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Abstract: Many multivariate Gaussian models can conveniently be split into in-

dependent, block-wise problems. Common settings where this situation arises are

balanced ANOVA models, balanced longitudinal models, and certain block-wise

shrinkage estimators in nonparametric regression estimation involving orthogonal

bases such as Fourier or wavelet bases.

It is well known that the standard, least squares estimate in multidimensional

Gaussian models can often be improved through the use of minimax shrinkage

estimators or related Bayes estimators. In the following we show that the tradi-

tional estimators constructed via independent shrinkage can be improved in terms

of their squared-error risk, and we provide improved minimax estimators. An al-

ternate class of block-wise shrinkage estimators is also considered, and fairly pre-

cise conditions are given that characterize when these estimators are admissible or

quasi-admissible.

These results can also be applied to the classical Stein-Lindley estimator that

shrinks toward an overall mean. It is shown how this estimator can be improved

by introducing additional shrinkage.

Key words and phrases: ANOVA models, James-Stein estimators, harmonic priors,

nonparametric estimation, quasi-admissibility, quasi-Bayes.

1. Introduction

Many multivariate Gaussian models can conveniently be split into disjoint,
block-wise problems. Others can be written in such a form after a linear trans-
formation. We examine here the situation in which the observations on each
block are independent of those in the other blocks. Common settings where this
situation arises are balanced ANOVA models, balanced longitudinal models, and
certain block-wise shrinkage estimators in nonparametric regression estimation
involving orthogonal bases such as Fourier or wavelet bases. We will describe a
few such situations in Section 2.1.

It is well known that the standard, least squares estimate in multidimensional
Gaussian models can often be improved through the use of minimax shrinkage
estimators or related Bayes estimators that lead to well-motivated shrinkage es-
timation. In a situation involving statistically independent blocks it is natural to
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apply this shrinkage separately within each block. From the Bayesian perspec-
tive this results from placing independent priors on the statistically independent
blocks.

In the following we show that most common such estimators constructed
via independent shrinkage are inadmissible in the original problem in terms of
their squared-error risk, and we provide improved minimax estimators. In some
situations blockwise estimators involving additional shrinkage may be admissible,
and fairly precise conditions are given that characterize which of these estimators
are admissible.

Many recent papers have produced partial characterizations of admissible
Bayes procedures for structured multivariate problems. Consult Berger and
Strawderman (1996), Berger and Robert (1990), and Berger, Strawderman and
Tang (2005) for related studies and further references. For the block-wise case
studied here, our results extend results from these previous studies. (Inadmis-
sibility in our block-wise setting can be deduced using results in Berger and
Strawderman (1996), but these do not describe suitable improved estimators.)

The Bayesian results are parallel to results for frequentistically motivated
estimators related to the well-known James-Stein estimator. It is known that
the original James-Stein estimator (James and Stein (1961)) and its positive-
part version are not admissible. However in the canonical multivariate normal
means problem involving a single block the positive part version is close to being
admissible in a sense made precise in Brown (1988). Here, we use the term quasi-
admissibility to refer to this property. We then show that in the block-wise case
independent James-Stein type estimators on the individual blocks are not quasi-
admissible, and we describe shrinkage estimators that are quasi-admissible, and
improve on these in the sense of squared-error risk.

For the classical multivariate normal means estimation problem, Stein (1962)
and Lindley (1962) proposed the use of a shrinkage estimator that shrinks toward
the vector of overall means. In Example 2.1, below, we explain how such an
estimator can be rewritten in the block-wise form. Theorem 3.1 thus applies to
such an estimator, and shows how it can be improved by the introduction of
additional shrinkage.

Section 2 contains background, motivations and examples. Commonly used
shrinkage estimators in our setup can be improved by including an additional
shrinkage factor, as is shown in Section 3. Section 4 includes other estimators
which are admissible and minimax and may be considered as practical alterna-
tives. We conclude the paper with comments.

Konno (1991) and Tsukuma and Kubokawa (2007) have demonstrated the
advantage of additional shrinkage in a closely related setting. Their setting can be
written in a blockwise form like ours but with equal size blocks. (Their problem
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involves an unknown covariance matrix, in contrast with ours.) We allow unequal
size blocks. Our Theorem 3.1 shows that additional shrinkage is advantageous
even with such a block structure so long as there are at least two blocks and the
overall dimension satisfies p ≥ 3. In our Theorem 3.2 we characterize the desirable
values for the additional shrinkage constant. This characterization involves the
concepts of quasi-admissibility. In Section 4 we investigate estimators which
shrink only within their respective blocks. In Theorems 4.1 and 4.2 we provide
sufficient and nearly necessary conditions for such within block estimators to be
both minimax and quasi-admissible.

2. Definitions and Preliminary Results

2.1. Canonical problem and estimators

Let Y be a p-variate homoscedastic normal random variable. We write

Y ∼ Np(θ, σ2ΣY ). (2.1)

The matrix ΣY is assumed known, with ΣY = I. There is some loss of general-
ity in making this assumption, but generalizations appear to require additional
research and are not pursued here. The scalar σ2 is also assumed to be known,
except in Remark 4.4.

We consider situations in which the vector θ ∈ Rp can be partitioned as

θτ = (θτ
1 , . . . , θ

τ
m)τ with θj ∈ Rpj ,

m∑
1

pj = p. (2.2)

Let Y (1), . . . , Y (m) denote the corresponding component sub-vectors of Y .
We do not exclude the case where some of the pj = 1. Here are some

particular examples that can be reduced to this canonical form.

Example 2.1. (Shrinkage to a common mean)
We begin with a setting formally different from that in (2.1) and reduce it

to that form. In order to clarify this reduction, let us begin with a different
notation. Thus, let

Z ∼ Np(ζ, σ2I). (2.3)

Assume p ≥ 4.
Considerations in the papers of Stein (1962), Lindley (1962), and Efron and

Morris (1972, 1973) suggest the following empirical Bayes estimator in the setting
(2.3):

ζ̃(z) = z1 +
(

1 − (p − 3)σ2

‖z − z1‖2

)
+

(z − z1) where z
4
= p−1

∑
zi. (2.4)
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This estimator is essentially that given in Efron and Morris (1973, formula (7.1)).
For more recent presentations of this estimator, see textbooks such as Berger
(1985) or Lehmann and Casella (1998).

As an alternative presentation of (2.4) in blockwise form, let Q be an or-
thogonal matrix whose first row is 1′/

√
p. Then let

Y = QZ, θ = Qξ.

Let m = 2, p1 = 1, p2 = −1. Then (2.4) can be re-written as (2.1)−(2.2) with
θ1 =

√
pζ. This corresponds to the following estimator θ̃ = (θ̃1, θ̃2)τ of θ in the

setting (2.1)−(2.2):

θ̃1 = y1, θ̃2 =
(

1 − (p − 3)σ2

‖y2‖2

)
+

y2. (2.5)

Note that the estimator θ̃2 is the James-Stein positive part estimator (2.4) within
the space spanned by Y 2. See (2.13), below. (Efron and Morris do not add the
positive-part restriction to the formula corresponding to (2.5) in their paper, but
they do discuss elsewhere the desirability of such a restriction. Lindley and Smith
discuss the desirability of using an estimator of a general form like (2.5), but do
not explicitly propose the constant p − 3 or the positive-part restriction.) See
Remark 4.2 for further discussion of this example.

Example 2.2. (Balanced one way and two way additive ANOVA)
A convenient notation for a two way ANOVA model has

Zij ∼ NIJK(ζij , σ
2), i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . ,K, where

ζij = µ + αi

√
JK + βj

√
IK and

∑
αi =

∑
βj = 0. (2.6)

(The normalization of αi, βj here is not standard, but is adopted to simplify
certain expressions to follow.) Let α = (α1, . . . , αI)′, and similarly for β. Then
we may identify three blocks in the model (2.1), with θ1 = µ, θ2 = M2α, θ3 =
M3β and Y 1 = µ̂, Y 2 = M2α̂, Y 3 = M3β̂ where M2, M3 are (I − 1) × I and
(J−1)×J matrices, respectively, and the rows of these matrices are orthonormal
and are orthogonal to 1 = (1, . . . , 1)′. µ̂, α̂, β̂ are the usual estimators. Here
p = I + J − 1. Assume I ≥ 4, J ≥ 4 in what follows.

Blockwise shrinkage estimator can be applied within this setting. When the
blockwise shrinkage estimator is transformed back to the original coordinates it
corresponds to

θ̃1 = µ̃ = Y 1, α̃ =
(

1 − I − 3
‖α̂‖2

σ2

)
+

α̂, β̃ =
(

1 − J − 3
‖β̂‖

σ2

)
+

β̃. (2.7)
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Again, see Remark 4.2 for further discussion of the example.
We also have a similar set up for a one way ANOVA.

Example 2.3. (Blockwise models for nonparametric regression)
Blockwise James-Stein estimators for nonparametric regression have been

studied by many authors. See for example Donoho and Johnstone (1995) Cai
(1999), Cavalier and Tsybakov (2001), Cai, Low and Zhao (2000), and Brown,
Zhao and Mao (2004). In this approach a standard nonparametric regression
problem involving n observations is transformed by an orthogonal transforma-
tion to a problem of the form (2.1) with p = n. (Wavelet transformations or
Fourier transforms are both suitable possibilities.) A blockwise structure is then
imposed where the dimensions of the blocks increase monotonically. The James-
Stein estimator, or some similar shrinkage estimator, is then computed and back-
transformed in order to yield an estimator in the original nonparametric regres-
sion problem. See the above references and others mentioned there for further
details.

2.2. Bayes estimators

Consider the setting (2.1) under ordinary quadratic loss, L(θ, d) = ‖θ − d‖2,
and corresponding risk, R(θ, δ) = Eθ(L(θ, δ(Y ))). Of particular interest to us
are minimax estimators; that is, those satisfying

R(θ, δm) ≤ pσ2 = inf
δ

sup
θ

R(θ, δ) = R(θ, δ0) where δ0(y) = y.

Brown (1971) shows that every admissible estimator is generalized Bayes.
When p ≥ 3 many admissible minimax estimators are known. Among these the
harmonic Bayes estimator is particularly simple and appealing. It corresponds
to the prior density

gharm;p(θ)
4
= gharm(θ)

4
=

1
‖θ‖(p−2)

, (2.8)

and has a simple, explicit functional form. This is the marginal density (over θ) of
a hierarchical prior under which θ|τ ∼ Np(0, τ2I) and the hyperparameter τ > 0
has density τ . The functional form for the Bayes procedure can be derived from
this representation. See Strawderman (1971), Lin and Tsai (1973), Kubokawa
(1991), and Brown, Zhao and Mao (2004).

2.3. Quasi-admissible and quasi-Bayes estimators

Let δ be a given estimator. Throughout this paper we use the symbol γ to
denote

γ(y) = δ(y) − y. (2.9)
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Hence an estimator can be defined through the formula for δ or for γ.
An estimator is termed “regular” if each coordinate function γi is absolutely

continuous in the corresponding coordinate yi of y, and

Eθ

(
‖∇ · γ(Y )‖

)
< ∞ and Eθ

(
‖γ(Y )‖2

)
< ∞,

where ∇ · γ is the gradient function over γ. (It is a consequence of results in
Brown (1971) that one need only consider regular estimators since they form a
statistically complete class. That is, no non-regular estimator can be admissi-
ble, and any non-regular estimator is dominated in risk by a regular one.) All
estimators that appear in the following are assumed to be regular.

Stein’s unbiased estimate of risk (Stein (1973, 1981)) applies to any regular
estimator. It says that

R(θ, δ) = Eθ

(
pσ2 + 2σ2∇ · γ(Y ) + ‖γ(Y )‖2

)
.= Eθ(R̂δ(Y )), (2.10)

where R̂δ denotes the unbiased estimate of risk. This leads to a heuristic theory
of “quasi-admissibility”. The heuristic justification for this theory lies in the
observation that Y is near θ, and hence the expectand on the right of (2.10) at
Y = θ is an approximation to the true risk at θ. Thus,

R(θ, δ) ≈ R̂δ = pσ2 + 2σ2∇ · γ(θ) + ‖γ(θ)‖2. (2.11)

Correspondingly, we define an estimator δ(1) to be “quasi-admissible” if there is
no estimator δ(2) such that

2σ2∇ · γ(2)(y) + ‖γ(2)(y)‖2 ≤ 2σ2∇ · γ(1)(y) + ‖γ(1)(y)‖2 (2.12)

for all y, with strict inequality for at least one value of y. Because of (2.10) there
is a relationship between quasi-admissibility and ordinary admissibility; namely,
any admissible estimator is quasi-admissible. (Similarly, any quasi-inadmissible
estimator is inadmissible.) But the converse assertion is not, in general, true.

Experience has shown that estimators that are quasi-admissible are also nu-
merically close to being admissible, although the definitions do not formally guar-
antee such a numerical property. The positive-part James and Stein (1961) es-
timator is the canonical example for the preceding assertions. It is defined for
p ≥ 3 as

δJS+(y) =
(

1 − p − 2
‖y‖2

σ2

)
+

y. (2.13)

See Maruyama (1999, 2004) and also Brown, Zhao and Mao (2004) for results
showing that this estimator is indeed numerically very close to being admissible.



ESTIMATORS FOR GAUSSIAN MODELS HAVING A BLOCK-WISE STRUCTURE 891

This estimator is not admissible but it is quasi-admissible, as will be further
discussed below.

Brown (1971) shows that the (generalized) Bayes estimators are a complete
class with respect to ordinary admissibility, and that every such procedure can
be written in the form (2.9) with

γ∗ = σ2∇g∗

g∗
, (2.14)

where g∗(y) =
∫
Rp ϕ(y − θ)G(dθ). (Note that g∗ is the marginal density of Y .)

There is a corresponding characterization in relation to quasi-admissibility. Any
regular estimator will be termed “quasi-Bayes” if it can be written in the form

γ◦ = σ2∇g◦

g◦
(2.15)

for some absolutely continuous function g◦. Note that the estimator δJS+ is
quasi-Bayes with the corresponding marginal quasi-density being

gJS+;p(y) =
e((p−2)σ2−‖y‖2)/2σ2

((p − 2)σ2)(p−2)/2
I{‖y‖2>(p−2)σ2}(y)

1
‖y‖p−2

. (2.16)

(It is observed in Brown (1971) that the estimator δJS+ cannot be (generalized)
Bayes since the function gJS+;p is not analytic, and hence cannot be the marginal
density corresponding to any prior measure.)

Brown (1988) developed a general theory of quasi-admissibility. (In that
paper he did not use a term such as “quasi-admissibility” for the relevant con-
cept. Later authors have used various terms for it. For example Rukhin (1995)
uses the term permissible, and Bock (1988) uses the term pseudo-Bayes for a
related construct. We feel that quasi-admissibility is a more expressive term for
this concept, and avoids some confusion with other uses of possible alternate
terminology.)

Brown (1988) shows that any quasi-admissible estimator must be quasi-
Bayes. Furthermore, Brown (1988, formula (7.2)) gives a condition that implies
a quasi-Bayes procedure corresponding to g is quasi-admissible. Here is a formal
statement of that result.

Lemma 2.1. Let Or(·) denote the uniform measure on the sphere in Rp of radius
r. Then let

mg(r)
4
=

∫
g(y)Or(dy).

If the corresponding γ given by (2.15) is bounded and if∫ ∞

2

(
rp−1mg(r)

)−1
dr = ∞, (2.17)
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then it is quasi-admissible.

It is shown in Brown (1971) that if a Bayes estimator satisfies (2.17) then
it is admissible. It follows from (2.16)−(2.17) that the positive-part James-Stein
estimator is quasi-admissible.

2.4. Blockwise estimators when m ≥ 2

When m ≥ 2 it is natural to propose an estimator composed of the preceding
estimators within each block. In order to provide a unified statement of this
proposal, let us by convention define the harmonic prior when p ≤ 2 as having
the uniform density, and make a similar convention for the James-Stein estimator,
so that we write δHarm(y) = δJS+(y) = y when p ≤ 2.

Then, in the setting (2.1)−(2.2), the blockwise JS+ estimator is δblock
JS+ (θ) =

(θ̃
τ
1 , . . . , θ̃

τ
m)τ where

θ̃j = δJS+(Y j), j = 1, . . . ,m. (2.18)

The estimator δblock
Harm is defined analogously, with each blockwise component

being the Bayes estimator with respect to the harmonic prior restricted to that
block. Consequently, this estimator can also be described as the Bayes estimator
with respect to the product across blocks of harmonic priors. The corresponding
combined density can be written

gblock
harm(θ) =

∏
gHarm(θj). (2.19)

These estimators are also very natural within the context of examples de-
scribed above. For example, within the setting of Example 2.1, the estimator
δblock
JS+ is exactly (2.19) and is hence equivalent to the Efron-Morris estimator

described in (2.4).

3. Minimaxity and (quasi)-admissibility

3.1. Minimaxity and inadmissibility of standard blockwise estimators

The blockwise estimators described in Section 2.4 are minimax, as formally
stated in the following proposition.

Proposition 3.1. Both δblock
JS+ and δblock

harm are minimax.

Proof. This follows directly from the fact that the blockwise components of
these estimators are minimax within their respective blocks.

These blockwise estimators are intuitively natural. They are also minimax,
as shown above. Hence it may be surprising to some that when m ≥ 2 they
are not admissible in appropriate senses. However, the following theorem and
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corollaries show that when m ≥ 2 these estimators are not even quasi admissible,
and describe simple estimators that dominate each of them.

Theorem 3.1. Let δB be a blockwise estimator of the form

δB(Y ) = θ̃B = (θ̃
τ
B1, . . . , θ̃

τ
Bm)τ where θ̃Bj =

(
1 − rj(‖Y j‖)

‖Y j‖2
σ2

)
Y j ,

and assume 0 ≤ rj(v) ≤ Rj .

Assume p ≥ 3 and R
4
=

∑m
j=1 Rj < p − 2. Then δB is not quasi-admissible and

a better estimator is

δ(y) = δb(y) − σ2 c(‖y‖2)
‖y‖2

y, (3.1)

where c is a non-decreasing absolutely continuous function that satisfies 0 < c <

2(p − 2 − R). In particular, a better estimator is given by

δc(y) = δB(y) −
(

cσ2

‖y2‖
∧ 1

)
y, (3.2)

where 0 < c < 2(p − 2 − R).

Proof. If ‖y‖2 > cσ2, the difference in the unbiased estimators of risk is

1
σ4

[
R̂δB

− R̂δ

]
=

1
δ4

{
2σ2(∇ · γB(y)) + ‖γB(y)‖2 −

[
2σ2(∇ · γ(y)) + ‖γ(y)‖2

]}
= 2

(
∇· c

‖y‖2
y

)
+

∥∥∥∥∥∑ (−rj(‖yj‖)
‖yj‖2

yj

)∥∥∥∥∥
2

−

∥∥∥∥∥∑ (−rj(‖yj‖)
‖yj‖2

yj−
c

‖y‖2
yj

)∥∥∥∥∥
2

=
1

‖y‖2

{
2c(p − 2) + 4c′(‖y‖2)‖y‖2 − 2c

∑
rj(‖yj‖) − c2

}
≥ c

‖y‖2
{2(p − 2) − 2R − c} > 0. (3.3)

The positivity in (3.3) shows that δ is not quasi-admissible. Formula (3.2)
is an immediate consequence of (3.1).

Corollary 3.1. Let m ≥ 2. Then neither δblock
JS+ nor δblock

harm are quasi-admissible.
Let δB denote either δblock

JS+ or δblock
harm in Section 2.4, respectively. Let m ≥ 2,

p ≥ 3, and p# 4
=

∑
(pj − 2)+. Then p# < p − 2 and δc in (3.1) dominates δblock

JS+

or δblock
harm, respectively, in the sense of quasi-admissibility, where

0 < c < 2(p − 2 − p#). (3.4)
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(See Remark 3.1, for further comments about the choice of c.)

Proof. For δJS+block it is trivially true that Rj = (p − 2)+. References of
Strawderman and of Kubokawa cited above each show that the Harmonic prior
estimator satisfies the hypothesis of the theorem with Rj = (p − 2)+. The
corollary then follows directly from the theorem.

3.2. Quasi-admissible minimax estimators

For suitable choices of c the respective estimators δc are quasi-admissible, in
addition to being minimax and dominating δblock

JS+ and δblock
harm.

Theorem 3.2. Let m ≥ 2. Let δB denote either δblock
JS+ or δblock

harm in Section 2.4,
respectively. Then the corresponding δc in (3.2) is quasi-admissible if

c ≥ p − 2 − p#. (3.5)

Proof. Consider first the case of JS+. In order to provide a unified notation,
if p = 1, 2 let gJS+;p(y)

4
= 1. Then δblock

JS+ is quasi-Bayes with respect to the
quasi-prior g(y) =

∏
gJS+;pj (yj) defined in (2.16). The estimator δc is then

quasi-Bayes with respect to the quasi-prior

gc(y) = hc(y)
∏

gJS+;pj (yj), (3.6)

where

hc(y) =
ec/2

‖cσ2‖c/2
I{‖y‖2≤cσ2}(y)e−‖y‖2/2σ2

+ I{‖y‖2>cσ2}(y)
1

‖y‖c
. (3.7)

The components of (3.6) satisfy

gJS+;pj (yj) = O

(
1

1 + ‖yj‖(pj−2)+

)
, hc(y) = O

(
1

1 + ‖y‖c

)
. (3.8)

Hence

mgc(r) = O

(∫
1

1 + ‖y‖c

∏ 1
1 + ‖yj‖(pj−2)+

Or(dy)
)

. (3.9)

It follows from Lemma A.1 in the appendix that

mg(r) = O

(
1

1 + rc+
P

(pj−2)+

)
.

Then, (2.17) shows that δc is quasi-admissible.
The verification in the case of δblock

Harm is similar. The references of Straw-
derman and of Kubokawa cited above also contain expressions for the value of
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g∗Harm; see also Brown and Zhao (2006, equation 2−3(41)). These show that
g∗Harm also satisfies (3.8); that is,

g∗Harm(yj) = O

(
1

1 + ‖yj‖(pj−2)+

)
.

The remainder of the proof for δblock
Harm follows exactly the pattern of that for δblock

JS+ .

Remark 3.1(Choice of c). The preceding results provide a range of values for
the constant c. Thus any choice within the range

p − 2 − p# ≤ c < 2(p − 2 − p#) (3.10)

will yield a quasi-admissible estimator dominating δblock
JS+ or δblock

harm, respectively.
The choice c = p−2−p# would be the traditionally motivated choice. It has the
property that among all estimators satisfying (3.10) it provides the maximum
improvement for large values of ‖θ‖. Larger choices of c could provide more
improvement for small ‖θ‖ at the cost of doing slightly worse as ‖θ‖ → ∞.

Remark 3.2. The preceding results suggest a possible form for an admissible
minimax estimator dominating δblock

Harm. It must be generalized Bayes, and the
form of (3.6) then suggests trying a prior of exactly or approximately the form

g(θ) =
1

‖θ‖c

∏
gHarm;pj (θj). (3.11)

(This prior results from a hierarchical Bayes construction in which the hyper-
parameters are ω0, . . . , ωm and, conditional on these hyperparameters, θj ∼
Npj (0, 1/(ω0 + ωjI{pj≥3}(pj))), independent, and the hyperparameters have a
suitable joint density.

The form (3.11) automatically yields admissibility as a consequence of (2.17).
The density (3.11) is superharmonic, and hence its Bayes procedure is a minimax
procedure. (See Stein (1981).) We have not been able to determine whether this
Bayes procedure dominates δblock

Harm.

4. Other Minimax Forms and Additional Remarks

4.1. A different, blockwise estimator

The preceding results show that the natural blockwise estimators are not
(quasi) admissible and propose alternate, improved estimators. These improved
estimators are not of a blockwise form, but rather “borrow strength” by com-
bining information across blocks. Indeed, no strictly blockwise estimator can
improve on the estimators of Section 2.4 in the appropriate sense of quasi-
admissibility for δblock

JS+ and of admissibility for δblock
harm. This is because these esti-

mators have the relevant admissibility property within blocks. However, as long
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as pj ≥ 3, j = 1, . . . ,m, there are blockwise estimators that are (quasi) admissi-
ble and minimax. In some cases such estimators also exist when there are one or
two less than or equal to 2. These estimators have risk functions moderately close
to those of δblock

JS+ or δblock
harm, although they do not dominate them. Throughout

the following assume for notational convenience, and without loss of generality,
that

p1 ≤ · · · ≤ pm (4.1)

Here are appropriate blockwise minimax estimators. Let cj , j = 1, . . . ,m be
non-negative constants such that

(pj − 2)+ ≤ cj ≤ 2(pj − 2)+. (4.2)

Define the estimator on the jth block as

δ∗+(yj) =
(

1 − cj

‖yj‖2
σ2

)
+

yj . (4.3)

Then define the blockwise estimator δ∗block
JS+ in the natural way via

θ̃
∗
j = δ∗+(Yj), j = 1, . . . ,m. (4.4)

As an alternative to δblock
Harm, begin by defining a prior on each block. Let

gStr(θj) =
∫ ∞

0

( w

1 + w

)cj−(pj−2)
w(pj−4)/2e−w‖θj‖2/2dw if pj ≥ 3,

= 1 if pj = 1, 2. (4.5)

The notation recalls that this prior, along with a formula for the estimator, is
given in Strawderman (1971). (The parameter a in Strawderman’s formula (9) is
related to our cj via a = (pj + 2 − 2cj)/2; some additional calculation is needed
in order to verify that (4.5) is the density of θj corresponding to Strawderman’s
prior (9).) Now, let δ∗block

Bayes denote the Bayes estimator with respect to
∏

gStr(θj).
The estimators δ∗block

JS+ and δ∗block
Bayes are minimax because they are minimax

within each block. (In the case of δ∗block
Bayes one needs to note that the minimaxity

assertion in Strawderman (1971, “Theorem”) is valid so long as

pj

2
+ 1 > a ≥ 3 − pj

2
. (4.6)

This follows from noting that Strawderman’s “Lemma” applies to the expression
in his (11)−(12) so long as (4.6) is satisfied. See also Strawderman (1973, Remark
4). The following theorem gives conditions under which the estimators in (4.3)
are quasi-admissible or admissible.
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Theorem 4.1. Let {cj} be as in (4.2). Assume∑
(cj ∧ pj) > p − 2 or∑
(cj ∧ pj) = p − 2 and at most one value of cj = pj . (4.7)

Then the estimators δ∗block
JS+ and δ∗block

Bayes defined in (4.3)−(4.4) and below (4.5) are
each minimax, and they are quasi-admissible and admissible, respectively.

Proof. As already noted, minimaxity follows from the fact that each blockwise
component of the estimators is minimax.

For the quasi-admissibility of δ∗block
JS+ note that, as in (3.8), the quasi-prior

corresponding to (4.1) satisfies

g∗block(yj) = O

(
1

1 + ‖yj‖cj

)
.

Lemma A.2 then applies and shows that the conditions on {cj} imply that the
quasi-prior corresponding to δ∗block

JS+ satisfies

mg∗block
(r) = O

(∫ ∏ 1
1 + ‖yj‖cj

Or(dy)
)

= O

(
log(2 + r)
1 + rp−2

)
. (4.8)

As in (3.9) this implies quasi-admissibility according to (2.17).
The verification of admissibility for δ∗block

Bayes is similar, again based on (2.17).
The key fact is contained in Strawderman (1971) where it is shown that the
marginal distribution g∗ corresponding to this prior also satisfies the first equality
in (4.8).

The following is a partial converse to this theorem. As noted in Remark 4.1
below, there is only a thin gap between the theorem and the following converse.

Theorem 4.2. Let {cj} be as in (4.2). Assume∑
(cj ∧ pj) < p − 2. (4.9)

Then the estimators δ∗block
JS+ and δ∗block

Bayes defined in (4.3)−(4.4) and below (4.5)
are each minimax and they are quasi-inadmissible. (Hence they are each also
inadmissible in the ordinary sense.)

Proof. This statement is really a corollary of Theorem 3.1. Let U
4
= {j :

cj < pj}. Without loss of generality we may assume for the following that
U = {1, . . . , JU}. Consider the problem involving only the blocks with j ∈ U (ie,
with j = 1, . . . , JU ). It follows from (4.9) that

∑
j∈U cj <

∑
j∈U (pj − 2)+. Then
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Theorem 3.1 implies that the estimators are not quasi-admissible when restricted
to the blocks with j ∈ U . Hence they are not quasi-admissible.

4.2. General remarks

Remark 4.1. When the values of {pj} allow choices of {cj} for which the
conditions of Theorem 4.1 are satisfied, then there exist blockwise estimators
that are minimax and (quasi)admissible. This happens for many configurations
of the {pj}, and the condition (4.7) of the theorem is easy to check in any specific
case.

Conversely, there are situations for which Theorem 4.2 does not allow choices
of the {cj} under which the corresponding estimators δ∗block

JS+ and δ∗block
Bayes are min-

imax and (quasi)admissible. It seems quite plausible to conjecture that in such
cases there does not exist a blockwise estimator that is minimax and (quasi)
admissible. However we do not know whether this conjecture is valid.

There are only a few configurations of {pj} for which Theorem 4.1 does not
establish the existence of a blockwise minimax and (quasi)admissible estimator
of the form of δ∗block

JS+ or δ∗block
Bayes and, at the same time, Theorem 4.2 does not

show that no such estimator is both minimax and (quasi)admissible. Under the
ordering constraint (4.1), these configurations are those beginning with p1, p2 =
2, 4, or with p1, p2, p3 = 1, 1, 4 or 1, 3, 4 and containing at least two values of
pj = 4. A natural proposal for such a situation would be to use δ∗block

JS+ or δ∗block
Bayes

with cj = 2(pj − 2)+. Such an estimator would be minimax. Theorem 4.1 does
not guarantee that it is (quasi)admissible, nor does Theorem 4.2 show that it is
not. However, even if it is not (quasi)admissible it is arbitrarily close to being
so. This is because any such estimator with cj = 2(pj − 2)+(1 + ε) would be
(quasi)admissible and have risk function uniformly close to that of the estimator
with cj = 2(pj − 2)+.

Remark 4.2.(about Examples 2.1 and 2.2) In the context of Example 2.1 with
p ≥ 4, the choice c1 = 0, p − 2 ≤ c2 ≤ 2(p − 3) in δ∗block

JS+ leads to

ζ̃∗(z) = z1 +
(

1 − c2

‖z − z1‖2
σ2

)
+

(z − z1). (4.10)

Note that when p = 4, then the only suitable choice yielding both minimaxity
and quasi-admissibility is c2 = 2. Otherwise there is a range of possible values
of c2 for which both (4.2) and (4.7) are valid, namely, p − 2 ≤ c2 ≤ 2(p − 3).

In the balanced two way additive model of Example 2.2, the conditions (4.2)
and (4.7) can be satisfied whenever I ≥ 5, J ≥ 5, so that p1 = 1, p2 = I − 1 ≥ 4,
p3 = I−1 ≥ 4. In such a case one may choose c1 = 0, c2 = I−1, c3 = J −1. The
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resulting estimator δ∗block
JS+ in terms of the parameters of the model corresponds

to

µ̃ = µ̂, α̃ =
(

1 − c2

‖α̂‖2
σ2

)
+

α̂, β̃ =
(

1 − c3

‖β̂‖2
σ2

)
+

β̂. (4.11)

(Recall that the row and column effects satisfy the side condition of adding to
zero.) If I ≤ J (without loss of generality) the conditions can also be satisfied if
I ≥ 4, J ≥ 5, so that p2 = I − 1 ≥ 3, p3 = J − 1 ≥ 4. In the case I = 4, J = 5,
the only suitable choice is c2 = 2, c3 = 4; otherwise there is some flexibility in
the choice. In situations not included in the above comments the only available
choices for {cj} satisfy (4.9), and hence the resulting estimators cannot be both
minimax and (quasi)admissible.

Remark 4.3(choice of {cj}). As in the previous settings, there is usually a
variety of possible choices for {cj} satisfying (4.2). When it is desired to use these
blockwise estimators, we recommend the choice cj = pj whenever this satisfies
(4.2) and (4.7). This choice yields estimators whose risk is not far from that of
the usual James-Stein+ choice of cj = (pj − 2)+ within each block, and yet can
yield an estimator that is minimax and quasi-admissible overall.

Remark 4.4.(unknown, estimable error variance) In all the above it has been
assumed that σ2 is a known constant. It is much more common in applications
for σ2 to be an unknown parameter, and to observe an independent variable
V 3 V/σ2 ∼ χ2

d. In that case the value of V/d estimates σ2. This estimate can
be plugged into the preceding formulas in place of the value of σ2. It is known
that such a plug-in procedure yields minimaxity in the original JS+ estimator so
long as either d is not too small or suitable minor changes are incorporated in the
shrinkage constant. See James and Stein (1961). This same type of result will
hold for all the modified James-Stein estimators considered above. It appears
that a similar plug-in rule will generally also be minimax for the generalized
Bayes estimators considered above, though again one should expect that some
not too stringent conditions on d will be needed. It is much more problematic to
satisfactorily generalize the results about admissibility and (quasi)admissibility
to the situation with unknown but estimable σ2. Since we are as yet unable to do
so we do not present further treatment of this problem here. Strawderman (1973)
describes some Bayes and generalized Bayes minimax estimators for this setting,
but does not establish admissibility for the natural extensions of the harmonic
Bayes estimator. More recent work is also relevant to this problem as well as to
the situation involving heteroscedasticity in (2.1). See for example Maruyama
and Strawderman (2005) and other references cited therein.
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Appendix. Technical Lemmas

Lemma A.1. Let y ∈ Rp denote a general vector y = (y′
1, . . . , y

′
m)′, m ≥ 2,

partitioned as in (2.2) and Theorem 3.2. Let qj, j = 1, . . . ,m, be non-negative
constants satisfying qj < pj, j = 1, . . . ,m. Then

1
1 + rc

∫ ∏ 1
1 + ‖yj‖qj

Or(dy) = O
( 1

rc+
P

qj

)
. (A.1)

Proof. If y ∈ Rp is distributed according to the uniform distribution, Or, on the
sphere of radius r, then {‖y1‖2/r2, . . . , ‖ym‖2/r2} has the Dirichlet (p1/2, . . .,
pm/2) distribution. Let D(·) denote this distribution concentrated on the set

H1
4
= {ξ ∈ Rm : ξj ≥ 0, j = 1, . . . ,m;

∑
ξj = 1}. Then∫ ∏ 1

1 + ‖yj‖qj
Or(dy) = r−

P

qj

∫ ∏ 1

r−qj + ξ
qj/2
j

D(dξ1 · · · dξm)

= r−
P

qjO

(∫
ξ∈H1

∏ 1

ξ
qj/2
j

∏
ξ
(pj−2)/2
j dξ

)

= r−
P

qjO

(∫
ξ∈H1

∏ 1

ξ
qj/2
j

∏
ξ
(pj−2)/2
j dξ

)

= O

(
r−

P

qj

∫
ξ∈H1

∏
ξ
(pj−qj−2)/2
j dξ

)
=O

(
r−

P

qj

)
.(A.2)

In the preceding we have used the fact that
∫
ξ∈H1

∏
ξ
(pj−qj−2)/2
j dξ < ∞ since

qj < pj , j = 1, . . . ,m. The conclusion (A.1) now follows directly from (A.2).

Lemma A.2. Let y ∈ Rp denote a general vector y = (y′
1, . . . , y

′
m)′, m ≥ 2,

partitioned as in (2.2) and Theorem 3.2. Let qj, j = 1, . . . ,m, be non-negative
constants. Let r ≥ 2 and

Υ =
∑

(qj ∧ pj), Λ = #{j : qj = pj}. (A.3)

Then ∫ ∏ 1
1 + ‖yj‖qj

Or(dy) = O

(
(log r)Λ

rΥ

)
. (A.4)

Proof. As in the previous lemma,∫
H

4
=

∏ 1
1 + ‖yj‖qj

Or(dy)

= r−
P

qj

∫ ∏ 1

r−qj + ξ
qj/2
j

D(dξ1 · · · dξm)
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= O

(∫
ξ∈H1

∏ r−qj

r−qj + ξ
qj/2
j

∏
ξ
(pj−2)/2
j dξ

)

= O

(∫
ξ∈H1

∏ r−qj

(r−2 ∨ ξj)qj/2

∏
ξ
(pj−2)/2
j dξ

)
. (A.5)

A supplementary argument, given at the end of the proof, verifies that

H = O

(∫ 1

0
· · ·

∫ 1

0

∏ r−qj

(r−2 ∨ ξj)qj/2
ξ
(pj−2)/2
j dξj

)
= O

(∏(∫ 1

0

r−qj

(r−2 ∨ ξj)qj/2
ξ
(pj−2)/2
j dξ

))
. (A.6)

Now,∫ 1

0

r−qj

(r−2 ∨ ξj)qj/2
ξ
(pj−2)/2
j dξ ≤

∫ r−2

0
ξ
(pj−2)/2
j dξj +

∫ 1

r−2

r−qjξ(pj−qj−2)/2dξ

=


O(r−qj ) if qj < pj ,

O(r−pj log r) if qj = pj ,

O(r−pj ) if qj > pj .

(A.7)

The desired conclusion follows from (A.6) and (A.7).
It remains to verify the first equality in (A.6). For this purpose, let T1, . . . , Tm

be independent random variables with respective densities

fj(tj) = t
(pj−2)/2
j I(0,1)(tj). (A.8)

Let
gj(t1, . . . , tm) =

1
(
∑

tk)qj/2(r−2 + tj/
∑

tk)qj/2
. (A.9)

Note that∫ ∏ 1

r−qj + ξ
qj/2
j

D(dξ1 · · · dξm) = E

(
gj(T1, . . . Tm)

∣∣∣ ∑
Tk = 1

)
. (A.10)

Also note that

E

(
gj(T1, . . . Tm)

∣∣∣ ∑
Tk = s

)
= sqj/2E

(
gj(T1, . . . Tm)

∣∣∣ ∑
Tk = 1

)
. (A.11)

It follows that

E(gj(T1, . . . Tm)) = E

(( ∑
Tk

)qj/2
E

(
gj(T1, . . . , Tm)

∣∣∣ ∑
Tk = 1

))
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= E

(( ∑
Tk

)qj/2
)

E
(
gj(T1, . . . , Tm)

∣∣∣ ∑
Tk = 1

)
. (A.12)

(A.10) and (A.12) combine to show that the first equality of (A.6) is valid, as
claimed.

Remark A.1. It can be shown that when pj = qj , j = 1, . . . ,m, then the value
of Λ in (A.4) can be taken as m − 1 instead of m. This minor improvement
plays no role in the earlier results of our paper, and hence we omit the formal
statement and proof.
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