
Statistica Sinica 33 (2023), 2495-2517
doi:https://doi.org/10.5705/ss.202021.0167

DEFINING AND ESTIMATING PRINCIPAL STRATUM

SPECIFIC NATURAL MEDIATION EFFECTS WITH

SEMI-COMPETING RISKS DATA

Fei Gao, Fan Xia and K. C. G. Chan

Fred Hutchinson Cancer Center,

University of California at San Francisco and University of Washington

Abstract: In many medical studies, an ultimate failure event, such as death, is likely

to be affected by the occurrence and timing of other intermediate clinical events.

Both event times are subject to censoring by loss-to-follow-up, but the nonterminal

event may be further censored by the occurrence of the primary outcome, but not

vice versa. To study the effect of an intervention on both events, the intermediate

event may be viewed as a mediator. However, the conventional definitions of direct

and indirect effects do not apply, because of the semi-competing risks data struc-

ture. We define three principal strata based on whether the potential intermediate

event occurs before the potential failure event. This allows us to properly define

direct and indirect effects in one stratum, and define total effects for all strata. We

discuss the identification conditions for the stratum-specific effects, and propose

a semiparametric estimator based on a multivariate logistic stratum membership

model and within-stratum proportional hazards models for the event times. By

treating the unobserved stratum membership as a latent variable, we propose an

expectation-maximization algorithm for the computation. We study the asymptotic

properties of the estimators using modern empirical process theory and examine the

performance of the estimators in numerical studies.

Key words and phrases: Illness-death model, missing data, principal stratification,

proportional hazards model, survival analysis.

1. Introduction

Evaluating the causal effects of an intervention on a clinical outcome is a

common theme in many medical studies. After an overall relationship between

an intervention and an outcome is established, it is often of further interest to

understand the biological or mechanistic pathways that contribute to the causal

treatment effect. Causal mediation analysis is often used to disentangle the total

treatment effect by decomposing it into an indirect effect, that is, the effect ex-

erted by intermediate variables (mediators), and a direct effect, that is, the effect
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involving pathways independent of the hypothesized mediators. Intuitively, to

evaluate a direct effect, the mediators need to be somehow fixed. A variety of

mediation effects can be defined by different ways of fixing the mediators. Natu-

ral effects are most relevant when studying treatment effect mechanisms in public

health, because they compare the outcome under which the mediators are set to

the value that occurs naturally under different treatment assignments. A num-

ber of methods have been proposed for causal mediation analysis with survival

outcomes, for a single mediator measured at study entry (Lange and Hansen

(2011); VanderWeele (2011); Tchetgen Tchetgen (2011); Lange, Vansteelandt

and Bekaert (2012)), and for longitudinal mediators (Lin et al. (2017); Zheng

and van der Laan (2017); Didelez (2019); Vansteelandt et al. (2019); Aalen et al.

(2020)).

In many biomedical studies, intermediate nonterminal landmark events are

recorded in addition to the primary failure event, because they are important

when evaluating the prognosis. Because of the ordering of the two events, the

nonterminal event is subject to censoring by the occurrence of the terminal event,

but not vice versa, such that semi-competing risks data are observed (Fine, Jiang

and Chappell (2001)). In this paper, we consider a setting in which a nonter-

minal event may serve as a mediator for individuals to whom the event occurs

before the terminal event. An example is a multi-center trial of allogeneic bone

marrow transplants in patients with acute leukemia (Copelan et al. (1991); Klein

and Moeschberger (2006)), where the primary interest is on the effect of differ-

ent treatment regimens (methotrexate + cyclosporine vs methylprednisolone +

cyclosporine) on the survival time. The event time of an intermediate endpoint,

chronic graft-versus-host disease (GVHD), is a major side effect of the transplant

that can be lethal. However, some patients died without experiencing GVHD,

such that the GVHD event time is subject to censoring by the death time.

Causal mediation analysis with semi-competing risks data is particularly

challenging. First, the mediator is only well defined for those who experience

the nonterminal event before the occurrence of the primary event. Therefore, the

conventional definitions of natural indirect and direct effects, based on replac-

ing the counterfactual of the mediator under one treatment with that under the

other, do not apply to the entire population. Moreover, the semi-competing risks

data structure, that is, the primary event may censor the intermediate event but

not vice versa, posts additional challenges for the identifiability of the parameters

relating to natural indirect and direct effects.

There has been an increase in research on various causal inference problems

with semi-competing risk data. However, most of these works differ from ours
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because they only consider subgroup average treatment effects (Comment et al.

(2019); Xu et al. (2022); Nevo and Gorfine (2022)), and not mediation effects.

Upon finishing this paper, we became aware of the newly accepted paper by

Huang (2021), who estimates natural mediation effects for semi-competing risk

data using a counting process framework. However, the problem formulation,

estimand, and assumptions all differ significantly from those in our work. For

instance, we do not make sequential ignorability assumptions on surviving sub-

populations at an arbitrary post-treatment time, as assumed in Huang (2021),

because evolving subpopulations are, in general, healthier than the baseline study

population before the treatment is assigned.

In this paper, we consider a novel principal stratification approach to define

the causal mediation effects in the subgroup in which the intermediate event hap-

pens when given either treatment, that is, those susceptible to the intermediate

event under both treatments. The notation and settings are given in Sections

2.1 and 2.2, respectively. We discuss the identification conditions needed to esti-

mate the stratum-specific natural indirect and direct effects in Section 2.3, and,

in Section 2.4, we propose a semiparametric estimator based on a multivari-

ate logistic stratum membership model and within-stratum proportional hazards

models for the event times. In Section 2.5, by treating the unobserved stratum

membership as a latent variable, we propose an expectation-maximization (EM)

algorithm for the computation of the nonparametric maximum likelihood esti-

mator. We also study the asymptotic properties of the estimators using modern

empirical process theory in Section 2.6, and examine the performance of the es-

timators in simulation studies in Section 3. An analysis of data from a clinical

trial is given in Section 4. Section 5 concludes the paper. All proofs, detailed

derivations, and additional numerical results are given in the online Supplemen-

tary Material. The computation code for the simulation studies is available at

https://github.com/feigao1/Med_Semi_Comp.

2. Methods

2.1. Notation for observed data

Let A be a binary treatment, T be the time to a primary event of interest,

and M be the time to an intermediate nonterminal event. The intermediate

event time M may be censored by the occurrence of the primary event, but not

vice versa, such that we observe semi-competing risks data. For example, A is

a treatment that prolongs the survival time, T is the time to death, and M is

the time to cancer progression. The occurrence of death may censor the cancer

https://github.com/feigao1/Med_Semi_Comp
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progression onset, but not vice versa.

Let X be a collection of baseline covariates that may be associated with

either or both events. Let C denote a censoring time for the primary event, for

example, the end of the follow-up time. Then, we observe Y ≡ min(T,C) and

∆T = I(T ≤ C) for the primary event, and Z ≡ min(M,Y ) and ∆M = I(M ≤ Y )

for the intermediate event. The observations are versions of the counterfactual

variables, which we define in the next section.

2.2. Counterfactuals and causal estimands

To define causal mediation effects of interest, we adopt the potential outcomes

framework. Let the variables M(a) and T (a) ≡ T (a,M(a)) denote the counter-

factual nonterminal and terminal event times, respectively, when the treatment

is set to a. These quantities are called single-world variables, because the inter-

vention is set to a single realizable value. Cross-world variables, defined later,

involve interventions set to different values. In conventional settings, M(a) and

T (a) can be defined separately as the values of M and T that would be observed

had the treatment been set to a. However, in a semi-competing risk setting,

the value for M(a) cannot vary arbitrarily. When the potential primary event

happens before the potential intermediate event, the value of the mediator is not

well defined (and is often set to ∞, by convention). In such a case, the potential

primary event time shall not be dependent on an arbitrary m greater than the po-

tential primary event time. Therefore, to be consistent with the semi-competing

risks data structure, we have the order invariance that either M(a) < ∞ and

T (a,M(a)) ≥M(a), or M(a) =∞ and therefore T (a,M(a)) < M(a).

In conventional mediation analysis, a comparison between potential outcomes

with the mediator set to different values would define an indirect effect. Further-

more, if the mediators are set to counterfactual values under different interven-

tions, the indirect effect is called the natural indirect effect. On the other hand,

if the mediators are both set to the same value, a comparison between potential

outcomes with different interventions defines a direct effect. Like the natural in-

direct effect, if the mediators are set to the counterfactual value under the same

intervention, the direct effect is called the natural direct effect. Both the natural

indirect and natural direct effects involve the term T (a∗,M(a)), that is, the po-

tential outcome for the terminal event time when the treatment is set to a∗ and

the nonterminal event time is set to M(a), which is the counterfactual nonter-

minal event time when the treatment is set to a. This quantity is a cross-world

variable. In order to respect the semi-competing risks data structure, we need to

restrict our attention to scenarios in which, if the nonterminal event happens, it
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happens before the terminal event, such that T (a∗,M(a)) is well defined. This is

formally given as the following cross-world ordering invariance assumption.

Assumption 1. For any a, a∗ ∈ {0, 1}, either (i) M(a) <∞ and T (a∗,M(a)) ≥
M(a), or (ii) M(a) =∞ and T (a∗,M(a)) < M(a).

Note that without Assumption 1, T (a∗,M(a)) may not be well defined, which

would make a mediation analysis pointless.

Furthermore, the potential nonterminal event may or may not occur before

the potential primary event time under different treatment assignments, which

motivates us to examine the causal effects based on our proposed principal strat-

ification approach, extended from Frangakis and Rubin (2002). Intuitively, we

stratify the study population into latent classes identified by U , with three cat-

egories, based on whether they are susceptible to the nonterminal event under

different treatment assignments:

1. U = 1: M(0) ≤ T (0) and M(1) ≤ T (1) (always susceptible).

2. U = 2: M(0) ≤ T (0) and M(1) =∞ (prevented).

3. U = 3: M(0) =∞ and M(1) =∞ (always nonsusceptible).

Here, we do not have a fourth stratum, M(0) = ∞ and M(1) ≤ T (1), such

that the treatment never converts a subject from nonsusceptible to susceptible.

This restriction is along the same line as the “no defier” assumption commonly

adopted in instrumental variables methods, suggesting that the treatment effect is

“monotone” and that there is no reversed effect for the subjects (Angrist, Imbens

and Rubin (1996)).

Remark 1. The defined strata (and associated stratum-specific effects) are sub-

stantially different from the survivors’ principal stratum (and the survivor average

causal effect (SACE)) commonly defined in the “truncation by death” literature

(Zhang and Rubin (2003); Comment et al. (2019)). In particular, the survivors’

principal stratum is defined as {T (0) ≥ t, T (1) ≥ t}, for some fixed time t, in

Comment et al. (2019), whereas our definition does not depend on an arbitrary

post-treatment time t.

Remark 2. Lin et al. (2017) explain the difficulties in defining natural mediation

effects in a survival context with longitudinal mediators. They define interven-

tional effects in a discrete-time setting, where the mediators and past survival

status are subject to a hypothetical intervention. They mention principal strat-

ification as an alternative framework to avoid such a hypothetical intervention,



2500 GAO, XIA AND CHAN

but do not explore this further. We consider a different setting that shares some

of the difficulties, but also with a unique data structure so that the principal

strata can be defined.

Under suitable assumptions (to be made clear in Section 2.3), for U = 1, the

joint distribution of (T (a),M(a)), for a = 0, 1, can be nonparametrically identi-

fied on the upper wedge of the positive quadrant, and by cross-world invariance,

T (1,M(0)) ≥ M(0) is well defined in the same region. Therefore, we can define

and estimate the stratum-specific natural indirect and direct effects, as follows.

NIE1(t;x) = Pr{T (1,M(1)) ≥ t|X = x, U = 1}
− Pr{T (1,M(0)) ≥ t|X = x, U = 1} (2.1)

and

NDE1(t;x) = Pr{T (1,M(0)) ≥ t|X = x, U = 1}
− Pr{T (0,M(0)) ≥ t|X = x, U = 1}. (2.2)

In the stratum with U = 2, although the pair (T (1,M(0)),M(0)) is technically

defined on the upper wedge, (T (1),M(1)) is not defined in that region, because

M(1) =∞. Hence, there is no common support when the mediator is being con-

sidered, and we do not seek to estimate the indirect and direct effects. However,

the stratum-specific total effect can still be estimated:

TE2(t;x) = Pr{T (1) ≥ t|X = x, U = 2} − Pr{T (0) ≥ t|X = x, U = 2} .

In the stratum with U = 3, M(0) = M(1) = ∞ and T (1,M(0)) = T (1,M(1)),

so there is no indirect effect. Here, the stratum-specific total effect is defined as

TE3(t;x) = Pr{T (1) ≥ t|X = x, U = 3} − Pr{T (0) ≥ t|X = x, U = 3}.

Remark 3. In principle, a mediator satisfies temporal precedence, that is, it

occurs before the primary event. Therefore, the mediator is technically absent

in U = 3, and an attempt to define mediation effects would be futile. In U =

2, the presence of the mediator before the primary event only happens in one

treatment level with certainty. As a result, one cannot fix the mediator level at a

different treatment level, and the mediation effects cannot be defined. Note that

when U = 2, TE2 can be interpreted as the treatment effect in survival among

individuals whose mediating events are prevented by the treatment.



SUBGROUP MEDIATION EFFECTS WITH SEMI-COMPETING RISKS DATA 2501

2.3. Identification

To identify the stratum-specific natural indirect and direct effects and stratum-

specific total effects, we impose the following assumptions.

Assumption 2. If A = a, then M = M(a) and T = T (a) with probability one.

Assumption 3. For a, a∗ ∈ {0, 1} and u ∈ {1, 2, 3},

{T (a,M(a∗)),M(a∗)} ⊥ A|X, U = u (2.3)

and

Pr(T (a,M(a∗))|M(a∗) = m,A = a,X, U = u)

= Pr(T (a,M(a))|M(a) = m,A = a,X, U = u). (2.4)

Assumption 2 is the standard consistency assumption for causal inference.

Assumption 3 serves a similar purpose to that of the sequential ignorability as-

sumption (Imai, Keele and Yamamoto (2010)), but it is weaker, so that the

assumption holds within a stratum and requires only that T (a,M(a∗)) be well

defined. Based on Assumptions 2 and 3, we are able to connect the stratum-

specific natural indirect and direct effects and stratum-specific total effects with

the distribution of the observed data, given stratum membership, as follows.

Theorem 1. Under Assumptions 2 and 3, for the stratum with U = 1, the

stratum-specific natural indirect effect NIE1(t;x) is equal to∫ t

0
{1− Pr(T < t|M = m,X = x, A = 1, U = 1)}

×
{
dFM |X=x,A=1,U=1(m)− dFM |X=x,A=0,U=1(m)

}
+ Pr(M ≤ t|X = x, A = 0, U = 1)− Pr(M ≤ t|X = x, A = 1, U = 1),

and the stratum-specific natural direct effect NDE1(t;x) is equal to∫ t

0
{Pr(T < t|M = m,X = x, A = 0, U = 1)

−Pr(T < t|M = m,X = x, A = 1, U = 1)} dFM |X=x,A=0,U=1(m).

Under Assumptions 2 and 3, for the stratum with U = 2, the stratum-specific

total effect TE2(t;x) is equal to

Pr(T ≥ t|A = 1,X = x, U = 2)− Pr(T ≥ t|A = 0,X = x, U = 2),
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and for the stratum with U = 3, the stratum-specific total effect TE3(t;x) is equal

to

Pr(T ≥ t|A = 1,X = x, U = 3)− Pr(T ≥ t|A = 0,X = x, U = 3).

The proof of Theorem 1 is given in Section S1.1 of the online Supplementary

Material. Because U is unobserved, we cannot use Theorem 1 directly to identify

the stratum-specific effects from the observed data. To do so, we require the

following assumptions.

Assumption 4. With probability one, U is conditional independent of A, given

X.

Assumption 5. With probability one,

Pr(M(0) = m|X = x, U = 2) = g1 {Pr(M(0) = m|X = x, U = 1);x} ,
Pr(T (0) ≥ t|M(0) = m,X = x, U = 2)

= g2 {Pr(T (0) ≥ t|M(0) = m,X = x, U = 1);x} ,
Pr(T (1) ≥ t|X = x, U = 2) = g3 {Pr(T (1) ≥ t|X = x, U = 3);x} ,

for some known functions gk(·;x) (k = 1, 2, 3) that satisfy the conditions given

in Section S1.2 of the online Supplementary Material.

Assumption 6. (M,T,U) is conditionally independent of C, given A and X,

and the upper bound of the support of T is no larger than that of C.

Assumption 4 requires that the stratum membership not be affected by the

treatment assignment A, given the covariates X. Assumption 5 requires a known

relationship of stratum-specific event time distributions that guarantees the iden-

tification of the distributions. The assumption may be relaxed by assuming un-

known gk that can be parameterized and estimated from the observed data. For

example, we may assume a proportional hazards models for the stratum-specific

event times, as in Section 2.4. The first part of Assumption 6 is a standard as-

sumption for noninformative censoring times. The second part of Assumption 6

is an extension of the independent censoring and sufficient follow-up assumption

in Maller and Zhou (1992) for the nonparametric estimation of a cured proportion

in censored data. The assumption on the upper bounds of the supports ensures

that we can observe sufficient data to infer the tail behavior of the event times

in order to identify the stratum membership. By further assuming Assumptions

4−6, we obtain the identification results in Theorem 2, the proof of which is given

in Section S1.2 of the Supplementary Material.
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Theorem 2. Under Assumptions 2–6, the stratum-specific effects can be identi-

fied using the identification formulas given in Section S1.2 of the Supplementary

Material.

Theorem 2 gives the identification result based on nonparametric models for

U , and for (M,T ) given U . In particular, Assumption 4 requires several modeling

assumptions. In practice, we may consider additional model assumptions for U

and (M,T ) to gain power in estimating the causal effects. In the next section, we

extend the multistate modeling idea for semi-competing risks data to form such

a model.

2.4. Modeling assumptions

One way to model semi-competing risks data is to use a multistate framework

(Xu, Kalbfleisch and Tai (2010)). In a multistate analysis of semi-competing risks

data, usually three states are involved, corresponding to healthy (state 1), illness

(state 2), and death (state 3) in an illness-death model. All subjects start at

state 1. A subject enters state 2 if he/she develops the intermediate event, and

enters state 3 if he/she develops the primary event. In a traditional illness-death

model for semi-competing risks data, three processes that move from one state to

another are modeled: (1) healthy to illness, (2) illness to death, and (3) healthy

to death.

Here, we extend the idea to model processes that move from one state to

another in different strata, as defined in Section 2.2. Subjects with U = 1 and

subjects with U = 2 receiving A = 0 involve the processes of healthy to illness

and illness to death, and we model the time to the nonterminal event M and

the residual time R ≡ T − M . We assume that M and R are conditionally

independent given A,X, and U . This serves two purposes: to obtain a tractable

EM algorithm, and to avoid the problem of induced informative censoring caused

by residual dependence between M and R (Wang and Wells (1998); Lin, Sun and

Ying (1999)). Subjects with U = 2 receiving A = 1 and subjects with U = 3

involve the process of healthy to death. This proposed model is related to, but

different from the illness-death model, in that subjects in different principal strata

may experience a different transition structure in the proposed model.

Suppose that for a subject with U = 1, the nonterminal event time follows a

proportional hazards model, with the hazard function given by

λ
(1)
M (t|A = a,X = x) = λ1(t) exp

(
βM1a+ γT

M1x
)
.

Furthermore, the gap time between the occurrences of the nonterminal and ter-
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minal events, R, follows a proportional hazards model, with the hazard function

given by

λ
(1)
R (r|A = a,X = x) = λ2(r) exp

(
βR1a+ γT

R1x
)
.

Suppose that for a subject with U = 2 and not exposed to treatment (A = 0), the

nonterminal event time follows a proportional hazards model, with the hazard

function given by

λ
(2)
M (t|A = 0,X = x) = λ1(t) exp

(
βM2 + γT

M2x
)
,

and the gap time between the occurrences of the nonterminal and terminal events

follows another proportional hazards model, with the hazard function given by

λ
(2)
R (r|A = 0,X = x) = λ2(r) exp

(
βR2 + γT

R2x
)
.

Here, subjects with U = 1 and subjects with U = 2 and not exposed to treatment

share the same baseline hazard functions, although the hazard ratios for the

covariates may be different. The parameters βM1 and βR1 are the log hazard

ratios of the treatment on the nonterminal event time and gap time, respectively,

for subjects with U = 1; the parameters βM2 and βR2 are the log hazard ratios on

the nonterminal event time and gap time, respectively, comparing subjects with

U = 1 and U = 2, neither of whom were exposed to treatment, with a baseline

covariate value X = 0.

For subjects with U = 2 who were exposed to treatment (A = 1), we assume

that the terminal event time follows a proportional hazards model, with the

hazard function given by

λ
(2)
T (t|A = 1,X = x) = λ3(t) exp

(
βT2 + γT

T2x
)
.

For subjects with U = 3, we suppose that the terminal event time follows a

proportional hazards model, with the hazard function given by

λ
(3)
T (t|A = a,X = x) = λ3(t) exp

(
βT3a+ γT

T3x
)
.

Note that the terminal event times for subjects with U = 3 and subjects with

U = 2 who were exposed to treatment share the same baseline hazard function.

The parameter βT3 is the log hazard ratio of treatment on the terminal event

time for subjects with U = 3, and βT2 is the log hazard ratio of the terminal

event time comparing subjects with U = 3 and A = 0 with subjects with U = 2

and A = 1, with the same covariate value X = 0.

Using the results in Theorem 1, we obtain the expression of the stratum-
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specific effects by replacing the probabilities with the expressions under the pro-

portional hazards models. The natural indirect and direct effects in the stratum

with U = 1 can be presented as

NIE1(t|X = x) =

∫ t

0
exp

{
−Λ2(t−m)eβR1+γT

R1x
}
λ1(m)eγ

T
M1x

×
[
eβM1 exp

{
−Λ1(m)eβM1+γT

M1x
}
− exp

{
−Λ1(m)eγ

T
M1x
}]

dm

+ exp
{
−Λ1(t)eβM1+γT

M1x
}
− exp

{
−Λ1(t)eγ

T
M1x
}

and

NDE1(t|X = x) =

∫ t

0

[
exp

{
−Λ2(t−m)eβR1+γT

R1x
}
− exp

{
−Λ2(t−m)eγ

T
R1x
}]

× λ1(m)eγ
T
M1x exp

{
−Λ1(m)eγ

T
M1x
}
dm,

respectively, where Λ1(t) =
∫ t

0 λ1(s)ds and Λ2(t) =
∫ t

0 λ2(s)ds. The total effects

in strata with U = 2 and U = 3 are given by

TE2(t|X = x)

= exp
{
−Λ3(t)eβT2+γT

T2x
}
− 1 +

∫ t

0
λ1(m)eβM2+γT

M2x

× exp
{
−Λ1(m)eβM2+γT

M2x
}[

1− exp
{
−Λ2(t−m)eβR2+γT

R2x
}]

dm

and

TE3(t|X = x) = exp
{
−Λ3(t)eβT3+γT

T3x
}
− exp

{
−Λ3(t)eγ

T
T3x
}
,

respectively, where Λ3(t) =
∫ t

0 λ3(s)ds.

As in Yu et al. (2015), we consider a multinomial logistic regression model

on the stratum membership. In particular, we assume

w1(x;α) = Pr(U = 1|X = x) =
exp

(
αT

1 x̃
)

1 + exp
(
αT

1 x̃
)

+ exp
(
αT

2 x̃
) ,

w2(x;α) = Pr(U = 2|X = x) =
exp

(
αT

2 x̃
)

1 + exp
(
αT

1 x̃
)

+ exp
(
αT

2 x̃
) ,

and w3(x;α) = Pr(U = 3|X = x) = {1 + exp
(
αT

1 x̃
)

+ exp
(
αT

2 x̃
)
}−1, where

α = (αT
1 ,α

T
2 )T and x̃ = (1,xT)T. Then, the marginalized stratum-specific
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natural indirect and direct effects are given by

NIE1(t) =

∫
NIE1(t|X = x)w1(x;α)dF (x)∫

w1(x;α)dF (x)

and

NDE1(t) =

∫
NDE1(t|X = x)w1(x;α)dF (x)∫

w1(x;α)dF (x)
,

respectively, where F (·) is the cumulative distribution function of X.

2.5. Nonparametric maximum likelihood estimation

For a random sample of n subjects, the observed semi-competing risks data

are given by O = {Oi : i = 1, . . . , n}, where Oi = {∆M
i , Zi,∆

T
i , Yi, Ai,Xi}. The

likelihood function for the observed data can be constructed by laying out the

conditional probabilities of the observed data, given possible stratum member-

ship. Specifically, if ∆M
i = 1, then Ui = 3 with probability zero, and Ui = 1 with

probability one if further Ai = 1. If ∆M
i = 0 and ∆T

i = 1, then Ui = 1 with prob-

ability zero, and Ui = 3 with probability one if further Ai = 0. If ∆M
i = ∆T

i = 0,

then there are positive probabilities for Ui = 1, 2, 3. The likelihood function for

the observed data O is then given by

n∏
i=1

L̃i1(Oi)∆M
i

{
L̃i2(Oi)∆T

i L̃i3(Oi)1−∆T
i

}1−∆M
i

,

where

L̃i1(Oi) = Pr (Ui = 1|Xi) Pr
(
Zi, Yi,∆

T
i |Ui = 1,Xi, Ai

)
+ I (Ai = 0) Pr (Ui = 2|Xi) Pr

(
Zi, Yi,∆

T
i |Ui = 2,Xi, Ai = 0

)
,

L̃i2(Oi) = Pr (Ui = 3|Xi) Pr
(
Yi,∆

T
i |Ui = 3,Xi

)
+ I (Ai = 1) Pr (Ui = 2|Xi) Pr

(
Yi,∆

T
i |Ui = 2,Xi, Ai = 1

)
,

and

L̃i3(Oi) = Pr (Ui = 1|Xi) Pr
(
Zi,∆

M
i , Yi,∆

T
i |Ui = 1,Xi

)
+ Pr (Ui = 2|Xi)

{
I (Ai = 0) Pr

(
Zi,∆

M
i , Yi,∆

T
i |Ui = 2,Xi, Ai = 0

)
+I (Ai = 1) Pr

(
Yi,∆

T
i |Ui = 2,Xi, Ai = 1

)}
+ Pr (Ui = 3|Xi) Pr

(
Yi,∆

T
i |Ui = 3,Xi

)
.
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We consider the nonparametric maximum likelihood estimation such that

the estimators for Λ1, Λ2, and Λ3 are step functions, as in Zeng and Lin (2007).

In particular, let 0 < t11 < · · · < t1m1
< ∞ be the ordered sequence of event

times Zi with ∆M
i = 1 ; let 0 < t21 < · · · < t2m2

<∞ be the ordered sequence of

gap times Vi ≡ Yi − Zi with ∆M
i = ∆T

i = 1; and let 0 < t31 < · · · < t3m3
< ∞

be the ordered sequence of event times Yi with ∆M
i = 0 and ∆T

i = 1. Let λkl
be the jump size for Λk at tkl, for k = 1, 2, 3 and l = 1, . . . ,mk. Write ηM1 =

(βM1,γM1)T, ηR1 = (βR1,γR1)T, ηM2 = (βM2,γM2)T, ηR2 = (βR2,γR2)T, ηT2 =

(βT2,γT2)T, ηT3 = (βT3,γT3)T, θ = (ηT
M1,η

T
R1,η

T
M2,η

T
R2,η

T
T2,η

T
T3,α

T)T, and

A = (Λ1,Λ2,Λ3)T. We maximize the objective function

Ln(θ,A) =

n∏
i=1

Li1(θ,A)∆M
i

{
Li2(θ,A)∆T

i Li3(θ,A)1−∆T
i

}1−∆M
i

,

where

Li1(θ,A) = w1(Xi;α)Λ1{Zi}eη
T
M1Wi exp

−eηT
M1Wi

∑
t1l≤Zi

λ1l


×
(

Λ2{Vi}eη
T
R1Wi

)∆T
i

exp

−eηT
R1Wi

∑
t2l≤Vi

λ2l


+I(Ai = 0)w2(Xi;α)Λ1{Zi}eη

T
M2X̃i exp

−eηT
M2X̃i

∑
t1l≤Zi

λ1l


×
(

Λ2{Vi}eη
T
R2X̃i

)∆T
i

exp

−eηT
R2X̃i

∑
t2l≤Vi

λ2l

 ,

Li2(θ,A) = I(Ai = 1)w2(Xi;α)
(

Λ3{Yi}eη
T
T2X̃i

)∆T
i

exp

− ∑
t3l≤Yi

λ3le
ηT

T2X̃i


+w3(Xi;α)

(
Λ3{Yi}eη

T
T3Wi

)∆T
i

exp

− ∑
t3l≤Yi

λ3le
ηT

T3Wi

 ,

Li3(θ,A) = Li2(η,A) + w1(Xi;α) exp

− ∑
t1l≤Zi

λ1le
ηT

M1Wi


+I(Ai = 0)w2(Xi;α) exp

− ∑
t1l≤Zi

λ1le
ηT

M2X̃i

 ,
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Wi = (Ai,X
T
i )T, and Λk{t} is the jump size of Λk at time t for k = 1, 2, 3.

By treating Ui (i = 1, . . . , n) as missing data, we propose an EM algorithm

to maximize this objective function. In the E-step of the EM algorithm, we

evaluate the conditional expectation of the terms related to the latent variable

Ui, which follows a multinomial distribution with probabilities corresponding to

the observed-data likelihood, given different values of Ui. In the M-step, we up-

date the parameter values using partial-score-structured estimating equations,

Breslow-type estimators, and logistic-regression-type estimating equations. The

details of the EM algorithm are given in Section S2 of the Supplementary Ma-

terial. We write (θ̂, Â) as the estimators. The indirect and direct effects in the

stratum with U = 1 can then be estimated by

N̂IE1(t;x) =
∑
t1j≤t

exp

− ∑
t2k≤t−t1j

λ̂2ke
θ̂T
R1x̃

 λ̂1j

×

{
eθ̂

T
M1x̃ exp

(
−

j∑
k=1

λ̂1ke
θ̂T
M1x̃

)
− eγ̂T

M1x exp

(
−

j∑
k=1

λ̂1ke
γ̂T

M1x

)}]

+ exp

−∑
t1j≤t

λ̂1je
θ̂T
M1x̃

− exp

−∑
t1j≤t

λ̂1je
γ̂T

M1x

 (2.5)

and

N̂DE1(t;x)

=
∑
t1j≤t

exp

− ∑
t2k≤t−t1j

λ̂2ke
θ̂T
R1x̃

− exp

− ∑
t2k≤t−t1j

λ̂2ke
γ̂T

R1x


×λ̂1je

γ̂T
M1x exp

(
−

j∑
k=1

λ̂1ke
γ̂T

M1x

)]
. (2.6)

The total effects in strata with U = 2 and U = 3 can be estimated by

T̂E2(t;x) = exp

−∑
t3j≤t

λ̂3je
θ̂T
T2x̃

− 1

+
∑
t1j≤t

λ̂1je
θ̂T
M2x̃ exp

(
−

j∑
k=1

λ̂1ke
θ̂T
M2x̃

)1− exp

− ∑
t2k≤t−t1j

λ̂2ke
θ̂T
R2x̃




(2.7)
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and

T̂E3(t;x) = exp

−∑
t3j≤t

λ̂3je
θ̂T
T3x̃

− exp

−∑
t3j≤t

λ̂3je
γ̂T

T3x

 . (2.8)

The marginalized stratum-specific indirect and direct effects in the stratum with

U = 1 can be estimated by

N̂IE1(t) =

∑n
i=1w1(Xi; α̂)N̂IE1(t;Xi)∑n

i=1w1(Xi; α̂)
(2.9)

and

N̂DE1(t) =

∑n
i=1w1(Xi; α̂)N̂DE1(t;Xi)∑n

i=1w1(Xi; α̂)
, (2.10)

respectively.

2.6. Asymptotic properties

We study the asymptotic properties of the estimators under the semipara-

metric model in Section 2.4. Under suitable regularity conditions, the estimators

(θ̂, Â) have the usual large-sample properties, including consistency and asymp-

totic normality, as given in Theorem 3 below. Let θ0, Λ10, Λ20, and Λ30 be the

true values of θ, Λ1, Λ2, and Λ3, respectively, ‖ · ‖ be the Euclidean norm, and

τk be the upper limit of the support of Λ̂k, for k = 1, 2, 3.

Theorem 3. Under Conditions 1–5 in Section S3 of the online Supplementary

Material, ∥∥∥θ̂ − θ0

∥∥∥+

3∑
k=1

sup
t∈[0,τk]

∣∣∣Λ̂k(t)− Λk0(t)
∣∣∣

converges to zero almost surely. In addition,
√
n{θ̂ − θ0, Λ̂1(·) − Λ10(·), Λ̂2(·) −

Λ20(·), Λ̂3(·) − Λ30(·)} converges weakly to a zero-mean Gaussian process in the

Banach space Rm × l∞(A1) × l∞(A2) × l∞(A3), where m is the dimension of θ

and Ak is the unit ball in the space of functions on [0, τk] with bounded varia-

tion, for k = 1, 2, 3. The limiting covariance matrix of
√
n(θ̂ − θ0) attains the

semiparametric efficiency bound.

Theorem 4. Under Conditions 1− 5 in Section S3 of the online Supplementary

Material, the estimators for the stratum-specific effects given in (2.5)–(2.10) are

consistent and asymptotically normal.
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The proofs of Theorems 3 and 4 are given in Section S3 of the online Sup-

plementary Material. Because the form of the limiting variances of the stratum-

specific effects is complicated, we estimate the variance of the estimators using a

nonparametric bootstrap procedure in our numerical studies.

3. Simulation Studies

We conducted simulation studies to examine the performance of the proposed

methods. We generated two covariates, X1 ∼ N(0, 1) and X2 ∼ Unif(0, 1), and

generated the treatment indicator A ∼ Bin(0.5) to reflect 1:1 randomization. We

set Λ1(t) = t, Λ2(t) = 0.2t, and Λ3(t) = log(1 + t); the true values of the other

parameters are shown in Tables S1 and S2 of the online Supplementary Material.

We generated a censoring time C ∼ Unif(0, 15) to obtain approximately 51%

and 26% censoring rates for the nonterminal and terminal events, respectively.

The proportions of subjects with U = 1, 2, 3 are approximately 31%, 41%, and

28%, respectively.

We considered 1,000 replicates with sample sizes n = 1000 and 2000, where

100 bootstrap samples were used for the variance estimation. All replications

that we examined converge with a 10−6 convergence criterion. The results for the

parameter estimators are shown in Tables S1 and S2 and Figure S1 of Section S4.1

of the online Supplementary Material. The parameter estimators are virtually

unbiased, and the bootstrap variance estimators become more accurate as the

sample size increases.

Table 1 shows the performance of the estimated stratum-specific indirect

and direct effects in a stratum with U = 1 and X = (0.5, 0.5)T, as well as the

estimated total effects for strata with U = 2, 3 and the same covariate values.

Similarly, for any t, the average is taken over all replicates with estimators that

have a last jump time of no less than t. The bias gets smaller as the sample

size increases. The variance estimator is accurate and the coverage probability is

close to the nominal level when the sample size is large.

In Section S4.2 of the online Supplementary Material, we evaluate the per-

formance of the proposed approach when the baseline hazard functions differ by

strata. Specifically, we change the baseline hazard functions for the event times

with U = 2. Even though the total effects in the strata with U = 2 and U = 3

may be estimated with bias, the bias for the mediation effects in the stratum with

U = 1 is relatively small, and the coverage probabilities for the 95% confidence

intervals are close to the nominal level.
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Table 1. Simulation results for the stratum-specific mediation effects and total effects.

n = 1000 n = 2000

t True Value Bias SE SEE CP Bias SE SEE CP

NDE1 2 −0.11 0.014 0.056 0.070 0.97 0.007 0.031 0.041 0.97

4 −0.17 0.018 0.090 0.106 0.96 0.010 0.052 0.066 0.97

6 −0.18 0.020 0.096 0.107 0.94 0.010 0.057 0.069 0.96

NIE1 2 −0.04 −0.001 0.022 0.025 0.97 0.000 0.015 0.017 0.97

4 −0.03 −0.001 0.016 0.018 0.97 −0.001 0.011 0.012 0.96

6 −0.02 −0.001 0.010 0.011 0.97 0.000 0.007 0.007 0.96

TE2 2 −0.10 −0.036 0.158 0.175 0.97 −0.022 0.115 0.126 0.97

4 0.10 −0.046 0.159 0.180 0.96 −0.026 0.113 0.127 0.97

6 0.17 −0.047 0.136 0.156 0.97 −0.027 0.097 0.109 0.97

8 0.18 −0.044 0.115 0.131 0.96 −0.025 0.084 0.093 0.96

TE3 2 −0.07 0.021 0.139 0.147 0.97 0.015 0.117 0.114 0.95

4 −0.06 0.031 0.119 0.126 0.98 0.022 0.101 0.099 0.96

6 −0.06 0.033 0.101 0.107 0.97 0.024 0.086 0.085 0.96

8 −0.05 0.033 0.088 0.093 0.97 0.024 0.075 0.074 0.96

4. Application

In this section, we apply the proposed methods to data from a prostate can-

cer clinical trial. NCIC Clinical Trials Group PR.3/Medical Research Council

PR07/Intergroup T94-0110 is a randomized controlled trial of patients with lo-

cally advanced prostate cancer. The primary objective is to determine whether

adding radiotherapy (RT) to androgen-deprivation therapy (ADT) prolongs over-

all survival, defined as the time from random assignment to death from any cause.

The study recruited and randomly assigned 1,205 patients with locally advanced

prostate cancer between 1995 and 2005, 602 to ADT alone and 603 to ADT +

RT. The final report of the study (Mason et al. (2015)) stated that, at a median

follow-up time of eight years, 465 patients had died. In addition, overall survival

was significantly improved in patients allocated to ADT + RT (hazard ratio 0.70

with 95% CI, 0.57 to 0.85; P<0.001).

In addition to the primary outcome of death, the study also collected data on

time to disease progression, which was defined as the first of any of the following

events: biochemical progression, local progression, or development of metastatic

disease. We analyzed the data to reveal the proportions of the treatment effect

on overall survival that are mediated by disease progression. In particular, we

adjusted for initial PSA level (< 20 vs. 20 to 50, vs. >50g/L) and Gleason score

(8 vs. 8 to 10).

We analyzed the data using the proposed approach, with 1,000 bootstrap

samples for the variance estimation. The parameter estimates for the regression
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Table 2. Parameter estimates for the regression coefficients of the event times.

Process
U = 1

Health → Disease Disease → Death

Est SEE p-value Est SEE p-value

ADT + RT −0.825 0.925 0.373 0.460 0.569 0.419

Initial PSA Level (20 to 50 g/L) 0.321 0.563 0.569 −0.097 0.322 0.763

Initial PSA Level (> 50 g/L) 1.607 0.614 0.009 0.065 0.337 0.846

Gleason Score (8-10) −2.008 0.478 < 0.0001 −0.378 0.274 0.167

Process
U = 2, ADT

Health → Disease Disease → Death

Est SEE p-value Est SEE p-value

Intercept −1.917 1.534 0.211 −0.557 2.490 0.823

Initial PSA Level (20 to 50 g/L) 0.663 0.985 0.501 −0.304 2.007 0.880

Initial PSA Level (> 50 g/L) 1.619 0.967 0.094 −0.104 1.693 0.951

Gleason Score (8-10) 0.674 0.932 0.469 −0.106 1.638 0.948

Process
U = 2, ADT + DT U = 3

Health → Death Health → Death

Est SEE p-value Est SEE p-value

Intercept −3.212 7.225 0.657 −0.446 0.827 0.590

Initial PSA Level (20 to 50 g/L) 1.146 4.886 0.815 −0.022 0.602 0.970

Initial PSA Level (> 50 g/L) 1.601 4.937 0.746 −0.883 0.641 0.168

Gleason Score (8-10) 1.624 5.266 0.758 −0.514 0.484 0.289

coefficients for the event time processes are shown in Table 2. For the stratum

with U = 1, ADT + RT is associated with a decreased risk of disease progression,

but is associated with an increased risk from disease progression to death. For

the stratum with U = 3, ADT + RT is associated with a decreased risk of death.

The effects are not significant at the 0.05 level. For the stratum with U = 1,

a subject with an initial PSA level > 50 g/L is associated with a significantly

increased risk of disease progression, compared with a similar subject with an

initial PSA level < 20 g/L. Furthermore, a subject with a Gleason score 8−10

is associated with a significantly decreased risk of disease progression, compared

with a similar subject with a Gleason score < 8.

Table 3 shows the parameter estimators of the logistic regression model for

the stratum membership. By averaging over the stratum membership probabil-

ities over all subjects, given their covariate values, the average probabilities of

belonging to strata U = 1, 2, and 3 are 40.1%, 25.7%, and 34.2%, respectively.

To verify that the model is reasonable, we estimated the stratum-specific survival

functions for every subject, and summarized the subject-specific survival func-

tion by weighting them by his/her stratum membership probabilities. We average
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Table 3. Parameter estimates for the regression coefficients of the stratum membership

α1 α2

Est SEE p-value Est SEE p-value

Intercept 0.205 0.433 0.636 0.291 0.611 0.634

Initial PSA Level (20 to 50 g/L) 0.090 0.562 0.872 0.625 0.898 0.486

Initial PSA Level (> 50 g/L) −0.684 0.541 0.206 0.004 0.816 0.996

Gleason Score (8-10) 0.134 0.408 0.742 −1.495 0.771 0.053
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Figure 1. Estimated survival functions from the proposed, Kaplan-Meier, and propor-
tional hazards model approaches.

the estimated survival functions for subjects assigned to ADT+RT versus ADT,

and plot them against the survival function estimators from the Kaplan-Meier

methods and the proportional hazards model. The results are shown in Figure

1. The estimated population-average survival functions for the ADT+RT and

ADT groups are similar to those from the Kaplan-Meier methods and the pro-

portional hazards model, especially up until 10 years, when the data are not

sparse, indicating a proper fit of the proposed approach.

Figure 2 shows the estimated marginalized stratum-specific indirect and di-

rect effects (with 95% confidence intervals) for the stratum with U = 1. The

estimated natural indirect effect is positive and increasing over time, and the

estimated natural direct effect is slightly negative over time. However, the 95%

confidence intervals are wide, such that the stratum-specific natural indirect and

direct effects are not significantly different from zero. The total effect in the
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Figure 2. Estimated stratum-specific indirect and direct effects in the stratum with
U = 1.

stratum with U = 1 is positive and increasing over time, corresponding to an

increased survival probability assigned to ADT+RT versus ADT in the stratum

with U = 1.

5. Discussion

Semi-competing risks data are frequently observed in medical studies, where

the terminal event time may censor the intermediate event time, but not vice

versa. To define and estimate the causal contrasts of the effect of a treatment on

the terminal and intermediate events, we have introduced a novel principal strat-

ification framework that distinguishes between susceptible and nonsusceptible

subjects, given different treatments, and defined the natural indirect and direct

effects in the stratum where the times to the intermediate and terminal events

are well defined, given both treatments. We have provided reasonable assump-

tions to identify the stratum-specific natural indirect and direct effects, proposed

a semiparametric model, and presented an EM algorithm to obtain the nonpara-

metric maximum likelihood estimators of the model parameters. We have shown

that the estimators are consistent and asymptotically efficient estimated under

mild regularity conditions, and perform satisfactorily in finite-sample numerical

studies.

In identifying the stratum-specific natural indirect and direct effects, we as-

sumed that there are no subjects who are susceptible to the intermediate event
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under the treatment (A = 1) and nonsusceptible under the control (A = 0). This

assumption may need careful examination based on a scientific understanding of

how the treatment may affect the intermediate event. In our data application, we

assessed this assumption by fitting the proposed model with switched treatment

indicator labels of ADT+RT and ADT. The estimated probability of belonging

to the stratum with U = 2 (equivalent to the fourth stratum in the original la-

beling) is very low (6.9%), suggesting that the assumption of the nonexistence

of the fourth stratum may be valid. In Section S4.3 of the online Supplementary

Material, we include a sensitivity analysis that assesses the performance of the

estimator for the stratum-specific effects when there is a fourth stratum with a

small probability (∼6.9%). Even though the assumption on the nonexistence of

the fourth stratum fails, the stratum-specific effects in the first three strata can

still be estimated with relatively small bias. In some applications, this fourth

stratum may indeed exist. In the literature on principal stratification for un-

censored data with four or more strata, the effect of interest often can only be

interval identified. Interval identification with a regression model may result in a

complicated solution manifold, with properties that are not well understood. We

plan to explore this problem in future research.

The proposed nonparametric maximum likelihood estimation framework re-

lies on the validity of the modeling assumptions, including the proportional haz-

ards assumption on the hazard functions. Even though model checking for a

mixture model for right-censored data has been considered in the literature (e.g.,

Peng and Taylor (2017)), model checking for semi-competing risks data may not

be available for the illness-death model. A model checking procedure on the

modeling assumptions may not be trivial and requires further research.

Supplementary Material

The online Supplementary Material includes proofs of Theorems 1 and 2 in

Section 2.3, details of the EM algorithm in Section 2.5, other proofs of asymptotic

results in Section 2.6, and additional simulation results in Sections 3 and 5.
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