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Abstract: In various applications one encounters samples of objects, where each

object consists of a small number of repeated event times observed over a fixed

time interval. For such rare event data there are no flexible methods available

that can be applied when the shapes of the intensity functions that generate the

observed event times are not known, or vary substantially between objects. We

model the underlying intensity functions as nonparametric object-specific random

functions. Applying a novel functional method to obtain the covariance structure

of the associated random densities, we reconstruct object-specific density functions

that reflect the distribution of event times. We demonstrate in simulations that the

proposed functional approach is superior to conventional nonparametric methods,

as it borrows strength from the entire sample of objects rather than aiming at

the estimation of each object’s density separately. Our method is based on a key

relationship that allows one to reduce the covariance estimation problem for random

densities to the simpler problem of estimating a non-random joint density from

pooled event times. We describe an application to model bid arrivals for a sample

of online auctions, and also include asymptotic justifications of the methodology.

Key words and phrases: Bid arrival times, Cox process, density function, functional

principal components, on-line auction, repeated events.

1. Introduction

The analysis of repeated event data generated by a point process is of inter-

est in many fields. In medical studies, severity of a disease can be reflected by

the frequency of recurrent symptoms, for example, asthma patients experience

recurrent events of coughing and sputum (Sears et al. (1990)) and the quanti-

tative analysis of the occurrence of such events can be an important measure of

treatment efficacy. In behavioral science, smoking behaviors can be represented

by the occurrence of repeated events (Shiffman et al. (2002)). The analysis of

point processes has been studied extensively in parametric settings as well as in

situations where one considers one realization of the underlying point process at

a time (Cox and Isham (1980); Cook and Lawless (2002)).

Our methodology focuses on the commonly observed case of low intensity

point processes that give rise to rare series of events. This situation will be
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illustrated with the analysis of bid arrival times in on-line auctions. As bidders

who participate in a particular auction submit bids on-line, bid arrival events

are recorded and may be thought of as being generated by an auction-specific

realization of a point process. As one observes bid arrival times over many

auctions, the data reflect a sample of realizations of the point process. It is

then of interest to determine the characteristics of this process, for example its

variation from auction to auction. On-line auctions with their sparse bidding

patterns constitute a rich source of data for such studies, for example, millions

of eBay auctions take place every day.

Using nonparametric methods for rare repeated event data requires overcom-

ing methodological challenges. We address them by developing suitable methods

of functional data analysis (FDA) designed for the analysis of a sample of random

functions, or data that can be thought of as having been generated by underlying

random trajectories. A key objective for rare events is to pool information across

the sample from all objects, and a core methodology to achieve this is functional

principal component analysis (FPCA). Under mild conditions, random trajecto-

ries can be expanded in the eigenbasis of its associated covariance operator. This

has led to the popularity of FPCA as a versatile tool to identify functional vari-

ation and to model random trajectories (Castro, Lawton, and Sylvestre (1986);

Rice and Silverman (1991); Silverman (1996)).

If the data obtained for each random trajectory are densely sampled and

noise can be ignored, a common approach (Ramsay and Silverman (2005)) is to

separately smooth the data sampled for each trajectory, with the aim of gener-

ating a sample of smooth function estimates. Once the available data have been

converted into a sample of functional data by such a presmoothing technique,

various established FDA methods can be easily applied. This approach, obtain-

ing in a first pre-smoothing step spline smoothed local intensity functions for

point processes, has been proposed by Bouzas et al. (2006a,b) in the framework

of doubly stochastic Poisson processes, in the context of an analysis of Span-

ish mortgage data. Similarly, Illian et al. (2006) applied FPCA to smoothed

second-order statistics for the purpose of classifying spatial point process data.

The repeated event data that one encounters in on-line bidding and sim-

ilar repeatedly observed series of relatively rare events are typically not dense

enough for this pre-smoothing approach to be feasible. Often only few events are

recorded per object (throughout, we use “object” synonymously for event series,

e.g., an auction for which a series of bids is recorded). For objects with rare

events, the nonparametric estimation of object-specific local intensity functions

based on the data for just one object does not work; we substantiate this point

with simulations reported in Section 5. Commonly used smoothing methods for

point processes require large numbers of events per object to be effective. This
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motivates to develop a specific functional approach for event and especially rare

event data, which does not rely on the pre-smoothing of individual trajectories.

The general plan is to decompose the local intensity function into an overall

intensity factor that is a scalar random variable and a shape function that corre-

sponds to a random density function, then to aim at conditional expectations of

object-specific random densities. A key finding is that the covariances of these

random density functions can be easily evaluated by straightforward bivariate

density estimation. These estimates then lead to an eigenfunction expansion

with random effects, the functional principal components. We demonstrate how

to obtain predicted functional principal components for individual objects, lead-

ing to predicted object-specific random densities.

The article is organized as follows. In Section 2, we introduce the functional

modeling of point process data, followed by a description of corresponding esti-

mation procedures in Section 3. Consistency results are the theme of Section 4,

followed by a report on simulation studies in Section 5 and an illustration of the

methods with ebay online auction data in Section 6. Concluding remarks can be

found in Section 7 and auxiliary results and proofs are provided in an appendix.

2. Functional Modeling of Event Data

2.1. Intensities and densities of point processes as functional data

We view bid arrival times as realizations of an underlying point process.

Point processes can be characterized by their local intensity function (or rate

function). Let N(a, b) denote the observed number of events in the interval

(a, b) ⊂ [0, T ], with an endpoint T > 0. The local intensity function is defined as

λ(x) = lim
∆x→0+

E{N(x, x+∆x)}
∆x

. (2.1)

In our study, we interpret these intensities as object-specific functional data,

i.e., as random trajectories. Random intensities are commonly considered in the

framework of a doubly stochastic Poisson process (Cox and Isham (1980)). This

point process is generated from a non-negative valued stochastic intensity process

Λ(x). Conditional on a realization Λ = λ, it is an inhomogeneous Poisson process

with local intensity function λ(x) that satisfies

E{N(a, b)|Λ = λ} =

∫ b

a
λ(u)du (2.2)

and var{N(a, b)|Λ = λ} =
∫ b
a λ(u)du.

We consider here more general point processes with random intensity func-

tions, for which we only require property (2.2). A stochastic density process
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reflecting the shapes of the intensity functions can be defined via the random

density trajectories

fλ(x) =
λ(x)∫ T

0 λ(u)du
. (2.3)

Defining

τ =

∫ T

0
λ(u)du, (2.4)

there exists a one-to-one mapping between the random intensity functions λ and

{fλ, τ}. Given fλ and τ , one obtains λ via λ(x) = τ fλ(x).

2.2. Event data generated from a functional density model

Our basic assumption is that the event data are generated by an intensity

process Λ. We target the induced random densities fλ (2.3). Conditional on a

realization fi and Ni for the i-th auction, the observed event times xi1, . . . , xiNi

are assumed to be generated as an i.i.d. sample xij ∼ fi, j = 1, . . . , Ni. Thus, the

observed event times are assumed to be generated through a sample of object-

specific density functions fi, i = 1, . . . , n, x ∈ [0, T ], which are realizations of a

stochastic process F that produces trajectories corresponding to smooth density

functions. The random number of events N in [0, T ] is assumed to be generated

by an arbitrary integer-valued distribution with finite moments, for example a

Poisson distribution, where N is assumed to be independent of f .

The bidding times xij are usually observed as ordered sequences xi(1) ≤
xi(2) ≤ . . . ≤ xi(Ni), or may be recorded as differences, △1 = xi(1),△2 = xi(2) −
xi(1), . . . ,△Ni = xi(Ni) − xi(Ni−1). In the second formulation they correspond to

waiting times for the next event, assuming that the starting value is at time 0.

The random densities {f1, . . . , fn}, which generate the sample of i.i.d. event times

observed for an auction, are not observed. The sparsity of observed event times

xij , i = 1, . . . , n, j = 1, . . . , Ni, makes it difficult to infer the individual densities

with classical density estimation methods and calls for a functional approach.

Given random densities f , we define a mean density function Ef(x) = fµ(x)

and covariance function cov [f(x), f(y)] = G(x, y). Assuming that there is an

orthogonal expansion (in the L2 sense) of G in terms of eigenfunctions ϕk and

non-increasing eigenvalues ρk, one obtains the representation

G(x, y) =
∑
k

ρkϕk(x)ϕk(y), x, y ∈ [0, T ]. (2.5)

Applying functional principal component analysis (FPCA), one may then

express the functional density by the Karhunen-Loève representation,

f(x) = fµ(x) +
∑
k

ξkϕk(x), x ∈ [0, T ]. (2.6)



FUNCTIONAL DATA ANALYSIS FOR POINT PROCESSES WITH RARE EVENTS 5

Here the ξk are uncorrelated random variables, the functional principal compo-

nent (FPC) scores. They satisfy Eξk = 0, Eξ2k = ρk, and
∑

k ρk < ∞, where

ρ1 ≥ ρ2 ≥ . . . are the associated eigenvalues. The ξk play the role of object-

specific random effects. In contrast to the model in Yao, Müller, and Wang (2005)

that aims at the functional data analysis of random trajectories, for which one

has sparse and noisy measurements, in the case of event times, one does not have

any direct observations of the target densities f(x). Therefore, a new approach

is needed.

3. Principle of Borrowing Strength Across the Sample

3.1. Estimating the moments of functional densities

We aim at predicting object-specific densities fi from observed sparse event

data based on the expansion in (2.6), borrowing strength from all objects to

infer the object-specific densities. The overall density function fµ = E(fi) can

be estimated by pooling all observed event times and applying kernel density

estimation. Pooling N =
∑n

i=1Ni observed event times, the estimate for the

density fµ is

f̂µ(x) =
1

Nhµ

n∑
i=1

Ni∑
j=1

κ1

(
x− xij
hµ

)
, (3.1)

where hµ is a window width that we select by generalized cross-validation (GCV),

and κ1 is a kernel function, e.g., a truncated Gaussian probability density function

(Silverman (1986)).

To study estimation of the covariance function G(x, y), x, y ∈ [0, T ], condi-

tional on f , consider independent random variables X and Y , both with density

function f . As f is random, X and Y are unconditionally dependent with joint

density function g on [0, T ] × [0, T ], (X,Y ) ∼ g(., .). Denote by xε and yε ε-

neighborhoods of x and y, xε = (x− ε, x+ ε) and yε = (y− ε, y+ ε). Then, using
boundedness assumptions,

E[f(x)f(y)] = E

[
lim
ε→0

1

ε
P (X ∈ xε|f) lim

ε→0

1

ε
P (Y ∈ yε|f)

]
= E

[
lim
ε→0

1

ε2
P (X ∈ xε, Y ∈ yε|f)

]
= lim

ε→0

1

ε2
P (X ∈ xε, Y ∈ yε) = g(x, y),

G(x, y) = cov[f(x), f(y)] = E[f(x)f(y)]− Ef(x)Ef(y)

= g(x, y)− fµ(x)fµ(y). (3.2)
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This key relationship reduces estimation of the covariance function G to the

familiar step of estimating the joint density g of any two event times. For this,

we pool all pairs of events observed for the same object across all objects and

then apply a two-dimensional kernel density estimator, noting that the number

of pairs is N ′ =
∑n

i=1, Ni≥2Ni(Ni − 1),

ĝ(x, y) =
1

N ′hg1hg2

n∑
i=1, Ni≥2

Ni∑
j=1

Ni∑
l=1, l ̸=j

κ2

(
x− xij
hg1

,
x− xil
hg2

)
. (3.3)

Here hg1 , hg2 are window widths and the kernel κ2 is usually chosen as a sym-

metric 2-dimensional probability density function. We implement this method by

choosing common bandwidths hg1 = hg2 = ĥg, in practical applications selected

by GCV, and κ2 as standard bivariate Gaussian kernel.

The estimate of the covariance function G(x, y) is then

Ĝ(x, y) = ĝ(x, y)− f̂µ(x)f̂µ(y), (3.4)

from which one obtains estimated eigenfunctions ϕ̂k(x) and eigenvalues ρ̂k by

numerical spectral decomposition of the covariance for a suitably discretized ver-

sion. A projection on the space of all positive definite covariance functions can

be easily constructed (Hall, Müller, and Yao (2008)).

3.2. Estimating object-specific density and intensity functions

Once estimates for the mean function fµ and eigenfunctions ϕk have been

obtained, individual trajectories are determined by using an object’s functional

principal components (FPCs) ξk, k = 1, . . . ,K, if K components are included

in the expansion (2.6). From (2.6), we observe ξik =
∫
(fi(x) − fµ(x))ϕk(x)dx,

suggesting the estimates

ξ̂ik =
1

Ni

Ni∑
j=1

ϕ̂k(xij)−
∫
f̂µ(x)ϕ̂k(x)dx. (3.5)

An important auxiliary parameter is the number of eigen-components K to be

included at (2.6). Once K has been chosen, the prediction for the object-specific

density fi is given by

f̂i(x) = f̂µ(x) +

K∑
k=1

ξ̂ikϕ̂k(x), x ∈ [0, T ]. (3.6)

Note that f̂i may not be a bona fide density, as it is neither restricted to

be positive nor to integrate to 1. To obtain final estimates that are densities,
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we therefore apply an adjustment by projecting f̂i onto the space of density

functions by truncating the function estimate when it is negative at 0, followed by

multiplying with a factor so that the integral becomes 1, a standard adjustment

procedure in density estimation (Gajek (1986); Glad, Hjort, and Ushakov (2003)).

Although the density estimates f̂i are motivated by the need to model sparse

event times, these estimates can be used in any situation where one wishes to

model a sample of random densities, and they are also of interest for the case

with many observed events per object.

Since by (2.2), E{Ni(0, T )|Λi = λi} = τi, and as we only observe one realiza-

tion of each object-specific process with Ni(0, T ) = Ni, we use Ni to substitute

for τi. Given the density estimates f̂i, intensity functions are then estimated by

λ̂i(x) = Nif̂i(x), i = 1, . . . , n. (3.7)

3.3. Choice of the number of functional principal components

While we do not make a Poisson assumption, we use a pseudo-Poisson infor-

mation criterion to select the number of included functional components, simi-

larly to the Gaussian pseudo-likelihood method for selection of components that

has been shown to work well also for non-Gaussian cases in Yao, Müller, and

Wang (2005). Denoting the estimated density (3.6), obtained when using K

FPCs to approximate the density fi of the i-th object by f̂iK , the Poisson de-

viance for the observed data xij , i = 1, . . . , n, j = 1, . . . , Ni, is approximated

by

D(K) = 2

n∑
i=1

Ni∑
j=1

[
fi(xij) log

(
fi(xij)

f̂iK(xij)

)
− (fi(xij)− f̂iK(xij))

]
.

Since we do not observe the density functions fi directly, we substitute a

smoothed version, where we start with histograms constructed with small bin

size, as follows: Given a random sample x1, . . . , xm ∈ (a, b) that is sampled from

a density function f , define a partition of (a, b) by (t0, . . . , tP ), where a = t0 <

t1 < . . . < tP = b. The bin width ∆j of bin Bj = [tj−1, tj), j = 1, . . . , P,

is ∆j = tj − tj−1. Denote the count of event times falling within bin Bj by

yj , j = 1, . . . , P , so that
∑P

j=1 yj = m. The histogram density estimate f̃H of f

is given by

f̃H(x) =
yj
m∆j

, x ∈ Bj , j = 1, . . . , P . (3.8)

Applying local linear regression smoothing (Fan and Gijbels (1996)) to f̃H
(3.8) with bandwidth selected by GCV leads to smoothed histogram estimates
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f̂iH of fi and deviance estimates

D̂(K) = 2

n∑
i=1

Ni∑
j=1

[
f̂iH(xij) log

(
f̂iH(xij)

f̂iK(xij)

)
− (f̂iH(xij)− f̂iK(xj))

]
. (3.9)

The proposed pseudo-Poisson information criterion (PPIC) is then

PPIC(K) = D̂(K) + 2K, (3.10)

with penalty analogous to AIC. Other penalties, e.g., of BIC type, could be easily

substituted. The selected dimension is K̂ = argminKPPIC(K).

If desired, the PPIC can be adapted for choosing the number of princi-

pal components for each object separately. Let K̂i = argminKPPICi(K), where

PPICi(K) = D̂i(K)+2K and D̂i(K) is (3.9) adapted for the ith object only. The

prediction for the object-specific density is then f̂i(x) = f̂µ(x) +
∑K̂i

k=1 ξ̂ikϕ̂k(x).

Since individual tuning parameter choices for functional data often lead to in-

creased variance of the estimates, which makes it harder to interpret individually

predicted density functions, and overemphasizes differences between process es-

timates, we use a common number of functional components across all objects in

the analysis.

4. Theoretical Results

To provide theoretical justifications for our approaches, we establish the

uniform convergence of the estimated mean function, covariance function, and

eigenfunctions, as well as individual density estimates, and the consistency of

eigenvalues and estimated FPCs, under suitable regularity conditions. Proofs

are in the Appendix.

The observed event times xij , i = 1, . . . , n, j = 1, . . . , Ni, are assumed to be

i.i.d. samples with density fi, conditional on a realization of fi ∈ F and Ni = ni.

A basic assumption throughout is that densities fi, mean density fµ(x), joint

density g(x, y), and eigenfunctions ϕk are twice continuously differentiable on the

domain [0, T ] on which the repeated events are observed. It is also assumed that

density functions and their first two derivatives are bounded, where the bounds

hold uniformly across the set of random densities F . Further assumptions are as

follows; we provide additional discussions of (A1) in Section 7.

(A1) The numbers of observations Ni for the i-th object, i = 1, . . . , n, are

i.i.d. r.v.’s that are independent of the densities fi and satisfy

E
( n∑n

i=1Ni

)
<∞, E

( n∑n
i=1Ni(Ni − 1)

)
<∞.
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(A2) The univariate and bivariate kernel functions κ1(·) and κ2(·, ·) for the

smoothing steps for the mean fµ and covariance G are compactly supported

symmetric density functions with Fourier transforms γ1(t) =
∫
e−iutκ1(u)du

and γ2(s, t) =
∫
e−(ius+ivt)κ2(u, v)dudv such that γ1(t) and γ2(s, t) are ab-

solutely integrable.

(A3) The bandwidths hµ and hg used for estimating f̂µ and ĝ satisfy

hµ → 0 and nh6µ <∞; hg → 0 and nh8g <∞, as n→ ∞.

We obtain the uniform convergence rates for the estimators of the mean

function, joint density and covariance function. These are quantities that benefit

directly from the pooling of data across objects, and therefore are well behaved.

Theorem 1. Assume Ni ≥ 1, 1 ≤ i ≤ n. Under (A1)−(A3),

sup
x

|f̂µ(x)− fµ(x)| = OP (
1√
nhµ

), sup
x, y

|ĝ(x, y)− g(x, y)| = OP (
1√
nh2g

), (4.1)

sup
x, y

|Ĝ(x, y)−G(x, y)| = OP (
1√
nh2g

+
1√
nhµ

). (4.2)

Combining this result with perturbation arguments, as laid out in the proof

of Theorem 2 of Yao, Müller, and Wang (2005), leads to the consistency of

eigenvalue and eigenfunction estimates.

Theorem 2. Under the assumptions of Theorem 1,

|ρ̂k − ρk| = OP (
1√
nh2g

+
1√
nhµ

), sup
x

|ϕ̂k(x)− ϕk(x)| = OP (
1√
nh2g

+
1√
nhµ

).

(4.3)

While the proposed method is applicable to general point processes, we pro-

ceed to study convergence rates of the estimated FPCs ξ̂ik and object-specific

density estimators f̂i for the case of Poisson processes. This ubiquitous scenario

serves as a model case of how to obtain such rates. Assumptions are needed.

(A4) The number of observations Ni made for the ith object is a positive r.v.

from a truncated-Poisson(τn) distribution,

P(Ni = 0) = 0, P(Ni = k) = τkne
−τn/(k!(1− e−τn)), k ≥ 1.

(A5) The intensity parameters τn form a sequence of positive r.v.’s such that τn

and the densities fi, 1 ≤ i ≤ n, are independent; Eτ
−1/2
n = O(αn), αn → 0,

as n→ ∞.

(A6) The number of eigenfunctions and functional principal components Ki for

each object is a random variable with Ki ∼ K, where K is a positive

finite discrete r.v. such that, for any ϵ > 0, there is a K∗
ϵ < ∞ with

P(K > K∗
ϵ ) < ϵ/2.
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In the context of the application in Section 6, (A5) means that the average

number of bids per auction is assumed to increase asymptotically. Without such

an assumption, consistency for individual density estimates is not achievable, in

analogy with the case of Gaussian trajectories (Yao, Müller, and Wang (2005)).

Nevertheless, even under this assumption, if many of the Ni are small or

events are very unevenly distributed, the observed event data may be considered

sparse. For example, if τn = n3/7, P(Ni ≤
√
n) = 0.89 for n = 100, and 0.98

for n = 500. So for n = 100, there is a sizable proportion of observed event

process objects that are very sparse; for n = 500, all objects with few exceptions

would still be somewhat sparse. In the eBay application, most of the bids occur

during the last day, while the first six days have relatively few bids, leading to

subdomains with very sparse events. Situations where events are rare within

some subdomains may also be viewed as sparse event data.

Assumption (A6) allows for varying numbers of eigen-components across

objects. In practice, we nevertheless adopt a common number of selected com-

ponents K for all objects; this is a common practice in other versions of FDA.

We believe that this is a good strategy to balance individual variability and sta-

bility, as one cannot expect stable choices of individual numbers of components

Ki when the observed data are sparse, since this would mean selection of one

tuning parameter per object. We remark that (A6) can be relaxed at the cost of

substantial additional complexity and other conditions, by employing arguments

as in Müller and Yao (2008).

We use the fact that the rates of convergence of ϕ̂k(x) and ρ̂k in Theorem 2

are uniform over a finite range of components K; uniform convergence rate of f̂i
on {K : 1 ≤ K ≤ K∗

ϵ } emerges as a consequence.

Theorem 3. For any ϵ > 0, there exists an event Aϵ that has probability P(Aϵ) ≥
1− ϵ, such that under (A1)−(A6), on Aϵ it holds that

|ξ̂ik − ξik| = OP (αn +
1√
nh2g

+
1√
nhµ

), (4.4)

sup
x

|f̂i(x)− fi(x)| = OP (αn +
3√
nh2g

+
2√
nhµ

), (4.5)

where αn is as in (A5).

5. Simulation Studies

Simulations were designed to compare the proposed functional approach with

two straightforward alternatives: smoothing histograms separately for each ob-

ject, based on just the observed event times for the object in question; pooling all

observed event times, using the resulting density estimate for the pooled data as



FUNCTIONAL DATA ANALYSIS FOR POINT PROCESSES WITH RARE EVENTS 11

predictor for individual object densities. The smoothed histogram is a commonly

used nonparametric method for density estimation; the pooled density estimate

corresponds to the estimate f̂µ of the mean density function fµ in the expansion

(2.6). Since the smoothed histograms are based on the observed data for each

object separately, we would expect large deviations from the true densities for

objects with rare events. Although the pooled estimate f̂µ of the mean density

function borrows information across the objects, it fails to account for the object-

specific features of the random densities, and does not reflect individual event

counts.

In each simulation, we generated recurrent events for n = 200 objects. For

the number of events Ni recorded for the i-th object, we considered three cases:

Ni uniformly selected from 2 to 5, uniformly from 5 to 10, and Ni fixed at 25,

representing rare, relatively rare and dense events, respectively. The performance

measure is mean integrated squared error

MISE =
1

n

n∑
i=1

∫ T

0

[
fi(t)− f̂i(t)

]2
dt, (5.1)

obtained by averaging over 400 simulations.

In a Gaussian scenario, sample densities were generated as Gaussian den-

sities with random means µi ∼ N(8, 1) and random variances σ2i ∼ U(0.5, 1.5),

i = 1, . . . , n, choosing T = 16. In a Gaussian Mixture scenario, object-specific

densities fi were generated as fi(x) = φi1(x)/2 + φi2(x)/2. Here φi1, φi2 are

Gaussian densities with parameters (µi1, σ) for φi1 and (µi2, σ) for φi2, where

µi1 ∼ U(1, 2) and µi1 ∼ U(2, 3), i = 1, . . . , n, and σ = 0.15 is fixed, choosing

T = 4. In a Beta-Gaussian Mixture scenario, we simulated bimodal densities,

where fi(x) = κiψi(x) + (1 − κi)φi(x). Here κi ∼ U(0.3, 0.7) and the ψi are

Beta densities with random parameters (ai, bi), where ai ∼ U(2, 4) and bi ∼
U(0.2, 0.8); the φi are Gaussian densities with random means µi ∼ U(0.2, 0.8)

and fixed standard deviation σ = 0.05, i = 1, . . . , n, choosing T = 1. These mix-

ture densities have similar shapes as the densities observed for on-line auction

example discussed in the following section.

The simulation results are listed in Table 1. One finds there that the proposed

functional approach consistently performs better than individually smoothed

densities, even for moderately large sample sizes Ni = 25. For objects with dense

events, one would have expected individual histograms to be quite competitive,

and it is surprising that they are not. The functional approach also improves con-

siderably upon the estimates obtained by pooling all data, especially when the

observed events are dense. These results support the idea of borrowing strength

across the sample of rare event data to improve object-specific estimates.
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Table 1. Mean integrated squared errors for three different simulation
scenarios.

Simulation Sample Size Functional Smoothed Histogram Pooled Estimate
Setting Ni Median Mean Median Mean Median Mean

2 ∼ 5 0.0611 0.0700 0.1567 0.1566 0.0934 0.0932
Gaussian 5 ∼ 10 0.0357 0.0412 0.0785 0.0787 0.0925 0.0927

25 0.0150 0.0162 0.0274 0.0273 0.0919 0.0919
Gaussian 2 ∼ 5 0.3906 0.4045 0.6806 0.6837 0.5301 0.5297
Mixture 5 ∼ 10 0.2762 0.2846 0.3668 0.3675 0.5259 0.5259

25 0.1237 0.1299 0.1346 0.1345 0.5224 0.5220
Beta-Gaussian 2 ∼ 5 1.1662 1.1841 2.2430 2.2670 1.2167 1.2160

Mixture 5 ∼ 10 0.7641 0.7644 1.2948 1.2915 1.2052 1.2060
25 0.3243 0.3241 0.4974 0.4977 1.1981 1.1979

6. Functional Modeling of Bid Arrival Times for Online Auctions

While the analysis of the on-line auction price process and its dynamics has

been well studied, much less is known about the processes generating the events

that correspond to bidding, referred to as bid arrival times. For eBay online

auctions, the bidding events are relatively rare, with more intensive bidding near

the end of an auction, sometimes referred to as “bid sniping”, as potential buyers

try to outbid each other (Bapna, Jank, and Shmueli (2008)). Previous studies of

bid arrivals were primarily descriptive (Ockenfels and Roth (2002)) or focused on

parametric approaches, introducing the “Barista” model (Shmueli, Russo, and

Jank (2007)) and the concept of self-similarity of the bid arrival process (Russo,

Shmueli, and Shyamalkumar (2008)). We aim at a fully nonparametric analysis,

letting the data speak for themselves.

We consider 156 Palm M515 PDA online auctions from e-Bay, which were

all 7-day second price auctions that took place between March and May, 2003,

using data collected by Wolfgang Jank. For each auction, the bid arrival times

were recorded with accuracy in seconds. We converted the time unit into hours

and recalibrated the start of all auctions to time 0, so the time domain is always

between 0 and 168 hours. The total number of bids recorded per auction ranged

from 8 to 51, with a median of 22. Figure 1 displays the bid arrival times for five

randomly selected auctions, indicating substantial variation in bidding patterns.

The median bid count per day is relatively low during the first six days, while

on day 7, the last day, it increases to 9, with a maximum of 32. This uneven

distribution of the daily number of bids reflects a typically more intense start,

followed by much less activity during the middle stage and then intense bidding

near the end.

The intensity of last-minute bidding activity is demonstrated by the his-

tograms of the aggregated bids obtained from all auctions for the last day and
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Figure 1. Bid arrival times (arrows) for 5 randomly selected auctions.

the last hour (Figure 2). During the last hour, the aggregated number of bids in

the last 6 minutes was 190, while the median number of bids in the aggregated

sample for the first 54 minutes was only 20. The huge difference in scale between

the bidding activities in the last 0.1 hour and the rest of the auction suggests

that bid arrivals in the last 0.1 hour are generated from a different process and

modeling it together with the rest of the auction may lead to biased estimates

for the earlier phases, since the variation of the last 0.1 hour of bidding would

dominate. We therefore restricted the illustration of our method to the bids

that were placed between 0 and 167.9 hours. The last 0.1 hours were analyzed

separately with the same methodology (results not reported).

The mean density estimate f̂µ of bidding activity, overlaid with the histogram

for the pooled data, is shown in Figure 3. As expected, the mean density has

a small peak around 3hr and a fast rising right tail. We note that, instead of

directly plugging the estimates ĝ and f̂µ into (3.2), an alternative approach is to

first construct the histogram estimates g̃H and f̃Hµ
for densities g and fµ, respec-

tively, and then to obtain the smoothed covariance function Ĝ by applying a two-

dimensional smoothing step to the values of G̃(x, y) = g̃H (x, y) − f̃Hµ
(x)f̃Hµ

(y)

on the grid defined by the midpoints of the histogram bins. We use this sim-

ple implementation, obtaining the fitted covariance displayed in the left panel

of Figure 4; it is the projection of the initial smooth Ĝ onto the space of posi-

tive definite surfaces. The corresponding correlation surface (right panel) shows
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Figure 2. Histograms of the number of bids placed on the last day (left
panel) and in the last hour (right panel).

Figure 3. Histogram of the pooled bid arrival times for 156 auctions, over-
laid with the estimated mean density function f̂µ (solid) and 95% pointwise
confidence bands (dashed), t ∈ [0, 167.9] (hours).

negative correlations between early and late bidding intensities, indicating that

there is a trade-off in bidding activity for the different auction phases.

The proposed criterion PPIC led to the selection of K = 3 components for

modeling the auction-specific densities in the main auction phase, explaining
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Figure 4. The estimated covariance surface (left panel) and the correspond-
ing correlation surface (right panel), t ∈ [0, 167.9] (hours). A zero plane is
overlaid with the correlation surface for reference of sign changes.

86.9% of the total variation; see Figure 5. The sign change of the first eigenfunc-

tion (explaining 50.6% of total variation) reflects the negative correlation between

early and late bidding. The first eigen-component is seen to be associated with

larger variability in the bid counts during the initial and close-to-end auction

phases. Both the second and the third eigenfunctions (explaining 24.63% and

11.70%, respectively) have a peak around 144hr and are aligned with trends where

increased (decreased) bidding about one day before the end of the auction is as-

sociated with decreased (increased) bidding closer to the end. Auction-specific

densities were estimated via (3.6) with K = 3. We display the fits, overlaid with

the corresponding histograms, for nine randomly selected auctions in Figure 6.

Inference for the estimates of model components was obtained by the boot-

strap. A natural bootstrap sampling scheme is to resample from the objects with

replacement and then to resample for a selected object from the bid events xij ,

1 ≤ j ≤ Ni within the selected auction, also with replacement. The bootstrap

estimates of the mean, covariance, and eigenfunctions were used to construct

pointwise confidence bands for the corresponding quantities, by locating the cor-

responding empirical quantiles in the bootstrap distributions (Figures 3 and 5).

This double bootstrap resampling scheme reflects that the variability in the indi-

vidual density estimates comes from two sources: The variability of the mean and

eigenfunction estimates and, in addition, the variability in the principal compo-

nent estimates. The quantiles for the confidence intervals were constructed from

the resulting B density estimates for each auction of interest, where B = 500



16 SHUANG WU, HANS-GEORG MÜLLER AND ZHEN ZHANG

Figure 5. First three eigenfunctions (solid lines; 1st in the left panel, 3rd in
the right panel) and their 95% pointwise confidence bands (dashed lines),
t ∈ [0, 167.9] (hours).

bootstrap samples were used to construct the 95% pointwise confidence bands;

these are shown in Figure 6.

7. Discussion and Concluding Remarks

For the well-studied case where data are obtained from a single realization of

a point process, various nonparametric approaches have been developed over the

years. For example, Diggle (1985) proposed a nonparametric kernel estimate for

the local intensity function of stationary Cox processes and discussed properties

of this estimate and bandwidth selection for uniform kernel functions; Diggle and

Marron (1988) noted the similarity between kernel intensity and density estima-

tion and demonstrated the utility of kernel density estimates in the point process

setting; kernel-type and smoothing based intensity estimators and their proper-

ties were also discussed in Ramlau-Hansen (1983); Yandell (1983); Guan (2008).

Of particular interest in this context is Chiang, Wang, and Huang (2005), where

a sample of point processes was considered. The objective of the work of Chiang,

Wang, and Huang (2005) was to obtain estimators for the population average of

the occurrence probability of recurrent events. In contrast, we focus on object-

specific estimation, where we face specific challenges, due to the randomness of

the intensity functions and the sparsity of the repeated events.

One can ask whether assumption (A1), which is central to our developments

and requires that the numbers of observations Ni for the i-th object and the den-

sities fi be independent, is satisfied for our application. We checked this (results

not shown) and found no evidence that the shapes of the random densities are

related to the numbers of events. Generally, small violations of this assumption

would not matter, but if there are major violations the method would need to
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Figure 6. The estimated auction-specific densities (solid) and 95% pointwise
bands (dashed) for 9 randomly selected auctions, overlaid with the corre-
sponding histograms, t ∈ [0, 167.9] (hours).

be modified. This could be done either by stratifying the sample into subgroups

with more homogeneous numbers of observed events or, more formally, by im-

plementing a moving window functional principal component analysis, similar to

the proposal in Chiou and Müller (2009), where the number of observed events

can be chosen as the covariate defining the moving windows.

We demonstrate that applying functional data analysis methods for rare re-

peated events is useful for predicting random intensity or density functions for

individual objects, without resorting to parametric assumptions. This object

oriented approach leads to qualitative assessment of the variability of individ-

ual density functions; comparisons of object-specific and mean density functions;

compact graphical displays describing the sample, including mean and eigenfunc-

tions, covariance, and correlation functions; improved estimation by borrowing

strength across the sample, as demonstrated in simulations. The latter is a key
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feature of the functional approach that is particularly useful for the analysis of

objects that consist of rare repeated events.
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Appendix: Auxiliary Results and Proofs

We require approximations of the Poisson(λ) distribution with a normal

distribution with mean λ and variance λ. The proof of Lemma 1 follows from

Makabe and Morimura (1955); Corollary 1 and Lemma 2 are obtained by straight-

forward calculations.

Lemma A.1. If N ∼ Poisson(λ), λ > 0, then for small ε > 0,

P
(
min(N,λ) ≤ ελ2/3

)
= P

(
0 ≤ N ≤ [ελ2/3]

)
≤ D(λ),

D(λ) =
1√
2πλ

([ελ2/3] + 1)e−
([ελ2/3]−λ+1/2)2

2λ

+
1

6
√
2πλ

{(
1− ([ελ2/3]− λ+ 1/2)2

λ

)
e−

([ελ2/3]−λ+1/2)2

2λ

−
(
1− (λ+ 1/2)2

λ

)
e−

(λ+1/2)2

2λ

}
+
0.0544

λ
+

0.0108

λ3/2
+

0.2743

λ2
+

0.0065

λ5/2
+
(
1 +

1

2
√
λ

)
e−2

√
λ.

Corollary A.1. If N is a r.v. from a truncated-Poisson(λ), λ > 0, N ≥ 1, for

D(λ) as in Lemma 1 and a small ε > 0,

P
(
min

(
N,

λ

1− e−λ

)
≤ ελ2/3

)
≤ D(λ).

Lemma A.2. If N ≥ 1 is a r.v. from a truncated-Poisson(λ), λ > 0,

µN = E(N) =
λ

1− e−λ
, var(N) =

λ(1− e−λ − λe−λ)

(1− e−λ)2
.

Since N1, . . . , Nn are i.i.d., for any function q : N 7→ N, q(N1), . . . , q(Nn)

are also i.i.d. and the conditional distribution of (q(N1), . . . , q(Nn)) given
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Ñ =
∑n

i=1 q(Ni) is Multinomial(Ñ , 1/n, . . . , 1/n). Therefore,

E

(
q(Ni)

Ñ

)
= E

[
E

(
q(Ni)

Ñ

∣∣∣∣Ñ)] = 1

n
, (A.1)

E

(
q(Ni)

Ñ

)2

= E

[
E

(
q(Ni)

2

Ñ2

∣∣∣∣Ñ)] = 1

n2
+
n− 1

n2
E(

1

Ñ
), (A.2)

E

(
q(Ni)q(Nj)

Ñ2

)
= E

[
E

(
q(Ni)q(Nj)

Ñ2

∣∣∣∣Ñ)] = 1

n2
− 1

n2
E(

1

Ñ
), i ̸= j. (A.3)

Proof of Theorem 1. Note that |f̂µ(x)−fµ(x)| ≤ |f̂µ(x)−Ef̂µ(x)|+ |Ef̂µ(x)−
fµ(x)|. From (3.1), using a Taylor expansion with a suitable mean value δu, one
obtains

Ef̂µ(x) =
n∑

i=1

E(
Ni

N
)

∫
κ1(u)fµ(x− uhµ)du

=

∫
κ1(u)

(
fµ(x)− uhµf

′
µ(x) +

1

2
u2h2µf

′′
µ(δu)

)
du

= fµ(x) +
1

2

(∫
κ1(u)f

′′
µ(δu)u

2du

)
h2µ,

which implies supx |Ef̂µ(x) − fµ(x)| = O(h2µ). For the random part |f̂µ(x) −
Ef̂µ(x)|, we insert the inverse Fourier transform κ1(u) = (1/(2π))

∫
eiutγ1(t)dt

into f̂µ,

f̂µ(x) =
1

2π

n∑
k=1

1

N

Nk∑
j=1

∫
eiu(x−Xkj)γ1(uhµ)du =

1

2π

∫
φ(u)eiuxγ1(uhµ)du,

where φ(u) =
∑n

k=1(1/N)
∑Nk

j=1 e
−iuXkj . Thus supx |f̂µ(x)− Ef̂µ(x)| ≤ (1/(2π))∫

|φ(u)− Eφ(u)||γ1(uhµ)|du. With E|φ(u)− Eφ(u)| ≤
√

E(φ(u)− Eφ(u))2 and
conditioning,

var(φ(u)) ≤ E
( 1

N

)
+ var

( n∑
k=1

Nk

N

∫
e−iutfk(t)dt

)
.

Let Pk = Nk/N , Qk =
∫
e−iutfk(t)dt. By (A1), Pk and Qk are independent,

and the Qk are i.i.d. with α = EQk =
∫
e−iutfµ(t)dt, β = EQ2

k ≤ 1. Applying
(A.1)−(A.3) with g(Nk) = Nk, Ñ = N , we obtain

var
( n∑

k=1

Nk

N

∫
e−iutfk(t)dt

)
= var

( n∑
k=1

PkQk

)
≤

n∑
k=1

[
β
{ 1

n2
+
n− 1

n2
E(

1

N
)
}]

+
∑∑

k ̸=j

[
α2
{
− 1

n2
E(

1

N
)
}]

≤ 1

n

[
1 + E(

n

N
)
]
.
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Therefore, var(φ(u)) ≤ (1/n)[1 + 2E(n/N)], and by (A1) and (A2), E{supx |
f̂µ(x) − Ef̂µ(x)|} = O(1/(

√
nhµ)), which implies supx |f̂µ(x) − Ef̂µ(x)| = OP

(1/
√
nhµ). Since nh6µ < ∞ implies h2µ = O(1/

√
nhµ), the first result in (4.1)

follows. The proof of ĝ(x, y) can be done in similar fashion and (4.2) is an

immediate consequece of (4.1).

Proof of Theorem 3. Write fµ(x) =
∑∞

k=1 ςkϕk(x) and fi(x) =
∑∞

k=1 ζikϕk(x),

where ζik = ςk + ξik. From (4.3), we have

|ξ̂ik − ξik| ≤
∣∣∣∣ ∫ fi(x)ϕk(x)dx− 1

Ni

Ni∑
j=1

ϕ̂k(Xij)

∣∣∣∣
+

∣∣∣∣ ∫ fµ(x)ϕk(x)dx−
∫
f̂µ(x)ϕ̂k(x)dx

∣∣∣∣
≤
∣∣∣∣ζik − 1

Ni

Ni∑
j=1

ϕk(Xij)

∣∣∣∣+OP (
1√
nh2g

+
1√
nhµ

),

Let

∆ =
1

Ni

Ni∑
j=1

{
ϕk(Xij)−ζik

}
=
( Ni∑

j=1

ϕk(Xij)− ζik√
τn/(1− e−τn)

)τn/(1− e−τn)

Ni

1√
τn/(1− e−τn)

.

By a conditioning argument, we can show that∑Ni
j=1

{
ϕk(Xij)− ζik

}√
τn/(1− e−τn)

has zero mean and finite variance, and thus is OP (1). We also note that

E(∥{τn/(1−e−τn∥)}−1/2) < Eτ
−1/2
n = O(αn), as n→ ∞, implying |∆| = OP (αn)

as long as
τn/(1− e−τn)

Ni
= OP (1). (A.4)

We expand (τn/(1− e−τn))/Ni around τ
∗
n = E(Ni|τn) = τn/(1− e−τn), with

a suitable choice of mean value τ̃ ,

τn/(1−e−τn)

Ni
=
τn/(1−e−τn)

τ∗n
− τn/(1−e−τn)

τ∗2n

(
Ni−τ∗n

)
+

2τn/(1−e−τn)

τ̃3
(
Ni−τ∗n

)2
≤ 1− Ni − τn/(1− e−τn)

τn/(1− e−τn)

+
τ2n[

min(Ni, τn/(1− e−τn))
]3 2

(1− e−τn)2
(Ni − τn/(1− e−τn))2

τn/(1− e−τn)
.
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By Lemma 2 and (A4), we find that

∣∣∣Ni − τn/(1− e−τn)

τn/(1− e−τn)

∣∣∣ = OP (1),
(Ni − τn/(1− e−τn))2

τn/(1− e−τn)
= OP (1),

and

E
( 1

(eτn − 1)2

)
< E(τ−1/2

n ) = O(αn),

as n→ ∞. Therefore, (A.4) holds as long as

P
(
min(Ni, τn/(1− e−τn))) ≤ ετ2/3n

)
→ 0, as n→ 0, ∀ε > 0. (A.5)

Writing τn = τn(ω1) and Ni = Ni(ω2), where ω1 ∈ Ω1, ω2 ∈ Ω2, and Ω1, Ω2

are suitable probability spaces, one obtains by Fubini’s Theorem and Corollary

1, P(min(Ni, τn/(1 − e−τn))) ≤ ετ
2/3
n ) = EΩ1

[PΩ2
(min(Ni, τn/(1 − e−τn))) ≤

ετ
2/3
n |τn(ω1))] ≤ EΩ1

{D(τn(ω1))}, where D
(
τn(ω1)

)
is a sum of finitely many

terms of the form τ−a
n (ω1), a ≥ 1 and τ bn(ω1)e

−τcn(ω1), b > 0, c ≥ 1/2. Since

Eτ−a
n < E(τ

−1/2
n ) = O(αn), and EΩ1

(
τ bne

−τcn
)
= EΩ1

(
1/
∑∞

j=0(1/j!)τ
cj−b
n

)
≤

EΩ1
τ
−1/2
n = O(αn), as n → ∞, we have EΩ1

{
D
(
τn(ω1)

)}
= OP (αn), which

implies (A.4) and (4.4).

Let fK
i (x) = fµ(x) +

∑K
k=1 ξikϕk(x), then |f̂i(x)− fi(x)| ≤ |f̂i(x)− fK

i (x)|+
|fK

i (x)− fi(x)|. By Mercer’s Theorem

sup
x

E
[
fK
i (x)− fi(x)

]2
= sup

x
var
( ∞∑

k=K+1

ξikϕk(x)
)
= sup

x

∞∑
k=K+1

ρkϕ
2
k(x) −→ 0

Thus, |fK
i (x)− fi(x)| = oP (1).

We now define an event Aϵ as Ac
ϵ = {K > K∗

ϵ } ∪ {Ni = 1, i = 1, . . . , n}.
Since P({Ni = 1, i = 1, . . . , n}) =

(
τn/e

τn − 1
)n

=
(
1/
∑∞

j=1(1/j!)τ
j−1
n

)n
< ϵ/2

for sufficiently large n, by (A6) we have P(Aϵ) ≥ 1− ϵ. On Aϵ, (A1) is valid and

so are (4.1) and (4.3). In addition, for a finite range of K, the rates in (4.3) and

(4.4) are uniform in K. This implies that on the event Aϵ,

sup
x

|f̂i(x)− fK
i (x)| ≤ sup

x
|f̂µ(x)− fµ(x)|+

K∑
k=1

sup
x

|ξ̂ikϕ̂k(x)− ξikϕk(x)|

= OP (
1√
nh2g

) +OP (αn +
2√
nh2g

+
2√
nhµ

),

establishing (4.5).
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