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STATISTICAL ANALYSIS OF QUANTUM ANNEALING
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Abstract: Quantum computation is based on quantum physics to build quantum

devices for performing calculations and processing information. Although large-

scale general-purpose quantum computers are still many years away, special-purpose

quantum computers, such as quantum annealers, are being built with capabilities

that exceed those of classical computers. The quantum annealers are created to

realize quantum annealing. This study explores quantum annealing and investigates

its statistical properties. As such, we establish a lower bound on the probability

of quantum annealing solving optimization problems. Furthermore, we examine

physical devices and Monte Carlo simulations to implement quantum annealing

and expand our understanding of the quantum annealing process.

Key words and phrases: Annealing, combinatorial optimization, Hamiltonian, Ising

model, Markov chain Monte Carlo, quantum computation.

1. Introduction

As an optimization method, classical annealing is based on an analogy be-

tween the energy behavior of a complex physical system and the objective function

of an optimization problem. Treating the objective function as the energy of the

physical system, we convert the problem of minimizing the objective function

into one of searching for minimum energy configurations (called ground states)

of the physical system.

Simulated annealing (SA) is a well-known computer-based Monte Carlo sim-

ulation that mimics a system’s behavior in order to find its minimum energy

configurations. The SA scheme is as follows. After identifying the objection

function of the minimization problem with the energy of the physical system,

we assign the physical system a temperature as an artificially introduced control

parameter. We select an initial temperature that is high relative to the system

energy scale in order to induce thermal fluctuations and sample the energy con-

figurations. Markov chain Monte Carlo (MCMC) simulations are used to perform

energy sampling and probabilistically explore the extremely large search space.
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As we decrease the temperature gradually from the initial value to zero, the sys-

tem is driven to a state with the lowest energy value—namely, the minimum of

the objective function—and, thus, we obtain a solution to the optimization prob-

lem; see Bertsimas and Tsitsiklis (1993), Kirkpatrick, Gelatt and Vecchi (1983),

and Winker (2000) for more details.

Quantum annealing is the quantum analog of classical annealing. It is based

on the process of a quantum physical system, the lowest energy of which pro-

vides a solution to the minimization problem under study. The quantum states

corresponding to the lowest energy are called the ground states of the system.

Quantum annealing starts with a simple quantum system initialized in its ground

state, which is then drive slowly toward the target complex system. According to

the adiabatic quantum theorem (Farhi et al. (2000), Farhi et al. (2001), and Farhi

et al. (2002)), when a quantum system is initialized in its ground state and then

gradually evolves, it has a tendency to stay at a ground state. Hence, at the end

of the quantum annealing process, measuring the state of the quantum system

renders an answer to the original optimization problem with a certain probability.

More details can be found in Boixo et al. (2013), Brooke et al. (1999), Santoro

et al. (2002), and Wang, Wu and Zou. (2016).

Both classical annealing and quantum annealing are powerful techniques for

solving difficult optimization problems, whether they are used in computer-based

simulations or physical machines. The simulation approach applies “escape” rules

in Monte Carlo simulations to prevent the system from becoming trapped in local

minima of an energy (or objective) function, and eventually drives the system

toward its lowest energy state with a certain probability. The physical scheme

uses a physical system or builds a device to engineer a physical system, the ground

states of which represent the sought-after solution of an optimization problem.

The systems in both situations enable a probabilistic exploration of their

extremely large configuration spaces, and ultimately “freeze” in the global minima

with a certain probability. With enough repeated tries, each approach can find

the global minimum and solve the optimization problem. The key difference

between classical annealing and quantum annealing is the thermal hopping used

in classical annealing and the quantum tunneling used in quantum annealing to

escape from local minima and reach the global minimum. Quantum annealing

has long been studied in quantum computation for building specialized quantum

computers, such as D-Wave annealers (Britton et al. (2012), Feynman (1982), Hu

and Wang (2021), Martoňák et al. (2002), McGeoch (2014), Nielsen and Chuang

(2010), Wang (2012), Wang, Wu and Zou. (2016), Wang and Song (2020), Wang

(2022), and Wang and Liu (2022)). Here, we investigate quantum annealing
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from a statistical viewpoint. We provide a lower bound on the probability of the

quantum annealing system staying at a ground state at the end of the quantum

annealing process, where the probability often refers to the success probability

of quantum annealing. We also discuss quantum annealing implementations and

illustrate quantum tunneling through the lens of data augmentation.

The rest of the paper proceeds as follows. Section 2 briefly reviews the classi-

cal Ising model and SA. Section 3 explores quantum annealing. Here, we establish

its statistical properties and discuss its implementations using D-Wave devices

and MCMC-based methods in the context of the Ising model. Section 4 concludes

the paper. Here, we also discuss topics for future research on quantum annealing.

In particular, we point out that classical computer-based MCMC simulations of

quantum annealing can be used to provide intuitive explanations of quantum

tunneling in quantum annealing through a data augmentation connection. All

proofs are relegated to the Supplementary Material.

2. The Ising Model and Simulated Annealing

We describe the Ising model using a graph G, with site and edge sets denoted

by V and E , respectively. Each site is associated with a random variable taking

values in {+1,−1}, and each edge specifies the interaction (or coupling) between

the random variables on the two sites connected by the edge. Denote by d the

total number of sites in G. For example, we may consider G as a lattice with

d sites. Denote a configuration or state by s = (s1, s2, . . . , sd), that is, a d-

dimensional vector with site variables si = ±1. The classical Ising model has the

following Hamiltonian (or energy):

Hc
I(s) = −

∑
〈i,j〉∈E

Jijsisj −
∑
i∈V

hisi, (2.1)

where Jij denotes the strength of the interaction between sites i and j associated

with edge 〈i, j〉 in graph G, and hi gives the strength of the external local fields

imposed on site i. We refer to a set of fixed values {Jij , hi} as one instance of the

Ising model. The Boltzmann (or Gibbs) distribution specifies the probability of

a given configuration s, as follows:

Pβ(s) =
e−βH

c
I(s)

Zβ
and Zβ =

∑
s

e−βH
c
I(s), (2.2)

where β = 1/(kBT ), T denotes the absolute temperature of the system, and kB
is a generic physical constant called the Boltzmann constant. The normalization
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constant Zβ refers to the partition function of the Boltzmann distribution.

We can represent a combinatorial optimization problem using the Ising model,

with its objective function corresponding to the Hamiltonian Hc
I(s). Minimizing

the objective function is equivalent to finding a configuration s∗ with the mini-

mum energy; that is, s∗ minimizes the Hamiltonian Hc
I(s) over all s. We refer to

the configuration s∗ as the ground state of the Ising model.

Combinatorial optimization is computationally very hard, because there are

2d configurations in the search space, which has an exponential increase in the

system size d. SA is often applied to solve such optimization problems. It involves

a temperature T = T (t) as a decreasing function of the time t. A relatively high

initial temperature T (0) is set to induce thermal fluctuations and facilitate an

exploration of the large search space. As the temperature gradually decreases,

MCMC simulations are used to sample the configurations. Eventually, we drive

the system to a ground state, which renders a solution to the minimization prob-

lem.

3. Quantum Annealing

3.1. Theoretical analysis

We describe a quantum system by its quantum state and the dynamic evo-

lution of the state, where the quantum state is characterized by a unit vector

in a complex vector space, and the dynamic evolution of the state is governed

by a Hermitian matrix called the quantum Hamiltonian. To specify a quantum

Hamiltonian for the quantum system that drives quantum annealing, we need to

introduce some notation. Define

Ij =

(
1 0

0 1

)
, σxj =

(
0 1

1 0

)
, and σzj =

(
1 0

0 −1

)
, j = 1, . . . , d, (3.1)

where σxj and σzj are Pauli matrices in the x and z axes, respectively. The matrices

and site index j serve as the quantum counterparts of the values {+1,−1} for the

binary random variables associated with the sites in the classical Ising model.

Quantum annealing has the following quantum Hamiltonian:

HQA(t) = A(t)Hq
I +B(t)HX , (3.2)

Hq
I = −

∑
〈i,j〉∈E

Jijσ
z
i σ

z
j −

∑
i∈V

hiσ
z
i , HX = −

∑
i∈V

σxi , (3.3)

where A(t) and B(t) are time-dependent smooth functions controlling the an-
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nealing schedules, G is the graph specified in the definition of the classical Ising

model with site set V and edge set E , Jij represents the interaction between sites

i and j associated with the edge 〈i, j〉 ∈ E , and hi is the strength of the external

local fields imposed on site i ∈ V. Here, we use the convention in the quantum

literature that σzi σ
z
j denotes the tensor product of σzi and σzj , along with identity

matrices, in such a way that

σzi σ
z
j ≡ I1 ⊗ · · · ⊗ Ii−1 ⊗ σzi ⊗ Ii+1 ⊗ · · · ⊗ Ij−1 ⊗ σzj ⊗ Ij+1 ⊗ · · · ⊗ Id;

similarly, σxi and σzi denote the following tensor products of d matrices of size

two:

σxi ≡ I1 ⊗ · · · ⊗ Ii−1 ⊗ σxi ⊗ Ii+1 ⊗ · · · ⊗ Id,

σzi ≡ I1 ⊗ · · · ⊗ Ii−1 ⊗ σzi ⊗ Ii+1 ⊗ · · · ⊗ Id.

The Pauli matrices σxi and σzi in the tensor products are defined in (3.1).

Suppose that quantum annealing starts at t = 0 and ends at t = tf , where

tf refers to the annealing duration. The quantum annealing schedules A(t) and

B(t) typically satisfy that A(tf ) = B(0) = 0, A(t) is decreasing, and B(t) is

increasing. By controlling the annealing schedules A(t) and B(t), we allow quan-

tum annealing to gradually move the Hamiltonian from HQA(0) = A(0)HX to

HQA(tf ) = B(tf )Hq
I . Because A(0) and B(tf ) are known scalars, HQA(t) shares

the same eigenvectors as HX at the initial time t = 0, and the same as Hq
I at

the final time tf . In addition, their corresponding eigenvalues differ by factors of

A(0) and B(tf ), respectively. Note that the lowest energy of a quantum system

is equal to the smallest eigenvalue of its Hamiltonian, with its ground state(s)

being the eigenvector(s) corresponding to the smallest eigenvalue. The Hamil-

tonian HX = −
∑

i=1 σ
x
i is a simple Hermitian matrix with explicit expressions

for its smallest eigenvalue and the corresponding eigenvector, and the quantum

system governed by the Hamiltonian HX can be easily prepared in its ground

state.

The quantum annealing procedure is as follows. We begin with an initial

quantum system prepared in its ground state. The selected annealing schedules

A(t) and B(t) allow us to engineer the quantum system to gradually move from

HQA(0) = A(0)HX toward HQA = B(tf )Hq
I . Therefore, the quantum annealing

evolution driven by HQA(t) essentially evolves the quantum system from the

initial system HX initialized at its ground state to the final system Hq
I . The

quantum adiabatic theorem indicates that if the quantum system initially starts

in its ground state, it tends to remain in the ground states of the instantaneous
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Hamiltonian during the Hamiltonian evolution. Thus, at the end of the quantum

annealing evolution, we measure the system to find the lowest energy of Hq
I if the

quantum system is in its ground state.

For the quantum Hamiltonian Hq
I defined in (3.3), its lowest energy is equal

to its smallest eigenvalue. Here Hq
I involves only commuting diagonal matrices

σzi , and its eigenvalues are equal to its diagonal entries. These, in turn, are exactly

all the 2d values of the classical Hamiltonian Hc
I(s) in (2.1) corresponding to the

2d configurations ordered lexicographically. The following theorem describes the

relationship between the classical Hamiltonian Hc
I(s) and the quantum Hamilto-

nian Hq
I .

Theorem 1. The eigenvalues of the quantum Hamiltonian Hq
I in (3.3) are given

by the 2d values of the classical Hamiltonian Hc
I(s) in (2.1) evaluated at the

2d configurations s ∈ {+1,−1}d. In particular, the minimum of Hc
I(s) over

s ∈ {+1,−1}d is equal to the smallest eigenvalue of Hq
I .

Theorem 1 shows that finding the minimal energy of the classical Ising model

described by Hc
I is mathematically identical to finding the minimal energy of the

quantum Hamiltonian Hq
I . Thus, at the end of the quantum annealing process,

measuring the quantum system renders a solution to the combinatorial minimiza-

tion problem with the objective function Hc
I(s). As in SA, each quantum anneal-

ing run produces a solution to the optimization problem with some probability,

and running quantum annealing many times enables us to solve the optimization

problem.

According to the quantum adiabatic theorem (Aharonov et al. (2007), Born

and Fock (1928), McGeoch (2014), Morita and Nishimori (2008), and Wang, Wu

and Zou. (2016)), for appropriately chosen A(t) and B(t), we have that, with some

probability, the quantum annealing driven by (3.2) can find the global minimum

of Hc
I(s) in (2.1) and solve the minimization problem at the final annealing time

tf . The following theorem provides a probability bound on successfully solving

the optimization problem at the final annealing time tf using quantum annealing.

Theorem 2. Suppose that the quantum system associated with quantum anneal-

ing is driven by HQA(t), as defined in (3.2). Then, the probability that the lowest

energy of Hc
I in (2.1) is obtained by measuring the system at the end of quantum

annealing is bounded from below by

max

{[(
1−

∫ 1

0

∥∥∥∥ ddu (|v1(u)〉, . . . , |vr(u)〉)
∥∥∥∥ du)

+

]2
, {vj}1≤j≤r, 1 ≤ r ≤ ζ

}
,

(3.4)
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where ζ denotes the number of ground states for the quantum Hamiltonian Hq
I

in (3.3), (x)+ denotes the positive part of x, that is, (x)+ is equal to x if x ≥ 0,

and zero otherwise, and (|v1(u)〉, . . . , |vr(u)〉) is a matrix formed by the r column

vectors |v1(u)〉, . . . , |vr(u)〉, defined as follows. Denote by ξ1(u) ≤ ξ2(u) ≤ · · · ≤
ξ2d(u) the 2d instantaneous eigenvalues of HQA(utf ), listed in increasing order,

along with the corresponding 2d normalized eigenvectors v1(u), v2(u), . . . , v2d(u).

Here, for any eigenvalue with multiplicity greater than one, the eigenvalue is

repeated in the list, with the number of repetitions equal to its multiplicity, and

the multiple eigenvectors corresponding to the same eigenvalue are ordered as a

group; that is, their positions in the list are interchangeable, and the maximum

in (3.4) is taken over 1 ≤ r ≤ ζ and possible group orderings of vj(u).

Furthermore, assume that λ1(u)−λ0(u) is bounded below from zero uniformly

over u ∈ [0, 1], where λ0(u) and λ1(u) denote the smallest and second smallest

instantaneous eigenvalues of HQA(utf ), respectively. Then, the probability that

the quantum annealing procedure can find the lowest energy of Hc
I in (2.1) is

bounded from below by

1− 2d ζ max
u∈[0,1]

{
1

λ1(u)− λ0(u)

∥∥∥∥dHQA(u tf )

du

∥∥∥∥}2

, (3.5)

where ‖ · ‖ denotes the matrix spectral norm.

The ground-state success probability for quantum annealing is usually de-

rived under the unique ground-state condition, in the asymptotic sense that we

obtain some expressions or bounds for the leading terms of the ground-state suc-

cess probability by taking tf to infinity (Aharonov et al. (2007), Born and Fock

(1928), McGeoch (2014), and Morita and Nishimori (2008)). The probability

lower bounds in (3.4) and (3.5) are for finite tf , without the unique ground-state

restriction. The results established in Theorems 1 and 2, together with existing

asymptotic results, provide the theoretical foundation that makes it possible for

the quantum annealing process, driven by (3.2), to find the global minimum of

Hc
I(s) and solve the minimization problem with a certain probability.

3.2. Implementation using D-Wave machines

D-Wave machines are commercially available computing hardware devices

that have been built using superconducting technology to implement quantum

annealing. They are analog computers made specifically to handle combinato-

rial optimization linked to the classical Ising model. Their quantum processor

chips are based on associated graphs that specify quantum annealing with pos-
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sible adjustments to the standard 20 µs duration and annealing schedules, as

described in Sections 2 and 3. Since 2011, five generations of D-Wave computing

machines have been developed, with the number of graph sites equal to 128, 512,

1152, 2048, and 5640, respectively. The first four generations used the Chimera

graph, and the fifth generation used the Pegasus graph. D-Wave machines have

been applied to solve combinatorial optimization problems in research studies

and real applications. Although there is no quantum speedup found in D-Wave

machines, it has been demonstrated that quantum annealing can be much faster

than classical annealing for solving certain optimization problems; see Denchev

et al. (2016) and Farhi et al. (2002) for specific examples that illustrate the ad-

vantage of quantum annealing over classical annealing. For further information,

see also Boixo et al. (2013), Boixo et al. (2015a), Boixo et al. (2015b), Dattani,

Szalay and Chancellor (2019), Denchev et al. (2016), Farhi et al. (2002), Hast-

ings (2021), Hen et al. (2015), Johnson et al. (2011), Katzgraber, Hamze and

Andrist (2014), Lanting et al. (2014), O’Gorman et al. (2014), Perdomo-Ortiz et

al. (2012), Perdomo-Ortiz et al. (2014), Rieffel et al. (2015), and Wang, Wu and

Zou. (2016).

3.3. Implementation using path-integral and MCMC simulations

Various methods have been established that use asymptotic expansion to

approximately implement quantum annealing using MCMC simulations on clas-

sical computers. These approaches use the path-integral formulation with the

Trotter formula (see Kato (1978), Suzuki (1976), and Trotter (1959)) to show

that the quantum system driven by the quantum annealing Hamiltonian HQA(t)

in (3.2) is asymptotically equivalent to a classical anisotropic Ising model. For

simplicity, consider the case of hi = 0. The classical anisotropic Ising model with

temperature τT has the following Hamiltonian:

Hc
aI(s) = −

τ∑
l=1

B(t)
∑

(i,j)∈E(G)

Jijsilsjl + J(t)
∑

j∈V(G)

sjlsj,l+1

 , (3.6)

where τ is an integer, sil are random variables taking values in {+1,−1}, Jij
are the regular couplings along the direction of the original Ising model, and l

is the index for an extra new direction, often referred to as the imaginary-time

direction, with

J(t) = −τT
2

ln

[
tanh

(
A(t)

τT

)]
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as the coupling along the imaginary-time direction. Let sl = {sil, i = 1, . . . , b},
for l = 1, . . . , τ . We call sl the lth Trotter slice. Similar to the SA case,

standard MCMC techniques are used to perform simulations of the classical

anisotropic Ising model with the Hamiltonian Hc
aI on classical computers. With

the Trotter slices sil, for i = 1, . . . , d and l = 1, . . . , τ , generated from the

MCMC simulations, we use the majority rule to produce each site value si =

sign of the sum si1 + · · ·+ siτ and form a configuration s = {si, i = 1, . . . , d} as a

solution to minimize Hc
I(·) defined in (2.1). The classical computer-based simula-

tion approach refers to simulated quantum annealing (SQA). Figure 1 illustrates

a lattice structure for a classical Ising model and a Trotter slice structure for its

corresponding classical anisotropic Ising model. Because the Trotter slice graph

is much more complex than the lattice, MCMC simulations of the two Ising mod-

els with different structures evidently indicate that SQA is much slower than SA.

Consequently, SQA is often used for benchmarking in quantum computation and

to gain some insightful understanding of quantum annealing; see Hu and Wang

(2021), Martoňák et al. (2002), Morita and Nishimori (2008), Wang, Wu and

Zou. (2016), and the references therein for more details.

3.4. Discussion of theoretical analysis and practical implementation

Quantum annealing was proposed as a potential way of solving optimization

problems. Theoretical results have established the foundation for quantum an-

nealing, and implementations by physical quantum annealers and path-integral-

based MCMC simulations have demonstrated its practical usefulness. It is in-

teresting, but challenging to accurately connect the theoretical results with the

practical performance of implementations by physical or simulation means, be-

cause quantum annealers are noisy, and MCMC simulations are approximation

methods based on asymptotics.

Specifically, theoretical results indicate certain probabilities for quantum an-

nealing to find ground states, and quantum annealers and SQA practically con-

firm some success probabilities for obtaining ground states using quantum an-

nealing. The asymptotic justification derives positive probabilities for quantum

annealing to find ground states by letting the annealing time tf go to infinity.

The probability lower bound in (3.5) for finite tf is given by 1− 2dζℵ, where

ℵ = max
u∈[0,1]

{
1

λ1(u)− λ0(u)

∥∥∥∥dHQA(u tf )

du

∥∥∥∥}2

. (3.7)
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(a) Lattice Structure

(b) Trotter Slices
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Figure 1. Plots of lattice structures for a classical Ising system and its corresponding clas-
sical anisotropic Ising system, where (a) and (b) illustrate a lattice as a simple graph for
the Ising system and its corresponding graph with four Trotter slices for the anisotropic
Ising system, respectively.

Note that
dHQA(u tf )

du
=
dA(u tf )

du
HX +

dB(u tf )

du
Hq
I , (3.8)

which depends on u only through the derivatives of the annealing schedules A(t)

and B(t). By choosing appropriate A(t) and B(t), we can ensure that the proba-

bility lower bound in (3.5) is positive, and thus guarantee that quantum annealing

can find the lowest energy of Hc
I , with some probability. Indeed, from (3.7) and

(3.8), we obtain

ℵ ≤ max
u∈[0,1]

{
[λ1(u)− λ0(u)]−2

[∣∣∣∣dA(u tf )

du

∣∣∣∣ ‖HX‖+

∣∣∣∣dB(u tf )

du

∣∣∣∣ ‖Hq
I‖
]2}

≤
{

min
u∈[0,1]

[λ1(u)− λ0(u)]

}−2 [
‖HX‖+ ‖Hq

I‖
]2

max
u∈[0,1]

{∣∣∣∣dA(u tf )

du

∣∣∣∣∨ ∣∣∣∣dB(u tf )

du

∣∣∣∣}2

, (3.9)
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where ‖HX‖ and ‖Hq
I‖ are the spectral norms of HX and Hq

I , respectively, and ∨
stands for the maximum. For a given quantum annealing setup, we have fixed d,

ζ, ‖HX‖, and ‖Hq
I‖, and specified the minimum of λ1(u)− λ0(u) over u ∈ [0, 1].

Hence, (3.9) indicates that it is theoretically possible to choose schedule functions

A(·) andB(·) with small enough absolute derivatives in order to make ℵ < 1/[ζ2d],

and thus produce a positive probability lower bound 1− 2dζℵ. More precisely, if

the schedule functions A(·) and B(·) satisfy that, for u ∈ [0, 1],∣∣∣∣dA(u tf )

du

∣∣∣∣∨ ∣∣∣∣dB(u tf )

du

∣∣∣∣ < minu∈[0,1] [λ1(u)− λ0(u)]

2d/2
√
ζ
[
‖HX‖+ ‖Hq

I‖
] ,

then 1− 2dζℵ > 0.

4. Conclusion

We have investigated quantum annealing along with classical annealing for

solving combinatorial optimization problems. We have established a probabil-

ity lower bound for quantum annealing to find a solution to an optimization

problem. We discuss implementations of quantum annealing via D-Wave phys-

ical devices and path-integral-based MCMC simulations. Our study provides a

theoretical foundation for using quantum annealing to solve combinatorial opti-

mization problems.

4.1. Future research topics in quantum annealing

Quantum annealing plays an important role in quantum computation, and is

relatively new in statistics. This paper raises statistical issues related to quantum

annealing and leaves open problems for future research. These include investigat-

ing the sharpness of the lower bounds in Theorem 2 and their relationship with

the asymptotic results on the ground-state success probability, as well as their

practical implications. It would also be worth studying the quantum processes

related to the unitary dynamic evolution of quantum annealing and classical pro-

cesses associated with MCMC implementations of quantum annealing, as well as

the statistical relationship between the two types of processes. Furthermore, we

may explore the performance of D-Wave machines and, in particular, the impact

of noise on solving optimization problems. As a case in point, below, we explore

a key difference between thermal fluctuations in classical annealing and quantum

tunneling in quantum annealing, and propose combining the data augmentation

scheme and the Monte Carlo implementation approach to intuitively illustrate

quantum tunneling from a statistical perspective.
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4.2. Quantum tunneling and data augmentation

Unlike classical annealing, which uses thermal fluctuations to make the Ising

system jump from state to state over intermediate energy barriers and search for

the desired lowest-energy state, quantum annealing relies on quantum mechanical

fluctuations instead of thermal jumps for state transitions. The two terms Hq
I and

HX of HQA in (3.2) and (3.3) are non-commutable matrices, and represent the

potential and kinetic energies, respectively, of the underlying quantum system.

The move from HX to Hq
I through HQA during the quantum annealing process

can be physically accomplished by engineering magnetic fields to induce quantum

fluctuations via quantum tunneling. Quantum tunneling refers to the quantum

phenomenon that particles tunnel through a barrier in an impossible condition

under classical physics. It permits the annealing process to search for distinct

states by traveling directly through energy barriers, instead of hopping over them

thermally, as in the classical annealing case. Quantum tunneling can be explained

by the Heisenberg uncertainty principle and the wave–particle duality of matter

in quantum physics, but cannot be adequately explained by classical physics (see

Sakurai and Napolitano (2021) and Shankar (1994)).

Sections 3.2 and 3.3 indicate that quantum annealing may be implemented

by physical devices or MCMC simulations. D-Wave physical devices aim to real-

ize the unitary dynamic evolution of quantum annealing by natural Schrödingier

dynamics, and path-integral-based MCMC simulations approximate the dynamic

evolution of quantum annealing using artificial time evolutions of Monte Carlo

dynamics. The two approaches may be connected through some statistical sam-

pling distributions for the quantum probability model associated with the uni-

tary dynamic evolution in annealing and the statistical model linked to SQA.

In particular, although it is difficult to explain quantum tunneling in a physi-

cal implementation of quantum annealing, we can use SQA to provide an intu-

itive statistical illustration of tunneling. Note that the key difference between

the classical Ising Hamiltonians Hc
I(s) in (2.1) and Hc

aI(s) in (3.6) is the extra

imaginary-time direction in Hc
aI(s). The well-known data augmentation scheme

can be used to accommodate the extra direction, as follows. We introduce an

augmented random variable to represent the imaginary-time direction, and de-

scribe SQA in an augmented search space. The tunneling, which is difficult to

explain in the original search space, may have an intuitive explanation in the

larger search space. For example, Figure 2 illustrates that tunneling is a possible

way of traveling through a barrier in two dimensions; however, in the augmented

three dimensions, there is a natural route to bypass the barrier. The representa-
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(a) Quantum Tunneling

●

●

●

●

●

(b) Front and Back Views of Tunneling in the Augmented Space

Quantum Tunneling

Configuration

Energy

Configuration

Energy

Quantum Tunneling

Figure 2. Plots of quantum tunneling, where (a) and (b) illustrate quantum tunneling
in quantum annealing for getting over an energy barrier and a corresponding possible
tunneling effect in the augmented space, respectively.

tion of SQA using data augmentation may offer an intuitive explanation for the

tunneling effect in quantum annealing.

Supplementary Material

The online supplementary materials include mathematical notations and

quantum concepts, as well as proof of Theorem 1 and Theorem 2.
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