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Abstract: We propose a unified approach to maximum likelihood estimation, clas-

sification, and statistical learning in the context of finite mixture models, based on

observations that can be considered a collection of order statistics. We consider

both supervised and unsupervised learning approaches. New missing-data mech-

anisms and expectation-maximization (EM) algorithms are developed to exploit

the structure of the observed data in the estimation process under each learning

strategy. In addition, we present model-based classification criteria, and show how

they can be used to conduct better inferences about rarely observed components

in finite mixture models. Using simulation studies, we evaluate the performance

of the estimation and classification methodologies. Finally the proposed methods

are applied to data from a fishery study to estimate the age structure of Spot, a

short-lived fish species.
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1. Introduction

Consider a population of M subpopulations, and suppose we are interested

in a random phenomenon, X, with a probability density function (pdf) that

can be written as a finite mixture model (FMM). Lastly, we randomly select

n sampling units from the population. In many situations, some observations

may be missing, possibly at random, but not necessarily; however, we can easily

assign ranks to the observed values, and thus retain order statistics. A typical

situation occurs in life testing. Here, an experiment is terminated after the first

r out of n items under the test have failed, where each item is composed of M

components, each with its own lifetime distribution. Observations of this kind

are called censored samples, and can lead to the selection of various types of

order statistics from samples of size n. A collection of order statistics may also

be available when finding the final measurements on all the sampling units is

expensive, perhaps owing to budgetary and/or other constraints. In such a case,
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an experiment can be scaled back to select a subset of the sampled units for the

final study. For example, in studies that need to determine the age of a fish

population, it is common practice to first catch a large number of fish, and then

to use a subsample to determine the age. In this case, researchers might use

systematic sampling to generate the subsample after the larger sample has been

ordered by length of fish. For example, they may opt to use every third fish

in the ordered sample, which is easy to explain and for field workers to follow.

We use the term selected order statistics when observations are obtained from

specific designs that lead to specific choices of order statistics, for example:

• Single-censored samples from FMMs, where either the r1 smallest (left-

censored) X values or the r2 largest (right-censored) X values are not ob-

served, with r1 and r2 fixed by design (Miyata (2011); Mendenhall and

Hader (1958)).

• Doubly censored samples from FMMs, where the r1 smallest and r2 largest

X values are not observed, with fixed values of r1 and r2 (Sindhu, Feroze

and Aslam (2016); Saleem, Aslam and Economou (2010)).

• Compressed data from FMMs, where a large number of data points are

replaced by a small number of selected order statistics (Bishop (2006)).

• Systematic subsamples, with auxiliary information enabling the ordering of

sampled units, as in the fish example described above.

We also use the term induced order statistics when, after observing a sim-

ple random sample with missing observations, auxiliary information is used to

assign a rank to each observation. In all of these examples, observations can be

considered collections of order statistics for a sample of size n from an FMM,

whether labeled or unlabeled. In other words, we might or might not know the

subpopulation from which the data are observed. Then, we can estimate the

unknown parameters of the underlying FMM using these data.

Several variations of rank-based sampling (RBS) designs lead to independent

order statistics. Inferences for FMMs in these settings are discussed in Hatefi,

Jafari Jozani and Ziou (2014); Hatefi, Jafari Jozani and Ozturk (2015). In this

study, the order statistics are correlated and finite mixture modeling is a more

challenging problem. Thus, we provide a unified approach to statistical infer-

ences for FMMs based on various collections of order statistics. We consider

the problem under both supervised and unsupervised learning methods. To ob-

tain maximum likelihood (ML) estimates of the parameters, we introduce new
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missing-data mechanisms and expectation-maximization (EM) algorithms that

accommodate the dependence structure among the order statistics. This imposes

several difficulties in the estimation process, because the log-likelihood function

contains terms that are convex combinations of survival functions, which typi-

cally do not have a closed form for many statistical distributions. Moreover, we

develop new model-based classification criteria for an FMM with rarely observed

components.

Section 2 discusses likelihood functions based on unlabeled order statistics

of FMMs. The associated EM algorithm and its modified version are explained

in Section 3. Section 4 presents various model-based classification criteria. In

Section 5, we study estimators of the parameters of FMMs under the supervised

learning method. Section 6 compares the performance of several estimation pro-

cedures using numerical studies. Then, in Section 7, the proposed estimation

procedures are applied to data from a fishery study to determine the age struc-

ture of fish. Finally, Section 8 concludes the paper. All proofs, some further

remarks, and additional simulation study are provided in the online Supplemen-

tary Material.

2. Order Statistics of the FMM

Suppose that the pdf of a random variable of interest X follows a mixture

of M component densities

f(x; Ψ) = π1f1(x; θ1) + · · ·+ πMfM (x; θM ), (2.1)

where π = (π1, . . . , πM ) is a vector of unknown mixing proportions, with πj > 0

and
∑M

j=1 πj = 1, and fj(·; θj), for j = 1, . . . ,M , refers to the pdf of the jth

component of the FMM, specified up to a vector θj of unknown parameters,

known a priori to be distinct. Let Ψ = (π1, . . . , πM−1, ξ)> denote a vector of all

unknown parameters, where ξ = (θ>1 , . . . , θ
>
M )>, and the superscript > refers to

the vector transpose. The cumulative distribution function (cdf) of X is given

by F (x; Ψ) =
∑M

j=1 πjFj(x; θj), where Fj(·; θj) represents the cdf of the jth

component. For further information on the theory and applications of FMMs,

see McLachlan and Peel (2004).

Suppose X̃ = {X(i1), X(i2), . . . , X(ik)}, where 1 ≤ i1 ≤ i2 ≤ · · · ≤ ik ≤ n, is

a collection of k, for k = 2, . . . , n − 1, order statistics from a random sample of

size n from (2.1), where X(il) is the ilth smallest observation in the sample.

According to the theory of order statistics, the log-likelihood function of Ψ
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based on X̃ = x̃ is

l(Ψ|x̃) ∝
k∑
r=1

log f(xir ; Ψ) + (i1 − 1) logF (xi1 ; Ψ) + (n− ik) log F̄ (xik ; Ψ)

+

k∑
s=2

(is − is−1 − 1) log
[
F (xis ; Ψ)− F (xis−1

; Ψ)
]
, (2.2)

and the maximum likelihood estimator (MLE) of Ψ, Ψ̂MLE , is obtained as the

solution to ∂l(Ψ|x̃)/∂Ψ = 0 in Ψ. The complexity of (2.2) typically makes this

intractable, owing to the presence of convex combinations of components of the

form log f(xir ; Ψ), logF (xi1 ; Ψ), log
[
F (xis ; Ψ)− F (xis−1

; Ψ)
]
, and log F̄ (xik ; Ψ).

To solve this problem, we model X̃ = x̃ as incomplete data. The likelihood and

log-likelihood functions based on X̃ = x̃ are then called incomplete likelihood

and log-likelihood functions, respectively.

To obtain Ψ̂MLE , we construct a new EM algorithm, following the work of

Dempster, Laird and Rubin (1977). Let ∆ = {Z1, . . . ,Zk,W1, . . . ,Wk+1} be

a collection of 2k + 1 latent vectors, each of length M . For each order statistic

X(ir), for r = 1, . . . , k, we define Zr = (Zr1, . . . , ZrM ), with Zr
i.i.d∼ Mult(1,π).

We also introduce the following:

• W1 = (W11, . . . ,W1M ), with W1∼Mult(i1 − 1,π),

• Ws = (Ws1, . . . ,WsM ), with Ws∼Mult(is − is−1 − 1,π), for s = 2, . . . , k,

and

• Wk+1 = (Wk+11, . . . ,Wk+1M ), with Wk+1∼Mult(n− ik,π).

The complete likelihood function is given by the following lemma; the proof

is provided in the Supplementary Material.

Lemma 1. Let X̃ = {X(i1), X(i2), . . . , X(ik)} be a collection of k = 2, . . . , n −
1 order statistics from a random sample of size n from (2.1); and let ∆ =

(Z1, . . . ,Zk,W1, . . . ,Wk+1) be a collection of latent vectors, as defined above.

Then the complete-data likelihood function based on (X̃,∆) is given by

f(x̃, δ; Ψ) ∝
M∏
j=1

{πjFj(xi1 ; θj)}
w1j
{
πjF̄j(xik ; θj)

}wk+1 j

k∏
r=1

{πjfj(xir ; θj)}zrj

×

(
k∏
s=2

[
πj{Fj(xis ; θj)− Fj(xis−1

; θj)}
]wsj

)
.
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Using Lemma 1, the joint distribution of (X̃,Zr), for r = 1, . . . , k, is

f(x̃, zr) ∝{F (xi1 ; Ψ)}i1−1
M∏
j=1

{πjfj(xir ; θj)}zrj
k∏
s=1
s 6=r

f(xis ; Ψ)

×
k∏
s=2

{
F (xis ; Ψ)− F (xis−1

; Ψ)
}is−is−1−1 {F̄ (xik ; Ψ)

}n−ik (2.3)

In the Supplementary Material, we provide further remarks on the joint pdf

of the order statistics and their latent variables.

From (2.3) and the pdf of the order statistics, we can easily show that

fZr|X̃(zr|x̃) =

M∏
j=1

{
πjfj(xir ; θj)

f(xir ; Ψ)

}zrj
, (2.4)

and conclude that Zr|X̃ = x̃∼Mult(1, π1f1(xir ; θ1)/f(xir ; Ψ), . . . , πMfM (xir ; θM )

/f(xir ; Ψ)), for each r = 1, . . . , k.

Lemma 2. Let Zr be the latent vector associated with X(r), for r = 1, . . . , k. For

given order statistics, Zr are independent and identically distributed (i.i.d.).

The proof, taken from Yang (1977), is given in the Supplementary Material.

Based on Remark 5 in the Supplementary Material and the pdf of the order

statistics, we have

fW1|X̃(w1|x̃) =

(
i1 − 1

w11, . . . , w1M

) M∏
j=1

(
πjFj(xi1 ; θj)

F (xi1 ; Ψ)

)w1j

; (2.5)

that is, W1|X̃ = x̃ ∼ Mult(i1 − 1, π1F1(xi1 ; θ1)/F (xi1 ; Ψ), . . . , πMFM (xi1 ; θM )

/F (xi1 ; Ψ)). Similarly, from Remark 6 in the Supplementary Material, we have

f(wr|x̃) =

M∏
j=1

(
ir − ir−1 − 1

wr1, . . . , wrM

)(
πj [Fj(xir ; θj)− Fj(xir−1

; θj)]

F (xir ; Ψ)− F (xir−1
; Ψ)

)wrj

, (2.6)

for each r = 2, . . . , k. Finally, from Remark 7 in the Supplementary Material,

we have

f(wk+1|x̃) =

(
n− ik

wk+11, . . . , wk+1M

) M∏
j=1

(
πjF̄j(xik ; θj)

F̄ (xik ; Ψ)

)wk+1 j

. (2.7)
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From Lemma 1, the complete-data log-likelihood function is

l(Ψ|x̃, δ) ∝
M∑
j=1

{
w1j log [πjFj(xi1 ; θj)] + wk+1 j log

[
πjF̄j(xik ; θj)

]
+

k∑
r=1

zrj log [πjfj(xir ; θj)]

+

k∑
s=2

wsj log{πj [Fj(xis ; θj)− Fj(xis−1
; θj)]}

}
.

(2.8)

3. EM Algorithm

Here, we use the EM algorithm of Dempster, Laird and Rubin (1977) to

obtain Ψ̂MLE using (2.8). To this end, let Ψ(0) be an initial value for Ψ.

E-Step: Given X̃ = x̃, the conditional expectation of the complete-data log-

likelihood function is Q(Ψ,Ψ(0)) = EΨ(0) [l(Ψ|x̃)], where the expectation is taken

under Ψ(0). In the (p + 1)th iteration, Q(Ψ,Ψ(p)) is computed in the E-step,

where Ψ(p) is the estimate of Ψ obtained from the pth iteration. From (2.4),

(2.5), (2.6), and (2.7), we have

τr,j(Ψ) = E (Zrj |x̃) =
πjfj(xir ; θj)

f(xir ; Ψ)
, r = 1, . . . , k; j = 1, . . . ,M. (3.1)

β1,j(Ψ) = E (W1j |x̃) = (i1 − 1)
πjFj(xi1 ; θj)

F (xi1 ; Ψ)
, j = 1, . . . ,M. (3.2)

βs,j(Ψ) = E (Wsj |x̃) = (is − is−1 − 1)
πj [Fj(xis ; θj)− Fj(xis−1

; θj)]

[F (xis ; Ψ)− F (xis−1
; Ψ)]

,

s = 2, . . . , k; j = 1, . . . ,M. (3.3)

βk+1,j(Ψ) = E (Wk+1 j |x̃) = (n− ik)
πjF̄j(xik ; θj)

F̄ (xik ; Ψ)
, j = 1, . . . ,M. (3.4)

Combining these with (2.8), the expectation at the (p+ 1)th iteration is

Q(Ψ,Ψ(p)) = Q1(π,Ψ
(p)) +Q2(ξ,Ψ

(p)), (3.5)

Q1(π,Ψ
(p)) =

M∑
j=1

log πj

{
k∑
r=1

τr,j(Ψ
(p)) +

k+1∑
s=1

βs,j(Ψ
(p))

}
,

Q2(ξ,Ψ
(p)) =

M∑
j=1

[
β1,j(Ψ

(p)) logFj(xi1 ; θj) + βk+1,j(Ψ
(p)) log F̄j(xik ; θj)
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+

k∑
r=1

τr,j(Ψ
(p)) log fj(xir ; θj)

+

k∑
s=2

βs,j(Ψ
(p)) log{Fj(xis ; θj)− Fj(xis−1

; θj)}

]
.

M-Step: In the (p+ 1)th iteration of the M-step, Q(Ψ,Ψ(p)) is maximized with

respect to Ψ to obtain Ψ(p+1). From (3.5), the estimate π̂(p+1) is updated by

maximizing Q1(π,Ψ
(p)) with respect to π. Owing to the constraint

∑M
j=1 πj =

1, we use the Lagrangian multiplier to update the mixing proportions πj , for

j = 1, . . . ,M − 1, as follows:

π̂
(p+1)
j =

1

n

{
k∑
s=1

τs,j(Ψ
(p)) +

k+1∑
s=1

βs,j(Ψ
(p))

}
. (3.6)

Using Q2(ξ,Ψ
(p)) in (3.5), we obtain ξ(p+1) as the solution to

ξ(p+1) = arg max
ξ

Q2(ξ,Ψ
(p)). (3.7)

Finally, the Ψ̂MLE of FMM (2.1) is computed by iterating the the E-step and

the M-step until the algorithm converges.

3.1. Modified EM algorithm

In the algorithm proposed above, each M-step requires finding a solution

to (3.7). Thus, updating ξ is cumbersome, computationally expensive, and af-

fects the convergence rate of the algorithm. This intractability is due to the

terms of ∂ logFj(x(i1); θj)/∂ξ, ∂ log(1−Fj(x(ik); θj))/∂ξ, and ∂ log{Fj(x(is); θj)−
Fj(x(is−1); θj)}/∂ξ in the log-likelihood function. When the cdf of the component

densities does not have a closed form, which is the case for most commonly used

distributions, the dependence structures among the order statistics make the

computations extensive and time consuming. To solve this problem, Johnson

and Mehrotra (1972) and Mehrotra and Nanda (1974) proposed a modification

technique in which the expectation of the likelihood function is maximized to

obtain the MLE. Recently, Hatefi, Jafari Jozani and Ozturk (2015) employed

this modified approach for FMM analyses under various RBS designs. Using the

properties of the RBS, where the order statistics are independent, they showed

that the M-step for ξ in the EM algorithm reduces to the M-step in the usual

simple random sampling EM algorithm. Unfortunately, owing to the dependence
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structure among the order statistics, this is not the case in the EM algorithm

under correlated order statistics. Based on their work, we propose computing

the M-step of the EM algorithm for estimating ξ using the M-step for ξ of an

EM algorithm for SRS data. However, despite the similarity in updating ξ, note

that the observations are order statistics of the FMMs. Accordingly, instead of

equation (3.7), the following modified estimating equation is used to update ξ:

ξ̂(p+1) = arg max
ξ

k∑
s=1

M∑
j=1

{
τs,j(Ψ

(p)) log fj(xis ; θj)
}
, (3.8)

where τs,j(Ψ
(p)) is defined in (3.1). This updating step for ξ is the same as

that under SRS data, but we still take advantage of the information in the order

statistics and their latent variables when updating the mixing proportions in each

step. This indirectly affects the estimation of ξ.

4. Classification

Once the parameters of the FMM are estimated, we can determine the com-

ponent membership of each observation. Based on the characteristics of the

order statistics of the FMM, we propose several model-based classification cri-

teria. These criteria enable us to determine the component membership of the

observations, and to make probabilistic inferences about rarely observed com-

ponent(s) in FMMs. We first focus on the classification of a sample of order

statistics from an FMM.

Suppose we have observed X(r) = x(r). To classify x(r), we estimate its

component membership vector Zr = (Zr1, . . . , ZrM ) by Ẑr, where

Ẑrj =

{
1, if j = argmaxhηh(x(r); Ψ),

0, otherwise,

for j = 1, . . . ,M , and ηh(x(r); Ψ) = P(Zrh = 1|x(r); Ψ). From (2.4), the posterior

distribution of Zr given X(r) = x(r), is given by

P(Zr = zr|x(r)) =

(
1

zr1, . . . , zrM

) M∏
h=1

{
πhfh(x(r); θh)

f(x(r); Ψ)

}zrh
;
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thus,

ηh(x(r); Ψ) =
πh fh(x(r); θh)

f(x(r); Ψ)
. (4.1)

The posterior probabilities ηh(x(r); Ψ) are then estimated by ηh(x(r); Ψ̂MLE).

Using the classifier in (4.1), we assign each observation to the component that has

the highest estimated posterior probability. Note that the expression obtained

in (4.1) as the posterior probability of component membership of each order

statistic is equal to the commonly used expression for the SRS design. However,

the parameters are estimated using the order statistics of the FMM in (2.1).

The following remark describes the classification of unobserved Xl, given

observed order statistics Xr, where l ≤ r; other classification scenarios are sum-

marized as Remarks 8 and 9 in the Supplementary Material.

Remark 1. Given X(r) = x(r) and its label Z(r) = z(r), suppose we are now

interested in classifying an unobserved order statistic X(l), for l ≤ r. To this end,

the component membership vector Zl = (Zl1, . . . , ZlM ) can be estimated by Ẑl,

where

Ẑlj =

{
1, if j = argmaxhαh(x(l); Ψ),

0, otherwise,

and αh(x(l); Ψ) = P(Zlj = 1|x(r), z(r); Ψ). From Remark 2 in the Supplementary

Material, the posterior distribution of Zl is given by

P(Zl = zl|Zr = zr, x(r)) =

(
1

zl1, . . . , zlM

) M∏
h=1

{
πhFh(x(r); θh)

F (x(r); Ψ)

}zlh
;

consequently, αh(x(r); Ψ) = πh Fh(x(r); θh)/F (x(r); Ψ). In other words, given the

observed value y for the the rth order statistic X(r) selected from a sample of

size n from the FMM, missing (unselected) order statistics smaller than y are

classified into the jth component of the FMM if αj(y; Ψ̂) > αh(y; Ψ̂), for all

h = 1, . . . ,M ; j 6= h.

Next we investigate how to use the properties of the order statistics of FMMs

with rarely observed component(s). In other words, we determine the probabil-

ity of observing at least m observations from these rare components. These

probabilities are studied in Lemmas 4, 5, and 6; the proofs are provided in the
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Supplementary Material. We first state the following result from David and

Nagaraja (1981).

Lemma 3. Let X be a random variable with cdf F (·; Ψ). Then,

n∑
i=r

(
i

n

)
[F (x; Ψ)]i[F̄ (x; Ψ)]n−i = IF (x;Ψ)(r, n− r + 1), (4.2)

where IF (x;Ψ)(r, n − r + 1) = (1/B(r, n − r + 1))
∫ F (x;Ψ)
0 tr−1(1 − t)n−rdt, and

B(a, b) = Γ(a+ b)/(Γ(a)Γ(b)).

Lemma 4. Let X(r) = xr be the observed rth order statistic from the FMM in

(2.1), based on a random sample of size n. For m = 1, . . . , r− 1, let T 1
m,j denote

the event of observing at least m sample points less than X(r) from component j;

then, we have P(T 1
m,j |xr) = IG1(xr)(m, r −m), where G1(xr) = πjFj(xr; θj)/F (

xr; Ψ) and j = 1, . . . ,M . In addition, let S1
j denote the event of observing

no sample points less than X(r) from component j; then, we have P(S1
j |xr) =

1− IG1(xr)(1, r − 1).

Lemma 5. Let X(r) = xr and X(l) = xl be the observed rth and lth order statis-

tics, respectively, for r < l, for the FMM in (2.1) from a sample of size n. Let

T 2
m,j denote the event of observing at least m sample points between X(r) and X(l)

from component j; then, we have P(T 2
m,j |xr, xl) = IG2(xr,xl)(m, l−r−m), for m =

1, . . . , l−r−1, where G2(xr, xl) = πj [Fj(xl; θj)−Fj(xr; θj)]/[F (xl; Ψ)−F (xr; Ψ)]

and j = 1, . . . ,M . Therefore, let S2
j denote the event of observing no sample

points between X(r) and X(l) from component j; then, we have P(S2
j |xr, xl) =

1− IG2(xr,xl)(1, l − r − 1).

Lemma 6. Let X(l) = xl be the observed lth order statistic from the FMM in

(2.1) based on a random sample of size n. For m; m = 1, . . . , n − l − 1, let

T 3
m,j denote the event of observing at least m sample points greater than X(l)

from component j; then, we have P(T 3
m,j |xl) = IG3(xl)(m,n − l −m + 1), where

G3(xl) = πjF̄j(xl; θj)/F̄ (xl; Ψ) and j = 1, . . . ,M . Further, let S3
j denote the

event of observing no sample points greater than X(l) from component j; then,

we have P(S3
j |xl) = 1− IG3(xl)(1, n− l).

As mentioned in Section 1, in many environmental, ecological, and medi-

cal studies, measuring the variable of interest is difficult and time-consuming.

However, rank information can usually be obtained easily, as in the example of

determining the age of fish based on their length, as described in the introduc-

tion. Hatefi, Jafari Jozani and Ozturk (2015) exploited the properties of a ranked
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Figure 1. The probability of observing at least one observation from the second compo-
nent when the set size is 10.

set sampling (RSS) design under perfect ranking to analyze the age of fish based

on length frequency data. To obtain a sample of k fish, a simple random sample

of k2 fish is selected first, these fish are then divided randomly into k sets of

size k. Then, in each set, fish are ranked based on their length and, finally, the

ith smallest fish from set i is selected for age determination. In the following

example, we use Lemma 6, for a perfect RSS (i.e., there is no ranking error in

the sampling process) as an example of order statistics of FMMs.

Example 1. Consider a perfect RSS, with set size H = 10, from a mixture

of two normal distributions with Ψ = {π, µ1, µ2, σ1, σ2} = {0.8, 4.87, 8, 1, 2}.
Figure 1 shows the probability of observing at least one observation from the

second component. For example, Given x(5) = 4, the probability of observing

at least m = 3 units of H = 10 sampling units from a rare population (second

component with π = 0.2) is 0.0856. Figure 1 shows that if the rank is fixed, then,

as the value of x increases, the probability of observing a sample from the rare

component increases. Furthermore, if x is fixed, then as the rank of x increases,

the probability of observing a sample from the rare event decreases.

5. Statistical Learning with Order Statistics

In this section, we study how the notion of order statistics can be incorpo-

rated into supervised and unsupervised learning in the context of FMMs. As in

the previous section, we use the properties of order statistics to make inferences

about FMMs in the context of unsupervised learning, where information about
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the component membership of the order statistics is not available. Because the

cost of obtaining k order statistics is the same as that of ordering the entire sam-

ple, we examine the order statistics under unsupervised learning for the sake of

completeness, in the context of estimation, classification, and the consistency of

the results. This enables us to better compare the performance of the proposed

methods with that of their counterparts under supervised learning, particularly in

settings in which measuring the labeled data is difficult. In this section, we study

the order statistics of FMMs in the context of supervised learning. In this case,

both measured values of the order statistics and their component memberships

are available.

In Subsection 5.1, we revisit the results of Section 2 for the order statistics

of FMMs in an unsupervised learning setting, after which, we examine the or-

der statistics of an FMM for supervised learning. Suppose X = (X1, . . . , Xk)

represents a collection of unlabeled SRS data of size k from the FMM in (2.1).

In the case of labeled SRS data, for each observation Xi for i = 1, . . . , k, let

Z∗i = {z∗i1, . . . , z∗iM} be the observed label, such that z∗ij = 1 if Xi is from com-

ponent j and is zero otherwise.

5.1. Unsupervised learning using ordered statistics from FMMs

Suppose we only have access to the unlabeled SRS data x = (x1, . . . , xk); in

this case, the likelihood function becomes Lun(Ψ|x) =
∏k
i=1

∑M
j=1 πjfj(xi; θj).

As in Section 2, we introduce the latent variables Zi = (Zi1, . . . , ZiM ), for i =

1, . . . , k and for each xi, such that Zij = 1 if xi comes from component j of the

FMM, and Zij = 0 otherwise. Now, let Yun = (X,Z) denote the complete data

with likelihood function

Lun(Ψ|Yun) =

k∏
i=1

M∏
j=1

{πjfj(yi; θj)}zij . (5.1)

As in Section 3, we obtain ML estimates of the parameters using the EM algo-

rithm. The conditional expectation of Zij |y, computed in the E-step, is used in

the (p+ 1)th step to update Ψ
(p+1)
un = (π

(p+1)
un , ξ

(p+1)
un ), as follows:

π̂
(p+1)
un,j =

1

k

k∑
i=1

τr,j(Ψ
(p)), j = 1, . . . ,M, (5.2)

ξ̂(p+1)
un = arg max

ξ

k∑
i=1

M∑
j=1

{
τr,j(Ψ

(p)) log fj(yi; θj)
}
, (5.3)
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where τr,j(Ψ
(p)) = E(Zrj |y), for r = 1, . . . , k.

Let X̃ou = {X(i1), . . . , X(ik)} be the collection of order statistics of unlabeled

data X from a sample of size n. Let You = (X̃ou,∆) denote the complete order

statistics, consisting of the unlabeled order statistics and their latent variables.

According to Lemma 1, the likelihood function based on You can be written as

L(Ψ|You) ∝ L(Ψ|Yun)κ(Ψ|You), (5.4)

where

κ(Ψ|You) =

M∏
j=1

{
{πjFj(y(i1); θj)}

w1j{πjF̄j(y(ik); θj)}
wm+1,j

×
k∏
s=2

{
πj [Fj(y(is); θj)− Fj(y(is−1); θj)]

}wsj

}
. (5.5)

From (5.1), it is apparent the κ(Ψ|You) is the contribution of k order statistics

to the unsupervised learning of FMMs.

5.2. Supervised learning with ordered statistics of FMMs

In this subsection, we analyze FMMs using labeled data. For SRS supervised

learning, we estimate the parameters based on the labeled data. The likelihood

function based on these observations is

Lus(Ψ|x, z∗) =

k∏
i=1

M∏
j=1

{πjfj(xi; θj)}z
∗
ij . (5.6)

Using (5.6), the ML estimate Ψ̂us is

π̂us,j =
1

k

k∑
i=1

z∗ij , (5.7)

θ̂j = arg max
θj

k∑
i=1

log fj(xi; θj), j = 1, . . . ,M. (5.8)

Here, we show how to exploit the properties of order statistics to make

inferences for FMMs using labeled data. Let X̃os = {X(i1), . . . , X(ik)} be the

collection of k order statistics for the labeled data X from a sample of size n,

with labels Z∗ = {Z∗1 , . . . , Z∗k}. Using the pdf of the order statistics, the likelihood
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function based on (X̃os,Z
∗) is

Los(Ψ|x̃os, z∗) ∝
{
F (x(i1); Ψ)

}i1−1 {F̄ (x(ik); Ψ)
}n−ik

×
k∏
s=2

{
F (x(is); Ψ)− F (x(is−1); Ψ)

}is−is−1−1

×
k∏
r=1

M∏
j=1

{
πjfj(x(ir); θj)

}z∗rj . (5.9)

In order to obtain the ML estimate of Ψ, we introduce the latent vectors Ws =

(Ws1, . . . ,WsM ), for s = 1, . . . , k+1. Let Yos = (X̃os,Z
∗,W) denote the complete

labeled order statistics. Similarly to Lemma 1, the complete likelihood function

version of (5.9) is given by

L(Ψ|Yos) ∝ L(Ψ|Yus)κ(Ψ|Yos), (5.10)

where κ(Ψ|Yos) is defined in (5.5) by replacing yij with x(ij). From (5.10), it

is apparent that κ(Ψ|Yos) shows the contribution of k order statistics from a

sample of size n to the supervised FMM. Now, we estimate the parameters of the

FMM using the EM algorithm presented in Section 3. The E-step requires only

the conditional expectation of the latent variables Ws, for s = 1, . . . , n, given

x̃os, z
∗. As in Section 3, using (3.2), (3.3), and (3.4), the parameters are updated

on the (p+ 1)th step using

π̂
(p+1)
os,j =

1

n

{
k∑
s=1

z∗sj +

k+1∑
s=1

βs,j(Ψ
(p))

}
, (5.11)

where j = 1, . . . ,M−1 and, on the (p+1)th iteration of the M-step, the estimates

of the component parameters ξ
(p+1)
os are updated using

ξ(p+1)
os = arg max

ξ
Qos(ξ,Ψ

(p)), (5.12)

where

Qos(ξ,Ψ
(p)) =

M∑
j=1

{
β1,j(Ψ

(p)) logFj(xi1 ; θj) + βk+1,j(Ψ
(p)) log F̄j(xik ; θj)

+

k∑
r=1

z∗rj log fj(xir ; θj)
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+

k∑
s=2

βs,j(Ψ
(p)) log[Fj(xis ; θj)− Fj(xis−1

; θj)]

}
.

Then, the E-step and M-step are repeated until the algorithm converges.

6. Numerical Studies

In this section, we empirically study the performance of the MLEs of the

FMM parameters under various order statistics designs Di, for i = 1, . . . , 6, as

shown in Table 1. In all designs, the original simple random sample size is as-

sumed to be n = 30, where we observe only k order statistics, for k ∈ {6, 8, 10}.
We select Di such that the performance of Ψ̂MLE can be evaluated under differ-

ent scenarios, including right- and left- censoring schemes (D1, D2), a modified

version of maxima-minima nominated sampling (D3, D4), and systematic sam-

pling (D5). The MLEs of the parameters of the FMMs are computed assuming

we have labeled order statistics, unlabeled order statistics, labeled SRS data, and

unlabeled SRS data. We used the modified EM algorithm to compute Ψ̂MLE .

The underlying FMM is assumed to be a mixture of two univariate normal dis-

tributions,

f(x; Ψ) = πφ(x;µ1, σ) + (1− π)φ(x;µ2, σ). (6.1)

with parameters Ψ = {π, µ1, µ2, σ}. Owing to the key role of mixing the propor-

tion parameters in mixture modeling, we investigate two simulation studies. The

first, described in Subsection 6.1, estimates the mixing proportion, where the

component parameters are assumed to be known. The second, provided in the

Supplementary Material, estimates all parameters of the model. We investigate

the performance of the estimation and classification procedures based on designs

Di, and compare it with the case in which observations are simple random sam-

ples. Note that we do not necessarily suggest using order statistics for finite

mixture modeling as a sampling scheme to replace SRS, but rather as a natural

setting that happens in many real-world applications. The goal is to show how

the rank information provided by different collections of order statistics can affect

the estimation and classification processes. To generate observations using Di,

for each simulation, we take a sample of size n = 30 from (6.1). After ranking

the observations, we select the order statistics using the designs shown in Table

1. When using an unsupervised approach, we consider only the value of the se-

lected order statistics, whereas in a in supervised approach, we observe both the



1896 HATEFI ET AL.

Table 1. Collections of order statistics.

Design Collection of Order Statistics Experiment (k=size)
D1 {1, 2, 3, 4, 5, 6} Right censored data (6)
D2 {23, 24, 25, 26, 27, 28, 29, 30} Left censored data (8)
D3 {1, 2, 3 , 28, 29, 30} Modified MMN sample (6)
D4 {1, 2, 3, 4, 5, 26, 27, 28, 29, 30} Modified MMN sample (10)
D5 {1, 5, 10, 20, 25, 30} Systematic selection (6)

selected order statistics and their component memberships.

6.1. Simulation study 1

We first estimate π and evalute the classification performance when the com-

ponent parameters of the FMM are assumed to be known. Using Table 1, we

generate samples from model (6.1). We consider (µ1, µ2, σ) = (9.01, 11.70, 1.15)

and π ∈ {0.35, 0.50, 0.60, 0.67, 0.80}, such that the component parameters are the

same as those for Spot data analyzed in Section 7. The modified EM algorithm,

described in Subsection 3.1 is carried out 5,000 times, with initial value 0.5, for

π, with stopping criteria |π(k+1) − π(k)| < 10−6.

Tables 2 and 3 provide the biases, square root of the mean squared errors

(
√
MSE), classification precisions (CLP%), and convergence rates (CVR%) for

all estimation procedures. The classification precision rate (CLP%) is the average

proportion of correct classification rates over 5,000 simulations. The simulation

studies are devised so that we have access to the true component membership

of the sampling units under all estimation procedures. Comparing the true and

predicted memberships of the test data, we compute the correct classification

rate of the classifiers for each estimator in each simulation. The rate of conver-

gence (CVR%) is calculated as the average number of times that the estimation

procedure converged over 5,000 replications. Comparing the ML estimates of π

under each design Di, we clearly observe the impact of various collections of or-

der statistics on the estimation and classification procedures. For instance, from

Table 2, when π = 0.8, design D1 practically fails to capture the rare event (i.e.,

the second component), yielding a convergence rate for the estimation procedure

of about 1%. On the other hand, using the collection of upper order statistics

(design D2) guarantees that we will observe data from the rare component and,

consequently, improves the convergence rate of the estimation procedures by 93%.

The relative efficiency (RE) of the proposed estimator depends on the sam-

pling design Di. The estimator based on design D5 provides a substantial im-
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Table 2. Bias,
√
MSE, (CLP%), and (CVR%) under supervised learning, based on

the designs of Table 1, against those of SRS data of the same size, when π is the only
unknown parameter of model (6.1).

OS SRS

π 0.35 0.50 0.60 0.67 0.80 0.35 0.50 0.60 0.67 0.80

Bias −0.09 −0.15 −0.19 −0.24 −0.30 0.02 −0.00 −0.01 −0.03 −0.07

D1

√
MSE 0.15 0.24 0.28 0.35 0.44 0.18 0.19 0.18 0.17 0.17

CLP% 87.7 86.6 87.1 84.7 87.7 85.2 84.0 84.6 85.5 87.7

CVR% 31.1 9.5 4.6 2.8 1.2 92.1 97.0 94.8 91.1 72.6

Bias 0.17 0.11 0.07 0.04 0.00 0.01 0.00 −0.00 −0.02 −0.04

D2

√
MSE 0.26 0.18 0.13 0.10 0.08 0.16 0.17 0.17 0.16 0.13

CLP% 87.4 87.4 87.5 88.4 90.8 86.0 85.2 85.6 86.2 88.5

CVR% 7.3 21.1 40.8 61.8 93.8 97.0 99.3 98.2 96.1 83.9

Bias 0.04 −0.00 −0.03 −0.04 −0.05 0.03 −0.00 −0.02 −0.03 −0.07

D3

√
MSE 0.16 0.15 0.16 0.16 0.15 0.18 0.19 0.18 0.18 0.16

CLP% 87.7 86.9 87.2 88.1 90.4 85.2 84.1 84.6 85.5 87.9

CVR% 100 100 100 99.9 99.5 92.4 96.7 94.9 90.8 74.0

Bias 0.02 −0.00 −0.02 −0.03 −0.02 0.01 −0.00 −0.00 −0.01 −0.02

D4

√
MSE 0.13 0.13 0.13 0.13 0.11 0.15 0.16 0.15 0.15 0.12

CLP% 88.2 87.2 87.4 88.2 90.5 86.4 85.6 85.8 86.6 88.9

CVR% 99.9 100 100 100 99.7 98.7 99.8 99.4 98.3 88.4

Bias 0.00 −0.00 −0.00 −0.00 −0.00 0.03 0.00 −0.02 −0.04 −0.07

D5

√
MSE 0.11 0.11 0.11 0.11 0.09 0.18 0.19 0.18 0.18 0.16

CLP% 88.0 87.3 87.8 88.4 90.7 85.1 84.1 84.7 85.3 87.8

CVR% 99.8 100 99.9 99.8 97.7 92.6 97.1 94.5 90.8 73.3

provement over the MLE of the SRS design. For example, the relative efficiencies

RE = MSE(SRS)/MSE(D5) from Table 2 are (0.182/0.112 =)2.7, 2.98, 2.7, 2.7,

and 3.16, for π = 0.35, 0.50, 0.60, 0.67, and 0.8, respectively. These empirical

results show that the MLE based on design D5 is at least 2.7 times more efficient

than the corresponding SRS estimator. The same efficiencies under unsupervised

learning in Table 3 are 4.76, 4.69, 4.34, 4.76, 4.41. These RE values indicate that

design D5 is much better suited to unsupervised learning.

7. Data Analysis

The age structure of fish is an important part of many fishery studies, because

it provides valuable information about age of recruitment, maturity, and so on.

As a result, estimations of the age structure play a key role in stock assessments

and in the dynamics of a fish population. In this section, we examine the age
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Table 3. Bias,
√
MSE, (CLP%), and (CVR%) under unsupervised learning, based on

the designs of Table 1, against those of SRS data of the same size, when π is the only
unknown parameter of model (6.1).

OS SRS

π 0.35 0.50 0.60 0.67 0.80 0.35 0.50 0.60 0.67 0.80

Bias 0.04 0.04 0.01 −0.01 −0.04 0.00 0.00 −0.00 0.00 −0.01

D1

√
MSE 0.17 0.19 0.18 0.18 0.19 0.24 0.26 0.25 0.24 0.21

CLP% 87.3 85.2 85.0 85.6 87.0 82.6 81.5 82.2 83.1 86.0

CVR% 96.9 91.0 83.1 76.8 68.7 99.2 99.2 99.2 99.3 98.9

Bias −0.02 −0.04 −0.04 −0.02 −0.01 0.00 −0.00 −0.00 −0.00 −0.01

D2

√
MSE 0.17 0.18 0.16 0.15 0.11 0.21 0.22 0.22 0.21 0.18

CLP% 85.6 86.0 87.0 87.8 90.3 84.8 84.3 84.5 84.9 87.3

CVR% 86.8 95.8 98.3 99.5 99.8 99.5 99.6 99.4 99.5 99.2

Bias 0.03 −0.00 −0.03 −0.04 −0.04 0.01 −0.01 −0.00 −0.00 −0.01

D3

√
MSE 0.16 0.15 0.16 0.16 0.15 0.25 0.26 0.25 0.24 0.21

CLP% 87.6 86.9 87.2 87.9 90.1 82.9 82.0 82.3 83.5 86.1

CVR% 99.9 100 100 99.9 99.7 99.2 99.5 99.5 99.2 99.1

Bias 0.02 0.00 −0.02 −0.02 −0.02 0.00 −0.00 −0.00 −0.00 −0.00

D4

√
MSE 0.14 0.13 0.14 0.14 0.12 0.19 0.20 0.20 0.19 0.16

CLP% 88.0 87.2 87.3 88.1 90.2 86.1 85.3 85.4 86.2 88.2

CVR% 99.9 100 100 100 99.8 99.7 99.8 99.6 99.4 99.2

Bias 0.01 −0.00 −0.00 0.00 0.00 0.00 0.00 −0.00 0.00 −0.01

D5

√
MSE 0.11 0.12 0.12 0.11 0.10 0.24 0.26 0.25 0.24 0.21

CLP% 88.0 87.3 87.7 88.2 90.3 82.8 81.7 82.5 83.0 86.0

CVR% 99.9 100 99.9 100 99.7 99.4 99.4 99.2 99.3 99.1

determination of Spot, as a short-lived fish species, using frequency data on the

length of the fish. Owing to its commercial and recreational purposes and food

source for other fish, Spot represent one of the most important and frequently

caught fish in the Chesapeake Bay area. The existence of several environmental

studies on such short-lived fish species (Thomas (1990); Rickabaugh and Ca-

possela (2011)) has increased the importance of analyzing the age structures of

Spot.

Recently, several fishery studies have tried different sampling designs based

on ranks and order statistics. Among other things, these studies examine the

mercury level of fish (Nourmohammadi, Jafari Jozani and Johnson (2015)), the

stock abundance of fish (Wang, Ye and Milton (2009)), and RBS designs for age

structure determination (Hatefi, Jafari Jozani and Ozturk (2015)).

Here, we employ an ML estimation for the parameters of the FMM in a
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fishery study to determine the age structure of Spot. Owing to the cost of deter-

mining the age of fish, researchers may first capture and examine a large sample,

from which they then draw a subsample for the age determination. Because the

length of a fish is correlated to its age, length is often used as a concomitant to

select the final sample. In this section, we consider the length and age determined

by otoliths of 403 Virginia–Chesapeake Bay Spot as our population of interest.

The data set is available online in the FSAdata package (Ogle (2013)). In this

study, we focus on two classes of Spot: ages zero and one year, which are sexually

immature and usually smaller; and fish that are two years and older, which are

sexually mature and usually longer. A statistical analysis of the two groups is im-

portant because the second group plays a vital role in the current reproductivity

of the current population, and the first group influences the dynamics and repro-

duction of the future population. Hatefi, Jafari Jozani and Ozturk (2015) showed

that the length distribution of Spot is well-modeled by a mixture of two normal

distributions with parameters Ψ = (π, µ1, µ2, σ) = (0.67, 9.01, 11.70, 1.15).

We perform a simulation study with 5,000 repetitions by generating samples

using two common approaches to selecting a final sample. We generate samples

of size n = 30, and then select the following ordered elements (rank collections)

for each sample for the age determination. The 30 fish in the original sample are

modeled according to their length, which is readily obtained. These collections

include D∗1 = {1, 4, 7, 10, 13, 16, 19, 22, 25, 28}, D∗2 = {2, 5, 8, 11, 14, 17, 20, 23, 26,

29}, D∗3 = {3, 6, 9, 12, 15, 18, 21, 24, 27, 30}, D∗4 = {5, 10, 15, 20, 25}, and D∗5 =

{1, 5, 10, 15, 20, 25, 30}. Then, we employ the proposed methods to estimate and

classify the observations in order to determine the age structure of Spot. We

study the effect of various collections of order statistics in the observed samples

using D∗i , for i = 1, 2, 3, 4, 5.

Tables 4 and 6 present the bias and square root of the MSE for the estimates

of Ψ based on D∗i under supervised and unsupervised learning approaches, re-

spectively. Tables 5 and 7 present the computational aspects of the estimation

procedures in the analysis of the Spot data set. The estimate π̂MLE , whether

using either labeled or unlabeled order statistics, almost always outperforms the

SRS-based estimate. This is because π̂MLE takes full and direct advantage of

rank information of the order statistics in these approaches. Note that an esti-

mation of the component parameters of an FMM based on order statistics using

the modified EM algorithm can not take full advantage of rank information.

However, it does do so indirectly π̂. Tables 5 and 7 show that the estimation

procedures under the supervised and unsupervised approaches both outperform
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Table 4. Bias and
√
MSE of Spot data under the supervised learning approach, based

on designs D∗
i , for i = 1, . . . , 5, against those of SRS data of the same size.

OS SRS

π µ1 µ2 σ π µ1 µ2 σ

D∗
1 Bias -0.03 -0.13 -0.15 -0.08 -0.00 -0.01 -0.01 -0.16√

MSE 0.11 0.36 0.56 0.23 0.14 0.45 0.69 0.32

D∗
2 Bias -0.01 -0.01 0.04 -0.12 -0.01 0.01 -0.01 -0.16√

MSE 0.10 0.32 0.52 0.26 0.14 0.45 0.67 0.32

D∗
3 Bias 0.01 0.09 0.26 -0.11 -0.01 -0.01 -0.00 -0.16√

MSE 0.11 0.34 0.64 0.25 0.14 0.45 0.69 0.32

D∗
4 Bias -0.06 0.12 -0.50 -0.37 -0.05 0.00 -0.01 -0.33√

MSE 0.13 0.42 0.93 0.57 0.19 0.69 0.89 0.57

D∗
5 Bias 0.00 -0.29 0.52 0.01 -0.02 0.01 -0.01 -0.23√

MSE 0.13 0.55 0.97 0.21 0.16 0.56 0.79 0.43

Table 5. Computational aspects of the estimators for the Spot data under supervised
learning, based on designs D∗

i , for i = 1, . . . , 5, against those of SRS data of the same
size.

OS SRS

interation CLP% time Conv. iteration CLP% time Conv.

D∗
1 4.26 86.40 0.0049 98.86 1.00 86.60 0.0004 98.06

D∗
2 3.00 86.83 0.0036 99.84 1.00 86.51 0.0004 98.10

D∗
3 3.69 86.89 0.0042 99.98 1.00 86.54 0.0004 97.96

D∗
4 4.60 85.37 0.0035 87.80 1.00 84.84 0.0003 85.72

D∗
5 3.58 85.86 0.0030 99.92 1.00 85.66 0.0003 93.52

their SRS counterparts in terms of classification precision and convergence rate.

8. Conclusion

We propose estimation and classification methods based on order statistics

of FMMs. This study differs in terms of focus and structure from two recent

works on order statistics in FMMs, namely, Hatefi, Jafari Jozani and Ziou (2014);

Hatefi, Jafari Jozani and Ozturk (2015). The main objective of this study is to

develop a statistical inference for classifying labeled and/or unlabeled current or

future observations, based on correlated order statistics. In contrast, Hatefi, Ja-

fari Jozani and Ziou (2014); Hatefi, Jafari Jozani and Ozturk (2015) estimate the

parameters of an FMM, and classify the observations into subpopulations using
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Table 6. Bias,
√
MSE of the Spot data under unsupervised learning, based on designs

D∗
i , for i = 1, . . . , 5, against those of the SRS data of the same size.

OS SRS

π µ1 µ2 σ π µ1 µ2 σ

D∗
1 Bias -0.21 -0.62 -0.64 -0.19 -0.10 -0.35 -0.05 -0.34√

MSE 0.35 0.97 1.12 0.36 0.23 0.77 0.85 0.53

D∗
2 Bias -0.07 -0.24 -0.07 -0.23 -0.09 -0.33 -0.03 -0.34√

MSE 0.16 0.48 0.54 0.36 0.23 0.77 0.86 0.53

D∗
3 Bias 0.06 0.19 0.56 -0.12 -0.10 -0.35 -0.06 -0.34√

MSE 0.18 0.56 1.01 0.32 0.24 0.78 0.86 0.53

D∗
4 Bias -0.15 -0.25 -0.72 -0.54 -0.13 -0.42 -0.20 -0.56√

MSE 0.23 0.48 1.13 0.78 0.27 1.00 1.13 0.83

D∗
5 Bias -0.01 -0.33 0.48 0.02 -0.11 -0.39 -0.12 -0.45√

MSE 0.19 0.68 1.02 0.27 0.25 0.88 1.00 0.67

Table 7. Computational aspects of the estimators of the Spot data under unsupervised
learning, based on designs D∗

i , for i = 1, . . . , 5, against those of the SRS data of the same
size.

OS SRS

interation CLP% time Conv. iteration CLP% time Conv.

D∗
1 18.34 75.12 0.0220 92.30 12.43 82.17 0.0043 99.06

D∗
2 14.78 85.02 0.0186 99.52 12.64 81.91 0.0044 98.90

D∗
3 21.04 83.75 0.0251 94.88 12.46 81.91 0.0043 99.00

D∗
4 9.95 81.85 0.0080 99.88 8.20 79.91 0.0028 98.82

D∗
5 21.68 82.59 0.0189 93.76 10.34 80.83 0.0035 99.30

independent order statistics in ranked-set sampling designs. In this study, the

order statistics are correlated, which requires different latent structures, missing

data mechanisms, and EM algorithms to those in Hatefi, Jafari Jozani and Ziou

(2014); Hatefi, Jafari Jozani and Ozturk (2015).

We used the properties of the correlated order statistics to estimate and

classify FMMs using both supervised and unsupervised learning methods. Using

the correlation structure of the order statistics, we obtained various model-based

classification criteria. These criteria help us to determine the group membership

of the data, and enable inferences about rarely observed components. Our frame-

work is general enough to apply to several sampling designs from FMMs, includ-

ing left censoring, right censoring, double censoring, minimal-maximal nomina-
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tion sampling, and systematic sampling. Empirical evidence shows that selecting

an appropriate collection of order statistics provides a substantial improvement

over the SRS option in both supervised and unsupervised learning. For example,

systematic sampling can be two or three times more efficient than its SRS coun-

terpart when estimating the mixing proportion in supervised and unsupervised

learning, respectively. The proposed methodologies were employed to determine

the age structure of Spot fish using length frequency data. Numerical results

illustrate that the procedures under the supervised and unsupervised approaches

almost always outperform their SRS counterparts in terms of estimation and

classification precision.

Supplementary Material

All proofs, eight remarks, an additional simulation study are provided in the

online Supplementary Material.
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