I∩A, θ
I\A
0 )⊤dZmis = op(n),

from which one can verify that the matrix K has the given form for the two

nested cases.

Proof of Corollary 3. From the results in Theorem 2 and Theorem 3, it is

immediate that

θ̄∞ − θ0 = (I − F )(θ̂Aobs − θ0) + FK(θ̂Iobs − θ0) +
Rn√
n
,

with Rn
L2

→ 0. Therefore,
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V G(θ̄∞) = V G

(
(I − F )θ̂Aobs + FKθ̂Iobs +

Rn√
n

)
.

Applying the Cauchy-Schwarz inequality, it is easy to show

V G(θ̄∞) = V G
(
(I − F )θ̂Aobs + FKθ̂Iobs

)
+ o

(
1

n

)
.

Proof of Lemma 2. Let

hcom = SA(Zcom; θ
A) and hobs = SA(Zobs; θ

A) = EA[SA(Zcom; θ
A)|Zobs; θ

A].

Because EG[hobs(hcom − hobs)
⊤] = 0, we know that condition of Corollary 4

(proved below) is satisfied. Consequently, the self-efficiency condition implies

that (
EG∂hobs

∂θ

)−1

EG(hobsh
⊤
obs) =

(
EG∂hcom

∂θ

)−1

EG(hcomh
⊤
com) + o(1),

which implies

(nJobs)
−1EG(hobsh

⊤
obs) = (nJcom)

−1EG(hcomh
⊤
com) + o(1).

This, together with the fact that EG(hobsh
⊤
mis) = EG(hobs(hcom − hobs)

⊤) = 0,

leads to

(Jmis)(Jobs)
−1EG(hobsh

⊤
obs) = EG(hmish

⊤
mis) + o(n).

Multiplying both sides by some common factors, we get

J−1
comJmisJ

−1
obsE

G(hobsh
⊤
obs)(J

⊤
com)

−1 = J−1
comE

G(hmish
⊤
mis)(J

⊤
com)

−1 + o(n).

Now from the Strong SOR condition and some algebraic manipulations, we find

FV A
obs(I − F )⊤ = FV A

misF
⊤ + o(n−1). (A.3)

The symmetry of the right-hand side of (A.3) then is sufficient to establish (6.3).

Proof of Theorem 4. For simplicity, we assume θ to be a scalar, but the

argument is general. From Lemma 1 and Strong SOR, we know

CovG(θ̂com, θ̂obs − θ̂com) = EG(θ̂comθ̂obs)− EG(θ̂2com)

= EG

[(
hcom
nJcom

+
Rcom

n√
n

)(
hobs
nJobs

+
Robs

n√
n

)]
− EG

(
hcom
nJcom

+
Rcom

n√
n

)2

=
EG(hcomhobs)

n2JcomJobs
− EGh2com

n2J2
com

+ o(n−1)

=
EG(hcomhobs)

(EG ∂hcom
∂θ )(EG ∂hobs

∂θ )
− EGh2com

(EG ∂hcom
∂θ )2

+ o(n−1).
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EI
[
vAn (Zcom; θ̂

H
obs)|Zobs; θ̂

I
obs

]
=

∫
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H
obs)p
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obs)dZmis = 0,

∫
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A
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I(Zmis|Zobs; θ
I
0)dZmis = 0.

Consequently, we have
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∂
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A
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0)dZmis × (θ̂Hobs − θA0 )

+

∫
vAn (Zcom; θ

A
0 )

[
∂

∂θI
pI(Zmis|Zobs; θ

I
0)

]⊤
dZmis × (θ̂Iobs − θI0) +Rn = op(n

1/2).

Assuming regularity conditions that the limit

lim
n→∞

1

n

∫
vAn (Zcom; θ

A
0 )

[
∂

∂θI
pI(Zmis|Zobs; θ

I
0)

]⊤
dZmis

exists, and the remaining term Rn satisfies Rn = op(n
1/2), we have

√
n
[
(θ̂Hobs − θA0 )−K(θ̂Iobs − θI0)

]
p→ 0.

Finally, assuming that the square of the difference is uniformly integrable, we

have the convergence in L2.

Proof of Corollary 2. From the validity under perturbation assumption, we

know
∂

∂θI∩A

∫
vAn (Zcom; θ

I∩A, θ
A\I
0 )pI(Zmis|Zobs; θ

I∩A, θ
I\A
0 )dZmis = op(n)

for any θI∩A such that ||θI∩A − θI∩A0 || ≤ ε. Assuming the exchangeability of

differentiation and integration, we know
∫

∂

∂θI∩A
vAn (Zcom; θ

I∩A, θ
A\I
0 )pI(Zmis|Zobs; θ

I∩A, θ
I\A
0 )dZmis

+

∫
vAn (Zcom; θ

I∩A, θ
A\I
0 )

∂

∂θI∩A
pI(Zmis|Zobs; θ

I∩A, θ
I\A
0 )⊤dZmis = op(n),

from which one can verify that the matrix K has the given form for the two

nested cases.

Proof of Corollary 3. From the results in Theorem 2 and Theorem 3, it is

immediate that

θ̄∞ − θ0 = (I − F )(θ̂Aobs − θ0) + FK(θ̂Iobs − θ0) +
Rn√
n
,

with Rn
L2

→ 0. Therefore,
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V G(θ̄∞) = V G

(
(I − F )θ̂Aobs + FKθ̂Iobs +

Rn√
n

)
.

Applying the Cauchy-Schwarz inequality, it is easy to show

V G(θ̄∞) = V G
(
(I − F )θ̂Aobs + FKθ̂Iobs

)
+ o

(
1

n

)
.

Proof of Lemma 2. Let

hcom = SA(Zcom; θ
A) and hobs = SA(Zobs; θ

A) = EA[SA(Zcom; θ
A)|Zobs; θ

A].

Because EG[hobs(hcom − hobs)
⊤] = 0, we know that condition of Corollary 4

(proved below) is satisfied. Consequently, the self-efficiency condition implies

that (
EG∂hobs

∂θ

)−1

EG(hobsh
⊤
obs) =

(
EG∂hcom

∂θ

)−1

EG(hcomh
⊤
com) + o(1),

which implies

(nJobs)
−1EG(hobsh

⊤
obs) = (nJcom)

−1EG(hcomh
⊤
com) + o(1).

This, together with the fact that EG(hobsh
⊤
mis) = EG(hobs(hcom − hobs)

⊤) = 0,

leads to

(Jmis)(Jobs)
−1EG(hobsh

⊤
obs) = EG(hmish

⊤
mis) + o(n).

Multiplying both sides by some common factors, we get

J−1
comJmisJ

−1
obsE

G(hobsh
⊤
obs)(J

⊤
com)

−1 = J−1
comE

G(hmish
⊤
mis)(J

⊤
com)

−1 + o(n).

Now from the Strong SOR condition and some algebraic manipulations, we find

FV A
obs(I − F )⊤ = FV A

misF
⊤ + o(n−1). (A.3)

The symmetry of the right-hand side of (A.3) then is sufficient to establish (6.3).

Proof of Theorem 4. For simplicity, we assume θ to be a scalar, but the

argument is general. From Lemma 1 and Strong SOR, we know

CovG(θ̂com, θ̂obs − θ̂com) = EG(θ̂comθ̂obs)− EG(θ̂2com)

= EG

[(
hcom
nJcom

+
Rcom

n√
n

)(
hobs
nJobs

+
Robs

n√
n

)]
− EG

(
hcom
nJcom

+
Rcom

n√
n

)2

=
EG(hcomhobs)

n2JcomJobs
− EGh2com

n2J2
com

+ o(n−1)

=
EG(hcomhobs)

(EG ∂hcom
∂θ )(EG ∂hobs

∂θ )
− EGh2com

(EG ∂hcom
∂θ )2

+ o(n−1).
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The result then follows from the definition of strong efficiency (6.1).

Proof of Corollary 4. This is a direct consequence of Theorem 4 and the fact

that

− lim
n→∞

1

n
EG

(
∂hobs
∂θ

)
= Jobs.

Proof of Theorem 5. From the discussion in Section 5.1, if we can establish

that

Ū∞ = V (θ̂A) + op(n
−1) , (A.4)

B∞ = V (θ̄∞ − θ̂A) + op(n
−1) , (A.5)

then the result follows directly from (5.10). Establishing (A.4) is straightforward,

as presented in Section 5.1, Establishing (A.5) is not, because we cannot use the

approximation based on the plug-in predictive imputation, which would lead

to under-dispersion in the imputation value. But for its intended estimand,

V G(θ̄∞ − θ̂Acom), (5.1) and (5.2) together imply (asymptotically)

θ̄∞ − θ̂Acom = FKθ̂Iobs − F θ̂Amis.

Because θ̂Iobs and θ̂Amis are asymptotically orthogonal (due to Corollary 1), we

then have

V G(θ̄∞ − θ̂Acom) = FKV I
obsK

⊤(F )⊤ + FV A
mis(F )⊤ + o

(
n−1

)
, (A.6)

where V I
obs = V G(θ̂Iobs). Applying (3.8), but with Zcom replaced by Z̃com =

(Zobs, Z̃mis), where Z̃mis is a draw from the imputer’s posterior predictive distri-

bution pI(Zmis|Zobs), we obtain

B∞ = V I
[
θ̂A(Z̃com)|Zobs

]
= V I

[
(I − F )θ̂Aobs+F θ̂Amis(Zobs, Z̃mis)|Zobs

]
+op(n

−1)

= FV I
[
θ̂Amis(Zobs, Z̃mis)|Zobs

]
(F )⊤ + op(n

−1)

= FV I
[
e(Zobs; θ̃)|Zobs

]
(F )⊤ + FEI

[
σ(Zobs; θ̃)|Zobs

]
(F )⊤ + op(n

−1),(A.7)

where

σ(Zobs; θ̃) = V I
[
θ̂Amis(Zobs, Z̃mis)|Zobs; θ̃

]
, (A.8)

e(Zobs; θ̃) = EI
[
θ̂Amis(Zobs, Z̃mis)|Zobs; θ̃

]
. (A.9)

The identity in (A.7) is due to V (X) = E[V (X|Y )] + V [E(X|Y )].

For the second term in (A.7), because we assume the imputer’s model is

correctly specified, asymptotically we have

EI
[
σ(Zobs; θ̃)|Zobs

]
= σ(Zobs; θ0) + op(n

−1). (A.10)
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Then

V A
mis≡V G

[
θ̂Amis(Zobs, Z̃mis)

]

=V G
[
EI

(
θ̂Amis(Zobs, Z̃mis)|Zobs; θ0

)]
+EG

[
V I

(
θ̂Amis(Zobs, Z̃mis)|Zobs; θ0

)]

=V G[e(Zobs; θ0)] + EG[σ(Zobs; θ0)]. (A.11)

Here we can switch the superscript “G” to “I” in the inner layer condi-

tional expectations because the imputer’s model is correctly specified and hence

pG(Zmis|Zobs) = pI(Zmis|Zobs; θ0). But when both the imputer’s and the an-

alyst’s models are correctly specified, the estimating equation for θ̂Amis(Z̃com),

vAn (Zcom; θ) of (3.7) is conditionally unbiased (conditioning on Zobs and θ = θ0),

EI
[
vAn (Z̃com; θ0)|Zobs; θ0

]
= 0.

By Corollary 1, the corresponding root θ̂Amis(Z̃com) is asymptotically uncorre-

lated with its conditional expectation e(Zobs; θ0). Because Cov(X,E(X|Y )) =

V (E(X|Y )), the first term on the right-hand side of (A.11) is asymptotically

negligible compared to the second term, and hence the second term in (A.7) is a

consistent estimator of the second term on the right-hand side of (5.8).

For the first term on the righthand side of (A.7), we cannot replace e(Zobs; θ̃)

by e(Zobs; θ0) or any e(Zobs; θ̂obs) because then the variance due to (conditional)

uncertainty in the parameter estimation would be incorrectly set to zero. How-

ever, using essentially the same argument (see below) as in establishing the

asymptotic equivalence of the estimators in Table 1, we can prove that e(Zobs; θ̃)

is asymptotically the same as the root of the imputed vAn (Zcom; θ) (see (3.7))

under the plug-in predictive imputation assuming θ = θ̃, that is, e(Zobs; θ̃) can

be viewed as the root of

EI(vAn (Zcom; θ)|Zobs; θ̃)

= EI
[
SA(Zobs, Z̃mis; θ)|Zobs; θ̃

]
− EA

[
SA(Zobs, Zmis; θ)|Zobs; θ

]
= 0. (A.12)

Comparing (A.12) with (4.5) reveals that they differ only in the plug-in value:

θ̂Iobs verse θ̃. Thus essentially the same argument used for proving Theorem 3

can be applied to establish that

e(Zobs; θ̃) = θA0 +K(θ̃ − θI0) + op(n
−1/2). (A.13)

It follows then that

V I
[
e(Zobs; θ̃)|Zobs

]
= KV I(θ̃|Zobs)K

⊤ + op(n
−1).
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The identity in (A.7) is due to V (X) = E[V (X|Y )] + V [E(X|Y )].

For the second term in (A.7), because we assume the imputer’s model is

correctly specified, asymptotically we have
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[
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Then
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[
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= 0.
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lated with its conditional expectation e(Zobs; θ0). Because Cov(X,E(X|Y )) =

V (E(X|Y )), the first term on the right-hand side of (A.11) is asymptotically

negligible compared to the second term, and hence the second term in (A.7) is a

consistent estimator of the second term on the right-hand side of (5.8).

For the first term on the righthand side of (A.7), we cannot replace e(Zobs; θ̃)

by e(Zobs; θ0) or any e(Zobs; θ̂obs) because then the variance due to (conditional)

uncertainty in the parameter estimation would be incorrectly set to zero. How-

ever, using essentially the same argument (see below) as in establishing the

asymptotic equivalence of the estimators in Table 1, we can prove that e(Zobs; θ̃)

is asymptotically the same as the root of the imputed vAn (Zcom; θ) (see (3.7))

under the plug-in predictive imputation assuming θ = θ̃, that is, e(Zobs; θ̃) can

be viewed as the root of
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[
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− EA

[
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= 0. (A.12)

Comparing (A.12) with (4.5) reveals that they differ only in the plug-in value:

θ̂Iobs verse θ̃. Thus essentially the same argument used for proving Theorem 3

can be applied to establish that

e(Zobs; θ̃) = θA0 +K(θ̃ − θI0) + op(n
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It follows then that
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[
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⊤ + op(n
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Under the usual regularity conditions that guarantee the asymptotic equivalence

between the posterior variance V I(θ̃|Zobs) and the sampling variance V G(θ̂Aobs),

we can then conclude that the first term on the right-hand side of (5.8) is a

consistent estimator for the first term on the right-hand side of (A.7), and hence

(A.5) is established.

Proof of Lemma 3. The fact that θ̂Aobs ≻ θ̂Iobs implies θA is a sub-parameter of

θI . Theorem 3 and Corollary 2 then imply

θ̂Hobs − θA0 = K(θ̂Iobs − θI0) +Rn,

where
√
nRn

L2

→ 0 and K = [IA, B]. We then know from θ̂Aobs ≻ θ̂Iobs that

θ̂Aobs ≻ θ̂Hobs.

Proof of Theorem 6. From our assumption θ̂Aobs ≻ θ̂Iobs, we can re-arrange the

parameter space of the imputer’s model as (θA, θI\A), where θA is a parameter to

both the analyst and the imputer, but θI\A is a parameter to the imputer only.

Therefore we have

CA,I
obs ≡ CovG(θ̂Aobs, θ̂

I
obs) =

[
V G(θ̂Aobs), 0

]
+ o(n−1).

From Corollary 2, we know K = [I, B], which implies CA,I
obsK

⊤ = V G(θ̂Aobs) +

o(n−1), and hence the consistency of T∞, as a consequence of Lemma 2.

For (ii), notice from Corollary 3 and the above discussion that

V∞ = (I − F )V A
obs(I − F⊤) + FKV I

obsK
⊤F⊤ + (I − F )CA,I

obsK
⊤F⊤

+FK(CA,I
obs )

⊤(I − F⊤) + o(n−1)

= (I − F )V A
obs(I − F⊤) + FKV I

obsK
⊤F⊤ + (I − F )V A

obsF
⊤

+FV A
obs(I − F⊤) + o(n−1),

V A
obs = (I − F )V A

obs(I − F⊤) + FV A
obsF

⊤ + (I − F )V A
obsF

⊤ + FV A
obs(I − F⊤).

It is then sufficient to prove KV I
obsK

⊤ ≥ V A
obs, which is obvious because

V I
obs ≥

(
V A
obs 0

0 0

)
and V A

obs = K

(
V A
obs 0

0 0

)
K⊤.

Proof of Theorem 7. From Theorem 2 and Theorem 3, we know

θ̄∞ − θ0 = (I − F )(θ̂Aobs − θ0) + F [I, 0]⊤(θ̂Iobs − θ0).

The result (i) then simply is a consequence of the assumption that θ̂Iobs ≻ θ̂Aobs.

For (ii), from (5.6), (5.8), and Lemma 2, we have

T∞ = (I − F )V A
obs(I − F )⊤ + FKV I

obsK
⊤F⊤ + FV A

obs(I − F )⊤ + (I − F )V A
obsF

⊤.
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Since V A
obs = [(I − F ) + F ]V A

obs[(I − F ) + F ]⊤, it is then sufficient to prove

V A
obs ≥ KV I

obsK
⊤, which follows from the fact that K = [I, 0]⊤ and θ̂I ≻ θ̂A.

To prove (iii), first consider the case where θA is a scalar: let ϕ denote this scalar

parameter. Re-arrange the imputer’s estimator as θ̂Iobs = (ϕ̂I
obs, η̂

I
obs) (ϕ̂

I
obs could

be ϕ0 if the imputer knows the true value of ϕ). Since θ̂Iobs ≻ θ̂Aobs, the analyst’s

procedure can be expanded to a procedure that estimates ϕ and η together by

appending the score function on η. From Theorem 3,

ϕ̂H
obs − ϕ0 = K(θ̂Iobs − θI0) +Rn = (ϕ̂I

obs − ϕ0) +Rn,

where
√
nRn

L2

→ 0 and K = [I, 0]⊤. Therefore, we know

CovG(θ̂Aobs, θ̂
I
obs)K

⊤ = V G(ϕ̂I
obs) + o(n−1).

The bias in T∞ can be re-written as

T∞ − V∞ = 2F (1− F )
(
V G(ϕ̂A

obs)− V G(ϕ̂I
obs)

)
+ o(n−1).

From the assumptions θ̂Acom ≻ θ̂Aobs and θ̂Iobs ≻ θ̂Aobs, 0 ≤ F ≤ 1 and V G(ϕ̂A
obs) ≥

V G(ϕ̂I
obs); hence T∞ − V∞ ≥ 0. The same proof applies when θA is a vector and

F ∝ I.

Proof of Equivalence of Four Estimators in Table 1. Here we assume EE

SA(Zobs, Z̃mis; θ)(= 0) satisfies SOR, and the ratio n/N is bounded away from

zero as the complete-data sizeN → ∞. To prove θ̄
(21)
∞ and θ̄

(22)
∞ are asymptotically

the same, we first recall θ̄
(21)
∞ = EI [θ̂A(Z̃com)|Zobs; θ̂

I
obs], where θ̂

A(Z̃com) is a root

of SA(Zobs, Z̃mis; θ) = 0 . Then, following the proof in Lemma 1,

√
n

((
θ̂A(Z̃com)− θ0

)
− SA(Zobs, Z̃mis; θ0)

NJS(θ0)

)
L2

→ 0.

From the property of convergence in L2, we know

√
n

((
EI [θ̂A(Z̃com)|Zobs; θ̂

I
obs]− θ0

)
−

EI [SA(Zobs, Z̃mis; θ0)|Zobs; θ̂
I
obs]

NJS(θ0)

)
L2

→ 0 ,

which implies

√
n

((
θ̄(21)∞ − θ0

)
−

EI [SA(Zobs, Z̃mis; θ0)|Zobs; θ̂
I
obs]

NJS(θ0)

)
L2

→ 0. (A.14)
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Since V A
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To prove (iii), first consider the case where θA is a scalar: let ϕ denote this scalar

parameter. Re-arrange the imputer’s estimator as θ̂Iobs = (ϕ̂I
obs, η̂

I
obs) (ϕ̂

I
obs could
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ϕ̂H
obs − ϕ0 = K(θ̂Iobs − θI0) +Rn = (ϕ̂I

obs − ϕ0) +Rn,

where
√
nRn

L2

→ 0 and K = [I, 0]⊤. Therefore, we know

CovG(θ̂Aobs, θ̂
I
obs)K

⊤ = V G(ϕ̂I
obs) + o(n−1).

The bias in T∞ can be re-written as

T∞ − V∞ = 2F (1− F )
(
V G(ϕ̂A

obs)− V G(ϕ̂I
obs)

)
+ o(n−1).

From the assumptions θ̂Acom ≻ θ̂Aobs and θ̂Iobs ≻ θ̂Aobs, 0 ≤ F ≤ 1 and V G(ϕ̂A
obs) ≥

V G(ϕ̂I
obs); hence T∞ − V∞ ≥ 0. The same proof applies when θA is a vector and

F ∝ I.

Proof of Equivalence of Four Estimators in Table 1. Here we assume EE

SA(Zobs, Z̃mis; θ)(= 0) satisfies SOR, and the ratio n/N is bounded away from

zero as the complete-data sizeN → ∞. To prove θ̄
(21)
∞ and θ̄

(22)
∞ are asymptotically

the same, we first recall θ̄
(21)
∞ = EI [θ̂A(Z̃com)|Zobs; θ̂

I
obs], where θ̂

A(Z̃com) is a root

of SA(Zobs, Z̃mis; θ) = 0 . Then, following the proof in Lemma 1,

√
n

((
θ̂A(Z̃com)− θ0

)
− SA(Zobs, Z̃mis; θ0)

NJS(θ0)

)
L2

→ 0.

From the property of convergence in L2, we know

√
n

((
EI [θ̂A(Z̃com)|Zobs; θ̂

I
obs]− θ0

)
−

EI [SA(Zobs, Z̃mis; θ0)|Zobs; θ̂
I
obs]

NJS(θ0)

)
L2

→ 0 ,

which implies

√
n

((
θ̄(21)∞ − θ0

)
−

EI [SA(Zobs, Z̃mis; θ0)|Zobs; θ̂
I
obs]

NJS(θ0)

)
L2

→ 0. (A.14)
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But EI [SA(Zobs, Z̃mis; θ0)|Zobs; θ̂
I
obs] is the averaged EE used by the plug-in pre-

dictive imputation (see Table 1). Therefore, again by Lemma 1, we have

√
n

((
θ̄(22)∞ − θ0

)
−

EI [SA(Zobs, Z̃mis; θ0)|Zobs; θ̂
I
obs]

NJS(θ0)

)
L2

→ 0. (A.15)

Consequently,
√
n(θ̄

(21)
∞ − θ̄

(22)
∞ )

L2

→ 0. The assertion
√
n(θ̄

(11)
∞ − θ̄

(12)
∞ )

L2

→ 0 can

be established by a similar argument. In the asymptotic results above, we have

replaced
√
N by

√
n because the ratio n/N is bounded away from zero.

To establish
√
n(θ̄

(12)
∞ − θ̄

(22)
∞ )

L2

→ 0, we again notice that,

√
n

((
θ̄(12)∞ − θ0

)
− EI [SA(Zobs, Z̃mis; θ0)|Zobs]

NJS(θ0)

)
L2

→ 0. (A.16)

Results (A.15) and (A.16) imply that we need to show

√
n

(
EI [SA(Zobs, Z̃mis; θ0)|Zobs; θ̂

I
obs]

NJS(θ0)
− EI [SA(Zobs, Z̃mis; θ0)|Zobs]

NJS(θ0)

)
L2

→ 0.

(A.17)

First notice that

EI [SA(Zobs, Z̃mis; θ0)|Zobs; θ̂
I
obs]− EI [SA(Zobs, Z̃mis; θ0)|Zobs]

= EI [SA(Zobs, Z̃mis; θ0)|Zobs; θ̂
I
obs]− EI [EI [SA(Zobs, Z̃mis; θ0)|Zobs; θ]|Zobs]

= −EI [dn(Zobs; θ) |Zobs] , (A.18)

where the last expectation is with respect to the imputer’s posterior distribution

pI(θ|Zobs), and

dn(Zobs; θ) = EI [SA(Zobs, Z̃mis; θ0)|Zobs; θ]− EI [SA(Zobs, Z̃mis; θ0)|Zobs; θ̂
I
obs].

Let

fn(Zobs; θ) =
∂EI [SA(Zobs, Z̃mis; θ0)|Zobs; θ̂

I
obs]

∂θ
(θ − θ̂Iobs). (A.19)

Then a Taylor expansion yields

dn(Zobs; θ)−fn(Zobs; θ) =
1

2

∂2EI [SA(Zobs, Z̃mis; θ0)|Zobs; θ
∗]

∂θ2
(θ− θ̂Iobs)

2, (A.20)

where θ∗ is a value between θ and θ̂Iobs. The right-hand side of (A.20) is of order

Op(n)Op(1/n) = Op(1), and thus we can conclude, assuming both dn and fn are

uniformly integrable, that

n−1/2[dn(Zobs; θ)− fn(Zobs; θ)]
L2

→ 0. (A.21)
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Under the usual regularity assumptions that ensure asymptotic equivalence be-
tween Bayesian estimator and MLE, EI(θ|Zobs)− θ̂Iobs = Op

(
n−1

)
. This together

with the assumption that

∂

∂θ
EI [SA(Zobs, Z̃mis; θ0)|Zobs; θ̂

I
obs] = Op(n)

implies that n− 1
2EI [fn(Zobs; θ)|Zobs]

L2

→ 0. Consequently, n− 1
2EI [dn(Zobs; θ)|Zobs]

L2

→ 0, beacause of (A.21). But this implies (A.17) because of (A.18).

Appendix II: Illustrating Theoretical Results via a Regression Setting

Suppose in a regression model Y = Xθ+ ϵ with ϵ ∼ N(0, IN ), the covariates
X are fully observed but the responses Y are only missing at random (MAR).
The notation is the same as in the regression example of Section 8.3, but here
we have p covariates, instead of just two. We set a model by setting some of the
coefficients θ to be zero or, equivalently, we can use a set of covariates to denote
the nonzero part. Therefore, we use I and A to also denote, respectively, the set
of covariates used by the imputer and the analyst. The estimators θ̂Aobs and θ̂Iobs
are taken to be the least square estimator in the corresponding model. Under
MAR, the plug-in predictive imputation model is simply the linear regression
model Y = XI

misθ̂
I
obs + ϵ, with the corresponding averaged/projected EE

(
XA

com

)⊤ [(
Yobs

XI
misθ̂

I
obs

)
−XA

comθ
A

]
= 0.

Denote M
(c)
U,V = [XU

com]
⊤XV

com , e.g., M
(c)
A,A = [XA

com]
⊤XA

com, and similarly, M
(o)
U,V

and M
(m)
U,V for the observed-data and missing-data counterparts. Straightforward

algebra then yields

θ̄∞ = [M
(c)
A,A]

−1M
(o)
A,Aθ̂

A
obs + [M

(c)
A,A]

−1M
(m)
A,Aθ̂

H
obs , (A.22)

where
θ̂Hobs = [M

(m)
A,A]

−1M
(m)
A,I θ̂

I
obs ≡ KN θ̂Iobs. (A.23)

Let
F = [M

(c)
A,A]

−1M
(m)
A,A (A.24)

be the fraction of missing information, then we have from (A.22) that

θ̄∞ = (I − F )θ̂Aobs + F θ̂Hobs ,

confirming the result in Theorem 2. Assuming K = limN→∞KN exists, and
noting θA0 = KNθI0, we know from (A.23) that

√
n
[
(θ̂Hobs − θA0 )−K(θ̂Iobs − θI0)

]
= (KN −K)[

√
n(θ̂Iobs − θI0)] = op (1) ,
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But EI [SA(Zobs, Z̃mis; θ0)|Zobs; θ̂
I
obs] is the averaged EE used by the plug-in pre-

dictive imputation (see Table 1). Therefore, again by Lemma 1, we have

√
n

((
θ̄(22)∞ − θ0

)
−

EI [SA(Zobs, Z̃mis; θ0)|Zobs; θ̂
I
obs]

NJS(θ0)

)
L2

→ 0. (A.15)

Consequently,
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(22)
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→ 0. The assertion
√
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(11)
∞ − θ̄

(12)
∞ )

L2

→ 0 can

be established by a similar argument. In the asymptotic results above, we have

replaced
√
N by

√
n because the ratio n/N is bounded away from zero.

To establish
√
n(θ̄

(12)
∞ − θ̄

(22)
∞ )

L2

→ 0, we again notice that,

√
n

((
θ̄(12)∞ − θ0

)
− EI [SA(Zobs, Z̃mis; θ0)|Zobs]

NJS(θ0)

)
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→ 0. (A.16)

Results (A.15) and (A.16) imply that we need to show

√
n

(
EI [SA(Zobs, Z̃mis; θ0)|Zobs; θ̂

I
obs]

NJS(θ0)
− EI [SA(Zobs, Z̃mis; θ0)|Zobs]
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First notice that

EI [SA(Zobs, Z̃mis; θ0)|Zobs; θ̂
I
obs]− EI [SA(Zobs, Z̃mis; θ0)|Zobs]

= EI [SA(Zobs, Z̃mis; θ0)|Zobs; θ̂
I
obs]− EI [EI [SA(Zobs, Z̃mis; θ0)|Zobs; θ]|Zobs]

= −EI [dn(Zobs; θ) |Zobs] , (A.18)

where the last expectation is with respect to the imputer’s posterior distribution

pI(θ|Zobs), and

dn(Zobs; θ) = EI [SA(Zobs, Z̃mis; θ0)|Zobs; θ]− EI [SA(Zobs, Z̃mis; θ0)|Zobs; θ̂
I
obs].

Let

fn(Zobs; θ) =
∂EI [SA(Zobs, Z̃mis; θ0)|Zobs; θ̂

I
obs]

∂θ
(θ − θ̂Iobs). (A.19)

Then a Taylor expansion yields

dn(Zobs; θ)−fn(Zobs; θ) =
1

2

∂2EI [SA(Zobs, Z̃mis; θ0)|Zobs; θ
∗]

∂θ2
(θ− θ̂Iobs)

2, (A.20)

where θ∗ is a value between θ and θ̂Iobs. The right-hand side of (A.20) is of order

Op(n)Op(1/n) = Op(1), and thus we can conclude, assuming both dn and fn are

uniformly integrable, that

n−1/2[dn(Zobs; θ)− fn(Zobs; θ)]
L2

→ 0. (A.21)
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Under the usual regularity assumptions that ensure asymptotic equivalence be-
tween Bayesian estimator and MLE, EI(θ|Zobs)− θ̂Iobs = Op

(
n−1

)
. This together

with the assumption that

∂

∂θ
EI [SA(Zobs, Z̃mis; θ0)|Zobs; θ̂

I
obs] = Op(n)

implies that n− 1
2EI [fn(Zobs; θ)|Zobs]

L2

→ 0. Consequently, n− 1
2EI [dn(Zobs; θ)|Zobs]

L2

→ 0, beacause of (A.21). But this implies (A.17) because of (A.18).

Appendix II: Illustrating Theoretical Results via a Regression Setting

Suppose in a regression model Y = Xθ+ ϵ with ϵ ∼ N(0, IN ), the covariates
X are fully observed but the responses Y are only missing at random (MAR).
The notation is the same as in the regression example of Section 8.3, but here
we have p covariates, instead of just two. We set a model by setting some of the
coefficients θ to be zero or, equivalently, we can use a set of covariates to denote
the nonzero part. Therefore, we use I and A to also denote, respectively, the set
of covariates used by the imputer and the analyst. The estimators θ̂Aobs and θ̂Iobs
are taken to be the least square estimator in the corresponding model. Under
MAR, the plug-in predictive imputation model is simply the linear regression
model Y = XI

misθ̂
I
obs + ϵ, with the corresponding averaged/projected EE

(
XA

com

)⊤ [(
Yobs

XI
misθ̂

I
obs

)
−XA

comθ
A

]
= 0.

Denote M
(c)
U,V = [XU

com]
⊤XV

com , e.g., M
(c)
A,A = [XA

com]
⊤XA

com, and similarly, M
(o)
U,V

and M
(m)
U,V for the observed-data and missing-data counterparts. Straightforward

algebra then yields

θ̄∞ = [M
(c)
A,A]

−1M
(o)
A,Aθ̂

A
obs + [M

(c)
A,A]

−1M
(m)
A,Aθ̂

H
obs , (A.22)

where
θ̂Hobs = [M

(m)
A,A]

−1M
(m)
A,I θ̂

I
obs ≡ KN θ̂Iobs. (A.23)

Let
F = [M

(c)
A,A]

−1M
(m)
A,A (A.24)

be the fraction of missing information, then we have from (A.22) that

θ̄∞ = (I − F )θ̂Aobs + F θ̂Hobs ,

confirming the result in Theorem 2. Assuming K = limN→∞KN exists, and
noting θA0 = KNθI0, we know from (A.23) that

√
n
[
(θ̂Hobs − θA0 )−K(θ̂Iobs − θI0)

]
= (KN −K)[

√
n(θ̂Iobs − θI0)] = op (1) ,
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which verifies the general result in Theorem 3.

Next we verify the form of K in the two nested cases. On the one hand,

when the analyst’s model and imputer’s model are nested as A ⊇ I, we see that

θ̂Hobs = [M
(m)
A,A]

−1M
(m)
A,I θ̂

I
obs = (XA

mis
⊤
XA

mis)
−1

[
XA

mis
⊤ (

XI
mis, X

A\I
mis

)](
θ̂Iobs
0

)

=

(
θ̂Iobs
0

)
=

(
II
0

)
θ̂Iobs ,

implying that θ̂Hobs is simply the imputer’s estimator appended by the true value,

verifying (1) of Corollary 2. This result is anticipated because the EE for θ̂Hobs is

in effect defined with infinitely many imputed “data points”. Thus the estimator

will be the one used by the imputer, including true values of the part of θ that

the imputer assumed.

On the other hand, when I ⊇ A, we have

θ̂Hobs=[M
(m)
A,A]

−1M
(m)
A,I θ̂

I
obs=(XA

mis
⊤
XA

mis)
−1

[
XA

mis
⊤ (

XA
mis, X

I\A
mis

)]
θ̂Iobs=Kθ̂Iobs,

where K = [IA, B] with B = [M
(m)
A,A]

−1M
(m)
A,I\A, verifying (2) of Corollary 2. Since

θ
I\A
0 = 0, we have θ̂Hobs − θA0 = K(θ̂Iobs − θI0), i.e., θ̂

H
obs is a projection of θ̂Iobs onto

the analyst’s parameter space.

To verify Corollary 3, straightforward calculation yields

V∞ = [M
(c)
A,A]

−1(J1 + J2 + J3 + J⊤
3 )[M

(c)
A,A]

−1, (A.25)

where J1 = M
(o)
A,A, J2 = M

(m)
A,I [M

(m)
I,I ]−1M

(m)
I,A and J3 = M

(o)
A,I [M

(o)
I,I ]

−1M
(m)
I,A .

The four individual terms in (A.25) can be verified to correspond to those in

Corollary 3. For example,

[M
(c)
A,A]

−1J1[M
(c)
A,A]

−1

= (XA
com

⊤
XA

com)
−1(XA

obs
⊤
XA

obs)(X
A
obs

⊤
XA

obs)
−1(XA

obs
⊤
XA

obs)(X
A
com

⊤
XA

com)
−1

= (I − F )V A
obs(I − F )⊤.

Similarly to verify Lemma 2, and particularly (6.5), we note that

V A
obs = [M

(o)
A,A]

−1, CA,I
obs = [M

(o)
A,A]

−1M
(o)
A,I [M

(o)
I,I ]

−1 (A.26)

and the exact expression ofK depends on how the analyst’s and imputer’s models

are nested with each other. For example, to illustrate both Theorem 5 and

Theorem 6, we assume the analyst’s set of covariates is a subset of the imputer’s

set (and that both sets contain the actual covariates used by God). Then the
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analyst’s θ̂Acom is the MLE even under the imputer’s model, hence is strongly more

efficient than θ̄∞, implying T∞ is consistent. We can reach the same conclusion

from Theorem 6 by noting that the analyst’s procedure is self-efficient since it is

the MLE and θ̂Aobs ≻ θ̂Iobs because θ̂Aobs is the MLE under a submodel of the one

that underlies θ̂Iobs.

We can also establish T∞ − V∞ = 0 directly by verifying (6.5). Given

(A.26), because K = [M
(m)
A,A]

−1M
(m)
A,I , verifying (6.5) is the same as proving

M
(o)
A,I [M

(o)
I,I ]

−1M
(m)
I,A [M

(m)
A,A]

−1 = I, which is a simple consequence of the identity

(XA
obs, X

I\A
obs )

⊤XI
obs(X

I
obs

⊤
XI

obs)
−1(XI

mis
⊤
XA

mis)

=XI
mis

⊤
XA

mis = (XA
mis, X

I\A
mis )

⊤XA
mis.

Finally, this regression setting illustrates the importance of having the pro-

portionality assumption on F in (iii) of Theorem 7, and indicates how it holds

when the missing data are missing completely at random (MCAR). Specifically,

consider cases where I ⊆ A. Re-write θ as θA = (θA\I , θI). Then, notic-

ing that [M
(s)
A,A]

−1M
(s)
A,I = [II ,0]

⊤ for s = c, o,m, we see from (A.26) that

CA,I
obs = [II ,0]

⊤[M
(o)
I,I ]

−1, and from (1) of Corollary 2 that K = [II ,0]
⊤. Con-

sequently,

CA,I
obsK

⊤ = [II ,0]
⊤[M

(o)
I,I ]

−1[II ,0] =

(
V I
obs 0

0 0

)
,

which is exactly the variance of imputer’s estimator (θ̂Iobs, θ
A/I
0 ) for the analyst’s

parameter θA.

It follows then that we can rewrite D∞ of (6.4) as

D∞ = (I − F )
[
V A
obs −KV I

obsK
⊤
]
F⊤. (A.27)

Since Theorem 7 assumes θ̂Iobs ≻ θ̂Aobs, we know V A
obs−KV I

obsK
⊤ ≥ 0 in the sense

of being a non-negative definite matrix. However, this does not imply D∞+D⊤
∞

is non-negative definite because the matrix F generally does not commute with

V A
obs −KV I

obsK
⊤. But when F is proportional to an identity matrix, then (5.10)

and (A.27) together imply that

T∞ − V∞ = 2F (I − F )
[
V A
obs −KV I

obsK
⊤
]
+ op

(
n−1

)
, (A.28)

which is (asymptotically) non-negative definite, and hence the conclusion of (iii)

of Theorem 7.

Evidently the expression (A.27) is not restricted to the regression setting,

but the regression setting provides an indication of when it is possible for the
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which verifies the general result in Theorem 3.

Next we verify the form of K in the two nested cases. On the one hand,

when the analyst’s model and imputer’s model are nested as A ⊇ I, we see that

θ̂Hobs = [M
(m)
A,A]

−1M
(m)
A,I θ̂

I
obs = (XA

mis
⊤
XA

mis)
−1

[
XA

mis
⊤ (

XI
mis, X

A\I
mis

)](
θ̂Iobs
0

)

=

(
θ̂Iobs
0

)
=

(
II
0

)
θ̂Iobs ,

implying that θ̂Hobs is simply the imputer’s estimator appended by the true value,

verifying (1) of Corollary 2. This result is anticipated because the EE for θ̂Hobs is

in effect defined with infinitely many imputed “data points”. Thus the estimator

will be the one used by the imputer, including true values of the part of θ that

the imputer assumed.

On the other hand, when I ⊇ A, we have

θ̂Hobs=[M
(m)
A,A]

−1M
(m)
A,I θ̂

I
obs=(XA

mis
⊤
XA

mis)
−1

[
XA

mis
⊤ (

XA
mis, X

I\A
mis

)]
θ̂Iobs=Kθ̂Iobs,

where K = [IA, B] with B = [M
(m)
A,A]

−1M
(m)
A,I\A, verifying (2) of Corollary 2. Since

θ
I\A
0 = 0, we have θ̂Hobs − θA0 = K(θ̂Iobs − θI0), i.e., θ̂

H
obs is a projection of θ̂Iobs onto

the analyst’s parameter space.

To verify Corollary 3, straightforward calculation yields

V∞ = [M
(c)
A,A]

−1(J1 + J2 + J3 + J⊤
3 )[M

(c)
A,A]

−1, (A.25)

where J1 = M
(o)
A,A, J2 = M

(m)
A,I [M

(m)
I,I ]−1M

(m)
I,A and J3 = M

(o)
A,I [M

(o)
I,I ]

−1M
(m)
I,A .

The four individual terms in (A.25) can be verified to correspond to those in

Corollary 3. For example,

[M
(c)
A,A]

−1J1[M
(c)
A,A]

−1

= (XA
com

⊤
XA

com)
−1(XA

obs
⊤
XA

obs)(X
A
obs

⊤
XA

obs)
−1(XA

obs
⊤
XA

obs)(X
A
com

⊤
XA

com)
−1

= (I − F )V A
obs(I − F )⊤.

Similarly to verify Lemma 2, and particularly (6.5), we note that

V A
obs = [M

(o)
A,A]

−1, CA,I
obs = [M

(o)
A,A]

−1M
(o)
A,I [M

(o)
I,I ]

−1 (A.26)

and the exact expression ofK depends on how the analyst’s and imputer’s models

are nested with each other. For example, to illustrate both Theorem 5 and

Theorem 6, we assume the analyst’s set of covariates is a subset of the imputer’s

set (and that both sets contain the actual covariates used by God). Then the
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analyst’s θ̂Acom is the MLE even under the imputer’s model, hence is strongly more

efficient than θ̄∞, implying T∞ is consistent. We can reach the same conclusion

from Theorem 6 by noting that the analyst’s procedure is self-efficient since it is

the MLE and θ̂Aobs ≻ θ̂Iobs because θ̂Aobs is the MLE under a submodel of the one

that underlies θ̂Iobs.

We can also establish T∞ − V∞ = 0 directly by verifying (6.5). Given

(A.26), because K = [M
(m)
A,A]

−1M
(m)
A,I , verifying (6.5) is the same as proving

M
(o)
A,I [M

(o)
I,I ]

−1M
(m)
I,A [M

(m)
A,A]

−1 = I, which is a simple consequence of the identity

(XA
obs, X

I\A
obs )

⊤XI
obs(X

I
obs

⊤
XI

obs)
−1(XI

mis
⊤
XA

mis)

=XI
mis

⊤
XA

mis = (XA
mis, X

I\A
mis )

⊤XA
mis.

Finally, this regression setting illustrates the importance of having the pro-

portionality assumption on F in (iii) of Theorem 7, and indicates how it holds

when the missing data are missing completely at random (MCAR). Specifically,

consider cases where I ⊆ A. Re-write θ as θA = (θA\I , θI). Then, notic-

ing that [M
(s)
A,A]

−1M
(s)
A,I = [II ,0]

⊤ for s = c, o,m, we see from (A.26) that

CA,I
obs = [II ,0]

⊤[M
(o)
I,I ]

−1, and from (1) of Corollary 2 that K = [II ,0]
⊤. Con-

sequently,

CA,I
obsK

⊤ = [II ,0]
⊤[M

(o)
I,I ]

−1[II ,0] =

(
V I
obs 0

0 0

)
,

which is exactly the variance of imputer’s estimator (θ̂Iobs, θ
A/I
0 ) for the analyst’s

parameter θA.

It follows then that we can rewrite D∞ of (6.4) as

D∞ = (I − F )
[
V A
obs −KV I

obsK
⊤
]
F⊤. (A.27)

Since Theorem 7 assumes θ̂Iobs ≻ θ̂Aobs, we know V A
obs−KV I

obsK
⊤ ≥ 0 in the sense

of being a non-negative definite matrix. However, this does not imply D∞+D⊤
∞

is non-negative definite because the matrix F generally does not commute with

V A
obs −KV I

obsK
⊤. But when F is proportional to an identity matrix, then (5.10)

and (A.27) together imply that

T∞ − V∞ = 2F (I − F )
[
V A
obs −KV I

obsK
⊤
]
+ op

(
n−1

)
, (A.28)

which is (asymptotically) non-negative definite, and hence the conclusion of (iii)

of Theorem 7.

Evidently the expression (A.27) is not restricted to the regression setting,

but the regression setting provides an indication of when it is possible for the
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the assumption F ∝ I to hold in general. Because F = [M
(c)
A,A]

−1M
(m)
A,A, as in

(A.24), if the missing data are missing completely at random (MCAR; see Rubin

(1976)), then limn→∞ F = fI, where f is the limit of the fraction of missing

data (N − n)/N . This result comes as no surprise, because if MCAR holds it is

intuitive that the loss of information should be the same for all parameters if the

original complete data have an i.i.d. structure, as in the regression setting (on the

joint space of {Xi, Yi}). It would be useful to explore the general complete-data

structures under which MCAR implies F ∝ I.

Appendix III: Larger Does Not Guarantee Better

Let Y = Xθ+ ε, where εi
ind∼ N(0, Xη

i ) for i = 1, . . . , n and η > 0 (obviously

we require Xη
i is always positive). Consider the ordinary least squares (OLS)

estimator

θ̂LSn =

n∑
i=1

XiYi

n∑
i=1

X2
i

, (A.29)

whose variance is given by

V LS
n =

n∑
i=1

X2+η
i

(
n∑

i=1
X2

i

)2 . (A.30)

Because V LS
n is not necessarily a monotone decreasing sequence in n when the

Xi’s are not all identical, θ̂LSn can be more efficient with less data, by throwing

away the part of the data with large values of Xη
i . Consider the case where

Xi = 1/(101 − i), i = 1, . . . , 100 and η = 2. Throwing away the last 36 data

points will lead to a far more efficient θ̂LS64 than using all the data, θ̂LS100, since:

V LS
64 = 0.0214 < V LS

100 = 0.4049. (A.31)

As with Example 1, the reason for this phenomenon is quite simple. Whereas

the least-squared estimator enjoys robustness, it is consistent (and unbiased)

even when η ̸= 0, we pay a price in efficiency for this robustness. The equally

weighted least square estimator can be terribly inefficient because it gives those

data points with large Xi’s—and hence large variances—much more weight than

they deserve. The MLE of θ corrects this problem by properly re-weighting,

leading to (assuming η is known)
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θ̂MLE
n =

n∑
i=1

X1−η
i Yi

n∑
i=1

X2−η
i

, (A.32)

whose variance is now monotone decreasing in n because (recall X2−η
i > 0)

V MLE
n =

[ n∑
i=1

X2−η
i

]−2
. (A.33)

With MLE, we see

V MLE
64 = 0.0156 > V MLE

100 = 0.01. (A.34)

Comparing (A.31) with (A.34), we see that OLS has only 2.5% efficiency relative

to MLE when we use the complete data (n = 100), but about 73% efficiency

when we use the incomplete data (n = 64). It is such unbalanced loss of efficiency

that causes the seemingly paradoxical phenomenon of producing a less efficient

estimator with more data. Further illustrations with this example, such as how

the relative efficiency of the OLS changes with the sampling mechanism, are

given in Meng and Xie (2014).
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DISCUSSION

GOD, DEVIL AND GURU IN THE LAND

OF MULTIPLE IMPUTATION

Trivellore Raghunathan

University of Michigan

The multiple imputation approach for handling missing data is essentially

derived from a Bayesian perspective and establishing general conditions for the

validity from the repeated sampling perspective is an important, but a daunting,

task. Rubin (1987) describes conditions for this validity in rather broad terms

which has been subject to debate (See for example, Fay (1992); Wang and Robins

(1998) and Kim et al. (2006)). The notion of uncongeniality was introduced by

Meng (1994) as a framework for understanding and addressing the issues that

arise when the models used by the imputer and the analyst are different, or

when the analyst procedure is not fully efficient (for example, using the method

of moments, instead of the maximum likelihood to estimate the parameters).

This paper addresses further dissection of issues and formally establishes condi-

tions for “validity” of multiple imputation inferences from the repeated sampling

perspective. I want to commend Xianchao Xie and Xiao-Li Meng (XM, here

after) for taking a highly complex topic and developing a principled way of ap-

proaching the statistical inferences when multiple imputation is used to handle

missing data. Also, I want thank the Statistica Sinica Editors for giving me the

opportunity to contribute discussion to this important paper.

For this discussion, let us look at the realistic, but simplified, version of the

situation: (1) The imputer and the analyst(s) operate rather independently us-

ing different model classes, each one assuming that the “God model” is captured

within their model class; (2) the analyst may behave incoherently (that is, not

using the optimal procedure within their own assumed model class); and (3) the

Imputer might also behave incoherently by imposing assumptions and not us-

ing the optimal imputation procedure within his/her own model class.The key

situations are described in Figures 1 and 2 (in XM) with concentric circles rep-

resenting the model classes used by the Analyst and Imputer and a complement

(not pictured) where the circles are not concentric but may even be disjoint. In
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Imputer might also behave incoherently by imposing assumptions and not us-
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this kind of possibly anarchistic situation, the question arises, what is the defi-

nition of validity? How should one conceptualize the repeated sampling thought

experiment? In particular, is θ̂Aobs always preferable to θ̄∞ (or the multiple im-

putation estimate θ̄M where M is the number of imputations)? Should we even

compare V A
obs to T∞? What is the relevance of V∞? Does the analyst even have

the needed information to make the assessment?

To be concrete, suppose that the statistical experiment involves collecting

information on two variables (X,Y ) generated under the God model with the

density function, go(x, y). For now, assume that there are no missing values in

a random sample of size n. An analyst only interested in the parameter of the

marginal distribution of Y , posits the model class p(y|θ), θ ∈ Θ and assumes

that the “God model” (in his/her world view), po(y) = p(y|θo) belongs to the

model class. The analyst does not need the conditional distribution q(x|y, θ, φ)
or, equivalently, assume that this conditional distribution is totally arbitrary.

This p-analyst develops a procedure to infer about θ and evaluates the procedure

through a thought experiment that only involves repeated sampling from p(y|θ).
Similarly, another analyst only interested in the parameter of the marginal

distribution of X, posits the model class, r(x|φ), φ ∈ Φ, assumes that the God

model (in his/her world view), ro(x) = r(x|φo) belongs to the model class and

leaves the conditional distribution s(y|x, θ, φ) completely unspecified. The re-

peated sampling thought experiment involves only r(x|φ) for this r-analyst. The
same is true for the analysts interested in the joint (g-analyst) or conditional

distributions(q-analyst, s-analyst). Note that the p-analyst (or the r-analyst) is

using a much richer model class compared to the g-analyst because the q-model

class (or the s-model class) can be unspecified. All these analysts can operate

independently, dipping into the same well of data, without getting entangled with

each other, having their own God models, their own procedures and their own

way of thought experiment. This is a perfect “Hindu” setup with every aspect

of the life process (marginal, conditional, joint) having its own God and the cor-

responding proper propitiation (procedures and thought experiments). By the

way, if you don’t like all this God business, then blame XM because they did it

first!!

In this backdrop of complete data inference setup (all our statistical training

is with this set up), the plot thickens: where there is God, there is also a Devil!

The Devil keeps some values of (Y,X) intact, erases some values ofX, some values

of Y . The devils can have a Casper-like quality (MCAR), a benign quality (MAR)

or really a malignant quality (MNAR). With the devilish actions all the peace,
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The multiple imputation approach for handling missing data is essentially

derived from a Bayesian perspective and establishing general conditions for the

validity from the repeated sampling perspective is an important, but a daunting,

task. Rubin (1987) describes conditions for this validity in rather broad terms

which has been subject to debate (See for example, Fay (1992); Wang and Robins

(1998) and Kim et al. (2006)). The notion of uncongeniality was introduced by

Meng (1994) as a framework for understanding and addressing the issues that

arise when the models used by the imputer and the analyst are different, or

when the analyst procedure is not fully efficient (for example, using the method

of moments, instead of the maximum likelihood to estimate the parameters).

This paper addresses further dissection of issues and formally establishes condi-

tions for “validity” of multiple imputation inferences from the repeated sampling

perspective. I want to commend Xianchao Xie and Xiao-Li Meng (XM, here

after) for taking a highly complex topic and developing a principled way of ap-

proaching the statistical inferences when multiple imputation is used to handle

missing data. Also, I want thank the Statistica Sinica Editors for giving me the

opportunity to contribute discussion to this important paper.

For this discussion, let us look at the realistic, but simplified, version of the

situation: (1) The imputer and the analyst(s) operate rather independently us-

ing different model classes, each one assuming that the “God model” is captured

within their model class; (2) the analyst may behave incoherently (that is, not

using the optimal procedure within their own assumed model class); and (3) the

Imputer might also behave incoherently by imposing assumptions and not us-

ing the optimal imputation procedure within his/her own model class.The key

situations are described in Figures 1 and 2 (in XM) with concentric circles rep-

resenting the model classes used by the Analyst and Imputer and a complement

(not pictured) where the circles are not concentric but may even be disjoint. In
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tranquility and independence are lost. If the Devil operates with the Casper-like

quality then the analysts can still maintain independence but obtain less boons

(efficiency). Let us assume that the Devil is of benign quality. Obviously the

independence is lost. The thought experiment using p (or r) does not yield the

desired results. The joint modeler (of (X,Y )) is the only analyst that can do

something in this distraught landscape.

The Guru comes to the rescue (recognizes that the joint model is needed

and can be used to deal with the inferential questions for the p or r-analysts)

and uses the available information to multiply impute the missing values in X

and Y , and provides several completed data sets with simple instructions for

drawing inferences about θ or φ. In the process, however, posits a joint model

g(x, y|θ, φ) and assumes that the God model go(x, y) = g(x, y|θo, φo) belongs

to the class. The completed-data is not a complete data and so the p-analyst

(or the r-analyst) cannot be independent because the information from the q-

model (or the s-model) seeps into the completed data. The only relevant thought

experiment for all the analysts is the repeated sampling from the joint model or

the g-model.

Given that all the analysts (regardless of their parameters of interest) will

have to work with a joint model, the dispute is a standard one between one

analyst with the other, even in the complete data world: “My model” versus

“Your model”. Since all analysts need a joint model, the question is which is the

best fitting model. The repeated sampling properties of the analyst statistics,

(θ̄∞, T∞), under the imputer model, if it is the best fitting model, seems to be

ideal from the inferential perspective. Not sure (θ̂Aobs, V
A
obs) is even relevant in this

case given the repeated sampling under the p-model is not meaningful at all.

The question is, does the analyst has any reasons to question the imputation

model? Some diagnostics procedures are available for the analyst to check the

imputations. See, for example, Aboyomi, Gelman and Levy (2008); Bondarenko

and Raghunathan (2016). If the analyst has reason to question the imputer joint

model (“your joint model”) relative to his or her own joint model (“my joint

model”), then the analyst can do his or her own multiple imputation inference

under his/her model (or the maximum likelihood, fully Bayesian etc).

The practical situation, however, is more complex. Suppose that the im-

puter has the knowledge of a variable Z (For example, Y is the self-reported in-

come and Z is income from an administrative data source, such as Tax records.)

which can be used for imputation but cannot be released to the analyst. The

imputer uses this additional information in the imputation process using a joint
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this kind of possibly anarchistic situation, the question arises, what is the defi-

nition of validity? How should one conceptualize the repeated sampling thought

experiment? In particular, is θ̂Aobs always preferable to θ̄∞ (or the multiple im-

putation estimate θ̄M where M is the number of imputations)? Should we even

compare V A
obs to T∞? What is the relevance of V∞? Does the analyst even have

the needed information to make the assessment?

To be concrete, suppose that the statistical experiment involves collecting

information on two variables (X,Y ) generated under the God model with the

density function, go(x, y). For now, assume that there are no missing values in

a random sample of size n. An analyst only interested in the parameter of the

marginal distribution of Y , posits the model class p(y|θ), θ ∈ Θ and assumes

that the “God model” (in his/her world view), po(y) = p(y|θo) belongs to the

model class. The analyst does not need the conditional distribution q(x|y, θ, φ)
or, equivalently, assume that this conditional distribution is totally arbitrary.

This p-analyst develops a procedure to infer about θ and evaluates the procedure

through a thought experiment that only involves repeated sampling from p(y|θ).
Similarly, another analyst only interested in the parameter of the marginal

distribution of X, posits the model class, r(x|φ), φ ∈ Φ, assumes that the God

model (in his/her world view), ro(x) = r(x|φo) belongs to the model class and

leaves the conditional distribution s(y|x, θ, φ) completely unspecified. The re-

peated sampling thought experiment involves only r(x|φ) for this r-analyst. The
same is true for the analysts interested in the joint (g-analyst) or conditional

distributions(q-analyst, s-analyst). Note that the p-analyst (or the r-analyst) is

using a much richer model class compared to the g-analyst because the q-model

class (or the s-model class) can be unspecified. All these analysts can operate

independently, dipping into the same well of data, without getting entangled with

each other, having their own God models, their own procedures and their own

way of thought experiment. This is a perfect “Hindu” setup with every aspect

of the life process (marginal, conditional, joint) having its own God and the cor-

responding proper propitiation (procedures and thought experiments). By the

way, if you don’t like all this God business, then blame XM because they did it

first!!

In this backdrop of complete data inference setup (all our statistical training

is with this set up), the plot thickens: where there is God, there is also a Devil!

The Devil keeps some values of (Y,X) intact, erases some values ofX, some values

of Y . The devils can have a Casper-like quality (MCAR), a benign quality (MAR)

or really a malignant quality (MNAR). With the devilish actions all the peace,
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tranquility and independence are lost. If the Devil operates with the Casper-like

quality then the analysts can still maintain independence but obtain less boons

(efficiency). Let us assume that the Devil is of benign quality. Obviously the

independence is lost. The thought experiment using p (or r) does not yield the

desired results. The joint modeler (of (X,Y )) is the only analyst that can do

something in this distraught landscape.

The Guru comes to the rescue (recognizes that the joint model is needed

and can be used to deal with the inferential questions for the p or r-analysts)

and uses the available information to multiply impute the missing values in X

and Y , and provides several completed data sets with simple instructions for

drawing inferences about θ or φ. In the process, however, posits a joint model

g(x, y|θ, φ) and assumes that the God model go(x, y) = g(x, y|θo, φo) belongs

to the class. The completed-data is not a complete data and so the p-analyst

(or the r-analyst) cannot be independent because the information from the q-

model (or the s-model) seeps into the completed data. The only relevant thought

experiment for all the analysts is the repeated sampling from the joint model or

the g-model.

Given that all the analysts (regardless of their parameters of interest) will

have to work with a joint model, the dispute is a standard one between one

analyst with the other, even in the complete data world: “My model” versus

“Your model”. Since all analysts need a joint model, the question is which is the

best fitting model. The repeated sampling properties of the analyst statistics,

(θ̄∞, T∞), under the imputer model, if it is the best fitting model, seems to be

ideal from the inferential perspective. Not sure (θ̂Aobs, V
A
obs) is even relevant in this

case given the repeated sampling under the p-model is not meaningful at all.

The question is, does the analyst has any reasons to question the imputation

model? Some diagnostics procedures are available for the analyst to check the

imputations. See, for example, Aboyomi, Gelman and Levy (2008); Bondarenko

and Raghunathan (2016). If the analyst has reason to question the imputer joint

model (“your joint model”) relative to his or her own joint model (“my joint

model”), then the analyst can do his or her own multiple imputation inference

under his/her model (or the maximum likelihood, fully Bayesian etc).

The practical situation, however, is more complex. Suppose that the im-

puter has the knowledge of a variable Z (For example, Y is the self-reported in-

come and Z is income from an administrative data source, such as Tax records.)

which can be used for imputation but cannot be released to the analyst. The

imputer uses this additional information in the imputation process using a joint
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imputations. See, for example, Aboyomi, Gelman and Levy (2008); Bondarenko

and Raghunathan (2016). If the analyst has reason to question the imputer joint

model (“your joint model”) relative to his or her own joint model (“my joint

model”), then the analyst can do his or her own multiple imputation inference

under his/her model (or the maximum likelihood, fully Bayesian etc).

The practical situation, however, is more complex. Suppose that the im-

puter has the knowledge of a variable Z (For example, Y is the self-reported in-

come and Z is income from an administrative data source, such as Tax records.)

which can be used for imputation but cannot be released to the analyst. The

imputer uses this additional information in the imputation process using a joint
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model h(y, x, z|λ) and releases the multiply imputed data sets, (Y (l), X(l)), l =

1, 2, . . . ,M . The analyst has no information to conceptualize the needed joint

model (unless willing to make the assumption that Z is not related to the missing

data mechanism or to (Y,X)). In this case, the best option for the analyst is to

use θ̄MI and TMI for inference purposes, since Figure 2 in XM is the likely sce-

nario and the analyst has no information to model the conditional distribution of

Z given (Y,X) (nor the joint distribution of (Y,X) given only the imputed data

sets and a MAR mechanism, conditional on the observed values of (Y,X,Z) with

Z unavailable to the analyst). In other words, the analyst has to make heroic

assumptions in lieu of using the multiply imputed data sets created based on the

joint distribution of (Y,X,Z).

The Example 4 illustrates this pitfall more clearly. The implicit model un-

der which the Analyst procedure is optimal is N(θ, τ2). Any sensible analyst

will question this judgement after a cursory inspection of the histogram of the

observed and imputed values. Even in the case of a careless analyst, he or she

is better off using the multiply imputed data sets rather than the observed data

sample mean as the estimate. The sampling calculations under the poorly fitting

models is of questionable (no?) value.

This dissection by XM also help us understand the importance of the imputer

being a careful modeler of all available information and to be a trusted partner for

the analysts who do not have enough information to be independent as they have

been led to believe through their training in the complete-data inference system.

Dealing with missing data requires a collaboration between the data producer

(through careful design to collect needed information to compensate for missing

data), imputer (through careful modeling and creation of imputed data sets), and

the analysts (with a penchant for using the best available procedure) to ensure

that all available information are used to compensate for the missing data. Any

system contrary to this collaborative efforts will only harm the analysts, in the

long run. For me, the dissection by XM reinforces this point much more clearly

and, perhaps, pitting the imputer against the analyst is a red-herring exercise.
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This interesting and important paper encourages all of us to expand our

standard horizons and consider what Xie and Meng (hereafter XM) call multi-

phase inference, in which

(a) different teams of analysts (or possibly even the same analysts at different

points in time) may be involved in different phases of an analysis, viewed

comprehensively from data collection and {data wrangling and curation} to

data analysis (possibly consisting of multiple phases itself) and interpreta-

tion, but

(b) the statistical models used in some or all of the phases that involve modeling

may be based on incompatible assumptions.

I can reinforce the need for multi-phase thinking in contemporary statisti-

cal work by relating some of my recent experience in data science at two large

eCommerce companies, denoted (for reasons of confidentiality) by X and Y :

• In both companies, the end-product of much analysis and decision-making is

a web site that can be visited by people wishing to buy or sell various items.

This site is supported by a large amount of experimentation and modeling

aimed at improving the user experience. Each company has between 10 and

100 groups/teams, working with various degrees of independence from each

other, all tinkering with fundamental aspects of how the web site functions

(an example at company X is a recommender system to help users either

sharpen or broaden their searches for products similar to the one they’re

looking at now). It’s frequently the case that the analytic output of one

group forms the input to another group, and it’s often true that there is

sufficiently little communication between groups that the team receiving

an analysis has little understanding of how it was arrived at. It may seem

hard to believe that successful companies permit this level of inefficiency of

communication and lack of multi-phase thinking, but they do.
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(b) the statistical models used in some or all of the phases that involve modeling

may be based on incompatible assumptions.

I can reinforce the need for multi-phase thinking in contemporary statisti-

cal work by relating some of my recent experience in data science at two large

eCommerce companies, denoted (for reasons of confidentiality) by X and Y :

• In both companies, the end-product of much analysis and decision-making is

a web site that can be visited by people wishing to buy or sell various items.

This site is supported by a large amount of experimentation and modeling

aimed at improving the user experience. Each company has between 10 and

100 groups/teams, working with various degrees of independence from each

other, all tinkering with fundamental aspects of how the web site functions

(an example at company X is a recommender system to help users either

sharpen or broaden their searches for products similar to the one they’re

looking at now). It’s frequently the case that the analytic output of one

group forms the input to another group, and it’s often true that there is

sufficiently little communication between groups that the team receiving

an analysis has little understanding of how it was arrived at. It may seem

hard to believe that successful companies permit this level of inefficiency of

communication and lack of multi-phase thinking, but they do.
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• A specific example of failure to adopt a whole-systems perspective at com-

pany Y is as follows. There is a team that makes decisions on behalf of the

entire company about how the data stream, generated by users of the web

site, at its most granular level — time-stamped data about where in the

tree of company Y ’s web pages the user left-clicked his or her mouse, and

even spatio-temporal data tracking the location of the mouse arrow to the

millisecond — is summarized for analysis by other teams in the company. I

discovered that this data summary team had made a statistically unfortu-

nate decision, namely that data that kept track of demand for a particular

item in a given time period recorded a 0 for two completely different reasons:

a 0 would be entered into the data base that the rest of the company used

either if no items were bought or if the item in question was not yet in the

catalog of items offered to the users (!). When I inquired about what would

be involved in fixing this self-inflicted problem, I was told that it would

be politically unwise to pursue a solution, because the data-summary team

was under a different Vice President in the corporate hierarchy than I was

(!).

Alex Terenin and I have recently been thinking about a framework that

includes XM’s multiple imputation instance of multi-phase inference as a special

case: viewing the output of one team’s Bayesian analysis sequentially as the

input to the next team can be referred to as Bayesian model composition, in the

functional-analytic sense that team 1 operates on the available data D, yielding

f1(D), which is then operated upon by team 2, yielding f2 (f1(D)), and so on.

One question that immediately arises from this perspective is: How can team i

craft its fi in such a way that no important information is lost in the sequential

analysis (when compared, for instance, with an ideal all-encompassing Bayesian

analysis by a single meta-team)? In extremely simple situations we know that the

usual “yesterday’s posterior is today’s prior” sequential use of Bayes’s Theorem

accomplishes this goal, but in complex settings it’s not at all obvious how to build

no-information-loss operators fi. XM’s work can be seen as a detailed attempt

to wrestle with this question, in the context of trying to cope optimally with

missing data.

• In Section 1.1 XM point out that “. . . the key issue is that during the

journey from God’s data to the analyst’s data, a set of assumptions have

been introduced deliberately or accidentally.” I’ve recently run into a some-

what nonstandard example of this in the teaching of introductory statistics
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to undergraduates. One of my final-exam problems in fall 2015 began as

follows:

In one of the largest and most famous public health experiments

ever conducted, in 1954 a randomized controlled trial was run to

see whether a vaccine developed by a doctor named Jonas Salk was

effective in preventing paralytic polio. A total of 401,974 children,

chosen to be representative of those who might be susceptible to

the disease, were randomized to two groups: 200,745 children were

injected with a harmless saline solution and the other 201,229 chil-

dren were injected with Salk’s vaccine. . . . The results of the trial

were as follows: 33 of the 201,229 children who got the vaccine

later developed paralytic polio, whereas 115 of the other 200,745

children suffered this fate.

I had obtained the background information for this problem by the usual

(and lazy) route of reading about the Salk trial in statistics textbooks.

When I finally decided to do a bit of proper scholarship and dig into the

literature on the Salk trial, I was amazed to find that the actual experiment

was vastly messier than the textbook treatment: Meldrum (1998) tells the

true story, in which 623,972 children were actually injected either with vac-

cine or placebo, “and more than a million others participated as ‘observed’

controls.” Meldrum goes on as follows:

The statistical design used in this great experiment was singular,

prompting criticism at the time and since. Eighty–four test ar-

eas in 11 [U.S.] states used the textbook model: in a randomised,

blinded design all participating children in the first three grades of

school (ages 6–9) received injections of either vaccine or placebo

and were observed for evidence of the disease. But 127 test areas

in 33 states used an “observed control” design: participating chil-

dren in the second grade (ages 7–8) received injections of vaccine;

no placebo was given, and children in all three grades were then

observed for the duration of the polio “season.”

The sample sizes 200,745 and 201,229 appear nowhere in Meldrum’s article!

To paraphrase XM, in the journey from the actual trial to textbook sum-

maries of it, a set of assumptions was introduced deliberately or accidentally,

resulting in a substantial over-simplification of reality.
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• The word valid with respect to statistical analyses is used frequently in this

paper. For example, in Section 1.2 XM say “Meng (1994) obtained some

initial theory under this inferential uncongeniality, including conditions for

Rubin’s MI inference to be confidence valid, i.e., the interval estimator has

at least the claimed nominal coverage” (italics mine), and in Section 2 the

authors offer a simple general recipe: “In general, uncongenality should be

regarded as the rule rather than the exception, and a simple confidence-

valid procedure to combat any degree of uncongenality is to double Rubin’s

MI variance estimate.” While it’s arguably true that failing to cover at

the advertised level is worse in confidence interval construction than creat-

ing intervals that are (much) wider than necessary to achieve the nominal

coverage, I’m uncomfortable with relying only on confidence validity when

what John Tukey used to refer to as robustness of efficiency — are the

intervals indeed wider than they need to be while still hitting the coverage

target? — is unaddressed: the phrase “at least the claimed nominal cover-

age” is equally satisfied at nominal 95% by intervals whose actual coverage is

95.01% and 99.999%, and the latter intervals will of course be substantially

wider than the former.

This issue arises again in Section 5.2, where XM say “. . . in the context

of constructing confidence intervals, confidence validity permits the actual

coverage to exceed the nominal level (Neyman (1937)), and hence a [vari-

ance estimate that’s biased high by an unknown amount] is accordingly

acceptable.” I have great respect for Mr. Neyman and his work — as it

happens, he was my statistical grandfather, and (as a graduate student

at Berkeley) I had the pleasure of many statistical discussions with him;

I’m confident (pun intended) that Mr. Neyman would agree with me that

inflated variance estimates are only useful for a fortiori arguments of the

form “my ‘95%’ confidence interval, based on a positively-biased variance

estimate, with coverage at least nominal, doesn’t include 0, so the effect

I’ve identified is unlikely to be a statistical artifact.” But what can we say

if such an interval does include 0? XM of course understand this; they con-

clude Section 5.2 with the statement “. . . much more research is needed to

investigate the general properties of these bounds . . . ”; hear, hear.

Having grumbled about inflated variance estimates, I’ll now hypocritically

congratulate XM for having made calculations leading to the simple rule

“double T∞ to yield a nominal 95% interval with actual coverage between
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95% and 99.5%,” and — if this were a Royal Statistical Society Read Paper

— it would be my pleasure to either propose or second a vote of thanks.
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DISCUSSION

David Banks and Victor Peña

Duke University

We congratulate Xianchao Xie and Xiao-Li Meng on a paper that fundamen-

tally broadens the perspective of applied statistics. And we are deeply impressed

that the authors are able to make such a significant expansion, which entails

considerable mathematical complexity, and nonetheless find practical solutions

that admit full and even elegant analysis. This is an important paper.

The research takes a new perspective that is relevant to many situations.

Often there is true model that generates the data (“God’s model”), but the data

collection, cleaning and preparation process distort the data in important ways,

systematically and/or stochastically. And then the statistician’s analysis uses a

model that is different from the one implied by the concatenation of the true

model with the distortion. The Xie and Meng paper explores this situation in

several imputation contexts, and finds analytic solutions and that convey insight

into longstanding questions in the field (cf. Fay (1992); Kott (1995)).

Of course, as the authors point out, the need for end-to-end analysis arises

ubiquitously, not just in the context of imputation. Multiphase inference could

be used to understand the effects of many different processes that can be applied

to “raw” data, such as are coarsening, rounding, censoring, and Winsorization.

We would be interested in knowing if the authors have any thoughts about how

their paradigm plays out in this broader problem space.

In some sense, a general solution strategy is straightforward. The statistician

uses a nonparametric Bayesian model to represent her uncertainty about God’s

model, and an additional nonparametric Bayesian model to describe the distor-

tion process. Then the analyst finds the solution that maximizes her expected

utility against that concatenated model for the multiphase data generation mech-

anism. If her uncertainty is honestly expressed, then her inference is honestly

accurate. And if her prior knowledge is both honest and precise, then her solu-

tion will generally be accurate and precise as well. But if her beliefs are woefully

mistaken, then her inference will often be sadly wrong. However, as the authors

show in the context of imputation, multiphase applicationss are complicated and
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2 XIANCHAO XIE AND XIAO-LI MENG

there can be counterintuitive surprises.

Of course, this general solution strategy can be difficult to implement. But

there are circumstances in which the statistician has strong knowledge of the

data preparation process (the imputation technique, or the number of decimal

places to which the data are recorded, or the rules for handling outliers). For

example, in Tu, Meng and Pagano (1993), the imputers were also the analysts,

and thus the analyst had full information on the distortion. And regarding God’s

model, statisticians regularly address model uncertainty. Nonetheless, the Devil

is in the details.

But we would like now to focus the discussion more tightly upon some re-

search issues inspired by Example 1 in the paper. Suppose the true data generat-

ing mechanism is random sampling from the N(µ, σ2) distribution, and assume

there are two statisticians, Bob and Carol. For simplicity, let µ = 0 and σ2 = 1,

but these values are unknown to Bob and Carol.

A sample of size N is drawn. Carol observes all of the data, but Bob sees

only the first n values. But he also observes N − n additional synthetic values

that are generated by Carol based upon the full data set. For example, Carol

might generate N −n independent observations from a normal distribution with

mean and variance equal to the sample mean and sample variance in the full

data set. This situation could arise in practice if the last N − n values were

confidential.

The Xie and Meng paper gives results for estimating population means, pro-

viding sensible standard errors, and ensuring nominal coverage levels. In contrast,

we consider hypothesis testing, because, if it is common for noncongeniality to

strongly influence decision making, then the issue is urgent. As noted, multi-

phase inference arises in many cases, and we hope that statisticians have not

been misled too often.

To explore this, we consider two examples. In the first, Carol provides an un-

biased sample and Bob wants to test a null hypothesis. In the second, she induces

a constant location bias (which is plausible in certain adversarial circumstances;

e.g., Carol may be trying to make her class’s test scores seem higher), and Bob

wants to estimate the population mean.

Unbiased Pre-Processing

Suppose that Carol’s prior specification is σ2 ∼ IG(a/2, a/2) and µ |σ2 ∼
N(0, σ2τ2). Note that her prior expectation for µ is correct (recall that the true

data generating mechanism is N(0, 1)). After seeing the data, Carol’s posterior
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but these values are unknown to Bob and Carol.

A sample of size N is drawn. Carol observes all of the data, but Bob sees

only the first n values. But he also observes N − n additional synthetic values

that are generated by Carol based upon the full data set. For example, Carol

might generate N −n independent observations from a normal distribution with

mean and variance equal to the sample mean and sample variance in the full

data set. This situation could arise in practice if the last N − n values were
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The Xie and Meng paper gives results for estimating population means, pro-
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we consider hypothesis testing, because, if it is common for noncongeniality to

strongly influence decision making, then the issue is urgent. As noted, multi-

phase inference arises in many cases, and we hope that statisticians have not

been misled too often.

To explore this, we consider two examples. In the first, Carol provides an un-

biased sample and Bob wants to test a null hypothesis. In the second, she induces

a constant location bias (which is plausible in certain adversarial circumstances;

e.g., Carol may be trying to make her class’s test scores seem higher), and Bob

wants to estimate the population mean.

Unbiased Pre-Processing

Suppose that Carol’s prior specification is σ2 ∼ IG(a/2, a/2) and µ |σ2 ∼
N(0, σ2τ2). Note that her prior expectation for µ is correct (recall that the true

data generating mechanism is N(0, 1)). After seeing the data, Carol’s posterior
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predictive predictive distribution is a t-distribution with updated parameters. If

a is large and τ2 small, her posterior predictive will be close to the data-generating

mechanism. On the other hand, if a is small and τ2 is big, her synthetic datasets

will be “unbiased” (in the sense that their marginal expectation will be correct)

but will have thicker tails (and greater variance) than a N(0, 1) distribution,

especially if the sample size is rather small.

If Bob wants to test the point null hypothesis H0 : µ = 0 against H1 : µ �= 0

and runs a two-sided t-test with the full data (real and synthetic), problems

arise unless Carol’s prior is strongly informative, especially if the fraction of

unobserved individuals is not small—for any given dataset, Carol’s posterior

predictive distribution is always centered at a nonzero mean, so the point null

hypothesis is technically wrong. Note that this difficulty cannot be circumvented

by using a nonparametric test such as Wilcoxon. An easy way out is throwing

away all synthetic data and performing a test with the real data, but this seems

undesirable.

From a Bayesian perspective, Bob can construct a model that mimics Carol’s

preprocessing (which would involve modeling her imputation scheme and incor-

porating that belief into his analysis) and then make a decision based upon the

posterior probability of the null hypothesis and his loss function. We haven’t

tested the practical utility of this Bayesian approach, although we believe that

it would be interesting to study. The main message of our example is that even

“good” preprocessing can invalidate inferences.

Biased Pre-Processing

Now suppose that Carol’s prior specification is σ2 ∼ IG(a/2, a/2) and µ |σ2 ∼
N(δ, σ2τ2), where δ could be nonzero. If δ �= 0, then Carol’s prior induces a

systematic location bias δ that would carry over to her posterior predictive dis-

tribution. In that circumstance, if Bob reports the sample mean using all the

data he receives (real and synthetic), his estimate would be (marginally and

conditionally) biased.

What could Bob do? From a Bayesian perspective, he could model his Carol’s

distortion of the data by putting a prior distribution on δ (which is similar in

spirit to adversarial risk analysis; cf. Banks, Rios and Ŕıos Insua (2015)). This

approach is useful if Bob has prior information about the true population mean,

and could be supported by examining the difference in sample means between the

n good observations and the N − n synthetic observations. The practicality of

that examination depends upon both the magnitude of n and δ. And, of course,
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it assumes that there are no “lurking” variables that induce differences between

the observed and synthetic individuals.

From a frequentist perspective, if the number of observed values is sufficiently

large, Bob can compare the means of the real and synthetic observations. If these

means are very different, he can either discard the synthetic data or bias-correct

them. Unfortunately, this approach wouldn’t be applicable in the case of fully

synthetic datasets, whereas the Bayesian approach can still be helpful if there is

strong prior information (from other studies, for example) that the population

mean should lie within a relatively narrow range.

In general, Bob can try to robustify his inferences by considering that the

real and synthetic groups can have different means, and he could even consider

nonparametric models to alleviate the effects of model misspecification (cf. Berger

and Berliner (1986)). However, this conservative approach can lead to less precise

inferences.

Some Questions and Conclusions

In summary, these are some of the future challenges that were brought to

mind after reading the article (most of which were introduced in the examples):

• Should we model the process that has generated the data? If we don’t, what

are the implications? What are the conditions under which we can ignore

the process? The answer to these questions will depend on the estimand,

but how?

• What should a Bayesian do? If we truly want to reflect our uncertainty

about the data-generating mechanism, we should arguably model the pre-

processing/imputation steps. Our intuition suggests that “bad” subjective

assessments about intermediate steps can have catastrophic consequences,

whereas “good” subjective assessments can be very helpful, in that we could

potentially correct for biases or mistakes that were made at some previous

step.

• In some cases, inferences can (potentially) be made robust by using non-

parametric approaches and “expanding” models (as in our second example,

where the real and synthetic data had different means). In most cases,

we would have to sacrifice some precision in the inferences. How can we

quantify the precision one trades off for robustness?

We would also like to know if the authors have thought about applying multi-

phase inference for studying cases where the estimands are quantities that depend
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heavily on the tails of the distribution, or examples where sufficient statistics are

hard to come by.

We end our discussion by congratulating the authors again. This paper

provides a new paradigm for a large class of practical problems, it does so with

mathematical power, deep insight, and a soupçon of graceful humor.
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Banks, D., Rios, J. and Ŕıos Insua, D. (2015). Adversarial Risk Analysis. CRC Press, Boca

Raton, FL.

Berger, J. and Berliner, M. (1986). Robust Bayes and empirical Bayes analysis with ε-

contaminated priors. Annals of Statistics 14, 461–486.

Fay, R. E. (1992). When are inferences from multiple imputation valid? Proceedings of the Sur-

vey Research Methods Section of the American Statistical Association, 227–232, Alexandria,

VA.

Kott, P. S. (1995). A paradox of multiple imputation. Proceedings of the Survey Research Meth-

ods Section of the American Statistical Association, 380–383, Alexandria, VA.

Tu, X. M., Meng, X.-L. and Pagano, M. (1993). The AIDS epidemic: Estimating survival after

AIDS diagnosis from surveillance data. Journal of the American Statistical Association 88,

26–36.

Department of Statistical Science, Box 90251, Duke University, Durham, NC 27708 USA

E-mail: banks@stat.duke.edu

Department of Statistical Science, Box 90251, Duke University, Durham, NC 27708 USA

E-mail: vp58@stat.duke.edu

(Received June 2016; accepted June 2016)

1558 XIANCHAO XIE AND XIAO-LI MENG



MULTIPLE IMPUTATION FROM A MULTI-PHASE INFERENCE PERSPECTIVE 5

heavily on the tails of the distribution, or examples where sufficient statistics are

hard to come by.

We end our discussion by congratulating the authors again. This paper

provides a new paradigm for a large class of practical problems, it does so with

mathematical power, deep insight, and a soupçon of graceful humor.
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DISCUSSION

Yi-Hau Chen

Academia Sinica

1. Introduction

The authors make an important contribution to the discussion of the vari-

ance estimation of Rubin’s multiple imputation (MI) inference (Rubin (1987)).

In particular, assuming the imputer’s model is correctly specified while the an-

alyst’s may not be, the “uncongeniality” considered in the paper, the authors

identify sufficient conditions for the validity of the MI inference in terms of the

relative efficiency between the imputer’s and the analyst’s observed-data esti-

mators. Although it has been well known in practice that imputation should

be based on a sufficiently saturated model, the results in Xie and Meng (2016),

especially Theorems 6 and 7, do provide substantial new insights into how the

MI inference works in general.

Using the notation in the paper, the two components of Rubin’s MI variance

estimator T∞, Ū∞ and B∞, are respectively consistent estimators for the vari-

ances of θ̂Acom and θ̄∞ − θ̂Acom, where θ̂Acom and θ̄∞ are, respectively, the analyst’s

complete-data and the MI estimates for the analyst’s model parameter, regard-

less of whether the imputer’s and the analysts’s models are congenial or not. The

sufficient and necessary condition for T∞ consistently estimating the variance of

θ̄∞ is thus

Cov(θ̂Acom, θ̄∞ − θ̂Acom) = o(n−1), (1.1)

the asymptotic orthogonality between θ̂Acom and θ̄∞ − θ̂Acom (Theorem 5 of the

paper). Section 6 of the paper introduces the notion of strong efficiency and self

efficiency so that a sufficient condition for (1.1), and hence consistency of T∞, to

hold is that

θ̂Acom is self-consistent (θ̂Acom � θ̂Aobs) and θ̂Aobs � θ̂Iobs (1.2)

where a � b means “a is strongly more efficient than b”.

My first comment is that, in practice, the condition (1.1) and hence con-

sistency of T∞ can be satisfied under more general settings than those dictated

by (1.2). For example, when the analyst’s inference is based on a weighted es-
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timating equation where the weights are used to account for the mechanism of

sampling and/or missingness itself, Seaman et al. (2012) showed that, in the

linear model with missing outcome data, Rubin’s MI variance estimator for the

analyst’s estimator θ̂Aobs obtained from the weighted estimating equation con-

sidered is consistent if the imputed outcomes are drawn from a linear model

that incorporates an interaction term formed by the covariates in the analyst’s

model multiplied by the weight variable used. Such a result can be extended to

the generalized linear model (GLM) framework considered for robust imputation

discussed by Chen (2000). These results not only echo the practical and working

knowledge that the imputation models should be as saturated as possible, but

also indicate an explicit way to make the imputation model “saturated enough”

to lead to valid MI inference. Moreover, although a fully efficient analyst’s es-

timator such as MLE is a sufficient condition for the consistency of Rubin’s MI

variance estimator (Theorem 6 in Xie and Meng (2016)), the results in Seaman

et al. (2012) and in the GLM framework of Chen (2000) suggest that the con-

sistency can be reached for a general estimation-equation based analysis scheme,

provided a corresponding imputation procedure ensuring valid MI inference has

been designed and performed. This fact is especially encouraging given that

where the missing data issue is particularly prominent, such as in longitudinal

studies and complex surveys, it is rarely feasible to implement a fully efficient

analysis but that some inefficient methods are usually more implementable.

The other point that may deserve further discussion is the issue of model se-

lection for the analyst’s model given that a correct (or at least approximately cor-

rect) imputation model has been employed to impute the missing data. This issue

has been largely ignored in the literature. Although the authors have presented a

very simple “doubling-variance” or “combining-standard-errors” procedure to en-

sure robust inference under incompatibility (uncongeniality) between imputer’s

and analysts’ models, a more prudent analyst may wish to conduct a serious

model comparison/selection procedure to choose the most suitable model among

a pool of candidate analysis models. Shen and Chen (2013) considered informa-

tion criterion-based methods for selection of the generalized estimating equation

(GEE) analysis models with multiply imputed missing longitudinal data. In the

setting considered in Shen and Chen (2013), although the analysis model of inter-

est is the marginal mean model for the longitudinal outcomes, their imputation

model for a missing outcome utilizes all the available information, including the

observations for the past outcomes, in the hope of making the imputation as

precise as possible. More in-depth studies of related issues are needed.
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The points made in this discussion are meant only to highlight issues that

may warrant further considerations and investigations. The original contribution

of the paper is really timely, important, and insightful, inspiring more innovative

thinking in both the theory and practice of multiple imputation. I sincerely

congratulate the authors on this excellent accomplishment.
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DISCUSSION

Anthony F. Desmond

University of Guelph

1. Introduction

When I was first invited to discuss this paper, I was stimulated by the chal-

lenge of looking at this novel area of multi-phase inference and was particularly

interested in the role of estimating functions in missing data situations. At first

glance, the paper looked quite congenial to me (congenial in the conventional

sense of being stimulating and thought-provoking). At second reading, the brow

became increasingly furrowed and I realized that this new area of multi-phase

inference was going to be considerably more taxing or thorny than anticipated.

I hasten to add that on subsequent readings the paper remains congenial to

me, again in the conventional sense of being thought-provoking and stimulating.

However, as a newcomer to this area, I needed to understand ideas relatively new

to me such as uncongeniality, self-efficiency etc. Also, old ideas, such as validity,

which are (arguably, see below) relatively straightforward in single-phase infer-

ence, take on a more difficult aspect in the multi-phase paradigm as discussed

in Section 1.3. I found this section particularly challenging and initially at least

somewhat mystifying (perhaps even mystical!); the great varieties of actors here,

Gods, demi-Gods, imputers, and analysts I found rather daunting.

2. Validity

Xie and Meng reference the classic paper by Neyman (1937) as justification

for the notion of confidence validity, which implies conservative coverage proper-

ties for confidence intervals. This led me to look more closely at the early work

of Neyman. Many texts such as Lehmann’s (1959) classic, and also texts such

as Bickel and Doksum (1977) and Casella and Berger (2002), do indeed define

confidence coefficients in conservative terms, i.e. a 1− α confidence interval has

at least coverage probability of 1 − α. In teaching I always felt this was just a

means to allow for the difficulties with discrete distributions in attaining exact

coverage probabilities for a given α; Bickel and Doksum, for example, explicitly

mention this difficulty. However, it is interesting to trace the evolving attitudes
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2 XIANCHAO XIE AND XIAO-LI MENG

of Neyman through the years via the original classic paper Neyman (1934) and

subsequent papers Neyman (1935), Neyman (1937), Neyman (1941), and finally

Neyman (1977).

In the 1934 paper (read before the Royal Statistical Society) Neyman presents

another classic, both for its pioneering contributions to survey sampling and for

the first development in English of Neyman’s approach to interval estimation.

This appears to be the paper in which the terms confidence interval and confi-

dence coefficient are introduced into the English language for the first time, al-

though earlier work in Poland, Pytkowski (1932), contains the equivalent terms,

and Neyman had been using the equivalent terms in lectures in Poland for some

time; see Reid (1982). Bowley, in the discussion, sees nothing new and refers to

a ‘confidence trick’. However, Neyman here, p. 562, does indeed use the conser-

vative definition and defines the confidence coefficent as the lower bound for the

confidence coverage. He suggests that he is merely providing alternative deriva-

tions to Fisher’s fiducial intervals describing “its main lines in a way somewhat

different to that followed by Fisher” and says: “Thus the new solution of the

problems of estimation consists mainly in a rigorous justification of what has

been generally considered correct on more or less intuitive grounds.”

On p. 586 equation (43) he again uses the conservative condition although

later:

“On the contrary, erroneous judgments of the form (43) must happen, but

it is known how often they will happen in the long run: their probability is equal

to ε (my italics).” This is possibly just a lapsus linguae, to use a phrase that

Neyman was fond of using in referring to Fisher’s way of explaining the fiducial

argument. The formal theory underlying the confidence intervals is delegated to

Note I of appendix VI, pp. 589-593. Thus, one of the most influential ideas (for

good or bad!) in modern statistics is relegated to a note in an appendix to an

admittedly pioneering paper! Neyman’s illustrative example here is the binomial

, so conservatism is inevitable. There is a quasi-Bayesian flavour as admitted by

the later Neyman (1977), in that an unknown prior probability distribution φ(θ)

is assumed for the collective character? (what we would now call a parameter in

the population. Fisher’s response is generally positive in his comments “on those

applications of inductive logic which constituted so illuminating and refreshing

an aspect of the evening’s paper.” He compliments Neyman on his generalization

of the fiducial argument for “its perfect clarity”. He then takes issue with three

issues: (1) lack of uniqueness, (2) the uses of inequalities for discrete distributions,

and (3) the difficulties in the multi-parameter case. It is (2) that is of most
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interest here as it appears to be an inspiration for Neyman (1935). Of course,

fiducial intervals for discrete distributions posed a major difficulty for Fisher.

In the 1935 paper, Neyman revisits the problem of confidence intervals. He

begins by mentioning Fisher’s criticism that his (Neyman’s) extension of his

(Fisher’s) work concerning the fiducial argument to the case of discontinuous

(my italics) distributions is obtained at great expense, namely the replacement

of equalities by inequalities. He then shows that exact equalities are not pos-

sible in general for discontinuous distributions. In particular for the binomial

he suggests that the well-known Clopper-Pearson intervals involving inequalities

are best possible. This is now known to be false. Recent work by Agresti and

Coull (1998) and Brown, Cai and DasGupta (2001) and references therein to

earlier work, show that the ’gold-standard’ exact Clopper-Pearson intervals are

extremely conservative and much better alternatives are available. There is an

interesting discussion in the Brown et al paper as to whether one should insist

on conservatism or whether being close to the nominal level is a preferable crite-

rion, suggesting that modern statisticians are not entirely in agreement with the

textbook definition. It is interesting that Neyman in 1935 continues to invoke a

prior distribution in his argument and that he appears to still regard his work as

an extension of Fisher’s approach to fiducial intervals.

In his classic 1937 paper, the one to which the authors refer, Neyman gives

a treatment of confidence intervals, which gives a solution to the problem of

confidence intervals without recourse to any a priori distribution and answers

the question posed in the last sentence of his 1935 paper at least for continu-

ous distributions. Equalities of confidence coverage and confidence coefficient

are maintained throughout and in the general treatment and the examples only

continuous distributions are used. In his review of previous attempts at inter-

val estimation the fiducial argument is studiously avoided, although a footnote

indicates that this review is incomplete! In later work, his notes of 1952, for ex-

ample, he maintains the equality of coverage and confidence coefficient, although

the conservatism for discrete distributions is touched on briefly. The later Ney-

man (1977), in a delightfully contentious paper in Synthese, returns to equality

of coverage probabilities and again considers only continuous distributions.

My reading of Neyman (1934) is that the conservative definition of the confi-

dence coefficient is mainly to allow for the discrete nature of the binomial example

used there. My main point is that I doubt the 1934 paper could be used as a

general justification for the notion of confidence validity. That is not to say that

the concept of confidence validity is not a useful one. The arguments in Rubin
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(1996), for example, seem sound to me.

3. The Multiphase Paradigm

As I understand it, the multi-phase inference paradigm is quite a general one

and the multiple imputation special case is illustrative. As an academic statisti-

cian, I tried to think of situations in which I, or colleagues of mine, might have

been part of a phase (or phases) to which the multi-phase paradigm might have

(retrospectively) brought some useful perspective. It is often said that applica-

tions of statistics in science and technology are piece-meal; but the multi-phase-

paradigm may be an attractive way of adding a useful formalism to counter-act

this. Like most academic statisticians, I have been involved in consulting projects

with colleagues from the life sciences, engineering etc. The closest I may have

been to a multi-phase situation was a collaborative project with General Motors

Canada. This did involve much data pre-processing, but Xie and Meng make

me wonder whether we were as useful to the clients, in retrospect, as we might

have been. We had a large amount of data on worker behaviour at a plant in

Oshawa, of a very messy nature which needed to be cleaned etc. I was not

personally involved in in the pre-processing phase. The data collection phase

involved engineers and technicians at the plant with little statistical knowledge.

The pre-processing of the data was done by colleagues in a group at the Uni-

versity of Guelph involving students, a colleague and research assistants. The

ultimate motivation was to simulate the process and see how we might improve

productivity and increase profits for the company. One of my tasks was to apply

a plausible, but in some ways overly simple model, to a small part of this large

data set, which resulted in Desmond and Desmond and Chapman (1993). Other

tasks resulted in several technical reports, which the team at GM seemed to find

helpful. Although aspects of the data-preprocessing and the difficulties with the

original very large data set were discussed with me, I was not involved in the

earlier phase. In retrospect, I would now possibly consider some statistical learn-

ing techniques for Big Data. However, this was in the early nineties and the Big

Data revolution had not yet begun! The warnings on the perils of preprocessing

by Blocker and Meng (2013), cited here, are definitely on my reading list.

In the Multiple Imputation case discussed in this paper, we have large public-

use data-bases with statistically sophisticated imputers relative to inexperienced

users (analysts), who may indeed be non-statisticians unfamiliar with missing

data procedures and likely to use off-the-shelf complete-data packages. The im-
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portance of some encompassing Multiphase paradigm makes a good deal of sense

here, and the multiple imputation approach, despite its critics , seems a sensi-

ble pragmatic approach to this situation. Also, arguably, Bayesian imputation

and frequentist analysis are reasonable at the present time, although with the

increasing acceptance and use of Bayesian methods, and more importantly, the

increasing availability of Bayesian-based software, that situation may change in

the future. In the case of multi-party use of large public data bases, it is unlikely

that the analyst would be as sophisticated as a Meng or a Xie say! In other appli-

cations, however, where the analyst is a scientist with considerable subject-matter

knowledge is the Bayesian as Imputer versus Analyst as frequentist dichotomy

really necessary? Why not consider Bayesian validity at the analysis phase along

with the effect of uncongeniality on inferences? For example in the Tu, Meng and

Pagano (1993) example, cited in the paper, one could use the Bayesian approach

to impute the delayed cases; but should this prevent a principled Bayesian from

using a Bayesian version of the Cox or other analysis, which are available in

survival analysis; one could even possibly use informative priors for relative risks

and baseline hazard based on the first phase?

4. Use of Estimating Functions

The use of estimating functions in the context of multiple imputation and

more generally multiphase inference is fascinating. The key decomposition result

in Section 3 is very interesting. This seems to fit the multiple imputation partic-

ularly well. Extensions and applications in the more general multiphase scenario

presents an area for future research. Some earlier work on the use of estimating

for missing data is referenced in a recent encyclopedia article by Desmond (2016).

Also, conditional expectations such as those of Xie and Meng, regarded as pro-

jections, in L2 spaces are useful analytical tools in deriving optimality results in

the search for good estimating functions. Small and McLeish (1994) is a good

introduction to this approach. The EM algorithm, so ably summarized in Meng

and van Dyk (1997), can be extended (generalized) to the estimating function

situation. A particularly interesting example, when no likelihood is available, but

second order assumptions are made, is Heyde and Morton (1996). They develop

what they call the Projection-Solution approach, in which the E-step is replaced

by a projection into a space of estimating functions determined by the second or-

der assumptions; The M-step is then replaced by the solution step on solving the

estimating equation obtained from the Projection stage. One wonders whether
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the Projection-Solution approach could be useful in multiphase inference? The

projection idea is a very powerful one in statistics generally. Pythagoras for

estimating functions, rather than estimators may be more fruitful?

5. Conservatism

Xie and Meng let m = ∞, for the number of imputations. My, admittedly

limited, reading of the multiple imputation literature suggests m quite small, say

2 to 5, is adequate for validity and this has been advocated as an advantage of

the multiple imputation approach in terms of data storage e.g. Rubin (1996)

and elsewhere. Under uncongeniality how does small m affect the double the

variance rule? Intuitively a more conservative rule might seem appropriate?

Yet the transition from (5.14) to (5.15) for the standard error rule for a scalar

estimand suggests this is not the case? As Xie and Meng mention, the ‘double

the variance’ rule is reminiscent of the discussed paper by Copas and Eguchi

(2005). Some of the discussants of that paper expressed reservations about this

rule. One issue is that practitioners might use such a rule automatically, and of

course, there are dangers in that, which presumably will be even more challenging

in the multi-phase case. Others, e.g. Little, suggested that a lower bound for

uncertainty is not very useful. Copas and Eguchi are appropriately cautious (see

their reply and page 484 of their paper). Those authors dealt with the twin

issues of incomplete data and model misspecification but within a single-phase

paradigm. It is interesting that this results in lower bounds for uncertainty, as

opposed to the current paper, which gives conservative inferences. Of course,

the former paper deals with model misspecification, whereas the current paper

does not. In the multi-phase case, with incomplete data and uncongeniality,

if we add in model misspecification, the statistician may have to throw his/her

hands up and admit defeat! Sometimes no valid inference is possible, and a range

of sensitivity analyses, possibly not very informative will be all that is feasible.

In the simpler case, of single-phase, nonignorable missing data, such sensitivity

analysis seems to be the only recourse. However, Xie and Meng have presented

a substantial challenge to the statistics profession to deal with the unholy trinity

of missingness, misspecification and uncongeniality in the multi-phase paradigm.

They have made substantial advances in illustrating this paradigm in the multiple

imputation case and presented many open problems for future research. They

have given us much to think about. It has been a great pleasure to have had

the opportunity to comment on this excellent paper, which I expect to re-read
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frequently for its thoughtful and challenging contributions to a new paradigm in

statistical methodology.
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the Projection-Solution approach could be useful in multiphase inference? The

projection idea is a very powerful one in statistics generally. Pythagoras for

estimating functions, rather than estimators may be more fruitful?
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frequently for its thoughtful and challenging contributions to a new paradigm in

statistical methodology.
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DISCUSSION

BY X. XIE AND X. L. MENG

Shu Yang and Jae Kwang Kim
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1. Introduction

We would like to first congratulate Drs. Xie and Meng on their excellent

work on investigating the mystery of multiple imputation. Multiple imputation

(MI) has been promoted as a general purpose estimation tool for missing data,

but there are debates over its statistical validity in many practical situations.

This article will certainly serve an important building block to address these

debates from a multi-phase inference perspective.

Multiple imputation was originally designed to handle missing data for public-

released databases. The imputation process and subsequent analyses of the im-

puted datasets are separate. Therefore, this multi-phase inference features the

possibility of uncongeniality. The authors focused on m = ∞ to avoid Monte

Carlo error and introduced simple examples to highlight a number of key con-

cepts. Specifically, we would like to discuss robustness, self-efficiency, confidence

validity, and the links with the EM algorithm and fractional imputation.

2. Robustness

The authors demonstrated the hidden robustness when the analyst assumes

more than the imputer through a simple example in Section 2.2. In the missing

data literature, two lines of research have focused on different parts of distri-

butions: multiple imputation models the data distribution; inverse probability

weighting and doubly robust estimation (Bang and Robins (2005); Kang and

Schafer (2007)) model the response probability. To gain robustness, researchers

have investigated combining inverse probability weighting and multiple imputa-

tion to improve robustness of estimation (Seaman et al. (2012); Han (2015)). The

authors’ theory for MI can be used to cover these phenomenons.

We would like to point out that robustness is generally achievable in many im-

putation methods. To illustrate the idea, consider the bivariate data (xi, yi), i =
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1, · · · , N, with yi being subject to missingness. Without loss of generality, assume

the first n y′s are observed and the other N − n y′s are missing. Let m(x;β) be

the “working” model for E(Y | x) and take ŷi = m(xi; β̂) as the imputed value

for yi, where β̂ satisfies
∑n

i=1{yi − m(xi; β̂)} = 0. In this case, the regression

imputation estimator θ̂I = N−1{
∑n

i=1 yi+
∑N

i=n+1 ŷi} is algebraically equivalent

to the two-phase regression estimator

θ̂tp,reg = N−1
N∑
i=1

ŷi + n−1
n∑

i=1

(yi − ŷi) .

Under MCAR, using the argument in Kim and Rao (2012), θ̂I is asymptotically

unbiased regardless of the choice of m(xi;β). If the response probability π̂i is

available, then we can include π̂−1
i in X so that

∑n
i=1 π̂

−1
i (yi − ŷi) = 0 holds.

Then, the regression imputation estimator is algebraically equivalent to

θ̂tp,reg = N−1
N∑
i=1

ŷi +N−1
n∑

i=1

π̂−1 (yi − ŷi) ,

which is also asymptotically unbiased regardless of the choice of m(xi;β). Thus,

as long as the column space of X includes π̂−1
i , the resulting imputed estimator

is doubly robust. This is essentially the main idea of doubly robust imputation

as discussed in Kim and Haziza (2014).

3. Self-efficiency

We believe that self-efficiency is defined with respect to an analyst’s model

and the missing data mechanism. We agree that self-efficiency is indeed a weaker

requirement than self-sufficiency, but is frequently violated in common practice

for multi-purpose estimation. Even in the ideal case when the imputer and the

analyst’s models are congenial, the requirement for the complete-data estimator

to be self-efficient is restrictive. We have examined several scenarios, which are

fairly common in practice; however they fail this requirement.

Example 1. Consider a simple linear regression model Y = β0+β1X+ ε, where

ε ∼ N(0, σ2), X is always observed, and Y is subject to missingness with MAR.

Suppose the analyst is interested in estimating µ = E(Y ) and η = E{I(Y <

c)}, where c is a prespecified value. The complete-sample estimator solving∑n
i=1 Yi − µ = 0 is self-efficient; however, the complete-sample estimator solving∑n
i=1 I(Yi < c)− η = 0 is not self-efficient.

Example 2. Consider the setup of Example 1 with β0 = 0. Suppose the analyst

is interested in estimating µ = E(Y ) and consider the complete-sample estimator
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by solving
∑n

i=1 Yi − µ = 0. Yang and Kim (2016) claimed the Rubin’s com-

bining rule is not consistent in this case. There are two ways of viewing this in

XM’s framework: under the model Y = µ + ε, with ε ∼ N(0, σ2), the analyst’s

estimation procedure is self-efficient, but the model is not congenial with the

imputer’s model; under the model Y = β0 + β1X + ε, with ε ∼ N(0, σ2), the

analyst’ estimation procedure is not self-efficient.

Example 3. Consider a log linear regression model, log Y = XTβ + ε, where

ε ∼ N(0, σ2). This model is especially useful for economic data that have skewed

populations where the assumption of a normal distribution is unlikely to hold.

Under this model, the analyst’s complete-sample estimator of µ = E(Y ) solving∑n
i=1 Yi − µ = 0 is not self-efficient. This example is discussed in Yang and Kim

(2015).

4. Confidence Validity Versus Type 2 Error

The authors suggest constructing a conservative variance estimator 2T∞ for

which the multiple imputation procedure has confidence validity. Our concern is

how useful “confidence validity” is. Being conservative can protect Type 1 error,

but how about Type 2 error? We can have a situation where the statistical power

of the test based on MI is so low that it is better not to perform MI at all. To

illustrate this point, we performed a simple simulation study. In the simulation,

B = 2, 000 Monte Carlo samples of size n = 1, 000 were independently generated

from

yi = −1.5 + β1xi + ei, (4.1)

where β1 ∈ {0.05, 0.1, 0.15}, xi ∼ N(2, 1), ei ∼ N(0, 1.04), and xi and ei are in-

dependent. Variable xi is always observed but the probability πi that yi responds

follows logit(πi) = −1 + 0.5xi.

For each realized sample, we computed two estimators: the Complete-Case

(CC) method that only uses the complete cases for the regression analysis and the

MI estimator with m = 100. The imputer’s and analyst’s models are correctly

specified as (4.1). The prior for the parameters is a flat prior.

From the imputed data, we computed the 95% confidence intervals for β1.

For the MI estimator, we used the conservative method 2T∞. Table 1 shows that

the MI method loses quite a bit of power compared to the CC method. While the

point estimators are essentially the same in both methods, variance estimator in

MI is positively biased and the test based on MI is less powerful.
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Table 1. Results of power estimates for testingH0 : β1 = 0 based on B = 2, 000 simulated
datasets. CC: the complete-case estimator; MI: the multiple imputation estimator with
the conservative variance estimator.

CC MI
β1 = 0.05 0.2 0.04
β1 = 0.10 0.56 0.28
β3 = 0.15 0.90 0.66

5. Links with EM Algorithm and Fractional Imputation

The theoretical setup in Section 4 in XM’s article serves as a general platform

that links several important techniques, such as the EM algorithm (Dempster,

Laird and Rubin (1977)), Data Augmentation (Tanner and Wong (1987)), and

Fractional Imputation (Kim (2011); Yang and Kim (2015)). MI was originally

motivated in a Bayesian prospective, but its frequentist properties have been

studied by a number of researchers via the Bernstein-von Mises theorem. See for

example, Robins and Wang (2000); Yang and Kim (2016). Following the authors’

notation, θ̄∞ is the solution to

E{SA(Zcom; θA) | Zobs; θ̂
I
obs} = 0. (5.1)

Here, SA(Zcom; θA) is not necessarily the score function, rather, it is the es-

timating function that defines the parameter. That is, θ is defined through

E{SA(Zcom; θA)} = 0. If SA(Zcom; θA) is chosen to be the score function, the

method is equivalent to the EM algorithm.

Fractional imputation is another effective imputation tool for general-purpose

estimation with its advantage of not requiring the congeniality condition. With

m = ∞, the fractional imputation estimator of θA is also the solution to (5.1),

where θ̂Iobs is a consistent estimator of θI in the imputation model. Rubin’s ap-

proach of multiple imputation conducts separate analyses and then combining

them, whereas fractional imputation creates a single weighted imputed dataset

for analysis. To investigate the asymptotic variance of θ̄A∞, we can view θ̄A∞ =

θ̄A∞(θ̂Iobs) and apply Taylor linearization:

θ̄A∞(θ̂Iobs)
∼= θ̄A∞(θI0) + E(

∂θ̄A∞
∂θI

)(θ̂Iobs − θI0)

∼= θ̄A∞(θI0)− E(
∂θ̄A∞
∂θI

)E{∂S
I(Zobs; θ

I
0)

∂θI
}−1SI(Zobs; θ

I
0),

where θ̂Iobs is the solution to SI(Zobs; θ
I) = 0. Thus, the variance of θ̄A∞(θ̂Iobs) is

approximated by the variance of θ̄A∞(θI0)−BSI(Zobs; θ
I
0), where B = E(∂θ̄A∞/∂θI)

E{∂SI(Zobs; θ
I
0)/∂θ

I}−1. This is the standard linearization method for imputa-
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Table 1. Results of power estimates for testingH0 : β1 = 0 based on B = 2, 000 simulated
datasets. CC: the complete-case estimator; MI: the multiple imputation estimator with
the conservative variance estimator.

CC MI
β1 = 0.05 0.2 0.04
β1 = 0.10 0.56 0.28
β3 = 0.15 0.90 0.66

5. Links with EM Algorithm and Fractional Imputation

The theoretical setup in Section 4 in XM’s article serves as a general platform

that links several important techniques, such as the EM algorithm (Dempster,

Laird and Rubin (1977)), Data Augmentation (Tanner and Wong (1987)), and

Fractional Imputation (Kim (2011); Yang and Kim (2015)). MI was originally

motivated in a Bayesian prospective, but its frequentist properties have been

studied by a number of researchers via the Bernstein-von Mises theorem. See for

example, Robins and Wang (2000); Yang and Kim (2016). Following the authors’

notation, θ̄∞ is the solution to

E{SA(Zcom; θA) | Zobs; θ̂
I
obs} = 0. (5.1)

Here, SA(Zcom; θA) is not necessarily the score function, rather, it is the es-

timating function that defines the parameter. That is, θ is defined through

E{SA(Zcom; θA)} = 0. If SA(Zcom; θA) is chosen to be the score function, the

method is equivalent to the EM algorithm.

Fractional imputation is another effective imputation tool for general-purpose

estimation with its advantage of not requiring the congeniality condition. With

m = ∞, the fractional imputation estimator of θA is also the solution to (5.1),

where θ̂Iobs is a consistent estimator of θI in the imputation model. Rubin’s ap-

proach of multiple imputation conducts separate analyses and then combining

them, whereas fractional imputation creates a single weighted imputed dataset

for analysis. To investigate the asymptotic variance of θ̄A∞, we can view θ̄A∞ =

θ̄A∞(θ̂Iobs) and apply Taylor linearization:

θ̄A∞(θ̂Iobs)
∼= θ̄A∞(θI0) + E(

∂θ̄A∞
∂θI

)(θ̂Iobs − θI0)

∼= θ̄A∞(θI0)− E(
∂θ̄A∞
∂θI

)E{∂S
I(Zobs; θ

I
0)

∂θI
}−1SI(Zobs; θ

I
0),

where θ̂Iobs is the solution to SI(Zobs; θ
I) = 0. Thus, the variance of θ̄A∞(θ̂Iobs) is

approximated by the variance of θ̄A∞(θI0)−BSI(Zobs; θ
I
0), where B = E(∂θ̄A∞/∂θI)

E{∂SI(Zobs; θ
I
0)/∂θ

I}−1. This is the standard linearization method for imputa-
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tion variance estimation, as discussed by Clayton et al. (1998), Robins and Wang

(2000), Kim (2011), and Yang and Kim (2015). Resampling method will also

provide valid variance estimation. Therefore, the fractionally imputed dataset

coupled with replicated resampling weights provide another basis for consistent

inference for multi-purpose usage. Of course, this may come at the price of a

larger data storage space and more complex analysis.

6. Concluding Remarks

We conclude by thanking XM for their enlightening article, and we appre-

ciate the opportunity to offer our viewpoints on this interesting problem. We

look forward to their responses to our major points regarding robustness, self-

efficiency, confidence validity, and the links with fractional imputation.
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DISCUSSION

Roderick Little and Tingting Zhou

University of Michigan

Xie and Meng’s paper is a theoretical tour de force, providing further insight 
into the performance of multiple imputation combining rules when the imputer 
and analysis models differ. Implications for practice are not entirely clear, at least 
to us; one conclusion is to continue to use the MI combining rules, while seeking 
to minimize differences between the imputer and analyst models, or attempting 
to ensure that the differences are in the direction of making the MI combining 
rule conservative. Another conclusion is to abandon the Rubin’s combining rules 
in favor of Xie and Meng’s more conservative ones, although the penalties in 
increased width of confidence intervals seem stiff. The choice is an example of 
a basic question that applies to all statistics, namely what aspects of potential 
model misspecification should be formally reflected in measures of uncertainty. 
Xie and Meng’s examples are instructive but perhaps more illustrative than re-
alistic, and we describe here an extension of Example 1 that is very relevant to 
an applied setting.

An area where multiple imputation is receiving increased attention is in 
handling missing data in clinical trials. A National Research Council study (Na-

tional Research Council (2010); Little et al. (2012)) advocates sensitivity analysis 
as an important component of the analysis of clinical trial data, and since that 
report there has been much activity to develop new methods and software (e.g. 
Mallinckrodt, Lin and Molenberghs (2013); Ratitch, O’Kelly and Tosiello (2013); 
Liublinska and Rubin (2014); Little et al. (2016)). The tricky modeling problem 
is to decide the appropriate range of models to consider in such an analysis: a 
narrow class may miss important possible scenarios, whereas a broad class that 
includes implausible models, such as “worst case” scenarios where dropouts are 
all considered treatment failures in the treated group and treatment successes in 
the control group, leads to excessively high ranges of uncertainty.

A convenient approach to sensitivity analysis, which is relatively easy to im-

plement and convey to clinicians, models departures from missing at random via 
one or more sensitivity parameters that characterize differences between partici-
pants who do and do not drop out in each treatment group, after controlling for
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observed characteristics. This approach leads naturally to pattern-mixture mod-

els (Little (1993)) where distributions of trial outcomes are modeled conditional

on the dropout indicator. Formally let D be a variable with value 1 for dropouts

and 0 for participants who do not drop out. The joint distribution of D and trial

outcomes Y is factored as:

fY,D(Y,D|Z,X, φ, δ) = fY |D(Y |D,Z,X, φ, δ)fD(D|Z,X, π), (1)

where Z is a treatment indicator, and X represents other fully observed co-

variates. More generally, D may have more than two values, corresponding to

different drop-out times. The sensitivity analysis involves varying sensitivity

parameters δ, a low (one or two-) dimensional parameter that characterize dif-

ferences between fY |D(Y |D = 0, Z,X, φ, δ) and fY |D(Y |D = 1, Z,X, φ, δ); δ is

generally not identified from the data, so the sensitivity analysis assesses the

treatment effect over a range of plausible values of δ, or the size of δ is computed

and assessed at the “tipping point” where statistical significance of the treatment

effect is lost.

A practical approach to implementing this sensitivity analysis is to multiply-

impute values of Y after dropout for each preset value of δ, and provide inferences

for the parameters characterizing the treatment effect using Rubin’s MI combin-

ing rules. This leads to potential uncongeniality, since the natural analysis model

for Y is a model fY (Y |Z,X, θ) for the distribution of Y given Z, X in the absence

of missing data; this analysis model is often incompatible with the imputation

model of form (1). If the imputation model does not correspond to the model that

generated data, resulting inferences clearly have the potential for bias. A more

subtle question is the validity of MI inferences based on the model fY (Y |Z,X, θ)

when imputations are generated under the correct model that generated the data.

To shed light on this issue, we describe the results of a small simulation study,

based on a realistic extension of the Xie and Meng’s Example 1.

Repeated univariate samples of size N = 50 for an outcome Y and drop-

out indicator D are generated from a simple version of (1), with Z and X null,

φ = (µ0, σ
2), and δ = (δ1, δ2):

D ∼ Bernoulli(π),

Y |D = 0 ∼ N(µ0, σ
2), (2)

Y |D = 1 ∼ N(µ0 + δ1, δ
2
2σ

2).

The resulting missing-data mechanism is missing not at random unless δ1 =

0, δ2 = 1; the sensitivity parameters are δ = (δ1, δ2), which model differences in
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Table 1. Empirical Bias*1,000, Root Mean Squared Error *1,000 and Confidence Interval
Noncoverage (Nominal = 50) over 1000 simulated data sets of sample size of 50, for MI
Inferences Under (a) PMM = the Pattern-Mixture model (2) that generated the data,
with correct choice of δ, and (b) NOR = the normal complete-data model (3). δ2 = 1
and δ1 varied from 0 to 3.

δ1
δ2 = 1 0 0.5 1.0 1.5 2.0 3.0
Bias PMM −2 0 2 4 6 10
Bias NOR −1 −1 −1 −1 −1 −1
RMSE PMM 251 252 252 252 252 253
RMSE NOR 252 252 252 252 252 252
Noncov PMM 48 45 40 30 23 9
Noncov NOR 43 40 32 23 21 6

the mean and variance of the distribution of Y for respondents and drop-outs.

The marginal distribution of Y based on (2) is a mixture of normals, with mean

θ = µ0 + πδ1 and variance τ2 = (1 − π)σ2 + πσ2δ22 + π(1 − π)δ21 . The target

parameter is the overall population mean θ. A sample thus has n respondents

with Y measured and N −n dropouts with Y missing, where n is Binomial with

index N and probability π.

Missing values of Y were multiply imputed (with 100 imputations) using their

posterior predictive distribution, based on the correct model (2) that generated

the data, assuming in particular the correct choice of sensitivity parameters δ,

with Jeffreys’ prior distributions for the parameters φ. The resulting MI data sets

were analyzed using Rubin’s combining rules, for two choices of analysis models:

(a) the pattern-mixture model that generated the data, again with the correct

choice of δ, and

(b) the standard univariate normal model for the complete data,

Y ∼ N(θ, τ2). (3)

Tables 1 and 2 show empirical bias, bias, root mean squared error, and 95%

confidence interval coverage for the two MI analyses, over 1,000 replicate data

sets. In Table 1, we set δ2 = 1 and varied δ1 from 0 to 3, thus varying the

difference in means for respondents and dropouts. In Table 2, we set δ1 = 0 and

varied δ2 from 0.2 to 5, thus varying the differences in variances for respondents

and dropouts.

In both sets of simulations in Tables 1 and 2, Bayes inference based on the

pattern-mixture model that generated the data had small empirical bias and con-

fidence coverage that was close to nominal or conservative. In Table 1, where the
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the mean and variance of the distribution of Y for respondents and drop-outs.

The marginal distribution of Y based on (2) is a mixture of normals, with mean

θ = µ0 + πδ1 and variance τ2 = (1 − π)σ2 + πσ2δ22 + π(1 − π)δ21 . The target

parameter is the overall population mean θ. A sample thus has n respondents

with Y measured and N −n dropouts with Y missing, where n is Binomial with

index N and probability π.

Missing values of Y were multiply imputed (with 100 imputations) using their

posterior predictive distribution, based on the correct model (2) that generated

the data, assuming in particular the correct choice of sensitivity parameters δ,

with Jeffreys’ prior distributions for the parameters φ. The resulting MI data sets

were analyzed using Rubin’s combining rules, for two choices of analysis models:

(a) the pattern-mixture model that generated the data, again with the correct

choice of δ, and

(b) the standard univariate normal model for the complete data,

Y ∼ N(θ, τ2). (3)

Tables 1 and 2 show empirical bias, bias, root mean squared error, and 95%

confidence interval coverage for the two MI analyses, over 1,000 replicate data

sets. In Table 1, we set δ2 = 1 and varied δ1 from 0 to 3, thus varying the

difference in means for respondents and dropouts. In Table 2, we set δ1 = 0 and

varied δ2 from 0.2 to 5, thus varying the differences in variances for respondents

and dropouts.

In both sets of simulations in Tables 1 and 2, Bayes inference based on the

pattern-mixture model that generated the data had small empirical bias and con-

fidence coverage that was close to nominal or conservative. In Table 1, where the
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Table 2. Empirical Bias*1,000, Root Mean Squared Error *1,000 and Confidence Interval
Noncoverage (Nominal = 50) over 1,000 simulated data sets of sample size of 50, for MI
Inferences Under (a) PMM = the Pattern-Mixture model (2) that generated the data,
with correct choice of δ, and (b) NOR = the normal complete-data model (3). δ1 = 0
and δ2 varied from 0.2 to 5.

δ2
δ1 = 0 0.2 0.5 1 2 5
Bias PMM −2 −2 −2 −2 −2
Bias NOR −2 −2 −1 −1 0
RMSE PMM 251 251 251 251 251
RMSE NOR 252 252 252 253 260
Noncov PMM 48 48 48 48 48
Noncov NOR 115 98 43 1 0

mean is being varied but the variance is held constant, Bayes inference for the

normal model yielded small empirical bias, and confidence coverage close to nom-

inal or conservative. However in Table 2, the MI inference for the normal model

had close to nominal coverage when δ2 = 1, conservative coverage when δ2 was

much less than 1, and anti-conservative when δ2 was much greater than 1. These

results are consistent with the results in Example 1 of Xie and Meng, and suggest

that analyses under the normal model are robust to sensitivity analyses that con-

cern deviations in the means between respondents and nonrespondents, but are

less robust to sensitivity analyses that concern deviations in the variances. Bas-

ing the inference on the pattern-mixture models that generated the imputations

yields more coherent results, although it deviates from current practice.
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DISCUSSION

Jerome P. Reiter

Duke University

1. Introduction

I congratulate Dr. Xie and Dr. Meng, henceforth XM, on a fascinating and

deep investigation of multi-phase inference and multiple imputation. The for-

est that they encourage us to enter is indeed intimidating, but one could not

ask for more knowledgeable and insightful guides than XM. In my discussion,

I make additional connections to multi-phase inference and offer some thoughts

on XM’s findings on multiple imputation. I do so primarily through the lens

of a government statistics agency disseminating data to the public which, as I

shall describe, is a setting full of opportunities to use multi-phase inference and

multiple imputation.

2. Multi-Phase Inference

Most government statistics agencies view disseminating data to the public

for secondary analyses as a core mission. However, agencies do not simply dump

what was collected into a public use file. Often the reported data include values

that are implausible or logically inconsistent, such as a pregnant male or married

three-year old, due to respondent or processing error. Including faulty values in a

public use file would complicate secondary analyses, as well as undermine public

trust in the quality of the data and the agency. Therefore, agencies typically

“correct” faulty values through a process known as edit-imputation, in which they

(1) blank some subset of values deemed responsible for making the record faulty,

where the subset is selected according to some (usually unverifiable) assumption

about the error-generating process, and (2) impute corrected values based on

assumptions about the distribution of error-free values; see Kim et al. (2015) for

examples of this process. Missing data usually are handled as part of the edit-

imputation routines. Essentially, missing values are blanked by the respondent

rather than the agency.

Agencies often put data through another phase of preparation before re-

leasing them as public use files. Most agencies are ethically and legally ob-
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leasing them as public use files. Most agencies are ethically and legally ob-
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ligated to protect the confidentiality of data subjects’ identities and sensitive

attributes. Simply stripping direct identifiers like names and addresses does not

suffice to protect confidentiality. Ill-intentioned individuals might be able to link

the records in the public use file to identified records in some external database

by matching on variables common to both files, such as demographic variables.

To reduce the risks of such unintended disclosures, agencies perturb confidential

values before release; see Reiter (2012) for a review of common techniques.

In many if not most datasets, agencies use both edit-imputation and redac-

tion before releasing public use files. Typically, the edit-imputation is done in

one phase, and the disclosure limitation is done in another phase, usually by a

different group in the agency. Often agencies release a single dataset constructed

from methods that imply restrictive assumptions about the distributions of the

data. Under such approaches, it is practically impossible for secondary analysts

to account for the uncertainty resulting from the data preparation phases, and,

therefore, unlikely that their inferences will be confidence valid generally.

Multiple imputation (MI), however, is ideally suited for this two-phase task.

In the first phase, the agency creates m > 1 completed datasets with all miss-

ing/faulty values filled in by MI routines. In the second phase, the agency creates

r > 1 synthetic datasets for each completed dataset, where each synthetic dataset

is generated by replacing confidential values with draws from predictive distri-

butions estimated with the corresponding completed dataset. The result is mr

released datasets, including labels indicating the nest that each synthetic dataset

belongs to. Reiter (2004) shows that this two-stage imputation procedure re-

quires a combining rule that includes three variance terms, including within-nest

and between-nest variance components. In this way, the analyst (under perfect

congeniality) can appropriately account for the uncertainty due to the miss-

ing/faulty data and due to the replacement of collected values with simulated

ones.

It is not difficult to imagine, at least conceptually, extending this nested im-

putation scheme to three or more stages, with layers and nest indicators for each

phase of a multi-phase data preparation process. This could enable valid multi-

phase inference for multi-phase data dissemination, at least under the agency’s

data preparation process and some heretofore unexplored conditions on conge-

niality. Of course, multi-stage data preparation and corresponding MI combining

rules do not solve the problems caused by uncongeniality—indeed, they make

apparent the many opportunities for mismatches in the analysis and prepara-

tion phase. The analyst’s model might be uncongenial with the edit-imputation
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model, the disclosure limitation model, or both. This suggests an important

area for research: how do we adjust multi-stage MI variance estimators to en-

sure confidence valid inferences (under the agency’s data preparation models)?

With multi-stage MI, one can imagine adjustments targeted to individual stages

or, more practically, applied to a single stage in a way that ensures sufficient

variance inflation. The survey sampling literature offers motivation for the latter

approach. Most survey analysts estimate variances in complex, multi-stage prob-

ability samples by considering only the variance in the first stage of the sampling,

ignoring variability from later stages and acting as if the data at the first stage

were sampled with replacement.

Multi-stage imputation also makes apparent the multiple opportunities for

the agency to make poor modeling decisions in the data preparation process. This

issue is a particularly pressing concern in settings where heavy data redaction is

necessary to ensure sufficient disclosure protection. There is high potential for

sizable differences in the inferences the analyst makes using the redacted data

and the inferences he or she could have made if given the agency’s data (after

missing/faulty values have been dealt with), and possibly even bigger differences

from the inferences based on God’s data. For many redaction strategies as applied

in practice, it is very difficult for analysts to know the magnitudes of these

differences for their specific analysis of interest. One solution is to let analysts

have a peek under the hood in one or more of the phases. Specifically, agencies can

provide analysts access to a verification server (Reiter, Oganian and Karr (2009))

that has the agency’s (not God’s) data and the redacted data. Analysts request

that the server run a specific analysis on both the redacted and confidential data,

and the server reports back measures that reflect the similarity of the two sets

of inferences, e.g., how far apart are the point estimates or how much do the

confidence intervals overlap. Given such feedback, analysts can decide whether

or not the results from the redacted data are of sufficient quality to publish in

the broad sense.

The verification server allows analysts to touch data from an earlier phase

in the data preparation, enabling them to assess how the actions of a later phase

impact their inferences. This strategy could be applied for other types of phases

in multi-phase data preparation. To use one of XM’s examples, suppose that an

agency releases a constructed variable comprising a sum of q responses, but the

analyst wishes to define the variable using p < q responses. The analyst could

request that the server re-run the analysis using the newly defined variable. Such

“earlier-phase sensitivity analyses” also could be used to assess the impact of
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different ways of handling missing values, as I describe at the end of the next

section.

3. Multiple Imputation

XM’s theoretical insights on MI solidify the rationale for long-revered advice

given to imputers (make the imputation models as general as possible) and ana-

lysts (use sensible complete-data estimators). The examples used to demonstrate

these conclusions involve parametric models, for which estimators with the de-

sirable property of self-efficiency are known to exist. Often, however, analyses of

public use files are design-based, for example, Horvitz and Thompson (1952) es-

timators of means and totals. It is not clear how well design-based estimators fit

into the theoretical framework. It is well known that there is no minimum vari-

ance unbiased estimator in finite population surveys (Godambe (1955)). Given

this, presumably some design-based estimators could fail to satisfy self-efficiency

(even assuming a sensible re-weighting of the observed cases) in some finite popu-

lations. This suggests an intriguing question: is there any hope of general results

on the consistency of the MI variance in design-based estimation? Certainly

simulation evidence suggests that MI can yield consistent variance estimators

and confidence valid inferences, provided that the survey design is accounted for

in the imputation modeling and inferences (e.g., Reiter, Raghunathan and Kin-

ney (2006)), but this seems a quite important trail to follow in the multi-phase

inference forest.

XM’s suggestions of doubling the MI variance and adding the standard devi-

ations of the variance components are brilliant. They offer insurance against

under-estimation of variance (assuming the imputation model accurately de-

scribes the data). Suppose, however, that the complete data comprise n = 1,000

randomly sampled individuals from a large population with unknown mean θ, and

the missingness mechanism blanks two randomly selected values. In this case,

the true repeated sampling variance of θ̄∞, the MI point estimate of the un-

known θ, generally is very close to the complete data variance; that is, the true

between imputation variance E(B∞) generally is much smaller than the true

within-imputation variance E(Ū∞), where the expectations are over repeated

draws from God’s data. In this case, doubling the estimated MI variance (and

to a lesser extent adding the standard deviations of the MI variance terms) is

a heavy price to pay, as the realized Ū∞ by itself is likely to be a reasonably

accurate estimate of the MI variance. There may be ways to refine the rule of
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different ways of handling missing values, as I describe at the end of the next
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3. Multiple Imputation

XM’s theoretical insights on MI solidify the rationale for long-revered advice

given to imputers (make the imputation models as general as possible) and ana-

lysts (use sensible complete-data estimators). The examples used to demonstrate

these conclusions involve parametric models, for which estimators with the de-

sirable property of self-efficiency are known to exist. Often, however, analyses of

public use files are design-based, for example, Horvitz and Thompson (1952) es-

timators of means and totals. It is not clear how well design-based estimators fit

into the theoretical framework. It is well known that there is no minimum vari-

ance unbiased estimator in finite population surveys (Godambe (1955)). Given

this, presumably some design-based estimators could fail to satisfy self-efficiency

(even assuming a sensible re-weighting of the observed cases) in some finite popu-

lations. This suggests an intriguing question: is there any hope of general results

on the consistency of the MI variance in design-based estimation? Certainly

simulation evidence suggests that MI can yield consistent variance estimators

and confidence valid inferences, provided that the survey design is accounted for

in the imputation modeling and inferences (e.g., Reiter, Raghunathan and Kin-

ney (2006)), but this seems a quite important trail to follow in the multi-phase

inference forest.

XM’s suggestions of doubling the MI variance and adding the standard devi-

ations of the variance components are brilliant. They offer insurance against

under-estimation of variance (assuming the imputation model accurately de-

scribes the data). Suppose, however, that the complete data comprise n = 1,000

randomly sampled individuals from a large population with unknown mean θ, and

the missingness mechanism blanks two randomly selected values. In this case,

the true repeated sampling variance of θ̄∞, the MI point estimate of the un-

known θ, generally is very close to the complete data variance; that is, the true

between imputation variance E(B∞) generally is much smaller than the true
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thumb by tuning adjustments to the magnitude of B∞. I do not have a sugges-

tion for how to do so, but this seems a promising path to explore. Alternatively,

and more abstractly, perhaps one could give up on always bounding the true

MI variance in favor of a rule that works (results in a conservative estimate of

variance) a theoretically known, high percentage of times. Effectively, one could

make confidence statements on whether or not confidence validity holds.

This speculation raises a philosophical question. Should confidence validity

always be the primary desideratum, and if not when should we eschew it? In

settings like the one above, the coverage rate of the usual MI confidence interval

(without doubling the estimated variance) may be close enough to 95% that it is

worth sacrificing a slight failure of confidence validity for a much shorter interval

length. After all, the goal of the inference is to learn a plausible region for θ;

a slightly too short interval based an unbiased estimate of θ might be deemed

more useful for decision-making than a very wide, confidence valid interval based

on the same unbiased estimate of θ. This suggests evaluation of MI confidence

intervals (not just θ̄∞) by means of decision-theoretic frameworks rather than

confidence validity alone.

Finally, in my experience, very low coverage rates in MI confidence inter-

vals arise more often from the imputation procedure generating bias in θ̄∞ than

from bias in the MI variance estimator. I have seen this especially in default

applications of MI methods, for example, using main effects only in parametric

conditional models in MI by chained equations, which can force convenient and

possibly inaccurate distributions on the imputed values. As with the analysis of

heavily redacted data, it is generally quite difficult for analysts to determine how

the imputation model assumptions impact their particular inferences of interest

from the released data alone.

To help analysts make such assessments, agencies could adapt verification

server approaches. For example, the agency can construct a gold standard dataset

out of the complete cases, punch holes in it according to a mechanism that closely

mimics the distribution of missingness patterns in the collected data D, run the

imputation procedure (estimated fromD) to create a large number k of completed

datasets, and refit the specific analysis of interest on the completed datasets. The

server can repeat this process many times, each time computing whether or not

θ̄k ± 1.96
√

(1 + 1/k)Bk contains the point estimate from the complete data, or

computing other measures based on an analyst-specified loss function. This is

not an exact measurement of the impact of the imputation phase on inferences

from D, but it at least offers the analyst some insight on this potential impact.
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More interestingly, the analyst might be able to use output from the server to

make a “phase correction” to the inferences. For example, and writing generically,

rather than use θ̄∞ and the doubled (or summed standard deviations) MI variance

estimator, the analyst could make (Bayesian) inferences for θ using

(θ̄∞ + δ)− θ ∼ N(0, 2(B̄∞ + Ū∞)), (3.1)

δ ∼ f(·), (3.2)

where the distribution f(·) is based on the results of the repeated sampling study

done by the server. For example, when the output from the server suggests the

imputations could plausibly generate a bias for θ in the range (α1, α2), the analyst

can put reasonably high probability over that range when setting f(·). In this

way, agencies can help analysts do a better, albeit not perfect, job of propagating

uncertainty in multi-phase inferences.
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REJOINDER

PLEASE VISIT THE WILD ARBORETUM

OF MULTI-PHASE INFERENCE

Xianchao Xie and Xiao-Li Meng

Harvard University

This was not an easy article to write or to publish. As with most statistical

theory, the difficulty was not in proving theorems, but in formulating the relevant

ones that can convey statistical insights and provide practical guidelines. A

further challenge for multi-phase inference lies in finding the most intuitive and

simplest ways to illustrate and explain the intricate relationships among different

phases and their consequences, especially those that are counter-intuitive. It

therefore took us a while to pave an entry path into the multi-phase forest, and

it took even longer for us to convince enough visitors that it is not a dangerous

jungle but rather a wild arboretum with many flowers and fruits, some of which

are rather low-hanging.

We are therefore very grateful to the editors of Statistica Sinica for organizing

a general tour of this relatively new landscape of statistical foundation, and to

our eight brave VIPs (Very Insightful Participants) of the tour. Judging from

their comments, we see that we have had a mixed success (or failure) in our

attempt to provide an informative and enticing tour guide. Some shared our

desire to greatly explore this landscape because the current single-phase theory

does not address the increasingly common multi-phase reality. We particularly

thank Banks-Peña, Draper and Reiter for their endorsements with additional

examples going beyond the multiple imputation setting. Others indicated that

we need to do a better job to spell out the practical relevance of our findings

(e.g., Little-Zhou) and to demystify the complex world with multiple Gods and

parties (Desmond and Raghunathan). Below, by addressing some major points

raised by the VIPs, we hope to improve and enhance our tour guide, although

we are mindful that multi-phase reality will always be more complex than any

single brochure can possibly capture.

1. How Valid is Our Concept of Validity?

Several discussants (e.g., Desmond, Draper, Yang-Kim) raised the question

of the usefulness of the concept of confidence validity, which permits a confi-
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dence procedure to cover more than its nominal coverage. We particularly thank

Desmond for a very helpful investigation of the origin of, and possible motiva-

tions for, Neyman’s definition of this concept; Draper’s personal touch, being

one of Neyman’s academic grandsons, is also appreciated. We also agree with

Desmond that historically the allowance for over-coverage was mostly motivated

by its mathematical convenience to deal with discreteness. Nevertheless, it re-

flected an implicit preference of Neyman and many of our founding generations

to rather err on over-covering than under-covering. For practical purposes, it is

trivial to come up with many examples of harmful consequences of being either

overly confident or inadequately confident. However, statistical inference is not

a symmetric game. It is a game of exclusion and contradiction, not inclusion or

confirmation.

Regardless of whether our information comes from a (reliable) prior or data or

both, we use inferential tools to sharpen our inference. That is, we reduce the re-

gion of plausible states of our inferential target by excluding those pre-inferential

states that are now deemed to be implausible because they have reached a critical

level of conflict with available information, as determined by a criterion specified

by our inferential procedure. From this perspective, over-covering is simply a

necessary step to ensure that the actual exclusion criterion used is in itself not

in conflict with what is called for by our procedure. That is, we exclude a target

state only when we are sure that it has satisfied the exclusion criteria we adopted;

otherwise we have to give it the benefit of doubt. Over-covering is therefore not

as much an issue of being conservative, but rather a means to ensure rigorousness

and hence replicability.

Indeed, the consideration of replicability of research is a compelling reason

to prefer overestimating the uncertainties in our inference, which typically im-

plies over-coverage, than underestimating them, when the exact assessment (and

hence exact coverage) cannot be achieved. Exact assessment, such as under

perfect normality, is never achieved in practice – just considering all kinds of

errors and approximations we make, from data defects to modeling frailties to

computational corner-cutting. Much of the current crisis of non-replicable re-

search in sciences, especially in the medical, life and social sciences, is due to our

asymmetric incentive system, which effectively encourage researches to rush into

“discoveries” based on quantitative evidence that does not stand up to scrutiny.

Ignoring or under-assessing uncertainties, due to a whole host of mishandling,

e.g., selection bias, multiple comparisons, over-fitting, etc., is a common cause.

Handling model mis-specifications, for which uncongeniality can be viewed
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as a special (though unavoidable) case, via variance doubling is not a universal

recipe. But it is the simplest and most applicable way of combating the common

tendency of underestimating actual uncertainty, leading to many falsely signif-

icant results. Surely there will be cases where variance doubling can result in

missed opportunities, due to loss of power, for example, as in Yang-Kim’s simu-

lation. This could have rather serious consequences, such as a delayed release of

life-saving medication, and therefore we must be particularly cautious of applying

it in those cases where false negative has graver consequences than false positive.

Nevertheless, if a more sophisticated and justifiable approach is unavailable or

non-implementable, then variance doubling is likely the lesser of the evils, the

other being to ignore the issue (say) un-congeniality all together. This is be-

cause variance doubling has the added benefit of at least partially “covering” the

omissions of other kinds, such as failing to take into account model uncertainty.

Raghunathan raised a deeper question about validity for multi-phase infer-

ences, especially in the context of multiple imputation for public data files, where

there are potentially many analysts. Even assuming every analyst is perfectly

trained to do absolutely the best job based on the information s/he has, we still

have many model classes to contemplate and each one can lead to its own version

of validity, as Raghunathan’s “x-analyst” example illustrates, where x can take

on many values. Which validity were/are we talking about then?

As argued in Liu and Meng (2016), to define validity meaningfully we first

need to determine the relevant replication setting, over which we can then deter-

mine whether some properties are replicable. In a multi-phase setting especially

with multiple analysts, there are multiple ways of defining meaningful replica-

tions, including the marginal, conditional, and joint ones articulated by Raghu-

nathan. Furthermore, shall we treat (some of) the pre-analysis phases, such as an

imputation phase, fixed, or should it be a part of our replications? As we argued

in the paper, whereas it is natural to consider all kinds of replications, currently

we are able only to obtain useful theory under the “grand replications”, that is,

with respect to God’s model that generates the variations for all phases. Theories

under more restrictive replications, especially permitting mis-specifications, are

challenging. But we hope the more challenging a problem might be, the more

enticing it is for adventurous minds.

2. How Efficient is Our Formulation of Self-Efficiency?

Yang-Kim is correct that self-efficiency can easily be violated by very com-
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mon procedures, such as ordinary least squares (applied to heteroscedastic mod-

els), as we demonstrated in the on-line supplementary appendix, borrowing an

example from Meng and Xie (2014). Yang-Kim is also correct that when self-

efficiency is violated, it is possible to recast the problem as an un-congeniality

issue, because the latter is formulated via model embedding. A self-inefficient

procedure with respect to one model can be self-efficient with respect to another;

the model here includes both the process that generates the original compete

data and the missing-data mechanism.

The examples in Yang-Kim also provide a good demonstration of the need

to be explicit about the procedure being evaluated and with respect to what

models—or more generally replications (see Liu and Meng (2016))—the evalua-

tion is made. If we understand the notation in Yang-Kim correctly, we surmise

that the commonality of their three examples is as follows. We have i.i.d. triplets

{(Yi, Xi, Ri)}ni=1, where Yi is the outcome subject to missingness, Xi is the co-

variate, which is always observed, and Ri is the missing-data indicator, taking

value one when Yi is (fully) observed and zero otherwise. Our estimand θ is the

marginal mean of g(Y ) for some pre-specified g, and our estimator is the simple

average over the observed sample:

θ̂obs =

∑n
i=1Rig(Yi)∑n

i=1Ri
. (2.1)

We emphasize that the concept of self-efficiency is defined for the observed-data

procedure, not the complete-data procedure, as stated in Yang-Kim,

θ̂com =
1

n

n∑
i=1

g(Yi), (2.2)

because θ̂obs trivially specifies θ̂com as a special case when all Ri = 1, but clearly

not vice versa.

The usefulness of θ̂obs as defined in (2.1) is well-known to depend on the miss-

ing data mechanism (MDM). Yang-Kim invoked the safe assumption of MAR,

but upon checking the cited article by Yang and Kim (2016), it seems Yang-

Kim’s assumption is a more restrictive (but common) one, that is, Yi and Ri

are conditionally independent given the covariate Xi, for all i = 1, . . . , n. Under

such an assumption, it is easy to show that θ̂obs is unbiased for θ, and we can

rely on the asymptotic result given by Theorem 4 of our paper to determine the

self-efficiency of θ̂obs. However, for the linear form (2.1), we can derive exact

results for any sample sizes, which can render statistical insights without any

distraction of approximation.

1587MULTIPLE IMPUTATION FROM A MULTI-PHASE INFERENCE PERSPECTIVE



MULTIPLE IMPUTATION FROM A MULTI-PHASE INFERENCE PERSPECTIVE 5

Specifically, by the definition of self-efficiency as given in Section 6 of our

paper, θ̂obs is self-efficient with respect to a given MSE norm, which is the same

as Var when θ̂obs is unbiased, if and only if θ̂com is orthogonal to θ̂obs− θ̂com, that

is,

Cov(θ̂com, θ̂obs − θ̂com) = 0. (2.3)

But the linearity of (2.1) renders the linear decomposition

θ̂com = rθ̂obs + (1− r)θ̂mis, where θ̂mis =

∑n
i=1(1−Ri)g(Yi)∑n

i=1(1−Ri)
(2.4)

and r =
∑n

i=1Ri/n is the proportion of the observed data size. Suppose our

MSE calculation is conditioning on the missing-data pattern, that is, the values

of {Ri}ni=1. Then under the conditional independence assumption of Yi and Ri

given Xi, Cov(θ̂obs, θ̂mis) = 0. Consequently, (2.3) is equivalent to

rVar(θ̂obs) = Var(θ̂com) ⇐⇒ Var(θ̂obs) ∝
1

nobs
. (2.5)

That is, for the sample average (2.1) as an estimation procedure, it is (exactly)

self-efficient, with respect to the MDM as previously specified, if and only if the

variance of the procedure follows (exactly) the well-known inverse-sample-size

rule (for all samples sizes or a sample size sufficiently large). But this is trivially

true when Yi’s are i.i.d.

We were therefore puzzled initially when we read Yang-Kim’s statement that

(2.1) is self-efficient only in the first case of their first example. Since (2.5) is a

sufficient and necessary condition (assuming Cov(θ̂obs, θ̂mis) = 0), we know that in

order for this statement to hold, we must consider a different variance operation

for which (2.5) will hold only for the first case of Yang-Kim’s first example.

Given Yang-Kim’s regression-like setting, the obvious alternative choice would

be the conditional variance Var(θ̂obs| �X), where �X = (X1, . . . , Xn). Indeed, for

this choice of replications (i.e., with �X fixed), Var(θ̂obs| �X) is free of �X for the

first case in Yang-Kim’s Example 1, where g(Y ) = Y and only its conditional

mean depends on X, not its conditional variance. For other cases in Yang-Kim,

the conditional variance of g(Y ) given X is not free of X either because g(Y ) is

not linear in Y (e.g., g(Y ) = I(Y < C) as in their Example 1) or g(Y ) is linear

in Y , but E(Y |X) itself is not linear in X (e.g., the log-linear example in their

Example 3, where E(Y |X) = exp{X�β + σ2/2})).
However, even if we adopt this conditional evaluation when the estimand

is defined unconditionally, we still cannot conclude that the procedure in Yang-

Kim’s Example 2 is not self-efficient because this example is a special case of
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the first case of their Example 1, by setting the regression intersection to be

zero. We therefore wonder if Yang-Kim used some other variance operation for

determining the procedure (2.1) is self-efficient in the first case of Example 1,

but not for a special case of it as in Example 2.

Our puzzle notwithstanding, Yang-Kim’s general message is the one that

we share, that is, one should not take self-efficiency for granted. Fortunately,

there are other ways to ensure the consistency of Rubin’s variance combining

rules, as Chen reported. Moreover, as we demonstrated in Section 8 of our

paper, it is possible for uncongeniality to effectively cancel self-inefficiency to

produce a consistent variance estimator by Rubin’s combining rule, highlighting

the intricate nature of multi-phase inference.

3. EM, MI, and FI – Are They Cousins?

Yang-Kim also raised the issue of the links between MI to EM and to Frac-

tional Imputation (FI). As we stated in Section 4.2 of our paper, “performing

MI with an infinite number of imputations (and with the plug-in predictive im-

putation) is the same as carrying out the final EM iteration.” This is because

the E-step of the EM algorithm evaluates the conditional expectation of the

complete-data score function S(θ;Zcom) with respect to p(Zmis|Zobs, θ = θ(t)),

where Zcom = {Zobs, Zmis} with Zobs and Zmis denoting respectively the observed

data and missing data. That is, at the (t + 1)th iteration of EM, we utilize the

so-called Q-function in the EM literature (see van Dyk and Meng (2010) for an

overview):

Q(θ|θ(t)) = E
[
S(θ;Zcom)|Zobs, θ = θ(t)

]
. (3.1)

Therefore, at the last iteration of EM, we computeQ(θ|θ∗), where θ∗= limt→∞ θ(t).

This is equivalent to using an infinite number of draws from p(Zmis|Zobs, θ = θ∗),

that is, an infinite number of imputations from the “plug-in” predictive posterior

to perform multiple imputation inference.

Multiple imputation, although is closely related to EM as a method to deal

with missing data problems, is designed to handle more general situations where

subsequent analysis with complete data can use any valid estimating method in

addition to MLE. For example, if the subsequent complete-data analysis uses an

estimating equation

U(θ;Zcom) = 0, (3.2)

then, as shown in our paper, the point estimator from MI is asymptotically
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equivalent to solving the following observed-data estimating equation:

E(U(θ;Zcom)|Zobs) = 0, (3.3)

where the conditional distribution p(Zmis|Zobs) is the predictive distribution of

Zmis from a Bayesian model, which is also asymptotically equivalent to its fre-

quentist’s counterpart

E(U(θ;Zcom)|Zobs; θ = θ∗) = 0, (3.4)

where θ∗ is the observed-data MLE.

The fractional imputation, as described in Yang and Kim (2016), seems to

accomplish the same task as MI but via importance sampling. Specifically, it

seeks to approximate (3.4) by

E(U(θ;Zcom)|Zobs; θ = θ∗)) ≈
∑
j

wj · U(θ;Z(j)
com|Zobs; θ = θ∗) = 0, (3.5)

where wj ∝ p(Z
(j)
com|Zobs; θ = θ∗)/h(Z

(j)
com|Zobs) is the (standardized) weight of the

importance sampling with h(Z
(j)
com|Zobs) as its (pre-chosen) proposal distribution.

The accuracy of this weighting approach, as is well-understood, depends on the

choice of the proposal.

If our understanding of FI is correct, then there is a link between FI to

another cousin in the big family of missing-data approaches, that is, Stochastic

EM (SEM; see Celeux, Chauveau and Diebolt (1996); not to be confused with

the SEM algorithm of Meng and Rubin (1991) for computing variance estima-

tors). SEM uses Monte Carlo draws from p(Z
(j)
com|Zobs; θ = θ(t)) to form a Monte

Carlo estimator of (3.1), and then it iterates just as the standard EM. Because

the resulting iterative sequence now depends on noise introduced by the Monte

Carlo draws, it is stochastic. Clearly we can introduce importance sampling in

approximating (3.1) as well, where the proposal density can vary with iteration—

preferred for statistical efficiency, or fixed at some h(Z
(j)
com|Zobs)—preferred for

computational efficiency, or a hybrid of them to achieve a sensible compromise.

In that sense, SEM to FI is like EM to MI, as FI and MI can be viewed as the

final iteration of SEM and EM, respectively.

Another closely related cousin is the ES algorithm investigated by Elashoff

and Ryan (2004), which replaces (3.4) by

E(U(θ;Zcom)|Zobs; θ = θ(t)) = 0, (3.6)

and then solves (hence the “S” in “ES”) it to obtain θ̂(t+1). This generalizes the

EM algorithm for maximizing likelihood estimation to solving a more general

estimating equation with incomplete data. A special case of ES is the iterative
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Projection-Solution algorithm for quasi-likelihood in Heyde and Morton (1996),

as Desmond cited; we also fully agree with Desmond that projection of the es-

timating equation, as in (3.6), is more powerful and fruitful than projection of

estimators, at least for finite-sample properties. MI then can be viewed as the

final iteration of ES, but with the Expectation step carried out via Monte Carlo.

4. A Clean Theory of the Messy World of Pre-Processing?

A common theme of the multi-phase examples provided by the VIPs is that

they are all messy. Some are necessarily so, such as protecting confidentiality,

as outlined by Reiter, because it would forever be a struggle between protecting

privacy and preserving information. We simply cannot have both: complete

protection and full information. Others are avoidable, such as those unsettling

zeros produced by the team that did not share the same VP as Draper. But

the messiest of all are those cases where the analysts have little idea about what

was done to their data, which is rather the rule than the exception, as in many

cases of pre-processing. Could then there be any “clean” theory to deal with

such messiness?

Draper outlined the idea of a Bayesian composition model, borrowing the

notion of function composition, f2(f1(D))), where D denotes data, asking how

fi’s should be constructed to preserve as much information as possible. A similar

question was asked in Blocker and Meng (2013), in the context of distributed pre-

processing, that is, what the analyst received is in the form of {gj(Dj)}Jj=1 from

a system with J pre-processors (e.g., one for each experiment). The question

then is what are the computationally economical and yet information-preserving

choices of gj , j = 1, . . . , J? We can see clearly the competing nature of our goals:

computationally, the most economical choice would be (say) to set all gj ≡ 0,

which is ridiculous as it preserves no information. On the other hand, choosing

gj(Dj) = Dj , j = 1, . . . , J will preserve whatever information is contained in the

data, but it achieves no computational saving or any other kind of desirable pre-

processing (such as privacy protection). Furthermore, preserving information is

not a meaningful requirement without specifying the meaning of information or

for what purposes (e.g., estimation? testing? prediction?).

But even in the classic context of sufficiency with respect to a well-specified

parametric family, it is not easy at all to obtain a “clean” theory for the most

economical lossless data compression. Blocker and Meng (2013) obtained suffi-

cient conditions, as well as necessary conditions, but not sufficient and necessary

8 XIANCHAO XIE AND XIAO-LI MENG

Projection-Solution algorithm for quasi-likelihood in Heyde and Morton (1996),

as Desmond cited; we also fully agree with Desmond that projection of the es-

timating equation, as in (3.6), is more powerful and fruitful than projection of

estimators, at least for finite-sample properties. MI then can be viewed as the

final iteration of ES, but with the Expectation step carried out via Monte Carlo.

4. A Clean Theory of the Messy World of Pre-Processing?

A common theme of the multi-phase examples provided by the VIPs is that

they are all messy. Some are necessarily so, such as protecting confidentiality,

as outlined by Reiter, because it would forever be a struggle between protecting

privacy and preserving information. We simply cannot have both: complete

protection and full information. Others are avoidable, such as those unsettling

zeros produced by the team that did not share the same VP as Draper. But

the messiest of all are those cases where the analysts have little idea about what

was done to their data, which is rather the rule than the exception, as in many

cases of pre-processing. Could then there be any “clean” theory to deal with

such messiness?

Draper outlined the idea of a Bayesian composition model, borrowing the

notion of function composition, f2(f1(D))), where D denotes data, asking how

fi’s should be constructed to preserve as much information as possible. A similar

question was asked in Blocker and Meng (2013), in the context of distributed pre-

processing, that is, what the analyst received is in the form of {gj(Dj)}Jj=1 from

a system with J pre-processors (e.g., one for each experiment). The question

then is what are the computationally economical and yet information-preserving

choices of gj , j = 1, . . . , J? We can see clearly the competing nature of our goals:

computationally, the most economical choice would be (say) to set all gj ≡ 0,

which is ridiculous as it preserves no information. On the other hand, choosing

gj(Dj) = Dj , j = 1, . . . , J will preserve whatever information is contained in the

data, but it achieves no computational saving or any other kind of desirable pre-

processing (such as privacy protection). Furthermore, preserving information is

not a meaningful requirement without specifying the meaning of information or

for what purposes (e.g., estimation? testing? prediction?).

But even in the classic context of sufficiency with respect to a well-specified

parametric family, it is not easy at all to obtain a “clean” theory for the most

economical lossless data compression. Blocker and Meng (2013) obtained suffi-

cient conditions, as well as necessary conditions, but not sufficient and necessary

,

1591MULTIPLE IMPUTATION FROM A MULTI-PHASE INFERENCE PERSPECTIVE



MULTIPLE IMPUTATION FROM A MULTI-PHASE INFERENCE PERSPECTIVE 9

conditions for such g′js, j = 1, . . . , I. A simple example suffices to illustrate

the difficulty. Suppose I = 1 and the data D1 = {Yj}Jj=1 are i.i.d. Poisson

observations with mean θ. The pre-processor however chooses the convenient

(and very wrong) model N(µ, 1), and hence he preserves its sufficient statistic

Ȳn =
∑n

i=1 Yi/n. However, since Ȳn is also the sufficient statistic for θ under

the Poisson model, there is no information lost even if the pre-processor used

an entirely wrong model, which does not even share the same support with the

correct model. This indicates the difficulties with establishing if-and-only-if con-

ditions for pre-processing, since we can obtain the same results with very different

models.

The problem becomes even harder when sufficient statistics are difficult to

come by, as Banks-Peña questioned, and when information in the data is hard to

quantify; and most challengingly, when the pre-processor is not well-informed of,

or just unable to model, the purposes of analyses by down-stream users. But we

hope these challenges will help to entice those with strong adventurous spirits to

join us in our search for a “clean theory” about pre-processing. By clean theories

we mean those that can either shed lights on the treacherous paths, or those that

can lead to practical and effective (though not necessarily optimal) procedures,

such as our variance doubling rule.

5. Is Bias-Variance Trade-Off also Critical for Multi-Phase Inference?

Yes, very much so. Yang-Kim’s question on robustness of modeling, by

analysts and by imputer, lies at the heart of statistical inference, and to answer

it sensibly one must have full grasp of one of a very few fundamental principles

of statistics, namely, the ubiquity of robustness-efficiency trade-off, a.k.a, bias-

variance trade-off. “Some questions” raised by Banks-Peña, especially the last

one, emphasized the very trade-off. Chen’s emphasis on paying attention to

(analysis) model selection touches on the same issue, because the most critical

balancing act of any model selection procedure is to ensure capturing replicable

signals but not to overfit the idiosyncratic individualities. Not incidently, this

need for balancing presents a grand challenge for building a framework toward

accumulating statistical evidence underlying individualized inference/prediction,

but that is the subject for another hard-to-write paper. An initial attempt was

made in Meng (2014) for establishing a multi-resolution framework supporting

individualized inference, as one of the framework trio. (The other two cover

multi-phase inference, for which our current paper is a sequel, and multi-source
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inference, as in Meng (2017).)

Both Banks-Peña and Desmond raised the possibility of an all-encompassing

Bayesian modelling strategy for multi-phase inference. Indeed any (serious)

Bayesian can, and probably is compelled to, model the entire multi-phase as

a whole, which has the added benefit of being coherent. But then there is a bias-

variance trade-off. Given the uncongenial nature of the multi-phase paradigm,

literally and technically, such modeling would necessarily need critical assump-

tions that are known to be false or minimally cannot be confirmed by reality,

because otherwise there would not be any uncongeniality in the first place. And

even seemingly “good” pre-processing models can (and often) lead to provably

undesirable results, as Banks-Peña’s Carlo-Bob example further illustrated. This

is what makes the multi-phase inference paradigm interesting, intriguing, and

inspiring. The many examples from government statistics agencies, especially

under the mandate of disclosure protection, as succinctly summarized by Re-

iter, and from industrial and business sectors, as vividly illustrated by Desmond,

highlighted the urgent need of developing this paradigm.

Indeed, as Desmond correctly recognized, ultimately the multi-phase paradigm

needs to handle an unholy trinity: missingness, misspecification, and uncong-

nialty. In comparison to this grand goal, what we presented in the current paper

is only one of many needed building blocks. We are therefore humbled by the

kind encouragements from the VIPs, especially the extremely flattering endorse-

ment from Banks-Peña, Chen, Desmond and Reiter. We also particularly thank

Draper for his RSS style vote for thanks, regardless of whether he would propose

or second, especially because initially we did plan to seek such a vote. Ultimately,

our long journey of dealing with uncongenality led us to the welcoming arms of

Statistica Sinica, to which we are deeply grateful.
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