
Statistica Sinica 34 (2024), 157-180
doi:https://doi.org/10.5705/ss.202020.0496

PARSIMONIOUS TENSOR DISCRIMINANT ANALYSIS

Ning Wang1, Wenjing Wang2 and Xin Zhang∗2

1Beijing Normal University at Zhuhai and 2Florida State University

Abstract: Discriminant analyses of multidimensional array data (i.e., tensors) are

of substantial interest in numerous statistics and engineering research problems,

such as signal processing, imaging, genetics, and brain–computer interfaces. In this

study, we consider a multi-class discriminant analysis with a tensor-variate predictor

and a categorical response. To overcome the high dimensionality and to exploit

the tensor correlation structure, we propose the discriminant analysis with tensor

envelope (DATE) model for simultaneous dimension reduction and classification.

We extend the notion of tensor envelopes from regression to discriminant analysis

and develop two complementary estimation procedures: DATE-L is a likelihood-

based estimator that is shown to be asymptotically efficient when the sample size

goes to infinity and the tensor dimension is fixed; DATE-D is a novel decomposition-

based estimator suitable for high-dimensional problems. Interestingly, we show that

DATE-D is still root-n consistent, even when the tensor dimensions on each model

grow arbitrarily fast, but at a similar rate. We demonstrate the robustness and

efficiency of our estimators using extensive simulations and real-data examples.
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1. Introduction

Statistical analyses of tensor data are common in areas such as high-throu-

ghput genetics (Hore et al. (2016)), signal processing (Cichocki et al. (2015)),

neuroimaging (Zhou, Li and Zhu (2013)), and point cloud data (Yan, Paynabar

and Pacella (2019)), among others. Our notion of a tensor analysis differs from

that in mathematics and physics, although some operators and techniques are

the same. We use multilinear algebra (e.g., Hitchcock (1927); Tucker (1966)) to

provide a concise statistical modeling framework and estimation procedures.

Two tasks popular in the statistical literature on tensor data analysis are

tensor decompositions and tensor regression problems. In the first category,

studies are mostly unsupervised, with tensor decompositions used to reduce the

dimensionality of the tensor and to extract a meaningful representation along

each mode of the tensor. For example, Kolda and Bader (2009) give an overview

of tensor decompositions and related applications, Wang, Meng and Yuan (2018)

provide a recent review on tensor sparse recovery, Chi and Kolda (2012) developed

algorithms for sparse count data, Zhang and Xia (2018) study the theoretical

limits of tensor singular value decomposition, and Zhang (2019) examine tensor
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completion. In the second category, the goal is to study the relationship between a

tensor variable and other variables (scalar, vector, or even tensor). Such problems

are formulated as tensor regression problems. In particular, a tensor variable can

appear in regression models as the predictor (e.g., Zhou, Li and Zhu (2013); Wang,

Zhu and Initiative (2017); Li et al. (2018)), the response (e.g., Hoff (2015); Li

and Zhang (2017); Sun and Li (2017)), or both (i.e., tensor on tensor regression,

Lock (2018); Gahrooei et al. (2020); Raskutti, Yuan and Chen (2019)).

Here, we study the problem of tensor discriminant analysis. Unlike the

abundant literature on tensor decompositions and regression problems, there are

far fewer statistical approaches and theoretical studies for tensor classification

and discriminant analysis. Some earlier works (Ye, Janardan and Li (2004); Li

and Schonfeld (2014); Zhong and Suslick (2015); Yan et al. (2006)) have shown

promising performance for matrix and tensor discriminant analysis, based on

the principle of maximizing the ratio of between-class variation to within-class

variation. These methods are thus extensions of Fisher’s discriminant analysis

(Fisher (1936)) to matrix/tensor data. Because of the high dimensionality,

such linear/multilinear classifiers are arguably more reliable than quadratic

or nonlinear discriminant analysis. Another important, but different research

direction is using margin-based classification methods for tensor data (Lyu,

Lock and Eberly (2017); Li and Maiti (2019)). More recently, likelihood-based

matrix/tensor discriminant analysis models and methods (Molstad and Rothman

(2019); Pan, Mai and Zhang (2019)) were shown to be more effective than

moment-based and margin-based methods.

We propose the discriminant analysis with tensor envelope (DATE) model,

which incorporates the recently proposed tensor envelope (Li and Zhang (2017);

Zhang and Li (2017)) to reduce the model complexity and improve estimation

efficiency. A Tensor envelope is a multilinear extension of the envelope

methodology in multivariate statistics (Cook, Li and Chiaromonte (2010)).

We provide a brief review of envelopes and tensor envelopes in Section 2.2.

The core idea of an envelope is to identify and eliminate unimportant and

immaterial variation in the data in order to improve the estimation and

prediction. This is achieved by projecting the data onto a latent subspace,

known as an “envelope.” The existing envelope methods for tensor data were

developed in regression problems, with very few focusing on tensor discriminant

analysis. We address this gap in the literature by extending the envelope

discriminant analysis (Zhang and Mai (2019)) from vector data to tensor data.

Similarly to existing envelope methods, we derive a likelihood-based estimator

(DATE-L) that is asymptotically efficient. To accommodate high-dimensional

applications, we propose a novel decomposition-based estimator (DATE-D) that

is a complementary alternative to the more expensive manifold optimization in

likelihood-based envelope estimation. We obtain a convergence rate for DATE-D

that is sufficiently strong for most tensor data applications. Therefore, DATE-
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D provides a computationally feasible and theoretically justified approach in

high dimensions when DATE-L fails. It also fills the gap in the literature on

high-dimensional theoretical analysis of envelope methods, especially because

additional structural assumptions, such as sparsity, are not required.

Extending the tensor envelope concept from regression to the present setting

is not trivial, requiring new parameterization and maximum likelihood estimator

derivations. We also adapt the fast and stable one-step estimation (Li and Zhang

(2017)) and 1D algorithm (Cook and Zhang (2016)) to control the computational

complexity of our DATE-L estimation procedure. More importantly, existing

envelope methods (including DATE-L) often require iterative Grassmann man-

ifold optimization. We provide a novel decomposition-based estimation that is

computationally tractable and theoretically justified for high-dimensional tensors,

and can be straightforwardly modified to fit tensor envelope regression models in

high dimensions. While existing tensor envelopes are studied under fixed tensor

dimensions, we establish new consistency results for both fixed and diverging

tensor dimensions.

The rest of the paper is structured as follows. In Section 2, we introduce

some tensor notation and briefly review envelopes in both vector and tensor

regression. In Section 3, we propose the DATE model and derive the two

estimation procedures, DATE-L and DATE-D. Section 4 studies the asymptotic

properties of the DATE-L estimator and the convergence rate of the DATE-D

estimator. Simulations and real-data examples are presented in Section 5. Section

6 concludes the paper. Additional numerical results, implementation details, and

proofs are provided in the online Supplementary Material.

2. Background

2.1. Notation

We call a multidimensional array A ∈ Rp1×···×pM an M -way tensor or Mth-

order tensor (e.g., M = 1 for vectors and M = 2 for matrices). Some key

operators on the Mth-order tensor A are defined as follows.

Vectorization: The vectorization of A is denoted by vec(A) ∈ R
∏

m pm , where

the (i1, . . . iM)th scalar in A is mapped to the jth entry of vec(A), for j =

1 +
∑M

m=1{(im − 1)
∏m−1

k=1 pk}.

Matricization: The mode-n matricization, reshapes the tensor A into a matrix

denoted by A(n) ∈ Rpn×
∏

m6=n pm , such that the (i1, . . . , iM)-th element in A

becomes the (in, j)th element of the matrix A(n), where j = 1 +
∑

k 6=n{(ik −
1)
∏

l<k,l 6=n pl}.

(Collapsed) Vector product : The mode-n vector product of A and a vector

c ∈ Rpn is represented by A×̄nc ∈ Rp1×···×pn−1×pn+1×···×pM , and results in a
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collapsed (M−1)th-order tensor. This product is the result of the inner products

between every mode-n fiber in A with vector c. The mode-n fibers of A are the

vectors obtained by fixing all indices except the nth index.

Matrix product: The mode-n product of a tensor A and a matrix G ∈ Rs×pn ,

denoted as A ×n G, is an Mth-order tensor with dimension p1 × · · · × pn−1×
s× pn+1 × · · · × pM . Similarly to the vector product, the product is the result of

a multiplication between each mode-n fiber of A and the matrix G.

Tucker product: The Tucker product of the core tensor A and a series of factor

matrices C1, . . . ,CM , where Ck ∈ Rqk×pk , for k = 1, . . . ,m, is defined as A ×1

C1×2 · · ·×M CM ≡ JA; C1, . . . ,CMK ∈ Rq1×···×qM . If qk ≥ pk and each Ck satisfies

CT
k Ck = Iqk , then B = JA; C1, . . . ,CMK is called a Tucker decomposition of B.

The tensor normal distribution with mean µ ∈ Rp1×···×pM and separable

covariance matrices Σm > 0, where Σm ∈ Rpm×pm , for m = 1, . . . ,M , is

denoted by TN(µ,Σ1, . . . ,ΣM). We have X ∼ TN(µ,Σ1, . . . ,ΣM) if X = µ +

JZ; Σ
1/2
1 , . . . ,Σ

1/2
M K, where Z is the standard tensor normal random variable with

elements that are all independently N(0, 1) random variables. The vectorization

and matricization operations on a tensor normal random variable preserve the

normality. Specifically, vec(X) follows a multivariate normal distribution with

mean vec(µ) and covariance Σ ≡ ΣM⊗· · ·⊗Σ1, where⊗ represents the Kronecker

product; and, for m = 1, . . . ,M , X(m) follows a matrix normal distribution

(Gupta and Nagar (2018)) with mean µ(m), row covariance Σm, and column

covariance Σ−m ≡ ΣM ⊗ · · · ⊗Σm+1 ⊗Σm−1 ⊗ · · · ⊗Σ1.

2.2. Tensor envelope

A tensor envelope (Li and Zhang (2017); Zhang and Li (2017)) is a gener-

alization of the envelopes in multivariate analysis (Cook, Li and Chiaromonte

(2010); Cook (2018)) that combines the Tucker tensor decomposition with the

notion of reducing subspaces in functional analysis (Conway (2013)). We briefly

review these concepts below.

Given a matrix B ∈ Rp×d, B = span(B) ⊆ Rp is defined as the subspace

spanned by the column vectors of B. Projections onto B and its orthogonal

complement subspace B⊥ are denoted as PB = PB and QB = QB = Ip − PB,

respectively. If the matrix is of full column rank, then PB = B(BTB)−1B.

Definition 1. A subspace B ⊆ Rp is a reducing subspace of M ∈ Rp×p if and

only if M = PBMPB + QBMQB. The M-envelope of B is the intersection of all

reducing subspaces of M that contain B, and is denoted as EM(B) or EM(B).

By construction, the envelope EM(B) ⊆ Rp is always unique and the smallest

such subspace. The existence is easily guaranteed when M > 0 (Cook, Li

and Chiaromonte (2010)). Cook and Zhang (2015) provide a general envelope
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construction for a wide range of multivariate parameter estimation problems. In

the general envelope construction, B is the parameter of interest, and M is either

the covariance matrix of some random vector or the asymptotic covariance matrix

of a
√
n-consistent estimator. Thus, the existence and uniqueness of envelopes

are always true. Tensor envelopes have been developed under linear regression

models with a tensor response (Li and Zhang (2017)) and with a tensor predictor

(Zhang and Li (2017)). We unify the two envelopes, and give the following more

general formulation of a tensor envelope. Let B ∈ Rp1×···×pM be the tensorial

parameter of interest. Let Σ =
⊗1

m=M Σm ≡ ΣM ⊗ · · · ⊗ Σ1 be the Kronecker

product of a series of symmetric positive-definite matrices Σm ∈ Rpm×pm , for

m = 1, . . . ,M . The Kronecker operator for two subspaces S1 ⊗ S2 is defined as

the subspace spanned by B1 ⊗ B2, where Bk is any basis matrix for subspace

Sk, for k = 1, 2. The definition and a key property of the tensor envelope are

summarized as follows.

Definition 2. The tensor envelope TΣ(B) is the intersection of all reducing

subspaces S of Σ that contain vec(B) and can be written as S = SM ⊗ · · · ⊗ S1,
with Sm ⊆ Rpm , for m = 1, . . . ,M .

Proposition 1. TΣ(B) = EΣM
(B(M))⊗ · · · ⊗ EΣ1

(B(1)).

This proposition (derived from Li and Zhang (2017, Prop. 3)) connects the

tensor envelope TΣ(B) with the multivariate envelopes EΣm
(B(m)), for m =

1, . . . ,M , along each mode of the tensor B. It implies that we can estimate

a tensor envelope by estimating the individual envelopes EΣm
(B(m)), for each

mode m. The existence, uniqueness, and minimality of the envelope EΣM
(B(m))

are shown in Cook, Li and Chiaromonte (2010). Then, by Proposition 1, the

tensor envelope TΣ(B) always exists and is unique.

3. Discriminant Analysis with Tensor Envelope

3.1. The TDA model

We consider an Mth-order tensor variable X ∈ Rp1×···×pM , for M ≥ 2, and

a categorical response Y ∈ {1, . . . ,K}, with K ≥ 2 categories/classes. We

consider the following tensor discriminant analysis (TDA) model that is a natural

generalization of the linear discriminant analysis model in the vector case:

X | (Y = k) ∼ TN(µk,Σ1, . . . ,ΣM), (3.1)

where µk ∈ Rp1×···×pM is the class-specific mean, and Σm ∈ Rpm×pm , for

m = 1, . . . ,M , are symmetric positive-definite common covariance structures

across classes. We assume nontrivial classes such that Pr(Y = k) = πk > 0

and
∑K

k=1 πk = 1. Pan, Mai and Zhang (2019) also considered this model and

developed a sparse TDA method. For a discriminant analysis, our goal is to
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improve the estimation of the optimal prediction of Y , which is known as Bayes’

rule. Under the TDA model (3.1), the Bayes rule is given as

φTDA(X) = argmax
k=1,...,K

Pr(Y = k | X) = argmax
k=1,...,K

{ck + 〈Bk,X〉}, (3.2)

where Bk = Jµk − µ1; Σ
−1
1 , . . . ,Σ−1M K, ck = log(πk/π1) − 〈Bk, (µk + µ1)/2〉, and

〈Bk,X〉 is the inner product of Bk and X. Let B ∈ Rp1×···×pM×(K−1) be the

stacked tensor coefficients {B2, . . . ,BK}. Then, φTDA(X) can be viewed as a

function of B(M+1)vec(X) = (〈B2,X〉, . . . , 〈BK ,X〉)T ∈ RK−1. Therefore, to

improve classification accuracy, we need to improve the estimation of the tensor

parameter B. Although the TDA model reduces the number of parameters in

the covariance matrix, many model parameters remain in most tensor data sets.

Therefore, we use the tensor envelope to further reduce the number of parameters

in the TDA model, thus facilitating the estimation.

3.2. The DATE model

Similarly to the motivation of the envelope discriminant analysis for a vector

predictor (Zhang and Mai (2019)), the tensor envelope for a discriminant analysis

and classification aims to identify and eliminate the part of X ∈ Rp1×···×pM that is

unrelated to Bayes’ classification rule and the remaining information. We consider

a decomposition in the form of X = P(X)+Q(X), where P(X) = JX; P1, . . . ,PMK,
and each Pm ∈ Rpm×pm is the projection onto a latent subspace Sm ⊆ Rpm . The

Tucker product form of P(X) preserves all information for discriminating Y , and

Q(X) = X − P(X) is the part that is irrelevant for classification. As such, we

consider that, for k = 1, . . . ,K,

Pr(Y = k | X) = Pr{Y = k | P(X)}, Q(X) ⊥⊥ P(X) | (Y = k), (3.3)

where ⊥⊥ indicates the independence of random variables. The first condition in

(3.3) implies that Bayes’ classification rule does not change if we project the data

onto the subspaces Sm, for m = 1, . . . ,M , along each mode of the tensor. The

second condition in (3.3) requires that the material part P(X) is not affected by

the immaterial part Q(X). The following proposition connects the subspaces Sm,

for m = 1, . . . ,M , with the TDA model parameters and Bayes’ rule.

Proposition 2. Under the TDA model (3.1), assumption (3.3) is equivalent to

span(BT
(M+1)) ⊆ S = SM ⊗ · · · ⊗ S1, Σm = PmΣmPm + QmΣmQm,

for m = 1, . . . ,M . Furthermore, EΣX
(BT

(M+1)) ⊆ TΣ(B) = EΣM
(B(M)) ⊗ · · · ⊗

EΣ1
(B(1)), where ΣX = cov(vec(X)).

Proposition 2 establishes the tensor envelope construct TΣ(B), and implies

that Pr(Y = k | X) = P (Y = k | X×m Pm) and X×m Pm ⊥⊥ X×m Qm | (Y = k)
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on each mode m = 1, . . . ,M , where Qm = Ipm
− Pm is the projection onto

S⊥m. When M = 1, this reduces to the envelope LDA model (Zhang and Mai

(2019)). Proposition 2 offers a more intuitive explanation of the tensor envelope:

it is the smallest subspace reduction P(X) to attain the same Bayes’ rule as the

original X, while not leaking information by correlating with Q(X). Finally, the

tensor envelope is shown to contain the vectorized envelope discriminant subspace

EΣX
(BT

(M+1)), and is a reducing subspace for the marginal covariance of vec(X).

To further investigate the subspace representations in Proposition 2, we

let (Γm,Γ0m) be an orthogonal basis matrix for Rpm such that span(Γm) =

EΣm
(B(m)). Let the envelope dimension be um, um ≤ pm, Γm ∈ Rpm×um , and

Γ0m ∈ Rpm×(pm−um). Then, we have the following parameterization of the TDA

model, for k = 1, . . . ,K and m = 1, . . . ,M :

Bk = Jηk; Γ1, . . . ,ΓMK, ηk ∈ Ru1×···×uM , (3.4)

Σm = ΓmΩmΓT
m + Γ0mΩ0mΓT

0m, (3.5)

where ηk, defined as a tensor with conforming dimensions, consists of the

coordinates of Bk with respect to the basis matrices Γ1, . . . ,ΓM . Similarly, Ωm,

Ω0m and the following Θk are constructed based on the basis matrices Γ1, . . . ,ΓM .

Note that µ =
∑K

k=1 πkµk is the overall mean tensor. It is straightforward to show

that (3.4) is equivalent to the following equation:

µk − µ = JΘk; Γ1, . . . ,ΓMK,Θk ∈ Ru1×···×uM , (3.6)

where we have an additional constraint
∑K

k=1 πkΘk = 0. The total number of free

parameters in the TDA model (3.1) is (K−1)+K
∏M

m=1 pm+
∑M

m=1{pm(pm + 1)}
/2, whereas the total number of free parameters in (3.5) and (3.6) is (K − 1) +

K
∏M

m=1 um +
∑M

m=1{pm(pm + 1)}/2. Therefore, the tensor envelope has reduced

the number of parameters by K(
∏M

m=1 pm −
∏M

m=1 um) under the TDA model.

By reducing the model complexity, the envelope approach can often lead to a

substantial gain in the estimation of Bk, thus improving the classification.

3.3. Likelihood-based estimation

Given the observed data {Xi, Y i}ni=1, for each class k = 1, . . . ,K, we have

nk =
∑

i I(Y i = k) as the class-k sample size and Xk = n−1k

∑
i I(Y i = k)Xi

as the class-k sample mean. Under TDA model (3.1), the standard maximum

likelihood estimators (MLEs) for πk and µk are nk/n and Xk, respectively. In

addition, the MLE for Σm can be obtained through iterative updates as the

solution to

Σm =
1

np−m

n∑
i=1

I(Y i = K)(Xi −Xk)(m)Σ
−1
−m(Xi −Xk)

T

(m), (3.7)
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where p−m =
∏

l 6=m pl, and Σ−m = ΣM ⊗ · · · ⊗ Σm+1 ⊗ Σm−1 ⊗ · · · ⊗ Σ1. The

derivation for (3.7) is similar to that in Manceur and Dutilleul (2013), and is thus

omitted. Under the tensor envelope parameterization (3.4) and (3.5), we have

derived MLE equations to greatly facilitate estimation.

Proposition 3. Under the DATE model (3.1), (3.4), and (3.5), the MLE of

the envelope basis Γ̂m is obtained by minimizing the following objective function

under the semi-orthogonal constraint ΓT
mΓm = Ipm

:

`m(Γm) = log |ΓT
mM̂mΓm|+ log |ΓT

m(N̂m)−1Γm|, (3.8)

where M̂m = (n
∏

m 6=j pm)−1
∑n

i=1 I(Y i = K){sik(m)Σ̂
−1
−m(sik(m))

T}, N̂m =

(n
∏

m 6=j pm)−1
∑n

i=1(X
i − X)(m)Σ̂

−1
−m(Xi − X)T(m), and sik = I(Y i = k)(Xi −

X) − JXk − X; P̂1, . . . , P̂m−1, Ipm
, P̂m+1, . . . , P̂MK. The MLEs for the DATE

parameters are given by

Θ̂k = JXk −X; Γ̂T
1 , . . . , Γ̂

T
MK, B̂k = JXk −X1; Γ̂1Ω̂

−1
1 Γ̂T

1 , . . . , Γ̂MΩ̂−1M Γ̂T
MK,

Σ̂m = Γ̂mΩ̂mΓ̂T
m + Γ̂0mΩ̂0mΓ̂T

0m,

Ω̂m =
1

np−m

n∑
i=1

I(Y i = K){Γ̂T
msik(m)Σ̂

−1
−m(sik(m))

T Γ̂m},

Ω̂0m =
1

np−m

n∑
i=1

{Γ̂T
0m(Xi −X)(m)Σ̂

−1
−m(Xi −X)T(m)Γ̂0m}.

The implementation of the algorithm is based directly on the above

proposition. To initialize, we first obtain the standard MLE for Σm based

on equation (3.7), and replace Γ̂m with Ipm
in the construction of the pseudo

observations sik. The pseudo observations are used to update the envelope basis

Γ̂m by minimizing `m(Γm) in Proposition 3. We then iteratively update the

envelope basis, the pseudo observations, and the covariance matrices Σ̂m. After

convergence, we calculate the MLEs for the means µk and for other parameters,

such as Θk and B. Finally, after we obtain B̂, the prediction is simply the LDA

classification rule (3.2) on the reduced data (〈B̂2,X〉, . . . , 〈B̂K ,X〉)T ∈ RK−1.

The objective function `m(Γm) in (3.8) is nonconvex and depends on

all other {Γj}j 6=m intrinsically through Σ̂−m and sik. Therefore, the fully

iterative algorithm can be slow and sensitive to initialization. To speed up the

computation, we adopt the one-step estimation procedure of Li and Zhang (2017)

for tensor envelopes. Specifically, we run the iteration of the MLE equations only

once. That is, without alternately updating all Γm, we optimize each `m(Γm)

separately, which is sped up further by the 1D envelope algorithm (Cook and

Zhang (2016)). Because the one-step estimation in the DATE model is similar to

that in Li and Zhang (2017), the implementation details are relegated to Section

S2 of the Supplementary Material. In practice, note that the estimation accuracy
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(e.g., for the key parameter B) and the classification/prediction accuracy of the

one-step estimator are always as good as the MLEs. Such findings are consistent

with those of previous works (Cook and Zhang (2016); Li and Zhang (2017)),

where the one-step estimator and the 1D algorithm are shown to outperform to

be better than the full MLE updates in practice. Therefore, we present only the

numerical results obtained using the one-step estimator in our simulations and

real-data analysis.

Another important hyperparameter that we need to estimate is the envelope

dimension. To select the envelope dimension um, for m = 1, . . . ,M , we apply

cross-validation with a grid search to choose um that minimizes the classification

error. Because cross-validation tends to overfit the envelope dimension, we adopt

the “one standard error rule”, in which we choose the smallest um with an error

that is no more than one standard error above the minimum cross-validated

error. This method has proven to be stable in simulation studies. Note that

the Bayesian information criterion (BIC) is frequently considered for envelope

dimension selection. Owing to the carefully derived and simplified objective

function `m(Γm) in (3.8), we may directly apply the 1D-BIC envelope dimension

selection (Zhang and Mai (2018)), which has been proven theoretically and is

computationally feasible (it is much faster and more stable than the standard

BIC in envelope dimension selection). See Section S2.2 of the Supplementary

Material for additional discussion and numerical examples.

3.4. Decomposition-based estimation

Our decomposition-based approach is motivated by the following lemma.

Lemma 1. Under parameterization (3.4) and (3.5), EΣm
(B(m)) = EΣm

(Um),

for m = 1, . . . ,M , where Um = p−1−m{
∑K

k=1 πk(µk − µ)(m)(µk − µ)T(m)}. If we

further assume that the eigenvalues of PΓm
ΣmPΓm

are distinct from those of

QΓm
ΣmQΓm

, then EΣm
(Um) =

∑
(v

(m)
i )T Umv

(m)
i 6=0

span(v
(m)
i ), for m = 1, . . . ,M,

where v
(m)
i is the ith eigenvector of Σm.

Lemma 1 establishes the equivalence between EΣm
(B(m)) and EΣm

(Um),

where Um is a positive semi-definite symmetric pm×pm matrix. This matrix Um

does not involve the covariance inverse Σ−1m , as in B, and can be viewed as the

mode-m between the class variance of X. The symmetry of Um also facilitates the

estimation later. In order to construct a decomposition-based method, we assume

that the eigenvalues of PΓm
ΣmPΓm

are distinct from those of QΓm
ΣmQΓm

. This

assumption is mild, and much weaker than requiring Σm to have pm distinct

eigenvalues. Under this mild assumption, the tensor envelope can be obtained by

recognizing EΣm
(B(m)) as the subspace spanned by all eigenvectors v

(m)
i of Σm

that are not orthogonal to Um, namely,
∑

(v
(m)
i )T Umv

(m)
i 6=0

span(v
(m)
i ).
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Thus, the DATE-D procedure for EΣm
(B(m)) in the population is as follows:

1. Obtain the eigenvectors of Σm: v
(m)
1 , . . . ,v(m)

pm
, with ordered eigenvalues

λ
(m)
1 ≥ · · · ≥ λ(m)

pm
.

2. Calculate the envelope scores: φ
(m)
l = (v

(m)
l )TUmv

(m)
l , for l = 1, . . . , pm.

3. Organize the envelope scores in descending order φ
(m)
(1) ≥ φ

(m)
(2) ≥ · · · ≥ φ

(m)
(pm),

and let v
(m)
(j) be the eigenvector corresponding to φ

(m)
(j) .

4. Output the envelope as EΣm
(Um) = span(v

(m)
(1) , . . . ,v

(m)
(um)), which has a basis

matrix of Γm = (v
(m)
(1) , . . . ,v

(m)
(um)).

The sample algorithm is readily available by replacing Σm and Um with their

sample counterparts: Σ̃m = {1/(np−m)}
∑K

k=1 I(Y i = K)(Xi − Xk)(m)(X
i −

Xk)T(m) and Ûm = (1/p−m){
∑K

k=1(nk/n)(Xk −X)(m)(Xk −X)T(m)}, respectively.

Note that the estimate Σ̃m is a closed-form solution, which avoids the iterations

within the covariance matrices in (3.7). This modification further accelerates

the computation and facilitates theoretical analyses in high dimensions. The

algorithm can be viewed as an extension of the algorithm in Zhang, Deng and

Mai (2023) for vector data.

The DATE-D procedure can be intuitively viewed as selecting the eigenvec-

tors of Σm with nonzero envelope scores. The computationally most expensive

part of DATE-D is the eigen-decomposition of Σm in Step 1. Because no

matrix inversion is needed, DATE-D can be applied to very high-dimensional

settings. Striving for a best prediction, we again use cross-validation to select

the envelope dimension for DATE-D. Note that the selected “most predictive”

envelope dimensions may differ for DATE-L and DATE-D.

4. Theory

4.1. Asymptotic properties of DATE-L

Here, we study the consistency and asymptotic efficiency of three likelihood-

based estimators: the MLE without the separable covariance assumption (i.e., the

standard LDA on vectorized data); the MLE with the separable covariance

assumption (i.e., the TDA); and the MLE under the DATE model (i.e., DATE-L).

Though we recommend using the one-step estimation rather than the full MLE

updates for DATE-L in practice, the asymptotic properties of the MLE provide

an idealistic “best-case scenario” and insights into the potential advantages of

the DATE model. The
√
n-consistency of the one-step estimator is provided in

the Supplementary Material (Theorem S1).

The results are presented for all the parameters in the model, with additional

focus on the estimation of Bk, for k = 2, . . . ,K, or equivalently, βk ≡ vec(Bk).



PARSIMONIOUS TENSOR DISCRIMINANT ANALYSIS 167

The estimators are denoted by β̂LDA
k = S−1vec(Xk −X1) for the LDA estimator,

β̂TDA
k = (Σ̂M ⊗ · · · ⊗ Σ̂1)vec(Xk − X1) for the TDA estimator, and β̂DATE

k =

(Γ̂M ⊗ · · · ⊗ Γ̂1)vec(η̂k) for DATE-L.

We first compare the asymptotic efficiency of β̂LDA
k , β̂TDA

k , and β̂DATE
k .

Specifically, we define the parameter vectors corresponding to each estimator as

follows, where we stack all unique parameters in a vector using the operators

vec (vectorization of matrix/tensor) and vech (vectorization of symmetric matrix

by stacking the lower triangular of the matrix), hT = ({βT
k }Kk=2, vechT (Σ)),

ηT = ({βT
k }Kk=2, {vechT (Σm)}Mm=1), and for envelope parameters ξ =

({vecT (Γm)}Mm=1, {vecT (ηk)}Kk=2, {vechT (Ωm)}Mm=1, {vechT (Ω0m)}Mm=1). It is

straightforward to calculate the number of parameters based on the length of

each parameter vector. Specifically, h corresponds to the parameterization in the

vectorized LDA model, where the covariance Σ ∈ R
∏

m pm×
∏

m pm is unstructured;

η corresponds to the parameterization in the TDA model with the separable

Kronecker covariance structure; finally, ξ contains all parameters under the

tensor envelope structure.

From (3.4) and (3.5), we can see that h is an estimable function of η and

ξ; that is, h = h(η) = h(ξ). We define the gradient as H = ∂h(η)/∂φ and

K = ∂h(ξ)/∂ξ. We denote ĥTDA as the standard MLEs containing the sample

estimators Xk and Σ̂m in (3.7). Similarly, ĥDATE and ĥLDA are the MLEs under

the DATE model and the vectorized LDA model, respectively.

Theorem 1. Assume (Xi, Y i), for i = 1, . . . , n, are independent and identi-

cally distributed (i.i.d) according to the DATE model (3.1), (3.4), and (3.5).

Then
√
nvec(β̂LDA − β) →d N(0,Wβ);

√
nvec(β̂TDA − β) →d N(0,Uβ); and√

nvec(β̂DATE − β)→d N(0,Vβ). Moreover, Vβ ≤ Uβ ≤Wβ.

The detailed expressions of the asymptotic variances Vβ,Uβ, and Wβ are

provided in the Supplementary Material (Section S4.2). Theorem 1 establishes

the
√
n-consistency and asymptotic normality of all three types of MLEs. The

result is not surprising, because we gain more efficiency by using more structures,

while maximizing the likelihood.

To gain further insights, we consider the oracle envelope estimator of β,

denoted as β̂Γ, that replaces Γ̂ with the true envelope basis Γ in the estimation.

Theorem 2. Under the same conditions as those in Theorem 1, β̂Γ is
√
n-

consistent and asymptotically normal. The asymptotic covariance of vec(β̂Γ) is

VΓ = A ⊗ {(ΓMΩ−1M ΓT
M) ⊗ · · · ⊗ (Γ1Ω

−1
1 ΓT

1 )}, where A = diag(π−12 , . . . , π−1K ) +

π−11 1K−11
T
K−1 is a constant matrix.

Because we can write Σ = (ΓMΩMΓT
M + Γ0MΩ0MΓT

0M) ⊗ · · · ⊗ (Γ1Ω1Γ
T
1 +

Γ01Ω01Γ
T
01), VΓ ≤ Uβ. In particular, a direct comparison shows that the envelope

estimators have bigger potential gains in efficiency when the immaterial variation

Ω0m is large relative to the material variation Ωm in the predictor.
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Finally, we establish the
√
n-consistency and asymptotic normality of

the envelope estimator under mild moment conditions, instead of the tensor

normality assumption in (3.1). Specifically, we consider the tensor envelope

parameterization without the distributional assumption. Then, the conditional

independence assumption in (3.3), Q(X) ⊥⊥ P(X) | (Y = k), is weakened to the

assumption of uncorrelated Q(X) and P(X) in each class Y = k.

Theorem 3. For k = 1, . . . ,K, assume vec(Xi) | Y i = k, for i = 1, . . . , n are

i.i.d with finite fourth moments with mean tensor µk and separable covariance

Σ = ΣM⊗· · ·⊗Σ1, and parameterizations (3.4) and (3.5) are still satisfied. Then√
nvec(ĥTDA) converges to a normal distributions with mean zero and asymptotic

covariance matrix avar(
√
nĥTDA) = H(HTJhH)†HTJhΞJhH(HTJhH)†HT , and√

nvec(ĥDATE) converges to a normal distribution with mean zero and asymptotic

covariance matrix avar(
√
nĥDATE) = K(KTJhK)†KTJhΞJhK(KTJhK)†KT .

Furthermore, avar(
√
nĥDATE) ≤ avar(

√
nĥTDA) ≤ avar(

√
nĥLDA) if span(J

1/2
h H)

and span(J
1/2
h K) are reducing subspaces of J

1/2
h ΞJ

1/2
h , where Ξ = avar(

√
nĥLDA).

Theorem 3 shows that the envelope estimator is robust to model misspecifi-

cation in the sense that it is
√
n-consistent without tensor normality. Moreover,

the DATE-L estimator still has potential advantages over the standard TDA

estimator for nonnormal data (See Section 5.3 for simulation examples).

The classification error rate obtained from the Bayes rule is a continuous

function of the parameters (βk, πk,µk), for k = 1, . . . ,K, under the LDA model.

Then, by the delta method, the asymptotic efficiency gain by DATE-L established

in the above theorems implies a more accurate classification error. This is

analogous to the efficiency gain and classification error rate comparison of the

MLE versus the logistic regression (a
√
n-consistent, but asymptotically less

efficient estimator) under the LDA model (Efron (1975); Bi and Jeske (2010)).

4.2. Theoretical properties of DATE-D

We establish the convergence rate of the DATE-D estimator in high

dimensions, where pm can grow faster than n. We use c and C to represent

generic positive constants that may vary. For simplicity, the envelope dimensions

u1, . . . , uM are treated as constants that do not grow with p or n. We first

introduce some technical assumptions:

(A1) The eigenvalues of Σm, for m = 1, . . . ,M , are all bounded between positive

constants c1 and c2.

(A2) The smallest nonzero eigenvalue of Um is bounded below by c3.

(A3) ‖µk − µ‖F ≤ c4.

(A4) The difference between any eigenvalue of PΓm
ΣmPΓm

and each

QΓm
ΣmQΓm

is greater than c5.
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(A5) c6/K ≤ nk/n ≤ c7/K, for k = 1, . . . ,K.

Assumption (A1) implies that the population parameter Σm is wellconditioned,

regardless of how pm grows. Assumption (A2) can be viewed as a “signal

strength assumption” that ensures that the envelope scores calculated from

Um are sufficiently accurate. Assumption (A3) is a mild assumption, because

µk − µ = Jθ∗k; Γ1, . . . ,ΓMK, for some θ∗k ∈ Ru1×···×um . Because θ∗k is a low-

dimensional tensor, it is natural to assume that ‖θ∗k‖F ≤ c3. Then, we arrive

at Assumption (A3) by noting that ‖µk − µ‖F = ‖θ∗k‖F . Assumption (A4) is

required for the identifiability of the envelope from the decomposition perspective

(Lemma 1). Assumption (A5) guarantees that each class has a decent sample size.

All five assumptions are satisfied in our simulation examples (M1)–(M4) under

covariance (C1) in Section 5.2.

We use ηm =
√
pm/p−m to quantify the squareness of the matricization

X(m). For a tensor in which no mode’s dimension dominates all other modes

combined, ηm is small. We define the classification error rate formally as

R̂ = Pr(Ŷ (B̂k, ĉk, k = 1, . . . ,K) 6= Y ), where Ŷ (B̂k, ĉk, k = 1, . . . ,K) =

argmaxk=1,...,K{ĉk + 〈 B̂k,X〉}. The population counterpart R is thus the Bayes

error. Denote ‖A‖2 for a tensor A as the `2-norm of vec(A).

Theorem 4. Under assumptions (A1)–(A5), for a constant C3 > 1, we have

‖PΓ̂m
−PΓm

‖F = n−1/2O(ηm + 1), for m = 1, . . . ,M,

with probability at least 1−K exp{−C1pm(C3 − 1)}. Moreover,

‖B̂k −Bk‖2 = n−1/2O(max
m

ηm + 1), |R̂−R| = n−1/2O(max
m

ηm + 1),

with probability at least 1− C2KM exp{−C1pm(C3 − 1)}.

Corollary 1. Under assumptions (A1)–(A5), when n � ηm, pm → ∞, and

n→∞, we have PΓ̂m
→ PΓm

, B̂k → Bk, and R̂→ R in probability.

The result in Theorem 4 is sufficiently strong for most tensor data applica-

tions, because p−m is usually greater than pm, especially when the M ≥ 3. If

the dimensions pm, for m = 1, . . . ,M , grow at the same rate, the ratio ηm either

converges to zero (M ≥ 3) or is bounded from above by a constant (M = 2).

Then, we have
√
n-consistency for arbitrarily high-dimensional pm when M ≥ 2.

However, for vector data, the rate becomes (p/n)1/2, which means p cannot grow

too fast. Hence, Theorem 4 reveals a fundamental difference between tensor and

vector data. For vector data, it is challenging to estimate the covariance matrix

accurately, but in tensor data, we can aggregate the information from different

modes to achieve a consistent estimation of Σm.
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5. Numerical Studies

5.1. Comparison setup

To investigate the empirical performance of the proposed DATE methods,

we consider both simulations and real-data examples. In Section 5.2, we consider

simulations under the DATE model. In Section 5.3, we consider models in which

the DATE assumptions are violated. In Section 5.4, we construct a model with

a high-dimensional matrix predictor to verify the consistency of DATE-D in

high dimensions (cf., Theorem 4). In Section 5.5, we demonstrated our methods

using real-data examples from colorimetric sensor arrays and longitudinal gene

expressions.

We include various classification methods as competitors. First, we con-

sider the standard LDA and TDA estimators. However, owing to the high

dimensionality, the standard LDA estimator is not applicable, and is hence

replaced by the diagonal LDA (DLDA) (Dudoit, Fridlyand and Speed (2002)). As

regularized classification methods for high-dimensional vector data, we include

an `1-penalized Fisher’s discriminant analysis (`1-FDA; Witten and Tibshirani

(2011)) and an `1-penalized logistic and multinomial logistic regression (`1-GLM;

Friedman, Hastie and Tibshirani (2010)). We also include several recent methods

for matrix/tensor classification methods: a distance-weighted discrimination for

multi-way data (m-way DWD; Lyu, Lock and Eberly (2017)), a tensor logistic

regression based on the Tucker decomposition (Tucker; Li et al. (2018)), a

regularized matrix regression (RMR; Zhou and Li (2014)), and the covariate-

adjusted tensor classification in high-dimensions (CATCH; Pan, Mai and Zhang

(2019)). We focus on the classification error rates of these methods. Therefore,

Bayes’ error is also reported.

5.2. Simulations under the DATE model

Unless otherwise specified, we generate data from the DATE model as follows:

(X | Y = k) ∼ µk + JZ; Σ1, . . . ,ΣMK,
K∑

k=1

(
nk

n

)
µk = 0, (5.1)

where Z consists of independent N(0, 1) random variables, such that X |
(Y = k) ∼ TN(µk,Σ1, . . . ,ΣM). We first let µ∗k = JΘk; Γ1, . . . ,ΓMK for

some randomly generated Θk ∈ Ru1×···×uM with Uniform(0, 1) elements, and

let µ∗ =
∑K

k=1(nk/n)µ∗k. Then, the mean parameter µk = µ∗k − µ∗. Let

Σ∗m = ΓmΩmΓT
m + Γ0mΩ0mΓT

0m. The covariance matrix Σm = σ2 ×Σ∗m/‖Σ∗m‖F,

where the scalar σ2 > 0 is chosen differently for each model to control

Bayes’ classification error in a reasonable range. The envelope basis matrices

Γm, for m = 1, . . . ,M , are generated with Uniform(0, 1) elements and then

orthogonalized. Three types of covariance are considered:
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(C1) Ωm = Ium
and Ω0m = 0.01Ipm−um

;

(C2) Ωm = 0.1Iuj
and Ω0m = Ipm−um

;

(C3) Ωm = OmDmOT
m and Ω0m = O0mD0mOT

0m, where Om ∈ Rum×um and

O0m ∈ R(pm−um)×(pm−um) are randomly generated orthogonal matrices,

D0m is a diagonal matrix with elements exp(km,1, . . . , km,pm−um
), where

km,1, . . . , km,pm−um
are pm − um evenly spaced numbers between −10 and

m, and Dm is a diagonal matrix to be specified later.

The following four DATE models are considered. For each training set with

sample size n, we evaluate the predictive performance of each method on a testing

set with sample size of 10n. The results are averaged over 100 replications. For the

tuning parameters in each model, we use the true envelope dimension {um}Mm=1

for our method and for the Tucker rank. The m-way DWD uses rank
∏M

m=1 um.

All tuning parameters in the penalized methods (CATCH, `1-GLM , `1-FDA, and

RMR) are chosen using five-fold cross-validation.

(M1) Matrix predictor with binary response, M = K = 2. We generate training

data with n = 200 observations. Let p1 = 80, p2 = 20, u1 = 4, u2 = 2,

and n1 = n2 = n/2. The parameter σ2 is 1, 40, and 3 for covariance (C1)–

(C3), respectively. For (C3), Dm is a diagonal matrix with um elements

(5, 52, . . .).

(M2) The true parameter B ∈ Rp1×p2 is constructed such that we can visualize

the estimates directly (see Figure S1 in Supplementary Material). Let

n = 300, p1 = p2 = 64, u1 = u2 = 2, and n1 = n2 = n/2. The parameter σ2

is 0.1, 5, and 0.13 for covariances (C1)–(C3), respectively. For (C3), Dm

is a diagonal matrix with um elements (e, e2, . . .).

(M3) Similar to (M1), but with K = 4. Let n = 300, u1 = u2 = 5, p1 = p2 = 50,

and n1 = n2 = n3 = n3 = n/4. The parameter σ2 is 1.5, 40, and 2.5 for

covariances (C1)–(C3), respectively.

(M4) Similar to (M1), but with M = K = 3. Let p1 × p2 × p3 = 20× 30× 40,

u = (2, 3, 4), and n1 = 90, n2 = 60, n3 = 150. The parameter σ2 is 1.3, 40,

and 2 for covariances (C1)–(C3), respectively.

The results for the above four models and the three covariance structures are

summarized in Table 1. Note that some binary and matrix classification methods,

such as m-way DWD, Tucker, and RMR, cannot be applied to three-way tensor

data in M3 and M4. In addition, Tucker is not applicable for M1, because the

sample size is too small.

Under the covariance structure (C1), the material variation in the predictor

is much larger than the immaterial variation. The setting is thus not challenging,
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Table 1. Averaged classification error (%) and standard error (in parentheses), calculated
over 100 replicates.

Model
M1 M2

(C1) (C2) (C3) (C1) (C2) (C3)

Bayes 11.53 14.03 14.63 13.74 16.29 14.08

DATE-L 13.25 (0.15) 16.74 (0.10) 16.36 (0.15) 14.07 (0.10) 17.01 (0.19) 14.26 (0.06)

DATE-D 12.45 (0.09) 50.05 (0.10) 16.12 (0.13) 14.06 (0.08) 49.91 (0.08) 15.14 (0.07)

TDA 33.34 (0.13) 36.08 (0.12) 35.95 (0.14) 38.13 (0.11) 40.23 (0.11) 38.46 (0.11)

m-way DWD 12.36 (0.09) 50.69 (0.11) 21.73 (0.17) 13.99 (0.07) 49.98 (0.09) 14.66 (0.07)

CATCH 13.53 (0.13) 49.91 (0.11) 19.13 (0.23) 14.58 (0.08) 49.93 (0.10) 15.37 (0.10)

Tucker - - - 40.49 (0.22) 48.43 (0.15) 42.23 (0.22)

RMR 12.05 (0.09) 49.35 (0.11) 18.17 (0.13) 14.02 (0.07) 49.86 (0.10) 14.72 (0.08)

DLDA 12.74 (0.09) 49.99 (0.12) 26.52 (0.22) 14.91 (0.08) 49.74 (0.09) 19.90 (0.13)

`1-GLM 13.65 (0.16) 49.90 (0.06) 17.88 (0.12) 15.53 (0.09) 50.00 (0.06) 16.79 (0.10)

`1-FDA 12.74 (0.09) 49.95 (0.09) 26.52 (0.22) 14.91 (0.08) 49.87 (0.06) 19.90 (0.13)

Model
M3 M4

(C1) (C2) (C3) (C1) (C2) (C3)

Bayes 16.45 12.04 16.92 11.54 12.69 11.28

DATE-L 20.01 (0.18) 14.47 (0.07) 19.75 (0.13) 19.75 (0.43) 22.05 (0.25) 15.63 (0.27)

DATE-D 19.72 (0.11) 74.67 (0.16) 21.79 (0.10) 14.85 (0.09) 56.72 (0.10) 15.14 (0.13)

TDA 54.35 (0.10) 49.21 (0.11) 55.09 (0.11) 49.88 (0.01) 49.90 (0.01) 49.85 (0.01)

CATCH 21.59 (0.12) 74.88 (0.07) 25.90 (0.19) 15.16 (0.10) 53.91 (0.25) 25.14 (0.27)

DLDA 31.00 (0.13) 75.16 (0.09) 41.77 (0.15) 13.47 (0.07) 50.19 (0.02) 20.56 (0.11)

`1-GLM 21.43 (0.10) 75.00 (0.05) 25.64 (0.13) 15.55 (0.09) 50.34 (0.48) 22.90 (0.13)

`1-FDA 18.65 (0.08) 74.83 (0.07) 27.74 (0.12) 13.47 (0.07) 50.02 (0.01) 20.56 (0.11)

and most of the methods work well. Under (C2), the immaterial variation

dominates, and most methods fail to identify the weak signals. The only exception

is DATE-L, which effectively identifies that Ωm contains the small eigenvalues in

Σm. Finally, covariance structure (C3) is between the two extremes of (C1) and

(C2). Its complex covariance structure favors both DATE-L and DATE-D over

other methods.

From Table 1, DATE-L is either the best or very close to the best for all the

models considered. Moreover, it is the only method that works well under the

covariance structure (C2). Although DATE-D is not a likelihood-based method,

it has very good finite-sample performance that is similar to that of DATE-L

under the (C1) and (C3) covariance structures. This is an encouraging result

for DATE-D, because it is a much faster and simpler estimation method for the

tensor envelopes. For the more complex covariance (C3), DATE-L and DATE-D

outperform the other methods, improving estimation significantly.

Comparing models M3 (multi-class response and matrix predictor) and M4

(multi-class response and tensor predictor) with model M1 (binary response and

matrix predictor), the advantages of DATE over TDA (and other methods) is

more significant when K,M > 2. In model M2, several estimators (DATE-L,

Tucker, and RMR) of B ∈ R64×64 are visualized in Figure S1 in the Supplementary
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Material, showing that DATE-L clearly provides much better parameter estimates

than its competitors do under all three covariance structures.

5.3. Violation of DATE model assumptions

We consider the following models in which the DATE assumptions are

violated.

Heavy-tail distribution: We first consider a model in which the data are

generated from a multivariate t-distribution. The model is the same as (M1),

except that we set p1 = p2 = 20, u1 = u2 = 2, and each element in Z is generated

independently from a Student’s t-distribution with degree of freedom 4. The

parameter σ2 is 0.4, 40, and 3 for covariances (C1)–(C3), respectively. For (C3),

Dm is diagonal with um elements (5, 52, . . .).

TDA models: We consider two TDA models from (3.1), where no envelope

assumptions are imposed on µk and Σm. The true envelope dimension is um =

pm. We set p1 = p2 = 20, K = 2, and n1 = n2 = 100:

• TDA1: Let µk = JΘk; Γ1,Γ2K for a randomly generated Θk ∈ R2×2 with

Uniform(0, 1) elements and randomly generated basis matrices Γm ∈
R20×2, Dm be a diagonal matrix with elements evenly spaced between

0.3 and 3, and Om ∈ Rpm×pm be a randomly generated orthogonal

matrix. Then, we let Σm = σ2Σ∗m/‖Σ∗m‖F , where Σ∗m = OmDmOT
m

and σ2 = 1.2.

• TDA2: Each element of µk is generated randomly from Uniform(0.2, 1) and

Σ1 = Σ2 = 2.5AR(0.3), where AR(ρ) represents a covariance matrix

with the (i, j)-th element to be ρ|i−j|.

We also construct three simulation models from our competing methods m-

way DWD (Lyu, Lock and Eberly (2017)), Tucker logistic regression (Li et al.

(2018)), and CATCH (Pan, Mai and Zhang (2019)). This allows us to better

understand how the two DATE methods perform under model misspecification.

DWD model: Let p1 × p2 = 20× 10 and n1 = n2 = 50. For each training data

set, the vectorized samples are generated from a multivariate normal distribution

N(vec(µk),Σek), with Σek = σ2
ekI. Let µ1 = 0 and µ2 = v⊗w, which corresponds

to a rank-1 DWD model, where v and w are generated from multivariate normal

distributions with mean zero and variances σ2
vI and σ2

wI, respectively. We set

σ2
e1 = 1.75, σ2

e2 = 2, and σ2
v = σ2

w = 0.2.

Tucker model: For the Tucker logistic regression model, the regression

coefficient B ∈ R64×64 is the same as in M2, the predictors Xi ∈ R64×64, for i =

1, . . . , n, are randomly generated with all elements being independent standard

normal. The binary response Y is generated from a binomial distribution with
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probability {1 + exp(−〈B,X〉)}−1. The training sample size n = 500 and the

testing sample size is 1,000.

CATCH model: TDA model (3.1) with p1 = p2 = p3 = 20, n1 = n2 =

100, and K = 2. The parameter B is sparse with nonzeros at the 3 × 3 × 3

sub-tensor generated from Uniform(0, 0.5) independently. Let D be a diagonal

matrix with diagonal elements evenly between 3 and 0.3. We set Σ1 = D,

Σ2 = {D + AR(0.3)}/2, and Σ3 = {D + CS(0.3)}/2, where CS(ρ) is a matrix

with diagonals that are ones, and off-diagonals that are equal to ρ’s.

For the results of DATE-D and DATE-L presented in Table 2, we use u1 =

u2 = 2 for the t-distribution model, and cross-validation to select the dimensions

for all the other models. DATE-L is the best or very close to the best method,

overall, for all the models in this section, and DATE-D is fairly competitive for

most of the models. For the t-distribution model, DATE-L is among the best

methods for all the covariance structures, and the only method that works well

for covariance (C2). DATE-D performs similarly to DATE-L for covariances (C1)

and (C3). Thus, the two proposed DATE methods are not sensitive to nonnormal

heavy-tailed distributions. In the TDA1 model, the parameterization (3.5) for

the covariance matrices is violated, and the mean parameter still has a low-rank

structure. Note that DATE-L can still find a low-dimensional subspace such that

the projected data are informative, and provides better classification results than

those of TDA. We visualize the classification errors of the various methods in

Figure 1, where we vary the envelope dimension. It is clear that DATE-L has

superior classification accuracy when the input dimension is between 5 and 15.

From Figure 1, as the input envelope dimensions increase, DATE-D improves

and reaches the same results as TDA when um = pm. In the TDA2 model, the

parameterizations (3.5) and (3.6) are both violated. In this case, cross-validation

returns a dimension equal to pm or close to pm for both DATE-L and DATE-D,

resulting in almost identical performance to that of TDA.

Not surprisingly, the m-way DWD, Tucker logistic regression, and CATCH

perform best under their own respective models. It is encouraging to note that

DATE-L exhibits competitive performance with the best methods, and is better

overall, demonstrating the flexibility and effectiveness of our DATE-L estimator.

DATE-D performs well for the CATCH model and the DWD model, but, in

general, is less effective than DATE-L. We believe that DATE-L, when applicable,

is probably more robust than DATE-D under model misspecification.

5.4. Data sets with higher dimensions

We consider simulations in which the tensor dimension p =
∏

m pm is much

larger than the sample size n. We vary the sample size of the training set from

50 to 400, and set the sample size of the testing set to 2,000. The settings for

this model are analogous to those for M1, but p1 = p2 = 200 and u1 = u2 = 5.
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Table 2. The averaged error rates and associated standard errors over 100 replicates.

Model
t distribution TDA

DWD Tucker CATCH
(C1) (C2) (C3) (TDA1) (TDA2)

Bayes 16.10 16.10 12.22 6.50 6.18 11.82 - 5.63

DATE-L 16.66 (0.14) 16.81 (0.13) 12.73 (0.07) 8.92 (0.11) 13.75 (0.15) 23.82 (0.24) 30.99 (0.22) 11.71 (0.27)

DATE-D 16.64 (0.09) 50.14 (0.08) 12.84 (0.08) 11.16 (0.13) 13.46 (0.14) 30.93 (0.20) 46.14 (0.16) 10.54 (0.12)

TDA 29.34 (0.14) 29.33 (0.14) 24.59 (0.13) 10.58 (0.09) 13.13 (0.09) 30.67 (0.20) 41.51 (0.15) 35.16 (0.12)

m-way DWD 16.70 (0.09) 50.06 (0.10) 13.97 (0.08) 10.49 (0.09) 36.88 (0.23) 21.16 (0.18) 48.34 (0.55) -

CATCH 17.34 (0.12) 49.49 (0.10) 14.14 (0.11) 14.06 (0.13) 22.81 (0.19) 33.42 (0.41) 42.76 (0.19) 7.44 (0.09)

Tucker 38.48 (0.22) 40.36 (0.30) 34.09 (0.27) 27.91 (0.28) 34.84 (0.27) 41.84 (0.32) 28.18 (0.25) -

RMR 16.40 (0.08) 49.34 (0.12) 14.09 (0.09) 10.44 (0.08) 21.75 (0.14) 33.52 (0.20) 39.63 (0.16) -

DLDA 16.65 (0.08) 49.49 (0.12) 16.54 (0.15) 12.95 (0.09) 22.81 (0.14) 39.28 (0.23) 41.37 (0.15) 34.72 (0.14)

`1-GLM 17.81 (0.08) 49.93 (0.07) 13.97 (0.15) 20.21 (0.17) 30.14 (0.20) 38.42 (0.54) 46.70 (0.29) 11.81 (0.14)

`1-FDA 16.65 (0.10) 49.84 (0.07) 16.54 (0.10) 12.95 (0.09) 22.81 (0.14) 29.23 (0.21) 41.37 (0.15) 34.71 (0.14)

Envelope Dimension

Figure 1. Model (TDA1): Classification error versus the input envelope dimensions
u1 = u2. The black curve shows DATE-L and the red dashed curve shows DATE-D.
From top to bottom, the horizontal dashed lines show l1-GLM, CATCH, DLDA, TDA,
and RMR, respectively.

We use covariance (C3) with Dm = Ium
and σ2 = 3.

From Table 3, DATE-D still performs well even when p1 × p2 is much larger

than n (e.g., n=100). Note that DATE-D outperforms DATE-L, especially when

n is small. DATE-L is not accurate and is less stable when the dimensions

of the predictors are much larger than n, partially because of the nonconvex

optimization. This simulation model provides encouraging evidence that DATE-

D can be applied in high dimensions. The results support those of Theorem

4, which states that DATE-D can be consistent, even when pm goes to infinity

faster than n does. In our experience, DATE-D can handle cases with much

larger dimensions and is computationally efficient, because it involves only matrix

multiplications and eigen-decompositions.
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Table 3. The averaged error rates and associated standard errors over 100 replicates.

n
{pm} = {200, 200}, n1 = n2 = n/2

50 100 200 400

Bayes 7.89 7.89 7.89 7.89

DATE-D 24.33 (0.42) 15.85 (0.23) 11.63 (0.13) 9.74 (0.08)

DATE-L 46.70 (0.56) 30.85 (0.88) 15.38 (0.30) 10.65 (0.11)

TDA 47.12 (0.12) 45.93 (0.13) 44.50 (0.11) 41.92 (0.11)

CATCH 39.17 (0.42) 29.30 (0.32) 20.75 (0.24) 14.91 (0.13)

`1-GLM 43.10 (0.52) 31.54 (0.52) 22.78 (0.16) 17.59 (0.11)

`1-FDA 22.63 (0.19) 17.15 (0.13) 13.18 (0.10) 10.62 (0.08)

5.5. Real-data examples

The first data set is from a colorimetric sensor array (CSA) study, where

chemical dyes are used to transform smell into optical composite signals (Zhong

and Suslick (2015)). The experiments used a colorimetric sensor array separately

at Immediately Dangerous to Life or Health (IDLH) and Permissible Exposure

Level (PEL) concentrations of the K = 21 chemical toxicants. The dimension of

the predictor is 36× 3, and the total sample size is n = 7×K = 147. For each of

the data sets, IDLH and PEL, we perform 100 repeated training/testing splits,

126 as training and 21 as testing, because each class has only seven samples. The

tuning parameters for all methods are based on cross-validation. For DATE-L,

we select the dimensions u1 = 8 and u2 = 2 for the IDLH data set, and u1 = 7

and u2 = 3 for the PEL data set. For DATE-D, we select u1 = 7 and u2 = 2 for

the IDLH data set, and u1 = 9 and u2 = 3 for the PEL data set. The results are

summarized in Table 4. Because of a large number of classes and very low sample

sizes per class, many methods are not applicable. It is clear that the DATE-L and

DATE-D methods achieve better classification results than the other methods do

on this data set. In particular, DATE-L, DATE-D, CATCH, and `1-FDA achieve

perfect classification in the IDLH setting. In the PEL data set, the classification

becomes more difficult. Here, DATE-L achieves the best classification, followed

by DATE-D.

The second study is the Gene Time (GT) study of Baranzini et al. (2004), who

collected gene expressions from patients suffering from multiple sclerosis (MS).

Fifty-three patients treated with recombinant human interferon beta (rIFNβ)

are followed at six time points with 76-gene expression data, resulting in tensor

data of dimension p1 × p2 = 76 × 7 and n = 53. This is a binary classification

problem. The two classes are patients who respond well and those who respond

poorly to interferon beta. Based on cross-validation, we select u1 = 5 and u2 = 1

for the DATE-L method, and u1 = 7 and u2 = 1 for the DATE-D method.

We compare the classification errors for leave-one-out (LOO) and 10-fold cross-

validation. For the 10-fold cross-validation, we repeat 100 times, and report the



PARSIMONIOUS TENSOR DISCRIMINANT ANALYSIS 177

Table 4. The classification errors, averaged over different training-testing sample splits:
seven-fold cross-validation for the CSA data, and leave-one-out (LOO) and 10-fold cross-
validation for the GT data.

CSA-IDLH CSA-PEL GT (LOO) GT (10-fold CV)

DATE-L 0 (0) 1.24 (0.28) 9.43 12.20 (0.30)

DATE-D 0 (0) 2.24 (0.26) 11.32 14.77 (0.26)

TDA - - - -

m-way DWD - - 16.98 17.63 (0.33)

CATCH 0 (0) 4.03 (0.43) 16.98 20.50 (0.31)

RMR - - 15.09 20.07 (0.23)

LDA 4.81 (0.52) 17.81 (0.78) 32.08 30.23 (0.27)

`1-GLM 0.57 (0.17) 16.89 (0.50) 26.42 26.88 (0.43)

`1-FDA 0 (0) 6.62 (0.55) 32.08 30.55 (0.27)

average classification errors and standard errors. The results are summarized in

Table 4. Again, DATE-L has the lowest error rate, followed by DATE-D, based on

both leave-one-out and 10-fold cross-validation. The improvement of the DATE

methods over the other methods is quite substantial. These encouraging results

indicate that the DATE methods can capture information in both the parameter

Bk and the covariance matrices.

6. Conclusion

We have developed a parsimonious tensor discriminant analysis model based

on tensor envelopes. A likelihood-based estimator is derived from the tensor

normal likelihood, and is shown to be effective in practice and robust to

model assumption violations. When the tensor dimension is very high and

the likelihood-based estimator becomes infeasible, a fast decomposition-based

estimator can be applied with theoretical guarantees.

The estimators can be extended to the covariate-adjusted tensor classification

framework of Pan, Mai and Zhang (2019). Details of this extension, including the

formulation of the DATE estimators and the derivations of the MLEs, as well as

simulations and a real-data example are included in the Supplementary Material,

Section S1.

Supplementary Material

The online supplementary material contains additional numerical results,

implementation details, and proofs.
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Hore, V., Viñuela, A., Buil, A., Knight, J., McCarthy, M. I., Small, K. et al. (2016). Tensor

decomposition for multiple-tissue gene expression experiments. Nature Genetics 48, 1094.



PARSIMONIOUS TENSOR DISCRIMINANT ANALYSIS 179

Kolda, T. G. and Bader, B. W. (2009). Tensor decompositions and applications. SIAM Review

51, 455–500.

Li, L. and Zhang, X. (2017). Parsimonious tensor response regression. Journal of the American

Statistical Association 112, 1131–1146.

Li, P. and Maiti, T. (2019). Universal consistency of support tensor machine. In 2019 IEEE

International Conference on Data Science and Advanced Analytics (DSAA), 608–609.

IEEE.

Li, Q. and Schonfeld, D. (2014). Multilinear discriminant analysis for higher-order tensor data

classification. IEEE Transactions on Pattern Analysis and Machine Intelligence 36, 2524–

2537.

Li, X., Xu, D., Zhou, H. and Li, L. (2018). Tucker tensor regression and neuroimaging analysis.

Statistics in Biosciences 10, 520–545.

Lock, E. F. (2018). Tensor-on-tensor regression. Journal of Computational and Graphical

Statistics 27, 638–647.

Lyu, T., Lock, E. F. and Eberly, L. E. (2017). Discriminating sample groups with multi-way

data. Biostatistics 18, 434–450.

Manceur, A. M. and Dutilleul, P. (2013). Maximum likelihood estimation for the tensor normal

distribution: Algorithm, minimum sample size, and empirical bias and dispersion. Journal

of Computational and Applied Mathematics 239, 37–49.

Molstad, A. J. and Rothman, A. J. (2019). A penalized likelihood method for classification with

matrix-valued predictors. Journal of Computational and Graphical Statistics 28, 11–22.

Pan, Y., Mai, Q. and Zhang, X. (2019). Covariate-adjusted tensor classification in high

dimensions. Journal of the American Statistical Association 114, 1305–1319.

Raskutti, G., Yuan, M. and Chen, H. (2019). Convex regularization for high-dimensional

multiresponse tensor regression. The Annals of Statistics 47, 1554–1584.

Sun, W. W. and Li, L. (2017). Store: Sparse tensor response regression and neuroimaging

analysis. The Journal of Machine Learning Research 18, 4908–4944.

Tucker, L. R. (1966). Some mathematical notes on three-mode factor analysis. Psychometrika

31, 279–311.

Wang, X., Zhu, H. and Initiative, A. D. N. (2017). Generalized scalar-on-image regression models

via total variation. Journal of the American Statistical Association 112, 1156–1168.

Wang, Y., Meng, D. and Yuan, M. (2018). Sparse recovery: From vectors to tensors. National

Science Review 5, 756–767.

Witten, D. M. and Tibshirani, R. (2011). Penalized classification using Fisher’s linear discrimi-

nant. Journal of the Royal Statistical Society. Series B (Statistical Methodology) 73, 753–

772.

Yan, H., Paynabar, K. and Pacella, M. (2019). Structured point cloud data analysis via regular-

ized tensor regression for process modeling and optimization. Technometrics 61, 385–395.

Yan, S., Xu, D., Yang, Q., Zhang, L., Tang, X. and Zhang, H.-J. (2006). Multilinear discriminant

analysis for face recognition. IEEE Transactions on Image Processing 16, 212–220.

Ye, J., Janardan, R. and Li, Q. (2004). Two-dimensional linear discriminant analysis. Advances

in Neural Information Processing Systems 17, 1569–1576.

Zhang, A. (2019). Cross: Efficient low-rank tensor completion. The Annals of Statistics 47, 936–

964.

Zhang, A. and Xia, D. (2018). Tensor SVD: Statistical and computational limits. IEEE

Transactions on Information Theory 64, 7311–7338.

Zhang, X., Deng, K. and Mai, Q. (2023). Envelopes and principal component regression.

Electronic Journal of Statistics 17, 2447–2484.



180 WANG, WANG AND ZHANG

Zhang, X. and Li, L. (2017). Tensor envelope partial least-squares regression. Technometrics 59,

426–436.

Zhang, X. and Mai, Q. (2018). Model-free envelope dimension selection. Electronic Journal of

Statistics 12, 2193–2216.

Zhang, X. and Mai, Q. (2019). Efficient integration of sufficient dimension reduction and

prediction in discriminant analysis. Technometrics 61, 259–272.

Zhong, W. and Suslick, K. S. (2015). Matrix discriminant analysis with application to

colorimetric sensor array data. Technometrics 57, 524–534.

Zhou, H. and Li, L. (2014). Regularized matrix regression. Journal of the Royal Statistical

Society. Series B (Statistical Methodology) 76, 463–483.

Zhou, H., Li, L. and Zhu, H. (2013). Tensor regression with applications in neuroimaging data

analysis. Journal of the American Statistical Association 108, 540–552.

Ning Wang

Department of Statistics, Beijing Normal University at Zhuhai, Guangdong, China.

E-mail: ningwangbnu@bnu.edu.cn

Wenjing Wang

Department of Statistics, Florida State University, Tallahassee, FL 32306, USA.

E-mail: wenjing.wang@stat.fsu.edu

Xin Zhang

Department of Statistics, Florida State University, Tallahassee, FL 32306, USA.

E-mail: henry@stat.fsu.edu

(Received December 2020; accepted May 2022)

mailto:ningwangbnu@bnu.edu.cn
mailto:wenjing.wang@stat.fsu.edu
mailto:henry@stat.fsu.edu

	Introduction
	Background
	Notation
	Tensor envelope

	Discriminant Analysis with Tensor Envelope
	The TDA model
	The DATE model
	Likelihood-based estimation
	Decomposition-based estimation

	Theory
	Asymptotic properties of DATE-L
	Theoretical properties of DATE-D

	Numerical Studies
	Comparison setup
	Simulations under the DATE model
	Violation of DATE model assumptions
	Data sets with higher dimensions
	Real-data examples

	Conclusion

