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Abstract: Haplotype, or the sequence of alleles along a single chromosome, has

important applications in phenotype-genotype association studies, as well as in

population genetics analyses. Because haplotype cannot be experimentally assayed

in diploid organisms in a high-throughput fashion, numerous statistical methods

have been developed to reconstruct probable haplotype from genotype data. These

methods focus primarily on accurate phasing of a short genomic region with a small

number of markers, and the error rate increases rapidly for longer regions. Here

we introduce a new phasing algorithm, emphases, which aims to improve long-

range phasing accuracy. Using datasets from multiple populations, we found that

emphases reduces long-range phasing errors by up to 50% compared to the cur-

rent state-of-the-art methods. In addition to inferring the most likely haplotypes,

emphases produces confidence measures, allowing downstream analyses to account

for the uncertainties associated with some haplotypes. We anticipate that emphases

offers a powerful tool for analyzing large-scale data generated in the genome-wide

association studies (GWAS).

Key words and phrases: Expectation maximization, graphical model, haplotype,

phasing.

1. Introduction

The term haplotype refers to the combination of alleles at multiple loci along

a chromosome. In population genetics studies, haplotype data provide richer in-

formation regarding the shared genealogical history between two chromosomal

segments than genotype at each marker separately. Thus, genome-wide pattern

of haplotype similarity has been used to generate fine-scale delineation of pop-

ulation structure and relationship between individuals (Lawson et al. (2012)).

Furthermore, haplotype data have been used to detect recombination hotspots

as well as signature of recent positive selection; for example, the extended haplo-

type homozygosity test (EHH), one of the most widely used test for detecting

select sweep, is based on comparing the observed length of a haplotype carrying

a putatively beneficial allele to its expected length under neutral evolution
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(Myers et al. (2005); Sabeti et al. (2002)). Despite the usefulness of haplotype

information, most current genomic technologies generate genotype data, or un-

ordered pairs of alleles. Although new sequencing techniques hold promise to

directly assay haplotypes, these methods currently are not amenable for large-

scale genetic studies (Yang, Chen, and Wong (2011); Kitzman et al. (2011); Fan

et al. (2011)). While reconstructing haplotypes from genotypes is straightforward

in some special settings (e.g., in the presence of relatives, in sperm, or for X chro-

mosomes in males), statistical inference of haplotype from autosomal genotype

data with no known relatives is challenging.

The work presented here is motivated by two recent studies. Using data

in a cohort of 35, 528 Icelandic individuals genotyped by deCode, Kong et al.

(2008) demonstrated that the accuracy of haplotypes inferred by the commonly

used approaches (such as FastPHASE described below) are limited to a short

range: the error rate rise to 30% for phasing a region of 6.4Mb. These authors

proposed a novel long-range phasing method (LRP) that is based on the rationale

that, in a large sample, some individuals may be close relatives, such as second

cousins. The LRP implements a heuristic algorithm that identifies ”surrogate”

parents, who share at least one allele identical-by-state (IBS) with the proband

over an extremely long region (e.g., 1, 000 consecutive SNPs). The phasing of the

proband are inferred by constructing the two obligatory haplotypes that must be

shared by his/her surrogate parents. The LRP method was remarkably successful

for the deCode sample considered in Kong et al.: for the 10Mb MHC region

on chromosome 6, 87% of the individuals can be fully phased, and 7% of the

remaining individuals can be phased for 90% of the heterozygous sites; overall,

93.7% of the heterozygous sites can be phased unambiguously. However, in many

human populations, randomly sampled and unrelated individuals are on average

much less closely related than they are in the Icelandic population. As a result,

the LRP method does not apply because many individuals find no surrogate

parents in the sample, unless a substantial fraction of the population is sampled.

Nonetheless, the LRP method offers a powerful intuition, which we aim to capture

in the current work.

A second study that motivated our research is Higasa et al. (2009), who geno-

typed 100 haploid Japanese genomes from complete hydatidiform moles (CHM)

that arise when an empty egg with no nucleus is fertilized by a normal sperm.

In their search for regions that harbor signature of recent positive selection, the

authors found that accurate haplotype, derived from CHM or trio-phased chro-

mosomes, can identify extended haplotype sharing that is obscured in statistically

inferred haplotypes. These results underscore the needs to improve accuracy in

existing statistical methods for haplotype inference.

In the next section, we provide a brief overview of existing phasing algo-

rithms. Section 3 presents a new approach, emphases that is aimed to improve
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long range haplotype construction using unrelated genotype data. The method

is designed to analyze dense genotype data in large samples, such as those gen-

erated in GWAS. In assessing the performance of the proposed method (Section

4), we make use of a unique cohort of 492 parent-offspring trios that enable

unambiguous determination of haplotypes at a majority of sites.

2. Background and Existing Phasing Algorithms

Numerous methods have been developed to infer haplotypes. The method

of Clark (1990) begins by identifying a pool of unambiguous (homozygous) in-

dividuals, and phases the remaining individuals based on a parsimony heuristic

that seeks to minimize the total number of distinct haplotypes in the sample.

For a small number of linked markers, multinomial-based models fitted by the

Expectation-Maximization (EM) algorithms can be quite effective (Excoffier and

Slatkin (1995); Hawley and Kidd (1995); Long, Williams and Urbanek (1995)).

The partition-ligation (PL-EM) algorithm of Niu et al. (2002) was proposed to

accelerate computation and to keep the EM algorithm from becoming trapped in

poor local modes. These methods perform reasonably well in identifying common

haplotypes. However, the multinomial model is inappropriate for rare haplotypes,

which is a serious weakness because for any fixed sample size of individuals, a

majority of haplotypes become rare or unique as the number of markers increases

– either by increasing marker density or by expanding the genomic region.

An important feature of the phasing problem, which was ignored by the

early methods, is that all haplotypes are related through a genealogy; as such

a novel haplotype that resembles a common haplotype is more plausible than

one that resembles no other observed haplotype. This intuition motivated the

coalescent-based Bayesian approach in the program, PHASE ( Stephens, Smith and

Donnelly (2001); Scheet and Stephens (2005)). Informally, the rationale that un-

derlies PHASE can be understood using a simple example. The HapMap phase III

project genotyped 50 parent-offspring trios from the Yoruba population in Nigeria

(YRI); the trio relationship allows the accurate phasing of the 200 parental hap-

lotypes. How could these haplotype templates be used to phase a new individual

unrelated to any of the HapMap trios? PHASE seeks the most plausible config-

uration, in which the new haplotypes are derived from the HapMap haplotype

templates through recombination and (rare) mutation events. To phase multiple

individuals in the absence of an appropriately known haplotype templates, PHASE

aims to jointly model all unobserved haplotypes. PHASE implements a Markov

Chain-Monte Carlo (MCMC) algorithm which constructs a Markov chain with

the stationary distribution corresponding to the desired posterior distribution of

the haplotypes given genotypes. Each step of the MCMC algorithm samples a

pair of haplotypes for an individual; the likelihood of these proposed haplotypes
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is computed based on their similarities to the putative haplotypes of other indi-

viduals, which serve as haplotype templates and are treated as known without

error. Novel haplotypes arise by recombinations and mutations in the observed

haplotypes at rates that are determined by a population genetic model and coa-

lescent. It is useful to observe that the haplotype templates idea in PHASE can be

thought of as an elegant generalization of “surrogate” parents in LRP, but the

mosaic model allows these surrogate parents to contribute haplotype segments

of any length. In many subsequent studies that compares phasing methods ,

PHASE consistently outperforms other existing methods on both simulated and

real data, Marchini et al. (2006b). However this algorithm is computationally

intensive, preventing analysis of large-scale datasets such as those generated in

genome-wide association studies (GWAS). In the rest of this paper, all discus-

sion pertaining PHASE refers to the latest version, PHASE 2.1.1, unless otherwise

specified.

Two software packages have been routinely used to analyze large-scale high-

density SNP data: FastPHASE proposed by Scheet and Stephens (2006) and

Beagle described in Browning and Browning (2009). Both programs employ

Hidden Markov Models (HMM’s), which can be computed efficiently via the EM

algorithm and without lengthy MCMC runs. Like PHASE, FastPHASE also models

each haplotypes as a mosaic of other haplotypes. However, whereas PHASE treats

every haplotype as a hidden state, FastPHASE groups similar ones into smaller

number of local haplotype clusters. The number of hidden states is fixed and con-

stant, and is usually set to a small number (ten to twenty) in practice. Similarly,

Beagle uses an HMM that represents local haplotype clusters. While FastPHASE

uses a fixed number of clusters across the entire genomic region, Beagle allows

the number of hidden states to vary depending on the empirical linkage dise-

quilibrium (LD). Although the Beagle HMM typically has many more hidden

states than that in FastPHASE, the computation in Beagle is not hampered be-

cause most hidden-state transition and emission probabilities are exactly zero.

Owing to the much smaller number of hidden states, both FastPHASE and Beagle

substantially improve computational efficiency. The assessment of estimation ac-

curacy has focused on switching error, which is the number of errors between

consecutive heterozygous sites. By these criteria, Beagle and FastPHASE achieve

similiar accuracy as PHASE. We note that both of types of error measures lo-

cal accuracy; phasing accuracy at longer distance has not been systematically

investigated.

Several phasing algorithms have been developed recently with the primary

goals of imputing untyped or missing variants. These methods include MaCH

introduced by Li et al. (2010) and IMPUTE2 developed by Howie, Donnelly

and Marchini (2009). Since the primary goal of the proposed method is phasing
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haplotypes, we restrict our comparison to FastPHASE and Beagle. An excellent

recent review surveys existing phasing methods can be found in Browning and

Browning (2011), which compares the performance of a large number of methods.

3. Method

3.1. Model and notations

The basic building block of emphases is an HMM that resembles both PHASE

and FastPHASE, in which the hidden state represents the haplotype and the ob-

served state genotype. We reasoned that, as the number of individuals increases,

so does the benefit of treating each haplotype as a distinct template (hidden

state); at the same time, model parameters, rates of recombination and muta-

tion, can be accurately estimated from data alone without the coalescent priors.

Therefore, as in PHASE, the HMM in emphases considers every haplotype in the

sample as a hidden state. Unlike PHASE, we eliminated the population genetic

model, so that the model parameters can be estimated using an EM algorithm

without the MCMC. The key innovations of emphases are the two computa-

tionally efficient optimization moves, which differ from the standard forward-

backward and viterbi algorithms commonly employed in HMM.

We now describe the HMM that underlies emphases. Let Gjm ∈ {0, 1, 2},
(j = 1, . . . , N and m = 1, . . . ,M) be the genotype of individual j at marker m,

and let H = {H1, . . . ,H2N} represents the corresponding (unobserved) haplo-

types. At each step, the two haplotypes of a single individual, j, are re-estimated;

the current estimates of haplotypes in the remaining individuals are treated as

templates. To emphasize the difference, the haplotypes to be re-estimated are

denoted as Bs
m, where s = 1, 2, while the templates are denoted as H

(t)
−j , in which

the superscript t indexes iteration and reminds us that the templates change in

successive iterations. Since the two haplotypes (B1, B2) are excluded from the

templates, the total number of templates is always 2N − 2. As each haplotype in

individual j is modeled as a mosaic of haplotypes in H
(t)
−j , it is convenient to in-

troduce a hidden sequence, Am, which indicates the haplotype index in H
(t)
−j that

acts as the template at marker m. Naturally, there should be two sequences, As
m,

where s = 1, 2 for the two haplotypes; however, the two sequences are modeled

as independent Markov Chains and hence the superscript is suppressed when

there is no risk of confusion. It is also understood that Am and Bm refer to the

unphased individual, j, in each step.

Focusing on a single haplotype, the transition probabilities of the hidden

states, Am, are:

Pj(A
s
m = a | As

m−1 = a′, ρ) =

{
(1− ρm) + ρm

2N−2 a = a′,
ρm

2N−2 a ̸= a′.
(3.1)
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In other words, a jump in the hidden state occurs as a Markov jump process

with rate ρm; when a jump occurs, the new state is sampled uniformly among all

templates, including the original state, a′. Given the hidden state, the observed

alleles are specified by

Pj(Bm = h | Am = a,Ha = h′, θm) = 1(h̸=h′)θm + 1(h=h′)(1− θm).

Thus, the alleles in B copy the corresponding haplotype template, but with a

mismatch probability of θ that represents mutation events. If the genotype at Bm

is missing, it can be simply imputed according to the template. Therefore this

algorithm can be used for imputing missing genotypes. To initialize the HMM,

let ρ1 = 1 and A0 = 1, forcing a jump at m = 1.

The objectives of both PHASE and emphases can be formulated as finding

A and H such that the haplotype pairs in H are compatible with the observed

genotype, G, while maximizing the log of a pseudo likelihood

S(H, ρ, θ) =

N∑
j=1

{
1[B1+B2=G]

2∑
s=1

log qj(B
s; ρ, θ,H

(t)
−j)

}
, (3.2)

where

qj(B; ρ, θ,H
(t)
−j) =

∑
A

M∏
m=1

Pj(Bm | Am,H
(t)
−j , θm)Pj(Am | Am−1, ρm) (3.3)

can be considered as a score associated with each haplotype. In the appendix,

we describe the forward algorithm for computing this score, as well as an EM

algorithm for estimating parameters ρ and θ. In PHASE, ρm is assumed to be pro-

portional to the local recombination rate, and both ρm and θm have priors based

on coalescent. Results in Scheet and Stephens (2006) show that, at moderate

sample size, eliminating these priors has little effect on the haplotype inference

but greatly simplifies the computation.

3.2. Haplotype optimization

In theory, we can obtain haplotype configurations for each individual by

drawing haplotypes proportional to the score in (3.3), which is computed by the

forward-backward equation (see the appendix). However, this approach is com-

putationally expensive because, at each marker, the number of potential hidden

states is on the order of N2 for a diploid individual (each haplotype can take one

of the 2N−2 states). The computation quickly becomes intractable for moderate

numbers of individuals. This is the primary reason that motivated FastPHASE

to reduce the number of hidden states by forming much smaller number of hap-

lotype clusters. Similarly, in the recently developed imputation method, MaCH,
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Algorithm 1 emphases algorithm

Initialize H with haplotypes estimated using another fast algorithm, such as FastPHASE
or Beagle.

Do 15 forward-backward iterations and update parameters, ρ and θ.
for iteration t = 1, . . . , T, do
for each individual j, do

(B1, B2)← (H
(t)
2j−1,H

(t)
2j )

Scan each site, accept / reject single site edits on (B1, B2) and recombination
between (B1, B2) (Section 3.2);

Update (H
(t)
2j−1,H

(t)
2j )← (B1, B2)

end for
Update parameters, ρ and θ.

end for
for each individual j, do
Compute confidence measures at each site (Section 3.3).

end for

the number of hidden states is capped by using only a subset of the sample as

templates (the program recommends a cap of 200− 300.)

emphases overcomes the computational challenge in a different way. The

algorithm takes as its input a set of initially phased haplotypes, which can be

generated by any of the existing phasing algorithms, such as FastPHASE, Beagle

or MaCH. These haplotypes are then improved via two types of local optimization

moves. Each optimization step proposes a new phasing configuration, B̃1 and

B̃2 for individual j, and evaluates the change in the score

∆(B̃s, Bs) =
2∑

s=1

log qj(B̃
s; ρ, θ,H

(t)
−j)−

2∑
s=1

log qj(B
s; ρ, θ,H

(t)
−j). (3.4)

If ∆(B̃s, Bs) exceeds a pre-defined threshold (set to ϵ = 0.3 in the implemen-

tation), the proposal phasing configuration is accepted and the corresponding

entries in the template pool, H, are updated with (B̃1, B̃2). Both optimization

steps allow re-use of computations, such that after a move is accepted or rejected

at one marker, a proposed move can be evaluated at a nearby marker at little ad-

ditional cost. Further, the score in (3.3) can be computed for the two haplotypes

separately at all except a few sites, reducing the computation complexity to the

order of NM when optimizing the haplotypes for a single individual. A sweep

over all N individuals therefore takes N2M time (as opposed to using standard

forward-backward algorithm, which would take N3M operations). Below we out-

line the idea of these optimization steps; computational details are described in

the appendix.
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The first optimization step is referred to as a single site edit, which attempts

to switch phasing at a single marker in an individual. Focusing on marker m, the

proposed haplotypes, B̃s, are allowed to differ from the current haplotypes at site

m, provided that the two alleles are compatible with the observed genotype. The

score in (3.3) is computed for all possible proposal haplotypes, and the haplotype

that achieves the highest score is accepted if ∆(B̃s, Bs) > ϵ. Specifically, if the

genotype Gjm is heterozygous, B̃s
m reverses the phasing of Bs

m; if Gjm is missing,

all possible genotype and phasing configurates are considered. In turn, each

site is considered for single site edit, and multiple single site changes may occur

sequentially. The haplotype template corresponding to the individual is updated

when all sites are scanned. The single site edit is particularly useful to correct

the mistakenly imputed and phased genotypes.

The second optimization step introduces a crossover (recombination) be-

tween the two current haplotypes at a specific site. At a given marker, m⋆, let

B̃1
m =

{
B1

m m ≤ m⋆,

B2
m m > m⋆.

(3.5)

The complementary haplotype is defined as B̃2
m. In turn, each marker is consid-

ered as the potential site of recombination; the site that achieved the greatest

improvement is used to update H, as described above. Again, because the hap-

lotypes are unchanged at all except one site, the computation can be achieved

in NM operations. The crossover move is designed to correct the most common

phasing mistake, a switch error.

In each iteration, the algorithm optimizes the haplotypes of each individual in

turn using the single site edit and crossover moves, and updates the corresponding

templates in H. Once all individuals have been updated, the model parameters,

ρ and θ are re-estimated using the EM-algorithm. The process is repeated until

covergence or for a pre-specified number of iterations.

3.3. Measuring haplotype confidence

Most phasing algorithms assign a likely configuration at each marker, yet

the uncertainties associated with these estimates are not the same across mark-

ers. LD pattern varies tremendously across the genome, as a consequence of

the variation in fine-scale recombination rate and the stochasticity through the

genealogical process. In regions where LD is weak, phasing may be unreliable

and impact subsequent analysis. Therefore, it is desirable to produce confidence

measures in addition to the inferred haplotypes.

The two optimization steps described above offer two natural measures of

phasing uncertainties. Given the haplotype estimated using emphases, we define
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a single site phasing confidence for individual j at markerm, χSS
jm, as the maximal

increase in (3.4) that can be achieved by a single site edit at m. When the

genotype Gjm is homozygous, phasing is unambiguous and no confidence measure

is produced. Likewise, we define the confidence of phasing between sites m and

m′ as the maximal increase in the score that can be achieved by a crossover move

at a site between m and m′. Thus, let ∆CR
jk be the the value of (3.4) achieved

by a recombining the two current haplotypes at site k; the pairwise confidence

between sites m and m′ is

χCR
jmm′ := max

m≤k<m′
∆CR

ji . (3.6)

The two confidence measures are complementary. Negative values of large

magnitude in both χSS
jm and χSS

jmm′ indicate that the estimated phasing configu-

ration in the region is substantially better than alternative configurations. On

the other hand, if either or both of the measures are close to zero or positive,

the estimated haplotypes are associated with high uncertainties in the sense an

alternative phasing configuration is almost equally likely. In data analysis pre-

sented in the next section, we find that these confidence measures provide useful

information in identifying regions of high uncertainties.

4. Numerical Examples and Results

Description of data. We use parent-offspring trio datasets to assess the perfor-

mance of the proposed method. The parent-child family structure permits unam-

biguous determination of the haplotypes in the children at most markers, except

triple heterozygous sites (i.e. both parents and the child are heterozygous) and

sites where one or more members have missing genotypes; these two latter sce-

narios are collectively referred to as ambiguous sites henceforth. Neglecting the

rare recombination events in the meiosis of the parents, the haplotypes in a child

allows the reconstruction of the four parental haplotypes. Haplotypes thus con-

structed are treated as the gold standard; ambiguous sites are excluded from com-

puting the error rate. The first dataset consists of 45 CEU (European Americans

from Utah) trios and 50 YRI (Yoruba population from Nigeria) trios, genotyped

on the Illumina HumanHap650Y arrays as part of the International HapMap

Project, Phase III (The Interational HapMap Consortium (2007)). Specifically,

we focus on chromosome 9, which includes 23, 814 SNPs. As a gold standard,

we use the phased haplotype data generated by the HapMap consortium, ex-

cluding ambiguous sites. In all analyses, the CEU and YRI trios were analyzed

separately. The second dataset includes 492 Mexican trios (MEX), genotyped as

part of a GWAS of asthma. The recruitment and sample characteristics were de-

scribed previously (Hancock et al., 2009). This dataset is useful for two reasons.
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First, it allows us to assess the performance of various phasing methods in an

genetically admixed population, a subject that has not been systematically stud-

ied. Second, as we illustrate below, the accuracy of haplotype inference depends

on the sample size; therefore, as one of the largest trio-sample that has been

genotyped to date (984 parents), analyzing this data provides a more realistic

measure of the phasing accuracy expected in a GWAS study.

In applying all phasing algorithms, genotypes of the parents but not the

children are used as input data; thus these analyses are comparable to analyzing

unrelated individuals. FastPHASE was run with 20 hidden states, 10 restarts, and

35 EM iterations per restart; the number of hidden states doubles the default

parameters and gives a lower error rate. Default setting was used for Beagle.

For emphases, the output from either FastPHASE or Beagle were used as initial

values, with 15 initial iterations of parameters update, followed by 8 iterations

of haplotype optimization and parameter updates, as outlined in Algorithm 1.

Measurement of accuracy. Most previous studies comparing haplotype inference

methods have focused on the rate of switching error, which is defined as the

error probability between consecutive pairs of heterozygous sites. The switching

error rate meaningfully measures the short-range phasing accuracy. However

some analyses, such as the extended haplotype homozygosity (EHH) test used

for detecting recent positive selection, depend on accurate phasing over a longer

range, Sabeti et al. (2002). In these settings, the relevant quantity is the error

rate between non-consecutive pairs of SNPs. As this error rate is expected to

increase for markers further apart, we characterize the error rate as a function of

distance. In what follows, SNPs are indexed according to their physical positions,

1, 2, . . . ,M, and the distance between SNPs i and j is defined as |i−j|. This metric

is sensible because none of the methods considered here, FastPHASE, Beagle, and

emphases, incorporates either physical or recombination distance. The error rate

at distance, d, is then computed over all pairs of markers that are d SNPs apart.

Phasing accuracy across populations. This first set of analyses aims to compare

the phasing accuracies of FastPHASE, Beagle, and emphases, evaluating error

rates between consecutive and non-consecutive SNPs, using trio data from the

populations CEU, YRI and MEX. The sample sizes are 88, 100, and 100 indi-

viduals for the three populations, respectively. Table 1 compares the error rates

between consecutive heterozygous sites. We observe that Beagle is slightly more

accurate compared to FastPHASE on CEU and YRI and slighted less accurate on

MEX; emphases reduces these errors by 10−40%, achieving an accuracy compa-

rable to previous analysis using PHASE (Marchini et al. (2006a)). Although the

terminal error rates of emphases are similar using either Beagle or FastPHASE

output as initial values, we note that emphases does not perform well using a

completely random phasing configuration, and therefore should not be used as a
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Table 1. Switch error rates (%) on trio datasets representing three di-
verse populations. CEU=HapMap individuals of European ancestry from
Utah; YRI: HapMap Yoruba individuals of African ancestry, from Nigeria;
MEX=Mexican individuals from Mexico City. ∗Sample sizes refers to the
number of unrelated individuals used for analysis; †emphases using Beagle

output as initial phasing configuration; ‡emphases using FastPHASE output
as initial phasing configuration. FastPHASE was run with 20 hidden states,
10 restarts, and 35 EM iterations per restart. For Beagle, default setting
was used.

Population N∗ Beagle Beagle+emphases† FastPHASE FastPHASE+emphases‡

CEU 88 6.58 4.76 5.36 4.57
YRI 100 9.72 5.75 7.29 5.26
MEX 100 5.68 4.10 4.30 3.82

stand-alone method. For all methods, the switch error rates vary across the three

populations analyzed, with the highest error in YRI and the lowest in MEX. We

hypothesize that the error rate is highest in YRI because LD is lowest in the

African population. The Mexican individuals derive substantial ancestry from

the Native American ancestral populations (Johnson et al., 2011), which exhibit

the highest LD because of historical population bottlenecks (Jakobsson et al.,

2008). It is also interesting to observe that the improvement due to emphases is

more substantial in YRI compared to CEU and MEX, and particularly compared

to FastPHASE. These observations are consistent with the intuition that group-

ing haplotypes into a small number of clusters increases phasing error, and that

the negative impact is especially strong for populations with greater haplotype

diversity (YRI).

Figure 1 displays the error rates for non-consecutive pairs of heterozygous

sites as a function of inter-marker distance. For clarity, this figure shows the error

rates using FastPHASE and emphases with FastPHASE as initial values. The cor-

responding results, comparing Beagle and emphases with Beagle initialization

are shown in Supplemental Figure 1 and are qualitatively similar. As expected,

the error rates for all methods increase with inter-marker distance, with the limit

approaching the random guess error rate of 50%. On the CEU trio data, the error

rate incurred by FastPHASE (dotted red line) rises from 1.57% to 5.48% to 34.5%

at distances of 1, 5 and 50 markers, respectively, corresponding to 2, 600, 17, 900,

and 204, 800 bp. Applying emphases to the output of FastPHASE, phasing ac-

curacy improves regardless of marker distance; the improvement of emphases is

most prominent for moderately spaced markers (19.9% reduction at ∼ 40 SNPs

apart). Analysis of the HapMap YRI dataset yields qualitatively similar results;

however, emphases achieves a greater error reduction on this set: 20% for consec-

utive SNP pairs, and > 30% for pairs 30 markers apart. Again, despite somewhat
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different accuracy between Beagle and FastPHASE we find that emphases pro-

duces essentially identical error rates using the output of either program as initial

values for all three populations and at all marker distances considered. Curiously,

Figure 1 suggests that for short range, phasing error is highest in YRI, but at

a distance of greater than 40 SNPs the phasing accuracy is the highest in YRI.

We postulate that the reason lies in the genetic diversity and structure of the

HapMap YRI sample. The YRI sample represents Yoruba individuals from Nige-

ria; previous studies have found that this population has greater genetic diversity,

and the linkage disequilibrium (LD) between markers is generally weaker in the

African populations than in non-African populations (The Interational HapMap

Consortium (2007)). As a result, phasing is generally more challenging in an

African population than in other populations, consistent with the highest phas-

ing error rate in short ranges for all methods considered. For markers further

apart, reduced LD leads to higher error rates in all three populations. However,

whereas the parents in CEU and MEX datasets are “unrelated,” cryptic relation-

ships, such as uncle-niece and sib-pairs, have been reported in the HapMap YRI

individuals (Pemberton et al. (2010)). Exploiting the shared haplotypes between

the related individuals enables emphases to achieve a greater improvement over

Beagle and FastPHASE in YRI sample than it does in CEU and MEX samples.

Phasing accuracy as a function of sample sizes. The second set of analyses aims

to understand the impact of sample size. Subsets of 100, 400, and 800 individ-

uals were randomly sampled from a total of 984 parents of the Mexican trios;

these samples, as well as the complete sample were analyzed using FastPHASE,

Beagle and emphases. The switch error rates shown in Table 2 suggest that

the accuracy of both Beagle and emphases (with either Beagle or FastPHASE

as initial values) improve with an increased sample size; in fact, the error rate

of emphases is reduced by a factor of almost two when the sample size increases

from 100 to the full set of 984. A greater sample size not only improves phasing

accuracy at closely located SNPs, but also benefits long range phasing. Figure 2

plots pairwise phasing error rate as a function of SNP distance for sample sizes

of 100 and 984, suggesting that, for both Beagle and emphases, an increased

sample size can substantially reduce phasing error even for markers that are far

away. For both small and large sample sizes, emphases achieves a lower error

rate compared to Beagle, and the improvement is substantial for intermediate

distance (∼ 100 SNPs apart). A full description of the error rate for intermediate

sample sizes can be found in Supplemental Figure 2, which also shows the error

rates using FastPHASE and emphases with FastPHASE initialization. For all sam-

ple sizes and inter-marker distance considered, emphases consistently achieves

the lowest error rates. In contrast to Beagle and emphases, whose performance

greatly improves with an increased sample size, the error rates of FastPHASE
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Figure 1. Phasing error rate as a function of inter-marker distance. Error
rate are evaluated as the proportion of pairs of heterozygous sites; marker
distance are measured by the numbers of markers between such pair of SNPs,
but the intervening SNPs may not all be heterozygous. Other experimental
settings are identical to that in Table 1.

changes little with sample size (Supplemental Figure 3). We attribute this pat-

tern to the fixed haplotype clusters used. This observation is also consistent with

the findings in Browning and Browning (2011) that FastPHASE can outperform

Beagle for a small sample size, but the trend reverses as the sample size in-

creases. Nonetheless, emphases achieves similar error rate using either Beagle

or FastPHASE as initial values. In terms of computational burden, the CPU re-

quirement for emphases increases quadratically with the sample size for fixed

number of markers, and increases linearly with the number of markers for fixed

sample size; the memory requirement for emphases is proportional to (mark-

ers × samples). On an Intel 3GHz processor, the computational times required

for analyzing the complete MEX data (984 individuals and 23, 814 markers) are

104.6, 1.15 and 8.85 hours for FastPHASE, Beagle and emphases (with eight

optimization iterations), respectively. The memory required for emphases is ap-

proximately 1GB.

Phasing accuracy as a function of confidence measure. The confidence measures

described in the previous section are based on the likelihood ratio of the cur-
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Table 2. Switch error rate (%) for Mexican trio data (MEX). Subsets of
individuals (N) were randomly sampled. Other settings are described in the
caption of Table 1.

N Beagle Beagle+EM FastPHASE FastPHASE+EM
100 5.68 4.10 4.30 3.82
200 4.61 3.33 3.92 3.20
400 3.75 2.67 3.74 2.66
800 3.12 2.10 3.65 2.18
984 2.94 1.97 3.61 2.09

Figure 2. Phasing error rate as a function of SNP distance at various sub-
sample-sizes of the Mexican panel. The FastPHASE error rate does not de-
crease appreciably with the sample size as both Beagle and emphases do.
On the full panel of 984 parents the emphases switch error rate is 72% that
of Beagle and 56% that of FastPHASE (regardless of which method is used
as initialization).

rent phasing configuration to the next best alternative configuration that can

be achieved by a single site edit (χSS
jm) or a single recombination between the

two haplotypes (χCR
jmm′). To assess the informativeness of the crossover confi-

dence, we evaluated the empirical error rates for MEX data, stratifying pairs of

markers by the crossover confidence, χCR
jmm′ : (−∞,−5], (−5,−1] and (−1,∞),
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(a) Cross-over confidence (b) Single-site confidence

Figure 3. Phasing error rate for the full MEX data using emphases with
Beagle as initialization. (A): error rate (y-axis) between pairs of markers
are stratified by cross-over confidence measure, and plotted against the inter-
marker distance (x-axis). High conf: χCR ∈ (−∞,−5]; med conf: χCR ∈
(−5,−1]; low conf. χCR

jmm′ ∈ (−1,∞). While the error rate increases with
inter-marker distance in all strata, the empirical error rate differ appreciably
depending on χCR, for any fixed inter-marker distance. (B): switch error (y-
axis) between consecutive heterozygous sites increases as the maximum of the
single-site confidence score at the two sites, max(χSS

m , χSS
m′ ). The histogram

indicates the distribution of single-site confidence scores, with > 90% of sites
having a score less than 10 (broken bar).

corresponding to high, medium and low confidence, respectively. We found that

the phasing error rate shows a stronger dependency on the confidence measure

than on marker distance. In other words, the error rate is lower for distant mark-

ers with high confidence scores than for proximal markers with low confidence

scores (Figure 3a). Of course, the number of high-confidence pairs diminishes as

the distance grows: in the full MEX data, half of the SNP-pairs can be phased

with high crossover confidence at a distance of 37 SNPs. Thus, the confidence

scores identify haplotypes with high uncertainties, and should be down-weighted

or excluded in subsequent haplotype-based analyses. Similarly, we examined the

switch error rate between consecutive heterozygous sites as a function of single-

site confidence measure. Figure 3(b) suggests that the probability of phasing

error increases monotonically as the worse of the two single-site confidence scores

increases, max(χSS
m , χSS

m′ ). We note that both single-site and crossover confidence

scores may exceed 0, because these scores depend on haplotype templates; thus
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an update in one individual affects the scores in other individuals. However, this

occurs rarely after the first few iterations: in the Mexican data analysis, less than

0.1% of the sites have χSS > 0 after 8 iterations.

5. Discussion

The ability to accurately construct haplotypes from unphased genotype data

plays essential roles in population and medical genetics research. Previous studies

have largely focused on accuracy over short range, such as the error rate between

consecutive heterozygous sites (switching error), yet many haplotype-based anal-

yses assume accurate phasing over a long range (Sabeti et al. (2002)). Results

on the data presented in Section 4 indicate that phasing error rate increases

rapidly as a function of marker spacing, and underscores the need for methods

that improve long range haplotype phasing in unrelated individuals. The LRP

method proposed in Kong et al. (2008) has shown promising long range phasing

performance in a large Icelandic cohort; however, this method relies on a sub-

stantial number of pairs of individuals in the sample sharing haplotypes spanning

hundreds or thousands of markers. This requires that either the underlying pop-

ulation is inbred, or a large fraction of the population is included in the sample.

We examined the allele sharing in 10 regions of 1000 SNPs in the HapMap CEU

and YRI parents, as well as the 984 Mexican parents, and found no pairs of

individual sharing a haplotype at this length. Therefore, it is unlikely that LRP

can be directly applied to GWAS data collected in non-founder populations.

Here we propose a new computational approach, implemented in the program

emphases, with the primary goal to improve the long range phasing accuracy.

The model underlying emphases retains a key feature of PHASE: both adopt an

HMM in which every haplotype in the sample is treated as a hidden state. There

is a connection between this idea and the heuristic notion of “surrogate” parents

that underlies LRP: the hidden state can be thought as the best surrogate parent,

and the objective in emphases, which favors staying in a hidden state for long

segments, achieves a similar effect as LRP that identifies surrogate parents based

on long range allele sharing. In other words, the HMM in emphases and PHASE

seek the most-likely surrogate parents in the sample. Seen this way, PHASE and

emphases can be thought of as a generalization of LRP. By implementing new

optimization algorithms and making use of an initial phasing configuration pro-

duced by existing phasing algorithms, emphases overcomes the computational

challenge that limits the application of PHASE to large datasets. Examples pre-

sented in Section 4 demonstrates that, compared to the two widely used phasing

algorithms, FastPHASE and Beagle, emphases improves phasing accuracy, both

in terms of switching error rate between consecutive heterozygous sites and error

rate between markers that are far apart. We attribute the improved performance
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to the much larger number of hidden states used in emphases than in FastPHASE

and Beagle, both of which reduce the number of hidden states by grouping

haplotypes into clusters. An R package implementing emphasesis available at

http://med.stanford.edu/tanglab/software/emphases.latest.zip

Our analysis of the CEU, YRI and Mexican trio data provide some insights

that may benefit future development and applications of phasing algorithm.

First, while emphases improves long range phasing accuracy over Beagle and

emphases, the error rate between distant markers can still be high. We pro-

pose two confidence scores to measure phasing uncertainties, which should be

incorporated in subsequent analyses. Second, the analysis of Mexican data at

varying sample size indicates that the performance of emphases improves with

the increased sample size. This suggests that emphases has the potential to sub-

stantially improve phasing in large samples, such as those generated in GWAS.

Furthermore, with the rapid accumulation of genotype and sequencing data from

GWAS, further improvement in phasing accuracy maybe achieved by combining

datasets representing closely related populations. Thus, computationally efficient

algorithms that take advantage of these rich resources should be explored further.
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Appendix

Forward-backward algorithm and parameter estimation.

Here we derive the forward algorithm for computing the score in (3.3),

qj(B
s; ρ, θ,H

(t)
−j). In what follows, we use shorthand notations T (a∗ → a) for

transition probability from hidden state a∗ to a, and E(Bm) to denote the emis-

sion probability of observing an allele given the haplotype template (H
(t)
−j), hid-

den state (Am), and mismatch probability (θm). As explained in Section 3.2,

the optimization steps compute the score of a proposed phasing configuration

that assumes that phasing is known except at the candidate marker of single-

site edit or the candidate marker of a cross-over modification. Therefore, the

score qj(B; ρ, θ,H
(t)
−j) can be computed as the product of the two haplotypes sep-

arately. To compute qj(B
1; ρ, θ,H

(t)
−j), define the forward messages as −→ν m(k) =

P (B1
1 , . . . , B

1
m, Am = k; ρm, θ,H

(t)
−j) following Rabiner (1989). The initiation con-

dition is set as −→ν 0(k) = 1/(2N−2) and ρ0 = 1. In standard HMM, the induction

http://med.stanford.edu/tanglab/software/emphases.latest.zip
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of −→ν m+1(a) for all a andm requires O(N2M) operations. In our setting, however,

the transition probability specified in (3.1) means that the transition probability

depends only on whether a∗ = a, and not on the specific values of a and a∗.

Therefore, −→ν m can be computed in O(N) operation as

−→ν m+1(a) = P (B1
1 , . . . , B

1
m+1, Am+1 = a)

=
2N−2∑
a∗=1

P (B1
1 , . . . , B

1
m, Am = a∗)T (a∗ → a)E(B1

m+1)

= E(B1
m+1)

[ ρm
2N − 2

2N−2∑
a∗=1

−→ν m(a∗) + (1− ρm)−→ν m(a)
]
,

where
∑2N−2

a∗=1
−→ν m(a∗) is a constant that only needs to be calculated once for each

m. The backward messages is defined similarly as ←−µm(a) = P (B1
m, . . . , B1

M , Am

= a), with ←−µM (a) = 1 for all hidden states, a. Since the Markov chain is re-

versible, the backward messages can be computed in the same way as the forward

messages by reversing the sequence (Lai, Xing, and Zhang (2008)). Together, the

variables −→ν and ←−µ allow us to compute the posterior, P (Am | B;H
(t)
−j , ρm, θm).

The parameters ρm and θm are estimated using the EM algorithm. Given the

hidden sequences of the two haplotypes in individual j, Ajs, the EM estimates

for ρm amounts to counting the number of jumps between markers m and m+1;

likewise, θm is estimated by the fraction of mismatches at the sites. We note

that, by Jensen’s inequality, the parameter updates increase the score in (3.2)

and optimize a minorizing Q-function, even though (3.2) is not a true likelihood.

Haplotype optimization.

We describe the single-site and the cross-over optimization steps, both re-

quire evaluating (3.3) for proposed haplotypes, B̃s. For single-site edits, as ex-

plained in Section 3.2, B̃s differs from Bs at a single marker, m. Therefore, the

score of B̃s matches that of Bs in the interval of [1, . . . ,m−1] and [m+1, . . . ,M ],

and can be computed by stitching the scores corresponding to the two flanking

segments, while summing over possible hidden states at site m :

qjm(B̃s) =
∑
a∗

−→ν m−1(Am−1)
←−µm+1(Am+1)T (Am−1 → a∗)T (a∗ → Am+1)E(B̃s

m).

This score is computed for single-site edited haplotypes, (B̃1, B̃2), which are

compatible to the observed genotype. The phasing configuration that achieves

the maximum score is then compared with the current haplotypes to determine

whether an edit is desirable.

The computation for the cross-over optimization is analogous. Consider

the proposed haplotype formed by a cross-over at site m, B̃1 = (B1
1 , . . . , B

1
m,
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B2
m+1, B

2
M ). The pseudo likelihood can be computed by multiplying the for-

ward and backward messages while summing across possible states at the seam,∑
a∗
−→ν m(a∗)←−µm+1(a

∗). In implementing the cross-over moves, we scan each site

sequentially for potential site of recombination, starting from one end of the chro-

mosome. Rather than taking the first site at which a cross-over achieves higher

score, we instead search for a local maximum before performing the recombina-

tion.
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