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Abstract: Owing to the heterogeneity exhibited by many chronic diseases, precise

personalized medicine, also known as precision medicine, has garnered increased

attention in the scientific community. One main goal of precision medicine is to

develop the most effective tailored therapy for each individual patient. To this end,

one needs to incorporate individual characteristics to determine a proper individual

treatment rule (ITR), which is used to make suitable decisions on treatment as-

signments that optimize patients’ clinical outcomes. For binary treatment settings,

outcome-weighted learning (OWL) and several of its variations have been proposed

to estimate an ITR by optimizing the conditional expected outcome, given patients’

information. However, for multiple treatment scenarios, it remains unclear how to

use OWL effectively. It can be shown that some direct extensions of OWL for mul-

tiple treatments, such as the one-versus-one and one-versus-rest methods, can yield

suboptimal performance. In this paper, we propose a new learning method, called

multicategory outcome-weighted margin-based learning (MOML), for estimating

an ITR with multiple treatments. Our proposed method is very general and covers

OWL as a special case. We show the Fisher consistency of the estimated ITR,

and establish its convergence rate properties. Variable selection using the sparse

l1 penalty is also considered. Simulations and a type-2 diabetes mellitus observa-

tional study are used to demonstrate the competitive performance of the proposed

method.

Key words and phrases: Angle-based classifier, large-margin, multiple treatments,

outcome weighted learning, precision medicine, support vector machine.

1. Introduction

An important goal of precision medicine is to develop effective statistical

methods for evaluating treatments with heterogeneous effects among patients. In

particular, a treatment that works for patients with certain characteristics may

not be effective for others (Simoncelli (2014)). A popular method of maximizing
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the overall benefits that patients receive from a recommended therapy involves

identifying proper individual treatment rules (ITRs), which are functions that

map patient characteristics onto the treatment space.

More recently, studies have begun building ITRs for binary treatment cases.

For example, Tian et al. (2014) studied the ITR problem and conducted a sub-

group analysis using a regression approach. Qian and Murphy (2011) incorpo-

rated ITR detection into an optimization problem, based on a conditional expec-

tation that contains an indicator function. Zhao et al. (2012) used a weighted

classification framework and proposed outcome-weighted learning (OWL), which

replaces the indicator function with a surrogate loss. Zhou et al. (2017) pro-

posed using the residuals from a linear regression between the outcome and the

covariates to improve the finite-sample performance of the method proposed by

Zhao et al. (2012). Zhang et al. (2012) proposed a robust ITR method to handle

potential regression model misspecification when modeling the outcome.

Despite the successful developments in ITR estimation for binary treatments,

how the idea should be adapted to multicategory treatment scenarios requires

additional research. In general, some regression-based methods can be applied for

this purpose under parametric assumptions, such as certain model mean struc-

tures (Robins, Orellana and Rotnitzky (2008)). However, violating these as-

sumptions can lead to misleading results. In this study, we develop a statistical

learning framework for conducting optimal ITR detection for nominal multicat-

egory treatment cases. For simplicity, in the remainder of the paper, we use

the term multicategory to represent “nominal multicategory” when there is no

confusion.

In the classification literature, large-margin classifiers are popular and widely

used in practice. Well-known examples include the support vector machine

(SVM) and penalized logistic regression (PLR) (Hastie, Tibshirani and Fried-

man (2009)). There are two main types of large-margin classifiers: soft and

hard classifiers (Liu, Zhang and Wu (2011)). The essential difference is whether

obtaining the classifier requires estimating the conditional probability of each

class. Soft classifiers, such as the PLR, estimate the class conditional probabil-

ity, whereas hard classifiers, such as the SVM, target the classification boundary

only. Liu, Zhang and Wu (2011) showed that the performance of soft and hard

classifiers can vary for problems with different settings. In addition, they pro-

posed the large-margin unified machine (LUM) loss family, which includes both

soft and hard classifiers by using a tuning parameter, and works well for different

problems.
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To solve k-class multicategory problems, one direct approach uses sequen-

tial binary classifiers. In particular, there are two common approaches in the

literature, namely, the one-versus-one and one-versus-rest approaches (Allwein,

Schapire and Singer (2001)). However, these sequential binary classifiers can be

suboptimal. A common approach handling a k-class problem simultaneously is

to estimate k functions with the sum-to-zero constraint (Lee, Lin and Wahba

(2004); Liu and Yuan (2011); Zhang and Liu (2013)). Recently, Zhang and Liu

(2014) pointed out that this approach can be inefficient because one needs to

add an extra sum-to-zero constraint to the optimization problem to guarantee

the identifiability and desirable properties of the classifiers. In this way, an ex-

tra computational cost is incurred when solving the corresponding constrained

optimization problem. To overcome this drawback, Zhang and Liu (2014) pro-

posed an angle-based large-margin classification technique using k− 1 functions,

without the sum-to-zero constraint. This method was shown to perform well in

terms of both prediction accuracy and computational efficiency.

With the success of large-margin classifiers in conducting standard classifi-

cations, it is desirable to adapt them to the OWL framework to help find an ITR

for multicategory treatments. In this paper, we propose a new technique called

multicategory outcome-weighted margin-based learning (MOML) to solve this

problem. We start with the binary treatment scenario, and then generalize the

methods to the muticategory treatment case. In particular, we use the vertices of

a k-vertex simplex, with the origin as its center, in a k−1 Euclidean space to rep-

resent the k treatments. Next, we construct k−1 functions to map the covariates

of each patient onto a k − 1-dimensional vector. Then, we define the prediction

as the treatment that has the smallest angle between this vector and the cor-

responding vertex of the simplex. Motivated by Zhao et al. (2012), we specify

the objective function in the loss+ penalty form. The loss part is the weighted

expectation of a loss function, `(·), of the angle between the (k− 1)-dimensional

function vector and the vertex of the actual treatment. The penalty term is used

to control the model complexity. In this paper, we compare two penalty terms: l1
and l2 penalties. Note that the former can lead to sparse models and, hence, can

be used for variable selection. Based on the loss term introduced, MOML detects

the ITR as follows: for patients who have a good clinical outcome, the estimated

optimal treatment should have a small angle with the actual treatment; on the

other hand, for patients who have poor clinical results, the estimated optimal

treatments should have large angles with the actual treatments.

The main contributions of this study are as follows. First, we propose us-
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ing outcome-weighted margin-based learning (OML) to achieve ITR estimation

for binary treatments. This learning technique produces a flexible class of de-

cision functions that includes both soft and hard classifiers to obtain additional

information and better prediction performance. Second, we propose a weighted

angle-based method to adapt OML to multicategory treatment scenarios. For

soft classifiers, we discuss how to obtain the estimated ratio of clinical rewards

for each treatment pair in order to determine the balance between the cost and

the gain. We show the consistency properties and convergence rates of excess

risks for MOML. In addition, we compare MOML with the one-versus-one and

one-versus-rest extensions of OWL. Third, for the case of linear decision bound-

aries, we propose using an l1 penalty to achieve variable sparsity. We further

show that this technique leads to variable selection consistency, under certain

assumptions.

The remainder of the paper is organized as follows. In Section 2, we review

the OWL method and show how OML is introduced for the ITR estimation under

the binary treatment setting. Then, we extend OML to multicategory cases, and

explain how to maintain Fisher consistency by choosing a loss function. We

also point out how the fitted decision functions can be connected to the ratios

of the predicted clinical rewards under soft classifiers. In Sections 3 and 4, we

provide six simulated examples and an application to a type-2 diabetes mellitus

observational study, respectively, to evaluate the finite-sample performance of

MOML. Discussions and conclusions are provided in Section 5. Several additional

theories, including the excess risk convergence rate and selection consistency,

and all technical details and proofs are provided in the online Supplementary

Material.

2. Methodology

In this section, we first introduce the concepts and notation related to ITRs

in Section 2.1, and then discuss how to use binary margin-based classifiers to find

the optimal ITR for two treatments in Section 2.2. In Section 2.3, we extend the

proposed method to the case of multiple treatments.

2.1. ITRs and OWL

Suppose we observe the training data set {(xi, ai, ri); i = 1, . . . , n} from

an underlying distribution P (X, A,R), where X ∈ Rp is a patient’s covariate

vector, A ∈ {1, . . . , k} is the treatment, and R is the observed clinical outcome,
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namely, the reward. In particular, P (x, a, r) = f0(x)pr(a|x)f1(r|x; a), where f0
is the unknown density of X, pr(a|x) is the probability of receiving treatment a

for a patient with covariates x, and f1 is the unknown density of R, conditional

on (X;A). We assume that larger values of R are more desirable. In this paper,

we focus on k-arm trials. An ITR D is a mapping from the covariate space Rp

onto the treatment set {1, . . . , k}.
Before discussing multicategory treatments, we first introduce the binary op-

timal ITR, and formulate it as an outcome-weighted binary classification prob-

lem. To better understand ITRs, we use E to denote the expectation with

respect to P . For any ITR D(·), we let PD be the distribution of {X, A,R},
under which the treatment A is decided by D(X), with PD(x, a, r) = f0(x)I(a =

D(x))f1(r|x; a), and let ED be the corresponding expectation. Therefore, PD is

the distribution with the same X-marginal as P and, given X = x, the condi-

tional distribution of R is P (r|X = x;A = D(x)). We assume pr(A = a|x) > 0

for any a ∈ {1, . . . , k}. One can verify that PD is absolutely continuous with

respect to P , and that the Radon−Nikodym derivative is dPD/dP = I{a =

D(x)}/πa(x), where I(·) is the indicator function, and πa(x) = pr(A = a|x).

Consequently, the expected reward for a given ITR D is

ED(R) =

∫
RdPD =

∫
R
dPD

dP
dP =

∫
R
I{A = D(X)}

πA(X)
dP.

An optimal ITR D∗ is defined as D∗ = argmaxD E
D(R) = argmaxD E[R

I{A = D(X)}/πA(X)]. An equivalent expression of D∗ is that, for any x,

D∗(x) = argmaxa∈{1,...,k}E(R|X = x;A = a). In other words, D∗ is an optimal

ITR if for any x, the expected reward that corresponds to D∗(x) is larger than

that of any treatment in {1, . . . , k}\D∗(x). The optimal rule D∗(x) is estimated

from the observed training data from the joint distribution of (X, A,R). For a

future patient with observed covariate x, the optimal treatment is the treatment

with predicted based on the estimated D∗(x).

In the literature, a common approach to finding D∗ is to estimate E(R | A =

a;X = x) for each treatment, using parametric or semiparametric regression

models (Robins (2004); Moodie, Platt and Kramer (2009); Qian and Murphy

(2011)). For a new patient with covariates x, the treatment recommendation is

the treatment with the maximum Ê{R | A = a;X = x}.
When there are two treatments, we can express them as A ∈ {+1,−1}.

Qian and Murphy (2011) showed that, in this case, finding D∗ can be formulated

as a binary classification problem. In particular, one can verify that D∗ is the
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minimizer of ∫
R

πA(X)
I{A 6= D(X)}dP. (2.1)

Note that (2.1) can be viewed as a weighted 0–1 loss in a weighted binary classifi-

cation problem. To see this, note that with the training data set {(xi, ai, ri); i =

1, . . . , n}, we wish to minimize the following empirical loss that corresponds to

(2.1):

1

n

n∑
i=1

ri
πai

(xi)
I{aiD(xi) 6= 1}. (2.2)

However, because the indicator function is discontinuous, solving (2.2) can be

NP-hard. To overcome this difficulty, we can use a surrogate loss function `(·)
for binary margin-based classification. Zhao et al. (2012) proposed OWL, which

employs a hinge loss in the SVM for the optimization. In particular, they assumed

that ri ≥ 0 for all i, and used a single function f(x) for classification, as is

typical in binary margin-based classifiers. The treatment is assigned by D(x) =

sign{f(x)}. The corresponding optimization problem in Zhao et al. (2012) can

be written as

argmin
f

1

n

n∑
i=1

ri
πai

(xi)
{1− aif(xi)}+ + λJ(f), (2.3)

where (1 − u)+ = max(0, 1 − u) is the hinge loss function, J(f) is a penalty on

f to prevent overfitting, and λ is the tuning parameter.

Note that Zhao et al. (2012) considered only nonnegative rewards; thus the

corresponding problem remains a convex optimization. When there are negative

rewards, they recommend shifting all rewards by a constant. Chen et al. (2017a)

showed that the performance of OWL varies with the choice of the shifting con-

stant. To address this problem, they modified the loss to handle negative rewards

directly.

2.2. OML for binary treatments

As discussed in Section 1, there are many open problems, despite the seminal

progress in Zhao et al. (2012). In particular, many choices of margin-based

loss functions have not been fully studied in the literature. To investigate this

problem, we propose an OML method. In Section 2.2, we focus on the case where
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k = 2 and A ∈ {+1,−1}, and propose the following OML optimization problem:

argmin
f

1

n

n∑
i=1

ri
πai

(xi)
`{aif(xi)}+ λJ(f), (2.4)

where `(·) is a loss function in a margin-based classification. Here, `(·) denotes

a classification method. For example, SVMs use the hinge loss in (2.3), and

a logistic regression uses the deviance loss `(u) = log{1 + exp(−u)}. See the

Supplementary Material for plots of several commonly used loss functions. We

generalize our OML method to handle problems with multiple treatments in

Section 2.3.

To explore different soft and hard classifiers, we need to define the theoretical

minimizer of a classifier. First, we assume that ri ≥ 0. Consequently, (2.4) is

convex if `(·) and J(f) are convex, in which case, it can be solved using standard

optimization methods, such as those in Boyd and Vandenberghe (2004). We defer

the discussion of negative rewards until after Theorem 1. Define the conditional

expected loss with respect to (2.4) as S(x) = E[(R/πA(X))`{Af(X)} |X = x],

where the expectation is taken with respect to the marginal distribution of (R,A),

for a given x. We define the theoretical minimizer of S(x) as

f∗(x) = argmin
f

S(x) = argmin
f

E

[
R

πA(X)
`{Af(X)} |X = x

]
.

Note that f∗ depends on the loss function `.

Next, we discuss the consistency of a classifier. In the standard margin-

based classification literature, Fisher consistency (Lin (2002); Liu (2007)), also

known as classification calibration (Bartlett, Jordan and McAuliffe (2006)), is a

fundamental requirement of classifiers. For problems that require finding optimal

ITRs using classification, a method is said to be Fisher consistent if the predicted

treatment based on f∗ leads to the best expectation of the outcome rewards

(Zhao et al. (2012)). In other words, for binary problems, the method is Fisher

consistent if sign{f∗(x)} = argmaxaR(x, a), where R(x, a) =
∫

(R |X = x, A =

a)dP is the expected reward for a given treatment a at a fixed x. Zhao et al.

(2012) proved that the OWL method using the hinge loss is Fisher consistent for

nonnegative rewards. In the next proposition, we provide a more general result

that can be applied to various loss functions.

Proposition 1. To find optimal ITRs using binary margin-based classifiers, as-

sume that the rewards are nonnegative. Then, the method is Fisher consistent if
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`(·) is differentiable at 0, and `(u) < `(−u), for any u > 0.

Proposition 1 shows that in ITR problems, many binary margin-based clas-

sifiers are Fisher consistent. For instance, both soft and hard classifiers in the

LUM loss family (Liu, Zhang and Wu (2011)) are Fisher consistent. Note that

the LUM family uses a parameter c to control whether the classification is soft

(c = 0) or hard (c → ∞). See the appendix for additional information on LUM

loss functions.

In a standard margin-based classification, in addition to Fisher consistency,

f∗ can also be used to estimate the class conditional probabilities. This approach

is widely used in the literature. See, for example, Hastie, Tibshirani and Fried-

man (2009) and Liu, Zhang and Wu (2011), among others. For completeness,

we include a brief explanation on how to estimate probabilities using f∗ in the

appendix. For problems that employ binary classifiers to find optimal ITRs, the

next theorem shows that when we use certain loss functions, f∗ can be used to

find the ratio between R(x,+1) and R(x,−1).

Theorem 1. To find optimal ITRs using binary margin-based classifiers, assume

that the rewards are nonnegative. Furthermore, assume that the loss function `(·)
is differentiable with `′(u) < 0, for all u. Then, we have that

R(x,+1)

R(x,−1)
=
`′(−f∗)
`′(f∗)

. (2.5)

As a result, for any new observation x, once we obtain the fitted classifi-

cation function f̂(x), we can estimate the ratio of R(x,+1) to R(x,−1) using

`′{−f̂(x)}/`′{f̂(x)}, which provides more information than the ITR itself does.

Remark 1. Theorem 1 shows that estimating the ratio of expected rewards

in ITR problems is similar to the class conditional probability estimation in a

standard margin-based classification. In particular, let P+1(x) and P−1(x) be the

conditional class probabilities for classes +1 and−1, respectively, in a binary clas-

sification (see the appendix for further details). We can verify that, with similar

conditions on `, we can use `′(−f̂)/`′(f̂) to estimate P+1(x)/P−1(x). For exam-

ple, in a standard logistic regression, estimating P+1(x)/P−1(x) by `′(−f̂)/`′(f̂)

is equivalent to using the logit link function for probability estimation. Similar

discussions on class probability estimations for standard multicategory classifi-

cation problems are presented in Zou, Zhu and Hastie (2008), Zhang and Liu

(2014), and Neykov, Liu and Cai (2016).

Using Theorem 1, we can explore the difference between using soft and hard
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Figure 1. Plot of log{R(x,+1)/R(x,−1)} (r+1−1 on the y axis) against f∗ for some LUM
loss functions. Here, c = 0 corresponds to the soft LUM loss, and c→∞ corresponds to
the SVM hinge loss, which is a hard classifier. Note that a is another parameter in the
LUM family (see the appendix), and a = 1 and c = 1 correspond to the loss function in
a distance-weighted discriminant analysis (Marron, Todd and Ahn (2007)).

classifiers to find optimal ITRs. In particular, we plot log{R(x,+1)/R(x,−1)},
denoted by r+1−1, against f∗ for some loss functions in the LUM family in Fig-

ure 1. We can see that, with soft classifiers (c = 0), there is a one-to-one cor-

respondence between r+1−1 and f∗. In other words, we can estimate the ratio

between the expected rewards for any new patients using the estimated f̂ . This

ratio information can be important in practical problems, as discussed in Sec-

tion 1. As discussed in Section 3, if the underlying ratios are smooth functions,

soft classifiers tend to perform better than hard classifiers in terms of accurately

estimating the ratios.

For c > 0, the flat region of r+1−1 makes estimating this ratio more dif-

ficult. In particular, if f̂ ∈ [−c/(1 + c), c/(1 + c)], then the method cannot

provide an estimate of r+1−1. As c increases, the flat region enlarges. In the

limit (c → ∞), the hard classifier provides little information about r+1−1. In

other words, hard classifiers bypass the estimation of r+1−1 and focus on the

boundary (i.e., R(x,+1) = R(x,−1) in binary problems) estimation only. In the

Supplementary Material, we show that when the underlying ratios are close to

step functions, hard classifiers outperform soft classifiers, because an accurate

estimation of r+1−1 can be very difficult.
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Next, we discuss how to address negative rewards using our OML method.

Recall that when all ri ≥ 0, we can use a surrogate loss function ` that is a

convex upper bound of the 0−1 loss, as from (2.2) to (2.4). When ri < 0,

the corresponding 0−1 loss is equivalent to −|ri|I{aiD(xi) 6= 1}, which can be

regarded as a −1−0 loss (Chen et al. (2017a)). In this case, because the reward

is negative, it is desirable to consider the other treatment, rather than ai. Based

on these observations, we propose the following optimization of binary problems

for both positive and negative rewards:

argmin
f

1

n

n∑
i=1

|ri|
πai

(xi)
`ri{aif(xi)}+ λJ(f), (2.6)

where `ri(u) = `(u) if ri ≥ 0, and `ri(u) = `(−u) if ri < 0 (the inverted loss).

Note that `(−u)− 1 is the tight convex upper bound of the −1−0 loss as long as

` is convex, and minimizing `{−aif(xi)} − 1 and `{−aif(xi)} with respect to f

are equivalent. The treatment recommendation rule for negative rewards is still

D(x) = sign{f(x)}.
The next theorem shows that our binary OML method with negative rewards

also enjoys Fisher consistency, with mild conditions on the loss function.

Theorem 2. When finding optimal ITRs using binary OML classifiers (2.6), a

method is Fisher consistent if `(·) is differentiable at zero, and `(u) < `(−u) for

any u > 0.

From Theorem 2, by including the inverted loss functions for negative re-

wards, our OML method can still be asymptotically consistent. In contrast, the

estimation of the rewards ratio becomes more complicated if R can be negative.

The next theorem shows that our OML method is able to provide an upper or

lower bound for the corresponding rewards ratios, under some mild assumptions.

Theorem 3. To find optimal ITRs using binary margin-based classifiers, assume

that the expected rewards satisfy R(x, a) > 0, for all x and a. Furthermore,

assume that the loss function `(·) is differentiable, with `′(u) < 0 for all u. Then,

we have that {
R(x,+1)
R(x,−1) ≥

`′(−f∗)
`′(f∗) , if R(x,+1) > R(x,−1),

R(x,+1)
R(x,−1) ≤

`′(−f∗)
`′(f∗) , if R(x,+1) < R(x,−1).

(2.7)

Theorem 3 shows that `′(−f̂)/`′(f̂) can be used as a lower bound for the

rewards ratio when treatment +1 is better, and an upper bound if −1 is better.
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The condition that R(x, a) > 0 for all x and a can be satisfied, for example,

when patients with no treatments have zero expected rewards, and all treatments

under study have preliminary results to show that they are effective overall.

Note that when there are negative rewards, our OML method cannot provide an

accurate estimation of the rewards ratio, but can provide a bound (see the proof

of Theorem 3 in the Supplementary Material for further details), yet the method

is still Fisher consistent. Hence, we can see that in ITR problems, calculating

a rewards estimation can be more difficult than a treatment recommendation.

This is analogous to a standard classification, in which a probability estimation

can be more difficult than making a label prediction.

In the next section, we generalize our OML method to handle problems with

multiple treatments.

2.3. MOML

To find D∗ in a practical problem with k > 2 treatments, we can employ

sequential binary classifiers, such as the one-versus-one and one-versus-rest ap-

proaches. However, these can lead to inconsistent ITR estimators (see the Sup-

plementary Material for a proof of the inconsistency of the one-versus-rest SVM

approach). As discussed in Section 1, it can be desirable to have a multicate-

gory classifier that considers all k treatments simultaneously in one optimization

problem.

In the literature, many commonly used simultaneous multicategory margin-

based classifiers employ k classification functions for the k classes. Furthermore,

they impose a sum-to-zero constraint on the k functions to reduce the parameter

space and to ensure certain theoretical properties, such as Fisher consistency.

Recently, Zhang and Liu (2014) showed that this approach can be redundant

and suboptimal in terms of computational speed and classification accuracy.

To overcome these difficulties, Zhang and Liu (2014) proposed an angle-based

classification method. In this paper, we propose identifying optimal ITRs with

multiple treatments in an angle-based classification framework.

The standard angle-based classification can be summarized as follows. Let

{(xi, yi); i = 1, . . . , n} be the training data set, where y represents the class label.

Define a simplexW with k vertices {W1, . . . ,Wk} in a (k−1)-dimensional space,

such that

Wj =

{
(k − 1)−1/21k−1, j = 1,

− 1+k1/2

(k−1)3/21k−1 + { k
k−1}

1/2ej−1, 2 ≤ j ≤ k,
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Figure 2. Illustration of the angle-based classification with k = 2, 3, and 4. For example,
when k = 3 (as the plot in the middle shows), the mapped observation f̂ is predicted as
the class corresponding to W1, because θ1 < θ3 < θ2.

where 1k−1 is a vector of ones of length k − 1, and ej ∈ Rk−1 is a vector with

the jth element equal to one, and zero elsewhere. This simplex is symmetric

with all vertices an equal distance from each other. The angle-based classifier

uses a (k − 1)-dimensional classification function vector f = (f1, . . . , fk−1)
T ,

which maps x to f(x) ∈ Rk−1. Note that f introduces k angles with respect

to W1, . . . ,Wk, namely, ∠(f ,Wj); j = 1, . . . , k. The prediction rule is based

on which angle is the smallest. In particular, ŷ(x) = argminj∈{1,...,k}∠(f ,Wj),

where ŷ(x) is the predicted label for x. Figure 2 illustrates how to make pre-

dictions using this angle-based classification when k = 2, 3, and 4. When k = 3,

for example, the mapped observation f̂ is predicted as the class correspond-

ing to W1, because θ1 is the smallest angle. Based on the observation that

argminj∈{1,...,k}∠(f ,Wj) = argmaxj∈{1,...,k}〈f ,Wj〉, Zhang and Liu (2014) pro-

posed the following optimization problem for the angle-based classifier:

argmin
f

1

n

n∑
i=1

`{〈Wyi
,f(xi)〉}+ λJ(f), (2.8)

where `(·) is a binary margin-based surrogate loss function, which is typically

nonnegative and satisfies `(u) < `(−u) for any u > 0, J(f) is a penalty on f to

prevent overfitting, and λ is a tuning parameter to balance the goodness of fit

and the model complexity. One advantage of the angle-based classifier is that

it is free of the sum-to-zero constraint and, thus, leaning more efficient for large

data sets.

To generalize our OML method from the binary setting to handle multicat-
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egory problems, we propose the following optimization:

argmin
f

1

n

n∑
i=1

|ri|
πai

(xi)
`ri{〈Wai

,f(xi)〉}+ λJ(f), (2.9)

where `ri is defined as in (2.6). For the penalty term J(f), we discuss two

options: l2 and l1 penalties. When applying the l1 penalty, we can remove

covariates that have zero coefficient estimates in all k − 1 components of the

fitted f . We show in Section 4 that such a sparse penalty can exhibit selection

consistency under linear learning. For a new patient with the covariate vector

x, once the fitted classification function vector f̂ is obtained, the corresponding

treatment recommendation is argmaxa∈{1,...,k}〈Wa, f̂(x)〉. We can verify that

when k = 2, (2.9) reduces to (2.6). Hence, for the statistical learning theory (see

the Supplementary Material), we focus on multicategory classification, and the

results can be applied to binary cases directly.

Next, we study the Fisher consistency of MOML for multicategory treat-

ments. In the literature on standard margin-based classification, Fisher consis-

tency is more complicated in multicategory problems than it is in binary settings.

For example, it is known that the binary SVM is Fisher consistent (Lin (2002)).

However, its direct generalization to the multicategory classifier is inconsistent,

both in the framework with k functions and a sum-to-zero constraint (Liu (2007)),

and in the framework of angle-based classification (Zhang and Liu (2014)). To

overcome these challenges, many new multicategory SVMs have been proposed.

See, for example, Lee, Lin and Wahba (2004) and Liu and Yuan (2011), among

others. To find optimal ITRs, we have the following result for the Fisher consis-

tency of our MOML method in multicategory treatment problems.

Before presenting our main result, we introduce an important assumption.

First, recall that the expected reward for a given treatment j at x is R(x, a) =∫
(R | X = x, A = a)dP . Define the positive part of a conditional reward as

R+
j (x) =

∫
(R | X = x, A = j)I(R > 0)dP , and the negative part as R−j (x) =∫

(R |X = x, A = j)I(R < 0)dP . We can verify that R(x, j) = R+
j (x) +R−j (x).

Here, R−j (x) can be used to measure the possibility and severity of adverse effects

for treatment j on patients with the covariate vector x. The next assumption

requires that R−(x) of the best treatment for a given patient should not be small.

Assumption 1. For a patient with the covariate vector x, denote the best treat-

ment by j (i.e., R(x, j) > R(x, i), for any i 6= j). Then, R−j (x) ≥ R−i (x), for

any i 6= j.
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Assumption 1 is desirable, and often necessary for practical problems. In

particular, for any patient, we should expect that the best treatment does not

have a large probability of adverse effects, and that its adverse effects are rela-

tively mild. Assumption 1 can be satisfied, for example, when the rewards are all

positive, or when the marginal distributions of the rewards for different patients

and treatments are the same, except for a constant shift (e.g., normal distribu-

tions with a common variance). With Assumption 1, we are ready to present the

theorem for the Fisher consistency of our MOML method.

Theorem 4. To find optimal ITRs using MOML classifiers (2.9), suppose As-

sumption 1 is valid. Then the method is Fisher consistent if `(·) is convex and

strictly decreasing. Moreover, MOML with a hinge loss is not Fisher consistent.

Note that Theorem 4 provides a sufficient condition for the MOML classifier

to be Fisher consistent. In the literature, some classifiers have loss functions

that do not satisfy the condition in Theorem 4, yet we can still verify that the

corresponding MOML method is Fisher consistent. For example, we can use a

similar approach to that in the proof of Theorem 4 to show that our MOML

method using the proximal SVM loss is Fisher consistent. On the other hand,

our MOML SVM (i.e., using the standard hinge loss) is not Fisher consistent. To

overcome this challenge, we propose using the LUM loss function with a large, but

finite c. This loss function is very close to the SVM hinge loss, which corresponds

to c→∞, and can preserve Fisher consistency. Note that a similar approach was

previously used in Zhang and Liu (2014) to obtain a Fisher consistent angle-based

classifier.

To estimate the ratio of the expected rewards for different treatments, we

have the following theorem.

Theorem 5. Suppose the loss function `(u) is convex and differentiable, with

`′(u) < 0 for all u. If the random reward satisfies R ≥ 0, then for any i 6= j ∈
{1, . . . , k}, we have

R(x, i)

R(x, j)
=
`′(〈f∗,Wj〉)
`′(〈f∗,Wi〉)

.

From Theorem 5, once f̂(x) is obtained for a new patient with x, we can

estimate the rewards ratio between the ith and jth treatments as `′{〈f̂(x),Wj〉}
/`′{〈f̂(x),Wi〉}. Additional discussions on soft and hard classifiers are provided

in the Supplementary Material.
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We also develop additional theoretical results for MOML such as the con-

vergence rate of excess risks. In addition, we show that MOML enjoys variable

selection consistency under linear ITRs with J(f) as the l1 penalty. Additional

information is included in the additional statistical learning theory section of the

Supplementary Material.

3. Numerical Studies

In this section, we use six simulation studies with both linear and nonlinear

ITR boundaries to assess the finite-sample performance of the proposed MOML

method. For all examples, we fit MOML using the l2 penalty, and compare it to

the standard OWL (Zhao et al. (2012)) with extensions of one-versus-rest (OWL-

1) and one-versus-one (OWL-2). Furthermore, to evaluate the performance of the

variable selection, as discussed in Section 3.2, we implement MOML using the l1
penalty (MOML-l1) for all linear ITR boundary examples. When fitting OWL,

we replace the hinge loss with the modified loss in (7) to improve its performance

for a fair comparison. For the one-versus-rest extension, we conduct sequential

one-versus-rest binary optimal treatment estimations (i.e., 1 vs. others, 2 vs.

others, . . . , k vs. others), and then pick the treatment recommended by the

classifier f̂j with the largest magnitude among j = 1, . . . , k. For the one-versus-

one extension, we first estimate the decision function f̂l, for l = 1, . . . , k(k−1)/2,

based on each pair of treatments (i.e., 1 vs. 2, 1 vs. 3 , . . . , k − 1 vs. k), and

then pick the treatment suggested by f̂l with the largest magnitude. Note that

the one-versus-one extension uses only a subset of the data to fit each f̂l. For

a meaningful comparison, we restrict f to be linear functions of x for all of the

models in the linear ITR boundary examples, and apply Gaussian kernel learning

to fit f in nonlinear ITR boundary examples.

When we generate the data sets, we first simulate a training set, which is

used to fit the model. We also generate an independent and equal-size tuning

set to find the best combination of tuning parameters, as well as a much larger

testing set to evaluate the model performance (10 times as big as the training

set). For the tuning parameter range, we choose a from {0.1, 1, 10}, let c vary

in {0, 1, 10, 100, 1, 000}, and let λ vary in {0.001, 0.01, 0.1, 1, 10}. We report the

averages and standard deviations of the misclassification rates and the empirical

value functions of the testing sets as the criteria for model assessment. The

empirical value function is defined as P∗n[I(A = D(X))R/πA(X)]/P∗n[I(A =

D(X))/πA(X)], where P∗n denotes the empirical average of the testing data set
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(Zhao et al. (2012)). The value function is treated as a more comprehensive

measure of how close the estimated ITR is to the true optimal ITR. We repeat

the simulations 50 times in each example.

In the first four examples, we generate the data sets in which the optimal

treatment boundaries are linear functions of the covariates. We add additional

covariates as random noise in Examples 3 and 4. In the last two examples, we

discuss nonlinear ITR scenarios, and perform Gaussian kernel learning classifiers.

We let the dimensions of the covariates x vary in p ∈ {10, 50} for all examples.

The kernel bandwidth τ is fixed as 1/(2σ̂2), where σ̂ is the median of the pairwise

Euclidean distance of the simulated covariates (Wu and Liu (2007)). The details

of each setting are presented below.

Example 1. We consider three points (c1, c2, c3) that are equal distances from

the p-dimensional space to represent the cluster centroids of the true optimal

treatments. For each cj , where j = 1, 2, 3, we generate its covariate Xi from

a multivariate normal distribution N(cj , Ip), where Ip is a p-dimensional iden-

tity matrix. The actually assigned Ai follows a discrete uniform distribution

U{1, 2, 3}. The reward Ri follows a Gaussian distribution N(µ(Xi, Ai, di), 1),

where µ(Xi, Ai, di) = XT
i β + 5 · I(Ai = di), β

T = (1Tp/2,−1
T
p/2), and di is the

optimal treatment for Xi, as determined by the cluster centroids. The training

data set is of size 300.

Example 2. We define a five-treatment scenario in which the five centroids

(c1, . . . , c5) form a simplex in R4. The marginal distribution Xi|cj follows a

normal distribution with mean cj and covariate matrix 0.1Ip. The treatment Ai

follows a discrete uniform U{1, . . . , 5}. The reward Ri ∼ N(µ(Xi, Ai, di), 0.1),

where µ(Xi, Ai, di) = XT
i β+3 ·I(Ai = di)+1 and βT = 0.1× (1Tp/2,−1

T
p/2). The

training data set is of size 500.

Example 3. This example includes 10 treatments, and the optimal ITR bound-

ary depends on the first two covariates, that is, (X1, X2). The 10 corresponding

centroids (c1, . . . , c10) are spread out evenly on the unit circle X2
1 + X2

2 = 1,

and the marginal distribution of (X1, X2)
T is a normal distribution with mean

cj and covariate matrix 0.03I2. Similarly to Example 2, Ai ∼ U{1, . . . , 10} and

Ri ∼ N(µ(Xi, Ai, di), 1), where µ(Xi, Ai, di) = XT
i β + 5 · I(Ai = di) − 2 and

βT = (1T5 ,−1T5 ,0Tp−10). The training data set is of size 600.

Example 4. All settings are the same as Example 2, except that βT = 0.1 ×
(1, 1,−1,−1,0Tp−4).
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Example 5. This is a three-class example, with each centroid cj , for j = 1, 2, 3,

distributed on two mess points with equal probabilities. The marginal distri-

bution of (X1, X2)
T is a mixture of two normal distributions 0.5N [(cos(jπ/3),

sin(jπ/3))T , 0.08I2]+0.5N [(cos(π+jπ/3), sin(π+jπ/3))T , 0.08I2]. The treatment

Ai ∼ U{1, 2, 3} and the reward Ri ∼ N(µ(Xi, Ai, di), 1), where µ(Xi, Ai, di) =

XT
i β+ 5 · I(Ai = di)− 1 and βT = (1Tp/2,−1

T
p/2). The training data set is of size

300.

Example 6. In this example, the optimal treatment di for each Xi is determined

with probability 95% by the signs of two underlying nonlinear functions, f1(X) =

X2
1 +X2

2 + exp{0.5X3} and f2(X) = X2
4 −X3

5 −X6. A random noise is added to

di with probability 5% to create a positive Bayes error. In particular, we have di
defined as

di = d(Xi)

=

{
1 + [sign(f1(Xi)−m1)]+ + 2× [sign(f2(Xi)−m2)]+

Ui

with prob. 0.95,

with prob. 0.05,

where m1 and m2 are the medians of f1 and f2, respectively, and Ui follows

a discrete U{1, 2, 3, 4}, which is independent of (Ai, Xi). The covariate Xi fol-

lows a continuous uniform distribution U(0, 1), Ai ∼ U{1, . . . , 4}, and Ri ∼
N(µ(Xi, Ai, di), 1), where µ(Xi, Ai, di) = XT

i β + 5 · I(Ai = di) − 1 and βT =

(1Tp/2,−1
T
p/2). The training data set is of size 500.

Figures 3 and 4 plot the sample means of the misclassification rates and

the empirical value functions produced by the models. The numerical results,

with standard deviations, are reported in tables in the Supplementary Material.

From the results, MOML with the l2 penalty, MOML with the l1 penalty, and

OWL-1 (with one-versus-rest extension) perform equivalently when the underly-

ing ITR is not very complicated and the treatment effect is sufficiently strong,

as Example 1 shows when p = 10. Example 2 represents situations when the

linear ITR becomes more complicated and the treatment effect is intermediate.

Here, MOML produces significantly larger empirical value function results than

the two simple OWL extensions do. Example 4 has a similar setting to Example

2, with noise variables added to the covariate set. Under this scenario, MOML

with the l1 penalty outperforms MOML with the l2 penalty, because it is able

to remove many unnecessary noise variables. This improvement in prediction

accuracy becomes clearer when there are higher covariate dimensions, that is,



1874 ZHANG ET AL.

●

●

● ●
●

●

●
●

●

●

●

●

Figure 3. Plots of misclassification rates of simulation studies. OWL-1 and OWL-2 rep-
resent extensions of OWL (one-versus-rest and one-versus-one), MOML and MOML-l1
represent outcome weighted margin-based learning with l2 and l1 penalties, respectively,
and Bayes represents the empirical Bayes error.
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Figure 4. Plots of value functions of simulation studies. OWL-1 and OWL-2 represent
extensions of OWL (one-versus-rest and one-versus-one), MOML and MOML-l1 repre-
sent outcome weighted margin-based learning with l2 and l1 penalties, respectively, and
Bayes represents the empirical Bayes error.

p = 50. For the selection result, when p = 10, MOML-l1 removes 64.6% of the

noise, on average, while keeping all useful variables; when p = 50, about 57.6%

of the noise is removed, and all useful variables are kept. Example 3 represents

a difficult ITR detection scenario, with a large number of treatments (k = 10).

In this case, the two MOML methods have much smaller misclassification rates
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than those of the two OWL extensions, implying that MOML can produce stable

estimation results. The variable selection results show that MOML-l1 succeeded

in removing 68.8% and 60.2% of the noise under p = 10 and p = 50, respectively.

All true variables are kept under both cases. Examples 5 and 6 are nonlinear

ITRs. In Example 5, MOML maintains a low misclassification rate when the co-

variate dimension is not large (i.e., p = 10). As more variables are added to the

covariate space, all of the methods produce significantly worse prediction perfor-

mance, although MOML still outperforms the two OWL extensions. As such, we

recommend reducing the covariate dimension before applying nonlinear MOML

in practice. In Example 6, we intentionally include outliers in the samples to

assess the models’ robustness. All of the methods are affected, although MOML

still produces better prediction results than those of the other methods.

Finally, we explore the advantages of soft and hard classifiers using Examples

1 and 6. We try different values of c, and show that a properly tuned classifier

performs very well. The details are provided in the Supplementary Material.

4. Application to a Type-2 Diabetes Mellitus Study

In this section, we apply the proposed method to a type-2 diabetes mellitus

(T2DM) observational study to assess its performance in real-life data applica-

tions. The study includes people with T2DM during the period 2012−2013, with

data provided by the Clinical Practice Research Datalink (CPRD) (Herrett et al.

(2015)). Four anti-diabetic therapies are considered in this study: glucagon-like

peptide-1 (GLP-1) receptor agonist, long-acting insulin only, intermediate-acting

insulin only, and a regime including short-acting insulin. The primary target vari-

able is the change in HbA1c before and after the treatment. Seven clinical factors

are used: age, gender, ethnicity, body mass index, high-density lipoprotein choles-

terol (HDL), low-density lipoprotein cholesterol (LDL), and smoking status. In

total, 634 patients satisfy the aforementioned requirements, and around 5% have

complete observations. Considering the large missing proportion, we perform the

following steps. First, all factors that have a missing rate larger than 70% are

removed. Second, a standard t test is implemented for each remaining factor

to check whether its missing indicator affects the response. If the test result is

statistically significant, we keep the variable, while removing all of its missing

observations. Otherwise, we delete the variable. We have 230 observations left

after this cleaning process.

We apply the same methods with linear and Gaussian kernels to the cleaned
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Table 1. Analysis Results for the T2DM Data Set. Estimated averages and standard de-
viations (in parentheses) of the value function are reported using five-fold cross-validation
with 50 replications. OWL-1 and OWL-2 represent two extensions of OWL (one-versus-
rest and one-versus-one, respectively), and MOML and MOML-l1 represent outcome
weighted margin-based learning with l2 and l1 penalties, respectively. The observed
average reward for the cleaned data set is 2.246.

Training Validation
OWL-1-Linear 2.712 (0.329) 2.371 (0.483)
OWL-2-Linear 2.487 (0.233) 2.221 (0.561)

OWL-1-Gaussian 4.118 (0.401) 3.285 (0.490)
OWL-2-Gaussian 4.003 (0.374) 3.221 (0.468)

MOML-Linear 2.610 (0.130) 2.440 (0.320)
MOML-l1-Linear 2.813 (0.138) 2.533 (0.182)
MOML-Gaussian 4.105 (0.221) 3.612 (0.328)

T2DM data set as those in the simulation analysis. We use the negative HbA1c

change as the reward, because the treatment goal is to decrease HbA1c. The

prosperity score πA(X) is calculated based on a fitted multinomial logistic re-

gression between the assigned treatment and all covariates. We use five-fold

cross-validation to choose the best tuning parameter over 50 replications. Specif-

ically, we randomly divide the clean data into five equal-sized subsets, train the

model based on every fourth set (training sets), and make a prediction using the

remaining set (validation sets). The means and standard deviations of the em-

pirical value functions for the training and validation sets are presented in Table

1.

Table 1 shows that the proposed MOML with the Gaussian kernel gives the

best predicted value function, with a smaller standard deviation than that of

OWL with the Gaussian kernel. MOML-l1 suggests keeping all of the variables

over the 50 replicates, which indicates that the covariates remaining in the clean

data may all be important when a linear function is chosen to fit the ITR. In

terms of the estimated optimal treatment assignment results, the one-versus-rest

extension of OWL with a Gaussian kernel (OWL-1-Gaussian) assigns around

32% of the patients to the short-acting insulin group, and the rest to the other

three treatment groups in a relatively even way. MOML with the Gaussian

kernel recommends that approximately 40% of the patients take the short-acting

insulin, around 25% and 23% patients take intermediate and long-acting insulin,

respectively, and less than 12% take the GLP-1. This conclusion is consistent

with the findings of some studies on short-acting insulins, which shows the benefit

of reducing HbA1c (Holman et al. (2007)). On the other hand, prandial insulins
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can also increase the risk of hypo and weight gain. As a result, it may be worth

treating some composite metric as the outcome that combines HbA1c change,

hypo events, and weight gain information, to find the corresponding optimal

treatment rules.

5. Conclusion

In this paper, we propose a margin-based loss function to solve the optimal

individual treatment estimation problem for binary treatments, and then extend

it to include multicategory treatment scenarios. For binary treatments, we de-

velop a loss based on the LUM family, such that the proposed method includes

a wide range of ITRs, varying from soft to hard classifiers. The standard OWL

is a special case of the proposed margin-based learning methods because the

LUM family loss becomes the hinge loss when c → ∞ and a = 1. For multi-

ple treatments, we formulate the loss as a weighted sum of the angles between

the estimated decision function f and the actual treatment A. We show that

MOML enjoys desirable theoretical properties, and has a higher prediction accu-

racy than that of the other methods under both linear and nonlinear treatment

assignment boundaries. Our method produces straightforward ITR results with

a clear geometric interpretation. Moreover, the optimization problem of MOML

is unconstrained and, hence, can be more efficient to compute compared with

other multicategory methods with the sum-to-zero constraint. We also showed

that the proposed MOML exhibits selection consistency using the l1 penalty for

the case with linear decision boundaries. This idea can be extended to nonlinear

boundaries as well. One possibility is to use the idea of weighed kernels, and

to impose a weight vector w in front of the covariate x in the standard kernel

definition (Chen et al. (2017b)).

Supplementary Material

Additional theoretical results, numerical examples, and all technical proofs

are provided in the online Supplementary Material.
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