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Abstract: We investigate a partially functional linear model by focusing on the

heterogenous error scenario in which the scalar response is associated with an ultra-

large number of both functional predictors and scalar covariates. Moreover, the

model does not require the standard condition on eigenvalue decay for functional

predictors, leading to a more challenging and general framework. The target is

to establish a rigorous inferential procedure for hypothesis testing on an arbitrary

subset of both regression functions and scalar coefficients. Specifically, we devise a

confidence region for post-regularization inference using a pseudo score function

that is not decorrelated owing to the heterogenous errors. The proposed test

does not require estimation consistency of the functional part, and is shown to be

uniformly convergent to the prescribed significance. We investigate the finite-sample

performance of the proposed model using simulation studies and an application to

functional magnetic resonance imaging brain image data.

Key words and phrases: Eigenvalue-decay-relaxation, high dimensions, multiplier

bootstrap.

1. Introduction

The classical functional linear model (FLM) is often used to model the linear

association between a continuous response Y and a functional predictor that is

often supposed to be sampled from an L2(T ) random process X(t), defined on

a compact interval T ⊆ R. Specifically, given n independent and identically

distributed (i.i.d.) pairs {Yi, Xi(·)}, the classical FLM takes the simple form,

Yi =

∫

T

Xi(t)β(t)dt+ ϵi, i = 1, . . . , n, (1.1)

where both Yi and Xi are generally assumed to have zero means; that is, EYi = 0

and EXi(t) = 0 for t ∈ T , the errors ϵi that are independent of Xi are required to

be i.i.d. with mean zero and finite variance E(ϵ2i ) = σ2 ∈ (0,∞), and the unknown

regression parameter function β(t) is square-integrable such that β ∈ L2(T ).

This model is investigated thoroughly by numerous works in functional data

analysis (e.g., Ramsay and Dalzell (1991); Fan and Zhang (2000); Yuan and Cai
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(2010)), from the perspectives of either statistical inference (Cardot et al. (2003);

Hilgert, Mas and Verzelen (2013); Lei (2014); Shang and Cheng (2015)) or a

theoretical construct (Hall and Horowitz (2007); Cai and Yuan (2012)). In

addition, the classical FLM has been extended to a variety of settings, including

the additive regression (Müller and Yao (2008); Zhu, Yao and Zhang (2014);

Fan, James and Radchenko (2015)), partially FLM (Kong et al. (2016)), and

large-scale FLM (Xue and Yao (2021)), among others.

In modern applications, the response Y can potentially be linked to a

large number of scalar covariates and a large number of functional predictors,

simultaneously. For example, Kong et al. (2016) propose a penalized estimation

and variable selection procedure for a partially FLM comprising a finite number

of functional predictors and high-dimensional scalar covariates, and Xue and Yao

(2021) consider hypothesis testing on a large-scale FLM involving only high-

dimensional functional predictors. Nevertheless, in the context of large-scale

data and a partially FLM, the potential numbers of functional predictors pn
and scalar covariates dn can far exceed the sample size n, despite the sparsity

assumption that the sizes of the significant functional predictors qn and significant

scalar covariates rn grow at a fraction polynomial rate of n. For instance, in

a neuroimage analysis, a certain disease marker is potentially associated with a

large number of brain regions of interest (ROIs), scanned over time, in addition to

high-dimensional scalar covariates, including age, sex, and so forth. Furthermore,

in practice, the errors ϵi may not be as homogeneous as they are in the classical

FLM. Motivated by these concerns, denoting Zi = (Zi1, . . . , Zidn
)⊤ as a vector

of scalar covariates and γ = (γ1, . . . , γdn
)⊤ as a vector of coefficients, we can

formulate a large-scale partially FLM with heterogeneous errors (LPFLMhete)

as

Yi =
pn∑
j=1

∫

T

Xij(t)βj(t)dt+ Z⊤
i γ + ϵi

=
pn∑
j=1

∫

T

Xij(t)βj(t)dt+
dn∑
l=1

Zilγl + ϵi, i = 1, . . . , n, (1.2)

where both pn and dn are allowed to grow exponentially with the sample size n,

and, without loss of generality, assume the first qn regression functions {βj : j =

1 . . . , qn} and the first rn regression coefficients {γl : l = 1 . . . , rn} are significant,

whereas the rest are zero. The errors ϵi are heterogeneous, with mean zero and

possibly different variances and distributions. Note that the LPFLMhete differs

from previous works, such as those on the partially FLM (Kong et al. (2016))

and the large-scale FLM (Xue and Yao (2021)), by allowing pn and dn to grow

exponentially, simultaneously, in the context of heterogeneous errors.

The basis representation of each predictor Xij can be achieved using

either a pre-fixed basis (i.e., B-splines, wavelets) or a data-driven basis (i.e.,
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eigenfunctions). Despite the efficiencies of data-driven bases, they need to be

estimated from pn separate functional principal component analysis procedures,

which is computationally intensive whenever pn ≫ n. As a tradeoff, researches

use a common pre-fixed basis {bk : k ≥ 1} that is complete and orthonormal

in L2(T ) to represent all random processes Xij ’s as suggested in Xue and Yao

(2021). Thus, we do not consider other basis-seeking procedures, such as the

functional partial least squares (Reiss and Ogden (2007)).

Our main contribution is to develop a confidence region for an arbitrary

subset of regression functions and scalar coefficients {βj : j ≤ pn} ∪ {γl : l ≤ dn},
leading to a rigorous inferential procedure for a general hypothesis on that

subset. Here, we face three main challenges. The first arises from the complex

inter-correlation between the ultrahigh-dimensional functional and scalar parts,

where both pn and dn can grow exponentially in n. Although the partially FLR

(and its variants) has been well studied, such as in Kong et al. (2016), these

methods usually require the number of functional predictors to be fixed at p in

order to control its inter-correlation with the scalar part, and thus no inferential

procedure is available. (Xue and Yao (2021)) consider a general testing procedure

based on ultrahigh-dimensional pn functional predictors. However, the model

fails to include an ultrahigh-dimensional scalar part, and neither a confidence

region nor a power assessment is provided. The second challenge stems from the

heterogeneous error assumption under the LPFLMhete, which means all existing

works, such as Xue and Yao (2021), require i.i.d. errors in the presence of high-

dimensional functional predictors. In fact, it is nontrivial to extend the ordinary

high-dimensional linear model to its heterogeneous counterpart. Similarly to

Xue and Yao (2021), an important ingredient for carrying out inference on the

LPFLMhete is a penalized estimator {β̂j : j ≤ pn} ∪ {γ̂l : l ≤ dn}. The third

challenge is that we do not require estimation consistency for the estimated

regression curves {β̂j : j ≤ pn}, in contrast to Xue and Yao (2021), making

our method more applicable in practical situations, but more difficult to derive.

The rest of the article is organized as follows. In Section 2, we first introduce

a penalized estimator {β̂j : j ≤ pn} ∪ {γ̂l : l ≤ dn} under a broad class of convex

or nonconvex penalties. We then establish the estimation consistency for both

{γ̂l : l ≤ dn} and a scaled-version of {β̂j : j ≤ pn} in Theorem 1. In Section 3, we

first establish a confidence region for a general hypothesis in Theorem 2, which

results in the proposed test. Then, we propose an estimated power function

for the test, and analyze it in Theorems 3 and 4. In Sections 4 and 5, we

present a simulation study and a real-data analysis to demonstrate the desired

performance of the proposed inferential method. We collect the conditions on the

LPFLMhete in Appendix A. The algorithm to obtain the penalized estimator

and the conditions on the penalties are summarized in Appendix B. We relegate

the auxiliary lemmas, with their proofs, and the proofs of the main theorems to

the online Supplementary Material.



682 XUE AND YAO

2. Model Estimation Using Group-Regularized Least Squares

Consider the LPFLMhete defined in model (1.2). Given a complete and

orthonormal basis {bk : k ≥ 1}, the infinite-dimensional basis representations of

each random process Xij and the regression function βj have the following form:

Xij =
∞∑
k=1

θijkbk, βj =
∞∑
k=1

ηjkbk,

where the projected coefficients θijk =
∫
T
Xij(t)bk(t)dt are random variables

with mean zero and variance E(θ2ijk) = ωjk > 0. We regard the eigenvalues

of the jth functional predictor as the eigenvalues of the covariance structure,∫
T
cov(νij(t))dt = diag{ωj1, ωj2, . . . }, where νij(t) is infinite-dimensional and

denoted by νij(t) = (θij1b1(t), θij2b2(t), . . . )
′, for notational convenience. Ac-

cordingly, model (1.2) can be rewritten as

Yi =
pn∑
j=1

∞∑
k=1

θijkηjk + Z⊤
i γ + ϵi, i = 1, . . . , n, (2.1)

indicating that estimating the regression functions βj and parameters γl is

equivalent to estimating the unknown coefficients ηjk and γl, respectively.

However, it is prohibitive to minimize the square loss with respect to ηjk and

γl directly, owing to the infinite dimensionality of the sequence ηjk. A common

way of addressing this problem is to approximate the model by truncating up to

the first sn leading bases that can grow in n, where sn governs the complexity

of βj to balance the bias–variance tradeoff, analogously to the way it dose in a

classical nonparametric regression. As a result, model 2.1 can be reformulated as

Yi =
pn∑
j=1

sn∑
k=1

θijkηjk + Z⊤
i γ +

(
ϵi +

pn∑
j=1

∞∑
k=sn+1

θijkηjk

)
. (2.2)

Similar approaches can be found in Rice and Silverman (1991), Yao, Müller and

Wang (2005), Hall and Horowitz (2007), Fan, James and Radchenko (2015), Kong

et al. (2016), and Xue and Yao (2021), among others. Although we wish to apply

a distinct truncation size to each βj, it is computationally improper to select

various truncations in the presence of a large number of functional predictors. As

suggested by Kong et al. (2016), adopting a common sn is sufficient for theoretical

development and implementation.

In addition to truncation, it is important to regularize the regression

functions and the scalar coefficients on a comparable scale. To regularize each

functional predictor Xj, similar to the group regularization (Yuan and Lin

(2006)), we impose a suitable group penalty on the scaled term n−5/9∥Θjηj∥2,
where Θj = (θijk)1≤i≤n;1≤k≤sn , ηj = (ηj1, . . . , ηjsn)

⊤, and ∥ · ∥2 is the ℓ2-norm. To
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regularize each scalar covariate Zl, we impose the same penalty on the scaled term

n−5/9(
∑n

i=1 Z
2
il)

1/2|γl|, using a technique similar to that of (Fan and Li (2001)).

Hence, our goal is to minimize the regularized square loss function with respect

to (η, γ), as follows, where η = (η′
1, . . . , η

′
pn
)′ and ∥ · ∥1 is the ℓ1-norm:

min
∥η∥1+∥γ∥1≤Bn

{
Qn(η,γ)︷ ︸︸ ︷

(2n)−1
n∑

i=1

(
Yi −

pn∑
j=1

sn∑
k=1

θijkηjk − Z⊤
i γ

)2

︸ ︷︷ ︸
Ln(η,γ)

+

pn∑
j=1

ρλn

(
n−5/9∥Θjηj∥2

)
+

dn∑
l=1

ρλn

(
n−5/9

(
n∑

i=1

Z2
il

)1/2

|γl|
)

︸ ︷︷ ︸
Pλn (η,γ)

}
, (2.3)

where the univariate ρλ(·) that depends on a tuning parameter λ > 0 covers

a broad class of commonly used convex or nonconvex penalties fulfilling the

conditions (B1)–(B5) in Appendix B, such as the lasso, SCAD, and MCP (Loh

and Wainwright (2015)). Here, the parameter Bn > 0 can take any value,

provided that the true version (η∗, γ∗) is feasible in the sense that ∥η∗∥1+∥γ∗∥1 ≤
Bn. Note that many existing works on high-dimensional linear models implicitly

impose an upper bound on the l∞- or l1-norms of the linear coefficient; see

Loh and Wainwright (2015), for example, with R playing the role of Bn. After

obtaining any estimator (η̂, γ̂) from (2.3), the corresponding estimator for each

βj takes the form β̂j(t) =
∑sn

k=1 η̂jkbk(t). We use a coordinate descent algorithm

modified from Ravikumar et al. (2008) for the implementation; the procedures are

summarized in Appendix B, where the tuning parameters λn and sn are evaluated

using K-fold cross-validation, where, for example, K = 5. In our analysis, for

general inferential purposes, it suffices to obtain a regularized estimator (η̂, γ̂), the

scaled version of which, (Λ1/2η̂, γ̂), as defined in Theorem 1, is consistent in both

the ℓ1- and ℓ2-norms, while relaxing the consistency of the unscaled-version (η̂, γ̂)

and the oracle property. In contrast, other post-regularization inferential methods

such as that of (Xue and Yao (2021)), are more restrictive, requiring estimation

consistency for both η̂ and the regression curves β̂j. Denoting the block matrix

Λ = diag{Λ1, . . . ,Λpn
}, with each Λj = diag{ωj1, . . . , ωjsn}, Theorem 1 can be

stated as follows, where the conditions (A1)–(A4) and (B1)–(B5) are relegated

to Appendix A and B, respectively.

Theorem 1. Under conditions (A1)–(A4) and (B1)–(B5), for any local minima

(η̂, γ̂) of Qn(η, γ) obtained from (2.3), we have the following with probability

tending to one:

1) max
{
∥Λ1/2(η̂− η)∥2, ∥γ̂ − γ∥2

}
≤ c1λn(qn + rn)

1/2n−1/18, for some constant

c1 > 0.
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2) max
{
∥Λ1/2(η̂−η)∥1, ∥γ̂−γ∥1

}
≤ c2λns

1/2
n (qn+rn)n

−1/18, for some constant

c2 > 0.

Note that the aforementioned error bounds depend on the truncation sn,

through λn or itself, which is expected, because each regression function is

represented by an sn-dimensional vector ηj. Note too that Theorem 1 differs from

and is more complicated to derive than its counterpart in Xue and Yao (2021),

because we are examining both high-dimensional functional and scalar parts. In

addition, Theorem 1 does not demand estimation consistency of the regression

curves β̂j(t), in contrast to all existing works on functional linear regression. As

an illustrative example, if we further assume

|η̂jk − ηjk| ≍ λnω
−1/2
jk s−1/2

n n−1/18 for j ≤ qn, k ≤ sn;

λ2
nn

−1/9s−1
n

qn∑
j=1

sn∑
k=1

ω−1
jk → ∞

under Theorem 1, then we have
∑pn

j=1 ∥β̂j − βj∥2L2
→ ∞. Despite the possibly

inconsistent regression curves β̂j(t) =
∑sn

k=1 η̂jkbk(t), Theorem 1 is sufficient for

inferring the general hypothesis discussed in the next section. This significantly

expands the range of application of our inferential method.

3. Inference on General Hypothesis in LPFLMhete

Our goal is to infer a broad class of hypotheses of full generality in

LPFLMhete. Specifically, we write Pn = {1, . . . , pn} to represent all functional

predictors, and similarly, Dn = {1, . . . , dn} to represent all scalar covariates.

For any nonempty Hn ⊆ Pn with cardinality |Hn| = hn ≤ pn, we write its

complement as Hc
n = Pn \ Hn. Likewise, for any nonempty Kn ⊆ Dn with

cardinality |Kn| = kn ≤ dn, we write its complement as Kc
n = Dn \ Kn. Denoting

the set Hn×Kn = {(j, l) : j ∈ Hn, l ∈ Kn}, the general hypothesis takes the form

H0 : (∥βj∥L2 , |γl|) = (0, 0) for all (j, l) ∈ Hn ×Kn

vs. Ha : (∥βj∥L2 , |γl|) ̸= (0, 0) for some (j, l) ∈ Hn ×Kn, (3.1)

where the cardinalities hn and kn can be as large as the dimensions pn and dn,

respectively, permitting a hypothesis of any size on {βj : j = 1, . . . , pn} and

{γl : l = 1, . . . , dn}. Here, (3.1) contains two important degenerate hypotheses:

H0 : ∥βj∥L2 = 0 for all j ∈ Hn vs. Ha : ∥βj∥L2 ̸= 0 for some j ∈ Hn, (3.2)

H0 : γl = 0 for all l ∈ Kn vs. Ha : γl ̸= 0 for some l ∈ Kn. (3.3)

We focus on the inference of (3.1), without loss of generality.
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To infer the general hypothesis (3.1), our idea is to develop a confidence

region for {βj : j ∈ Hn} ∪ {γl : l ∈ Kn} by combining the estimator (η̂, γ̂)

from Theorem 1 with a pseudo score function. We refer to a pseudo score

function as any generalization of the traditional score function that leads to the

theoretical validity of the inferential method. For instance, the decorrelated score

function used in Ning and Liu (2017) is a pseudo score function. Before proposing

the pseudo score function for the LPFLMhete, we discuss some notation. For

functional predictors, we write the vector ηHn
as stacking {ηj : j ∈ Hn} in a

column, and similarly for η̂Hn
. We abbreviate βHn

= {βj : j ∈ Hn} as the

sequence of regression functions. Given the fixed basis {bk : k ≥ 1} and the

truncation size sn, we define the function F{bk:k≤sn}(βHn
) = ηHn

as mapping

the regression curves βHn
to the projection vector ηHn

. For scalar covariates, we

denote γKn
as restricting the vector γ to Kn, and similarly for γ̂Kn

. For functional

predictors, we denote its design matrix Θ as stacking {Θj : j ≤ pn} in a row,

and similarly, the matrix ΘHn
as stacking {Θj : j ∈ Hn} in a row. We denote

the design matrix of the scalar covariates as Z = (Z1, . . . , Zn)
′, and similarly, the

matrix ZKn
as restricting the columns of Z to Kn. Estimating each ωjk by ω̂jk =

n−1
∑n

i=1 θ
2
ijk, we denote several diagonal matrices as Λ = diag{Λj : j ∈ Pn},

ΛHn
= diag{Λj : j ∈ Hn}, Λ̂ = diag{Λ̂j : j ∈ Pn}, and Λ̂Hn

= diag{Λ̂j : j ∈ Hn},
with submatrices Λj = diag{ωj1, . . . , ωjsn} and Λ̂j = diag{ω̂j1, . . . , ω̂jsn}. We

express design matrices in the form of row vectors as (Θ, Z) = (G1, . . . , Gn)
′,

(Θ̃, Z) = (ΘΛ−1/2, Z) = (G̃1, . . . , G̃n)
′, (Θ̆, Z) = (ΘΛ̂−1/2, Z) = (Ğ1, . . . , Ğn)

′,

(ΘHn
, ZKn

) = (E1, . . . , En)
′, (Θ̃Hn

, ZKn
) = (ΘHn

Λ
−1/2
Hn

, ZKn
) = (Ẽ1, . . . , Ẽn)

′,

(Θ̆Hn
, ZKn

) = (ΘHn
Λ̂

−1/2
Hn

, ZKn
) = (Ĕ1, . . . , Ĕn)

′, (ΘHc
n
, ZKc

n
) = (F1, . . . , Fn)

′,

(Θ̃Hc
n
, ZKc

n
) = (ΘHc

n
Λ

−1/2
Hc

n
, ZKc

n
) = (F̃1, . . . , F̃n)

′, and (Θ̆Hc
n
, ZKc

n
) = (ΘHc

n
Λ̂

−1/2
Hn

,

ZKc
n
) = (F̆1, . . . , F̆n)

′, where the invertibility of Λ̂ is ensured by Lemma 2 in

the Supplementary Material. Moreover, we denote η̃ = Λ1/2η, η̆ = Λ̂1/2η,

η̃Hn
= Λ

1/2
Hn

ηHn
, and η̆Hn

= Λ̂
1/2
Hn

ηHn
. Recall from (2.3) the square loss

function Ln(η, γ) = (2n)−1∥Y − Θη − Zγ∥22 = (2n)−1∥Y − Θ̃η̃ − Zγ∥22, with

Y = (Y1, . . . , Yn)
′. Sometimes, we write Ln(η̃, γ) = Ln(η, γ), with some abuse of

notation. Although the true negative log-likelihood function is unknown under

the heterogeneous error condition (A1.2) of (A1), it is rational to treat Ln(η̃, γ)

as a pseudo negative log-likelihood function. We define the matrix w as

w = {E(FiFi
′)}−1E(FiẼ

′
i) = (w1, . . . , whnsn+kn

) ∈ R(pn−hn)sn+(dn−kn)×(hnsn+kn),

with column vectors wj = (wj1, . . . , wj,(pn−hn)sn+(dn−kn))
′. We denote the

parameter ρn = supj≤hnsn+kn
ρnj , with each ρnj = ∥wj∥0 as the cardinality of wj,

to measure the sparsity level of w. It is rational to impose a sparsity assumption

on w, such as in condition (A4.4). For LPFLMhete, we define the pseudo score

function with respect to the primary parameters (η̃Hn
, γKn

) as follows:
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S(η̃Hn
, γKn

; ηHc
n
, γKc

n
) = ∇(η̃Hn ,γKn )Ln(η̃, γ)− w′∇(ηHc

n
,γKc

n
)Ln(η, γ)

= n−1
n∑

i=1

(
w′Fi − Ẽi

)(
Yi −G′

i

(
η

γ

))
. (3.4)

However, the pseudo score function S(η̃Hn
, γKn

; ηHc
n
, γKc

n
) cannot be used directly

because of the unknown w, Λ−1
Hn

, ηHc
n
, and γKc

n
. We estimate ΛHn

by its

moment estimate Λ̂Hn
, the invertibility of which is ensured by Lemma 2 in the

Supplementary Material. We estimate (ηHc
n
, γKc

n
) by (η̂Hc

n
, γ̂Kc

n
), from Theorem 1.

The moment estimate for w = {E(FiFi
′)}−1E(FiẼ

′
i) is prohibitive, because

n−1
∑n

i=1 FiFi
′ may be singular, owing to the high dimensionality. To resolve this

problem, we estimate w by column-wisely solving the following lasso problems.

Specifically, for each j ≤ hnsn + kn, we solve

ŵj = argmin
wj

[
(2n)−1

n∑
i=1

(Ĕij − F ′
iwj)

2 + λ∗
n∥diag{Λ̂

1/2
Hc

n
, I(dn−kn)}wj∥1

]
, (3.5)

where Ĕij is the jth coordinate of Ĕi, and the common tuning parameter λ∗
n

is chosen using K-fold cross-validation, for example, K = 5. The above lasso

procedures result in the estimator ŵ. Replacing w and Ẽi in S(η̃Hn
, γKn

; ηHc
n
, γKc

n
)

with ŵ and Ĕi, respectively, we obtain a new function Ŝ(η̃Hn
, γKn

; ηHc
n
, γKc

n
), as

Ŝ(η̃Hn
, γKn

; ηHc
n
, γKc

n
) = n−1

n∑
i=1

(
ŵ′Fi − Ĕi

)(
Yi − Ĕ′

i

(
η̃Hn

γKn

)
− F ′

i

(
ηHc

n

γKc
n

))
.

(3.6)

Plugging η̂Hc
n
and γ̂Kc

n
into the above function yields the estimated pseudo score

function with respect to (η̃Hn
, γKn

), as

Ŝ(η̃Hn
, γKn

; η̂Hc
n
, γ̂Kc

n
) = n−1

n∑
i=1

(
ŵ′Fi − Ĕi

)(
Yi − Ĕ′

i

(
η̃Hn

γKn

)
− F ′

i

(
η̂Hc

n

γ̂Kc
n

))
,

(3.7)

which can be used to construct the test statistic for the general hypothesis (3.1).

For notational convenience, we define a random function T̂ (βHn
, γKn

) as

T̂ (βHn
, γKn

) = n1/2Ŝ(Λ̂
1/2
Hn

F{bk:k≤sn}(βHn
), γKn

; η̂Hc
n
, γ̂Kc

n
). (3.8)

Recall that F{bk:k≤sn}(βHn
) = ηHn

, where βHn
= {βj : j ∈ Hn} denotes a sequence

of regression functions. To obtain the critical value for an inference, we first define

a random quantity T̂e as

T̂e = n−1/2
n∑

i=1

ei
(
ŵ′Fi − Ĕi

)(
Yi −G′

i

(
η̂

γ̂

))
,
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where e = {e1, . . . , en} is a set of i.i.d. standard normals, independent of the data.

Denoting ∥ · ∥∞ as the infinite norm, we further define

cB(α) = inf{t ∈ R : Pe(∥T̂e∥∞ ≤ t) ≥ 1− α}, α ∈ (0, 1) (3.9)

as the 100(1− α)th percentile of ∥T̂e∥∞, where Pe(·) means the probability with

respect to {e1, . . . , en} only. This serves as the critical value in the inference,

and can be calculated rapidly using a multiplier bootstrap based on the set e =

{e1, . . . , en}. Theorem 2 establishes the theoretical foundation for our proposed

inferential method under some mild conditions. The conditions (A1)–(A4) and

(B1)–(B5) are deferred to Appendices A and B.

Theorem 2. Under conditions (A1)–(A4) and (B1)–(B5), the Kolmogorov

distance between the distributions of ∥T̂ (βHn
, γKn

)∥∞ and ∥T̂e∥∞ satisfies

lim
n→∞

sup
t≥0

∣∣P (∥T̂ (βHn
, γKn

)∥∞ ≤ t)− Pe(∥T̂e∥∞ ≤ t)
∣∣ = 0,

and, consequently, limn→∞ supα∈(0,1)

∣∣P{∥T̂ (βHn
, γKn

)∥∞ ≤ cB(α)}−(1−α)
∣∣ = 0.

Recall that T̂ (βHn
, γKn

) and cB(α) are defined in (3.8) and (3.9), respectively.

Theorem 2 defines the 100(1− α)th confidence region for (βHn
, γKn

) as

CR1−α = {(βHn
, γKn

) : ∥T̂ (βHn
, γKn

)∥∞ ≤ cB(α)}. (3.10)

Hence, our proposed testing procedure for (3.1) is such that we reject the null

H0 : (∥βj∥L2 , |γl|) = (0, 0) at the significance level α ∈ (0, 1) if and only if

∥T̂ (0, 0)∥∞ > cB(α), (3.11)

where ∥T̂ (0, 0)∥∞ is the test statistic, and cB(α) serves as the critical value. Under

Theorem 2, the proposed test based on the multiplier bootstrap method is valid

uniformly over all α ∈ (0, 1). Note that Theorem 2 is quite different from that

of Xue and Yao (2021), not only because of the aforementioned heterogeneous

errors, but also because we derive a general confidence region, rather than just the

asymptotic null distribution, which facilitates the power analysis in Theorems 3–

4. Furthermore, it follows from Theorems 1–2 that the proposed inferential

method imposes no restriction on the decay rate of the eigenvalues ωjk, as in

(A2.1), whereas all existing FLMs demand ωjk ≳ k−a or λmin(Λ) ≳ s−a
n , for some

a > 1.

For the power assessment, given the true (βHn
, γKn

), the true power function

is Power(βHn
, γKn

) = P{∥T̂ (0, 0)∥∞ > cB(α)|βHn
, γKn

}. However, this is

inaccessible, because the distribution of ∥T̂ (0, 0)∥∞ is intractable. The solution

is to find an approximation of Power(βHn
, γKn

) that is convenient to compute.

Motivated by Theorem 2, we use another independent bootstrap procedure to
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approximate the distribution of ∥T̂ (0, 0)∥∞, and hence the true power function.

Specifically, the estimated power function Power∗(βHn
, γKn

) can be formulated

as

Power∗(βHn
, γKn

)

= Pe∗

{
∥T̂e∗ + n−1/2

n∑
i=1

(
ŵ′Fi − Ĕi

)
E′

i

(
F{bk:k≤sn}(βHn )

γKn

)
∥∞ > cB(α)

}
, (3.12)

where e∗ = {e∗1, . . . , e∗n} is a set of i.i.d. standard normals, independent of the

e used to compute cB(α) and the data. Here, (3.12) can be computed using a

multiplier bootstrap on e∗. In the next theorem, we establish the asymptotic

equivalence between Power(βHn
, γKn

) and Power∗(βHn
, γKn

).

Theorem 3. Under conditions (A1)–(A4) and (B1)–(B5), given the true version

(βHn
, γKn

), we have: limn→∞
∣∣Power(βHn

, γKn
)− Power∗(βHn

, γKn
)
∣∣ = 0.

For the power analysis, the following theorem establishes the consistency of

the asymptotic power (3.12) under a fairly general alternative set Fn.

Theorem 4. Assume the conditions (A1)–(A4) and (B1)–(B5) hold, and that

the true version (βHn
, γKn

) belongs to the alternative set

Fn =

{
(βHn

, γKn
) : ∥{E(ẼiẼ

′
i)− w′E(FiẼ

′
i)}

(
Λ

1/2
Hn

ηHn

γKn

)
∥∞ ≥

Kρn(qn + rn)

[
log{n(pnsn + dn)}

n

]1/2}
,

where K > 0 is a sufficiently large universal constant. Then, we have

lim
n→∞

Power∗(βHn
, γKn

) = 1.

4. Simulation Studies

The simulated data {Yi, i = 1, . . . , n} are generated from the following model

Yi =
pn∑
j=1

∫ 1

0

βj(t)Xij(t)dt+
dn∑
l=1

Zilγl + ϵi =
qn∑
j=1

∫ 1

0

βj(t)Xij(t)dt+
rn∑
l=1

Zilγl + ϵi

=
qn∑
j=1

∑
k

ηjkθijk +
rn∑
l=1

Zilγl + ϵi,

with the high-dimensional setting (n, pn, dn) = (100, 200, 200). To simulate the

errors ϵi, we first generate {δih : i ≤ n, h ≤ 2} as a set of mutually independent

U(1, 2) random variables, and keep them fixed throughout the simulations. Then,
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we consider three challenging error settings (I)–(III):

(I) ϵi = (δ2i1 + δ2i2)
1/2ϵi1, (II) ϵi = (δ2i1 + δ2i2)

1/2ϵi2, (III) ϵi = δi1ϵi1 + δi2ϵi2,

where ϵi1
i.i.d.∼ (5/3)−1/2t(5) and ϵi2

i.i.d.∼ 8−1/2{χ2(4) − 4} have zero means and

unit variances. The errors ϵ1, . . . , ϵn are heterogeneous in all three settings. In

setting (I), the errors are heavy tailed. The errors are skewed in setting (II). In

setting (III), the errors are both heavy tailed and skewed. For the functional

part, we define the nonzero regression curves as βj(t) =
∑50

k=1 ηjkϕk(t), for j ≤
qn = 3, where ηjk = cj(1.2 − 0.2k) for k ≤ 5 and ηjk = 0.2cj(k − 4)−3 for

6 ≤ k ≤ 50, with the parameters {cj : j ≤ qn} chosen for different settings, and

{ϕk(·) : k ≥ 1} is a complete orthonormal Fourier basis on [0, 1], with ϕ1 = 1,

ϕ2ℓ = 21/2 cos{ℓπ(2t−1)}, for ℓ = 1, . . . , 25, and ϕ2ℓ−1 = 21/2 sin{(ℓ−1)π(2t−1)},
for ℓ = 2, . . . , 25. To constructXij , for j ≤ pn, we first generate pn i.i.d. functional

predictors {Wij(·) : j ≤ pn}, defined on [0, 1] as

Wij(t) =
50∑
k=1

ξ̃ijkϕk(t),

where {ξ̃ijk} are independently distributed as N(0, δ−2
k ). The sequence δ1, . . . , δ50

is a random permutation of 1, . . . , 50, and is kept fixed throughout the simula-

tions. The pn functional predictors are defined using the following autoregressive

relationship:

Xij(t) =
pn∑

j′=1

ρ
|j−j′|
1 Wij′(t) =

50∑
k=1

pn∑
j′=1

ρ
|j−j′|
1 θ̃ij′kϕk(t) =

50∑
k=1

θijkϕk(t),

with each θijk =
∑pn

j′=1 ρ
|j−j′|
1 θ̃ij′k, where the parameter ρ1 ∈ (0, 1) controls the

correlation between the functional predictors. In the simulation, we present the

case of ρ1 = 0.3. In contrast to prior studies, we adopt a more challenging

setting that requires no decaying pattern on the eigenvalues of Xij , owing to

the random permutation operation. For the observed measurements, we take

discrete realizations of {Xij(·), j = 1, . . . , pn} at m = 100 equally spaced times

{tijl, l = 1, . . . , 100} ∈ T = [0, 1], and use an orthonormal cubic spline basis to

fit the data. For the scalar part, we define the nonzero regression coefficients as

γl = cl+qn(−1)l−1, for l ≤ rn, where the parameters {cl+qn : l ≤ rn} are chosen

for different settings. To generate Zil for l ≤ dn, we first simulate Vil
iid∼ N(0, 1).

The dn scalar covariates are then defined using autoregressive relationship,

Zil =
dn∑
l′=1

ρ
|l−l′|
2 Vil′ +

pn∑
j=1

ρ
|pn−j+l|
3 θij1,
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where the parameter ρ2 ∈ (0, 1) controls the correlation between the scalar

covariates, and the parameter ρ3 ∈ (0, 1) controls the correlation between the

functional and the scalar parts. In the simulation, we present the case of

ρ2 = ρ3 = 0.3. For the model fitting, the tuning parameters sn and λn are

selected using five-fold cross-validation and the algorithm given in Appendix B

with the SCAD penalty. Given the selected sn, the tuning parameter λ∗
n is further

chosen using five-fold cross-validation based on the lasso regularization in (3.5).

In terms of inference, we set the nominal level as α = 5%, and the resampling

size as N = 10,000. In Table 1, we consider (qn, rn) = (3, 6), and summarize

the empirical size and power under the null and several alternative hypotheses

in settings specified by {cj : j ≤ qn + rn}, based on the rejection proportion over

1,000 Monte Carlo simulations. We also consider the case of (qn, rn) = (6, 12) in

Table 2. The computation takes about four minutes for each case in one Monte

Carlo run.

From Table 1, under error setting I, the rejection proportions under the null

hypothesisHn×Kn = {4, . . . , 6}×{7, . . . , 9} are, as expected, close to the nominal

level α = 5%. Moreover, the rejection proportions of the first four null hypotheses

increase rapidly as we add significant functional predictors and scalar covariates

into the null hypothesis, which is expected for a power function curve. As the

intensity level increases from 0.4 × 11×9 to 0.6 × 11×9, the empirical power also

increases rapidly, as expected. Similar patterns are observed for error settings II

and III, indicating the proposed test is valid for various complex heterogeneous

errors. The results in Table 2 share the same spirit as those in Table 1, further

demonstrating the validity of the proposed test.

5. Real-Data Example

In this section, we apply our method to data on attention deficit hyperactivity

disorder (ADHD), taken from the Attention Deficit Hyperactivity Disorder-200

Sample Initiative Project. ADHD is the most commonly diagnosed behavioral

disorder in childhood, and can continue through adolescence and adulthood.

Symptoms include lack of attention, hyperactivity, and impulsive behavior. The

data set we use is the filtered preprocessed resting state data from the New

York University Child Study Center, namely, the Anatomical Automatic Labeling

(Tzourio-Mazoyer et al. (2002)) atlas, which contains pn = 116 regions of interest,

fractionated into 390 functional space using nearest-neighbor interpolation. After

cleaning the raw data that failed the quality control, we include n = 137

individuals in the analysis.

The response of interest is the ADHD index, a continuous behavior score

that reflects the severity of the disease. In the Anatomical Automatic Labeling

atlas data, the mean gray scale in each region is calculated for 172 equally spaced

time points. There are dn = 8 scalar covariates of primary interest, including
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Table 1. Simulation results for different settings of the regression curves {βj : j ≤
qn} and scalar coefficients {γl : l ≤ rn} specified by {ck : k ≤ qn + rn}, under
various error settings and hypotheses, measured over 1,000 Monte Carlo runs, where
(n, pn, dn, qn, rn) = (100, 200, 200, 3, 6). Shown are the empirical rejection proportions.

Error setting (c1, . . . , c9) H0 : Hn ×Kn Rejection proportion

I

0.4× 11×9 {4, . . . , 6} × {7, . . . , 9} 0.046

0.4× 11×9 {3, . . . , 6} × {5, . . . , 9} 0.166

0.4× 11×9 {2, . . . , 6} × {3, . . . , 9} 0.416

0.4× 11×9 {1, . . . , 6} × {1, . . . , 9} 0.554

0.6× 11×9 {4, . . . , 6} × {7, . . . , 9} 0.050

0.6× 11×9 {3, . . . , 6} × {5, . . . , 9} 0.386

0.6× 11×9 {2, . . . , 6} × {3, . . . , 9} 0.812

0.6× 11×9 {1, . . . , 6} × {1, . . . , 9} 0.918

II

0.4× 11×9 {4, . . . , 6} × {7, . . . , 9} 0.052

0.4× 11×9 {3, . . . , 6} × {5, . . . , 9} 0.192

0.4× 11×9 {2, . . . , 6} × {3, . . . , 9} 0.410

0.4× 11×9 {1, . . . , 6} × {1, . . . , 9} 0.544

0.6× 11×9 {4, . . . , 6} × {7, . . . , 9} 0.054

0.6× 11×9 {3, . . . , 6} × {5, . . . , 9} 0.376

0.6× 11×9 {2, . . . , 6} × {3, . . . , 9} 0.796

0.6× 11×9 {1, . . . , 6} × {1, . . . , 9} 0.894

III

0.4× 11×9 {4, . . . , 6} × {7, . . . , 9} 0.042

0.4× 11×9 {3, . . . , 6} × {5, . . . , 9} 0.158

0.4× 11×9 {2, . . . , 6} × {3, . . . , 9} 0.400

0.4× 11×9 {1, . . . , 6} × {1, . . . , 9} 0.550

0.6× 11×9 {4, . . . , 6} × {7, . . . , 9} 0.048

0.6× 11×9 {3, . . . , 6} × {5, . . . , 9} 0.378

0.6× 11×9 {2, . . . , 6} × {3, . . . , 9} 0.810

0.6× 11×9 {1, . . . , 6} × {1, . . . , 9} 0.924

gender (female/male), age, handedness (continuous between zero and one, where

zero denotes totally left-handed, and one denotes totally right-handed), diagnosis

status (categorical, with three levels: ADHD-combined, ADHD-inattentative,

and Control as a baseline), medication status (yes/no), verbal IQ, performance

IQ, and Full4 IQ. Our goal is to identify the important factors for the ADHD

index from among these eight scalar covariates and 116 functional predictors. The

model is given in (1.2). At the nominal level α = .05, we first apply the proposed

method to test the simple hypotheses H0 : βj = 0 and H0 : γl = 0. These

tests indicate that eight regression curves (βj : j = 1, 11, 41, 53, 68, 69, 70, 90)

associated with the precentral, frontal, amygdala, occipital, supramarginal,

precuneus and paracentral are significant, and that the two significant scalar

coefficients (γl : l = 4, 8) corresponding to diagnosis status and medication

status are significant. These findings are reasonable, based on articles such as



692 XUE AND YAO

Table 2. Simulation results for different settings of the regression curves {βj : j ≤ qn}
and scalar coefficients {γl : l ≤ rn} specified by {ck : k ≤ qn + rn}, under various error
settings and hypotheses, measured over 1000 Monte Carlo runs, where (n, pn, dn, qn, rn) =
(100, 200, 200, 6, 12). Shown are the empirical rejection proportions.

Error setting (c1, . . . , c18) H0 : Hn ×Kn Rejection proportion

I

0.4× 11×18 {7, . . . , 9} × {13, . . . , 15} 0.044

0.4× 11×18 {5, . . . , 9} × {9, . . . , 15} 0.388

0.4× 11×18 {3, . . . , 9} × {5, . . . , 15} 0.782

0.4× 11×18 {1, . . . , 9} × {1, . . . , 15} 0.860

0.6× 11×18 {7, . . . , 9} × {13, . . . , 15} 0.041

0.6× 11×18 {5, . . . , 9} × {9, . . . , 15} 0.703

0.6× 11×18 {3, . . . , 9} × {5, . . . , 15} 0.977

0.6× 11×18 {1, . . . , 9} × {1, . . . , 15} 0.993

II

0.4× 11×18 {7, . . . , 9} × {13, . . . , 15} 0.042

0.4× 11×18 {5, . . . , 9} × {9, . . . , 15} 0.408

0.4× 11×18 {3, . . . , 9} × {5, . . . , 15} 0.804

0.4× 11×18 {1, . . . , 9} × {1, . . . , 15} 0.848

0.6× 11×18 {7, . . . , 9} × {13, . . . , 15} 0.044

0.6× 11×18 {5, . . . , 9} × {9, . . . , 15} 0.714

0.6× 11×18 {3, . . . , 9} × {5, . . . , 15} 0.972

0.6× 11×18 {1, . . . , 9} × {1, . . . , 15} 0.984

III

0.4× 11×18 {7, . . . , 9} × {13, . . . , 15} 0.048

0.4× 11×18 {5, . . . , 9} × {9, . . . , 15} 0.398

0.4× 11×18 {3, . . . , 9} × {5, . . . , 15} 0.774

0.4× 11×18 {1, . . . , 9} × {1, . . . , 15} 0.856

0.6× 11×18 {7, . . . , 9} × {13, . . . , 15} 0.050

0.6× 11×18 {5, . . . , 9} × {9, . . . , 15} 0.708

0.6× 11×18 {3, . . . , 9} × {5, . . . , 15} 0.978

0.6× 11×18 {1, . . . , 9} × {1, . . . , 15} 0.992

(Sasayama et al. (2010); Sidlauskaite et al. (2015)). Next, we consider the two

general hypotheses H01 : (βj, γl) = (0, 0), for all (j, l) ∈ Hn × Kn, and H02 :

(βj, γl) = (0, 0), for all (j, l) ∈ Hc
n ×Kc

n, where Hn = {1, 11, 41, 53, 68, 69, 70, 90}
and Kn = {4, 8}. Because the proposed test rejects H01 and accepts H02, it

further supports our findings.

Appendix

A. Conditions on the LPFLMhete

For the asymptotic properties, we require the following mild conditions (A1)–

(A4). Condition (A1) is on the distribution type of the random variables from

the model, which is comprised of parts (A1.1) and (A1.2).
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Condition A1.

(A1.1) The random variables ϵi, ω
−1/2
jk θijk, Zil, wt

′Fi are sub-Gaussian with

mean zero and variance proxy σ2 for some universal constant σ > 0,

uniformly in i = 1, . . . , n, j = 1, . . . , pn, k = 1, . . . ,∞, l = 1, . . . , dn,

t = 1, . . . , hnsn + kn.

(A1.2) The centered errors ϵ1, . . . , ϵn are mutually independent (not necessarily

identically distributed), and satisfy the moment condition:

n−1
n∑

i=1

E(ϵ2i ) ≥ c1, for some universal constant c1 > 0.

Note that (A1.1) only requires the sub-Gaussianity of random variables. Different

from the underlying assumption of i.i.d. data {Yi, (Xij : j ≤ pn), Zi, ϵi}ni=1 in

existing literature, the moment-type assumption (A1.2) takes one step further to

allow for non i.i.d. responses, or heterogeneous errors. Condition (A2) specifies

the smoothness and the covariance structure of the model.

Condition A2.

(A2.1) supj≤pn

∑∞
k=1 ωjk < ∞.

(A2.2) supj≤qn

∑∞
k=1 η

2
jkk

2δ < ∞, for some constant δ > 0.

(A2.3) ∥γ∥∞ < ∞.

(A2.4) c−1
1 ≤ λmin(E(G̃iG̃

′
i)) ≤ λmax(E(G̃iG̃

′
i)) ≤ c1, for a constant c1 > 0.

(A2.1) is the only smoothness condition on Xij , which require the square

integrability supj≤pn

∫
T
E(X2

ij)dt < ∞, without any decaying restriction on ωjk.

In contrast, all existing work demands either ωjk − ωj,k+1 ≳ k−a−1 or λmin(Λ) ≳
s−a
n for some a > 1. (A2.2) assumes the nonzero regression curves {βj : j ≤ qn}
to belong to a Sobolev ball whose smoothness relies on a regularity constant

δ > 0. (A2.3) regulates the smoothness of scalar coefficients. (A2.4) specifies

the covariance structure of the model, which is a standard condition in high-

dimensional regression analysis. The relationship among the data dimensions,

the truncation size and several critical parameters are given in condition (A3).

Condition A3.

(A3.1) log9{n(pnsn + dn)}/n → 0.

(A3.2) {sn(qn + rn)Bn}18/7/n → 0.

(A3.3) s2δn /[nq2n log
2{n(pnsn + dn)}] → ∞.
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Notice that (A3.1) permits both data dimensions pn and dn to grow exponentially

in sample size, while (A3.2) reflects the sparsity of the model since both qn and

rn are small in n. On one hand, (A3.2) requires the truncation size sn to be

relatively small in n to control the overall variation induced from the infinite-

dimensional functional predictors. On the other hand, (A3.3) demands sn to

be relatively large in n to capture sufficient information for inference. Putting

(A3.2) and (A3.3) together yields that δ > 9/7, with δ defined in (A2). It

follows from (A2) and (A3) that ∥η∥1+∥γ∥1 ≲ (qn+ rn), suggesting the choice of

Bn ≍ (qn + rn) in practice based on the definition of Bn in (2.3). Condition (A4)

quantifies the orders of tuning parameters λn and λ∗
n, and the sparsity parameter

ρn = supj≤hnsn+kn
∥wj∥0 of w = {E(FiFi

′)}−1E(FiẼ
′
i) = (w1, . . . , whnsn+kn

).

Condition A4.

(A4.1) n−1/9sn(qn + rn)
2 log4{n(pnsn + dn)} = o(λ−2

n ).

(A4.2) max{(s2δ−1
n /(n1/9q2n))

−1, snB
2
n/n

7/9} = o(λ2
n).

(A4.3) K1[log{n(pnsn+dn)}/n]1/2 ≤ λ∗
n ≤ K2[log{n(pnsn+dn)}/n]1/2, for some

sufficiently large universal constants K2 > K1 > 0.

(A4.4) ρ2n log
5{n(pnsn + dn)}/n → 0, ρ2n(qn + rn)

2 log{n(pnsn + dn)}/n → 0.

(A4.1) requires the tuning parameter λn in (2.3) to be small to retain important

information about the significant predictors, while (A4.2) demands relatively

larger λn to remove most irrelevant predictors via the regularization procedure.

The order of the tuning parameter λ∗
n in (3.5) is specified in (A4.3). (A4.4)

demands ρn to be small in n, corresponding to the sparseness assumption on w.

For a concrete example, under the high-dimensional setting
{
log pn ≍

log dn ≍ n1/20; sn ≍ qn ≍ rn ≍ ρn ≍ Bn ≍ n1/9;λn ≍ n−13/60;λ∗
n ≍ n−19/40; δ =

6
}
, conditions (A1)–(A13) hold simultaneously.

B. Regularizers and Algorithm

For technical convenience, the data are presumed centered such that

n−1
∑n

i=1 Yi = 0, n−1
∑n

i=1 θijk = 0 and n−1
∑n

i=1 Zil = 0, for all j ≤ pn,

k ≤ sn, l ≤ dn. We let f̂j = Θj η̂j and Uj = Θj(Θj
′Θj)

−1Θj
′ for each

j ≤ pn. For each j = pn + 1, . . . , pn + dn, we let f̂j = Vj−pn
γ̂j−pn

and

Uj = Vj−pn
(Vj−pn

′Vj−pn
)−1Vj−pn

′ with the vectors Vl = (Z1l, . . . , Znl)
′ for each

l ≤ dn. The optimization problem in (2.3) can be solved by a coordinate descent

algorithm modified from Ravikumar et al. (2008) and Fan, James and Radchenko

(2015). This algorithm is valid for a general class of regularizers ρλ as long as the

technical conditions (B1)–(B5) below as in Loh and Wainwright (2015) are met.

Specifically, for any λ > 0,

(B1) ρλ(0) = 0 and ρλ(t) = ρλ(−t) for any t ∈ R.
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(B2) ρλ(t) is nondecreasing in t ∈ [0,∞).

(B3) gλ(t) = t−1ρλ(t) is nonincreasing in t ∈ (0,∞).

(B4) ρλ(t) is differentiable at all t ̸= 0 and subdifferentiable at t = 0, with

limt→0+ ρ′λ(t) = λL for some constant L > 0.

(B5) For some constant µ > 0, the function ρλ,µ(t) = ρλ(t) + 2−1µt2 is convex in

t.

Most of the convex or nonconvex penalties, e.g., LASSO, SCAD and MCP, satisfy

the above conditions. Finally, the fitting algorithm for (2.3) is as follows.

Algorithm 1

(i) Initialize f̂j = 0, for every j = 1, . . . , pn + dn.

(ii) Compute the residual Rj = Y −
∑

k ̸=j f̂k, while keeping other {f̂k : k ̸= j} fixed.

(iii) Compute the P̂j = UjRj .

(iv) Set f̂j = max
{
1− n4/9ρ′λn

(n−5/9||f̂j ||2)/||P̂j ||2, 0
}
P̂j .

(v) Set f̂j = f̂j − n−11n
′f̂j1n, where 1n stands for the n× 1 vector of ones.

(vi) Do (ii)–(v) for j = 1, . . . , pn + dn respectively and iterate until convergence to

obtain the final estimators f̂j , for j = 1, . . . , pn + dn.

(vii) Using the final estimators f̂j from (vi), calculate the final estimators η̂j =

(Θj
′Θj)

−1Θj
′f̂j for j = 1, . . . , pn, and γ̂l = (Vl

′Vl)
−1Vl

′f̂l+pn
for l = 1, . . . , dn.

Supplementary Material

The auxiliary lemmas used to derive the theorems, as well as the proofs of

those lemmas and theorems are contained in an online Supplementary Material.
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