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ESTIMATING LARGE PRECISION MATRICES VIA

MODIFIED CHOLESKY DECOMPOSITION
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Inha University and Seoul National University

Abstract: We introduce a k-banded Cholesky prior for estimating high-dimensional

bandable precision matrices using a modified Cholesky decomposition. The band-

able assumption is imposed on the Cholesky factor of the decomposition. We obtain

the P-loss convergence rate under the spectral norm and the matrix `∞-norm, as

well as the minimax lower bounds. Because the P-loss convergence rate is stronger

than the posterior convergence rate, the rates obtained are also posterior conver-

gence rates. Furthermore, when the true precision matrix is a k0-banded matrix,

for some finite k0, we obtain the minimax rate. The established convergence rates

for bandable precision matrices are slightly slower than the minimax lower bounds,

but are the fastest of the existing Bayesian approaches. Simulation results show

that the performance of the proposed method is better than or comparable to that

of competitive estimators.

Key words and phrases: Modified Cholesky decomposition, P-loss convergence rate,

precision matrix.

1. Introduction

Today, it is not uncommon to find that the number of variables p in a data set

is much larger than the sample size n. Such high-dimensional data sets arise in

studies on genomics, climatology, fMRI, and neuroimaging, among many others.

In this study, we estimate the precision matrix (i.e., the inverse of the covariance

matrix) for high-dimensional data.

When the number of variables p tends to infinity as n −→ ∞, and is pos-

sibly larger than n, the traditional sample covariance fails to converge to the

true covariance marix (Johnstone and Lu (2009)). Thus, it is necessary to as-

sume certain constraints on the covariance to obtain a consistent estimator in an

ultra high-dimensional setting, log p = o(n). These constraints include sparse,

bandable assumptions or lower-dimensional structures such as the sparse spiked

covariance and factor model. The minimax convergence rates under the sparsity
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or bandable assumption on a covariance/precision matrix have been established

by Bickel and Levina (2008a), Bickel and Levina (2008b), Cai, Zhang and Zhou

(2010), Cai and Zhou (2012a), Cai and Zhou (2012b), Xue and Zou (2013),

Cai, Liu and Zhou (2016), and Hu and Negahban (2017), among others. Bickel

and Levina (2008b) and Verzelen (2010) obtained convergence rates for precision

matrices under the sparsity or bandable assumption using a Cholesky decom-

position. The convergence rates for lower-dimensional structures of covariance

matrices, such as the factor model (Fan, Fan and Lv (2008)) and sparse spiked

covariance model (Cai, Ma and Wu (2015)), have also been explored. Cai, Liang

and Zhou (2015) and Fan, Rigollet and Wang (2015) derived the minimax con-

vergence rates for the functionals of the covariance matrices. Cai, Ren and Zhou

(2016) provide a comprehensive review on convergence rates for large matrices.

From a Bayesian perspective, although the posterior convergence rates for

large covariance or precision matrices have been investigated, few works have

done so for high-dimensional settings. Banerjee and Ghosal (2015) showed the

posterior convergence rate for a precision matrix under the sparsity assumption,

using a mixture prior for off-diagonal elements of the precision matrix to as-

sign exactly zero. To estimate bandable precision matrices, Banerjee and Ghosal

(2014) used the G-Wishart prior on the precision matrix to establish the pos-

terior convergence rate. Xiang, Khare and Ghosh (2015) extended the result of

Banerjee and Ghosal (2014) to decomposable graphical models, which include

bandable precision matrices as a special case. Pati et al. (2014) considered the

posterior convergence rate for covariance estimations using a sparse factor model,

obtaining nearly optimal rates, the minimax rates with (log n)1/2 factor, when

the number of true factors is bounded. Gao and Zhou (2015) derived the op-

timal posterior convergence rate for covariance matrices under a sparse spiked

covariance model. Cao, Khare and Ghosh (2016) considered the sparse Cholesky

factor of the precision matrix and proved the strong model selection consistency

and convergence rate. The above results assume an ultra high-dimensional set-

ting, log p = o(n), or a variant thereof. Recently, Gao and Zhou (2016) derived

Bernstein-von Mises theorems for functionals of the covariance matrix and its

inverse under conditions such as p = o(n) or p3 = o(n).

Lee and Lee (2018) proposed a new decision theoretical framework for prior

selection and obtained the Bayesian minimax rate of the unconstrained covari-

ance matrix under the spectral norm, for all rates of p. They also obtained the

Bayesian minimax rates under the Frobenius norm, Bregman divergence, and

squared log-determinant loss when p ≤ n1/2 or p = o(n). They showed that



ESTIMATING LARGE PRECISION MATRICES 175

when p > n/2, there is no better prior than the point mass prior δIp , in terms

of the induced posterior convergence rate. This implies that restrictions on the

covariance or precision matrix are needed to obtain consistent estimators.

In this study, we consider a class of bandable precision matrices and a mod-

ified Cholesky decomposition (MCD) in an ultra high-dimensional setting, and

derive the P-loss convergence rates under the spectral norm and the matrix `∞-

norm. Because the P-loss convergence rate implies the traditional posterior con-

vergence rate, it can be viewed as the posterior convergence rate. The bandable

assumption is imposed on the lower triangular matrix from the MCD, which is

called the Cholesky factor. Bickel and Levina (2008b) used a similar assumption,

and their parameter space is a special case of ours. Our work is also closely re-

lated to the works of Banerjee and Ghosal (2014) and Xiang, Khare and Ghosh

(2015), who also considered bandable precision matrices. However, we obtain

the minimax rate when the true precision matrix is k0-banded, for some finite

k0. Furthermore, when the true precision matrix is bandable, the convergence

rate obtained using the proposed method is faster than those obtained in using

existing methods. To the best of our knowledge, this is the fastest rate obtained

using a Bayesian method for bandable precision matrices. Although our param-

eter space is not the same as that of Banerjee and Ghosal (2014), the two are

closely related. Proposition 1 describes this relationship. This study is also re-

lated to the work of Cao, Khare and Ghosh (2016). However, they considered

only sparse Cholesky factors in which most elements are exactly zero, which does

not cover the class of bandable Cholesky factors considered here. Furthermore,

we show the minimax lower bounds for precision matrices under the bandable

assumption on the Cholesky factor. The lower bounds are derived under the

spectral norm and matrix `∞-norm. Recently, Liu and Ren (2017) obtained a

sharper lower bound for the spectral norm under the bandable assumption on

the Cholesky factor, concurrently with our work.

The rest of the paper is organized as follows. In Section 2, we define our

model, the matrix norms, the parameter class, and the decision theoretic prior

selection. The convergence rates for precision matrices under the spectral norm

and matrix `∞-norm are shown in Section 3. In Section 4, we propose a practical

choice of the bandwidth, and in Section 5, we present a simulation study. Section

6 concludes the paper. All proofs of the main results are provided in the online

Supplementary Material.
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2. Preliminaries

2.1. Norms and notation

For any constants a and b, a∨b and a∧b denote the maximum and minimum

of, respectively, a and b. For any positive sequences an and bn, we denote an =

o(bn) if an/bn −→ 0 as n → ∞. We denote an � bn if there exist positive

constants C1 and C2, such that C1 ≤ an/bn ≤ C2, for all sufficiently large n,

and an . bn if there exists a positive constant C, such that an ≤ Cbn, for all

sufficiently large n. For any p × p matrix A, λmin(A) and λmax(A) denote the

minimum and maximum eigenvalues, respectively, of the matrix A.

For any p-dimensional vector a, we define the vector norms as follows: ‖a‖1 :=∑p
i=1 |ai|, ‖a‖2 := (

∑p
i=1 a

2
i )

1/2, and ‖a‖max := max1≤i≤p |ai|. We define the op-

erator norms for the matrices using these norms. Let A = (aij) be a p×p matrix.

Then, the spectral norm (or matrix `2-norm) is defined by

‖A‖ := sup
x∈Rp

‖x‖2=1

‖Ax‖2 = (λmax(ATA))1/2.

We define the matrix `1-norm, matrix `∞-norm, and Frobenius norm as

‖A‖1 := sup
x∈Rp

‖x‖1=1

‖Ax‖1 = max
j

p∑
i=1

|aij |,

‖A‖∞ := sup
x∈Rp

‖x‖max=1

‖Ax‖max = max
i

p∑
j=1

|aij |,

‖A‖F :=

 p∑
i=1

p∑
j=1

a2
ij

1/2

,

respectively. The max norm for the matrices is defined as ‖A‖max := maxi,j |aij |.

2.2. The model and the prior

Suppose we observe a data set from the p-dimensional normal distribution

X1, . . . , Xn
i.i.d.∼ Np(0,Ω

−1
n ), (2.1)

where Ωn is a p×p positive-definite matrix. We assume that p = pn is a function

of n, increasing to ∞ as n→∞. Let Xn = (X1, . . . , Xn)T and Ω0,n be the n× p
data matrix and the p× p true precision matrix, respectively.
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For a p×p positive-definite matrix Ωn, the MCD guarantees a unique lower-

triangular matrix An = (ajl) and a unique diagonal matrix Dn = diag(dj) exist,

such that

Ωn = (Ip −An)TD−1
n (Ip −An), (2.2)

where ajj = 0 and dj > 0, for all j = 1, . . . , p. The MCD has a nice autoregressive

interpretation that enables simple and effective inferences. Consider a latent

variable ε ∼ Np(0, Dn) and a random vector Y ∼ Np(0,Ω
−1
n ), and note that

the relationship (Ip −An)Y
d
= ε holds because they have the same distributions.

Therefore model (2.1) with precision matrix (2.2) is equivalent to the following

autoregressive model:

X·,1 | d1 ∼ Nn(0, d1In),

X·,j | aj , dj , X·,1:(j−1) ∼ Nn(X·,1:(j−1)aj , djIn), j = 2, . . . , p,
(2.3)

where aj = (aj1, . . . , aj,j−1)T ∈ Rj−1, and X·,j ∈ Rn and X·,1:(j−1) ∈ Rn×(j−1) are

submatrices of Xn, consisting of the jth column and the 1, . . . , (j−1)th columns,

respectively. We denote the submatrix of Xn consisting of the a, . . . , bth columns

as X·,a:b, for any positive integer a ≤ b. With a slight abuse of notation, if a ≤ 0

and b > 0, X·,a:b := X·,(a∨1):b = X·,1:b to define a proper column position. The

zero patterns in the Cholesky factor An and model (2.3) rely on the order of the

variables. Here, we assume there is a known natural ordering of the variables as is

common in the literature; see Bickel and Levina (2008b), Shojaie and Michailidis

(2010), Khare et al. (2016), Banerjee and Ghosal (2014), and Cao, Khare and

Ghosh (2016).

Bickel and Levina (2008b) approximated the precision matrix by considering

only the k closest regressors in the regression interpretation (2.3), which is the

same as assuming that the lower-triangular matrix An in the MCD is a k-banded

lower-triangular matrix. This approximation assumes that, based on the given

ordering of the variables, only the k closest previous variables affect the current

variable. Note that the resulting precision matrix Ωn = (Ip−An)TD−1
n (Ip−An)

also becomes a k-banded matrix.

In this paper, we propose the following prior:

π(ajl) ∝ 1, l = (j − k) ∨ 1, . . . , j − 1, and π(ajl) = δ0, otherwise,

π(dj) ∝ d
−ν0/2−1
j I(0 < dj < M), j = 1, . . . , p,

(2.4)
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for some nonnegative constants M and ν0, where ν0 can depend on n. Here,

δ0 is the Dirac measure at zero. Note that the degenerate prior of ajl when

l < (j − k) ∨ 1 is due to the k-banded Cholesky (k-BC) factor assumption. We

call the prior defined in (2.4) the k-BC prior. The appropriate conditions on M

and ν0 are discussed in Section 3. The prior in (2.4) leads to the following joint

posterior distribution:

dj | Xn
ind.∼ IGTr

(
dj
∣∣ nj

2
,
n

2
d̂jk, dj ≤M

)
, j = 1, . . . , p,

a
(k)
j | dj ,Xn

ind.∼ Nj−1∧k

(
a

(k)
j

∣∣â(k)
j , dj

(
XT
·,(j−k):(j−1)X·,(j−k):(j−1)

)−1
)
, (2.5)

j = 2, . . . , p,

where nj = n+ ν0 − (j − 1 ∧ k)− 4, a
(k)
j = (aj,(j−k∨1), . . . , aj,j−1)T ,

â
(k)
j = (XT

·,(j−k):(j−1)X·,(j−k):(j−1))
−1XT

·,(j−k):(j−1)X·,j ,

d̂jk = n−1XT
·,j
(
In −X·,(j−k):(j−1) (2.6)

(XT
·,(j−k):(j−1)X·,(j−k):(j−1))

−1XT
·,(j−k):(j−1)

)
X·,j ,

for j = 2, . . . , p, and d̂1k = n−1‖X·,1‖22. We denote IGTr(X | a, b, A) as the

truncated version of IG(X | a, b) on support A, where IG(X | a, b) is the density

function of the inverse-gamma random variable X with shape and rate param-

eters a and b, respectively. Then, Np(X | µ,Σ) is the density function of the

p-dimensional normal random variable X with mean vector µ and covariance

matrix Σ.

Remark 1. The main results in Section 3 still hold for the prior

a
(k)
j | dj

ind.∼ Nj−1∧k (mj , djBj) , j = 2, . . . , p, (2.7)

with certain bounded conditions on ‖mj‖2 and ‖B−1
j ‖. This includes the prior

(2.4) as a special case, with mj = 0 and Bj = diag(b = ∞). However, we omit

the proofs, presenting only the results for the prior in (2.4), for simplicity of

notation.

Remark 2. The prior for dj has a compact support in order to deal with the

P-loss defined in Section 2.4. If we focus on the posterior convergence rate rather

than the P-loss convergence rate, the prior π(dj) ∝ d
−ν0/2−1
j is sufficient to

establish the main results in Section 3.

The zero pattern of the Cholesky factor is related to a directed acyclic graph
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(Rütimann and Bühlmann (2009)). Using the k-BC prior in (2.4) implies that we

approximate the true model by means of a directed Gaussian graphical model.

Thus, our method can be applied to such models, but we do not examine this

further here. For more information about graphical models, see Lauritzen (1996),

Koller and Friedman (2009), and Rütimann and Bühlmann (2009).

2.3. Parameter class

For a given constant ε0 > 0 and a decreasing function γ(k)→ 0 as k −→∞,

we define a class of precision matrices, as follows:

U(ε0, γ) = Up(ε0, γ) =
{

Ω = (Ip −A)TD−1(Ip −A) ∈ Cp : (2.8)

ε0 ≤ λmin(Ω) ≤ λmax(Ω) ≤ ε−1
0 , ‖A−Bk(A)‖∞ ≤ γ(k), ∀0 < k ≤ p− 1

}
,

where Cp is the class of all p× p-dimensional positive-definite matrices, and A =

(aij) is a lower-triangular matrix from the MCD of Ω, and Bk(A) := (bij =

aijI(|i − j| ≤ k), 1 ≤ i, j ≤ p). Thus, ‖A − Bk(A)‖∞ ≤ γ(k) is equivalent to

max1≤i≤p
∑

j<i−k |aij | ≤ γ(k). We consider the following classes of γ(k):

1. (polynomially decreasing) γ(k) = Ck−α, for some α > 0 and C > 0;

2. (exponentially decreasing) γ(k) = Ce−βk, for some β > 0 and C > 0; and

3. (exact banding) γ(k) = 0, for some k0 > 0 and all k > k0.

Banerjee and Ghosal (2014) considered a similar parameter space for a precision

matrix, defined as

U∗(ε0, γ) = U∗p (ε0, γ) =

{
Ω = (ωij) ∈ Cp : 0 < ε0 ≤ λmin(Ω) ≤ λmax(Ω) ≤ ε−1

0 ,

max
1≤i≤p

∑
j:|i−j|>k

|ωij | ≤ γ(k), ∀0 < k ≤ p− 1

}
.

If we consider an exact banding γ(k) or an exponentially decreasing γ(k)

with β > log(ε−2
0 + 1), the two classes U(ε0, γ) and U∗(ε0, γ) are equivalent in

terms of the convergence rates over these classes. For polynomially decreasing

γ(k), with α > 1, Ω ∈ U(ε0, γ) does not guarantee Ω ∈ U∗(ε0, γ); nevertheless,

the two classes remain related. The following proposition describes this relation;

the proof is given in the Supplementary Material.
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Proposition 1. Suppose γ is a decreasing function defined on positive integers.

If γ is exponentially decreasing with γ(k) = Ce−βk, with β > log(ε−2
0 + 1) and

C > 0, or exact banding for some k0 > 0, then

U(ε0, C1γ) ⊆ U∗(ε0, γ) ⊆ U(ε0, C2γ),

and if γ(k) = Ck−α with α > 1, then

U(ε0, γ) ⊆ U∗(ε0, C3γ
′),

where γ′(k) = Ck−(α−1), for some positive constants C1, C2, and C3 not depend-

ing on p.

2.4. Bayesian minimax rate

The posterior convergence rate is the most commonly used measure for the

asymptotic concentration of the posterior around the true parameter (Ghosal,

Ghosh and van der Vaart (2000); Ghosal and van der Vaart (2007)). However,

even though the concept of a posterior convergence rate is used to justify priors,

defining the best possible posterior convergence rate is difficult. Motivated by this

difficulty, a new decision theoretic framework for prior selection was suggested

by Lee and Lee (2018).

Consider a prior π(Ω) as a decision rule, and define the P-loss as

L(Ω0,n, π) = Eπ (d(Ω,Ω0,n) | Xn) ,

where d(Ω,Ω′) is a pseudometric on a set of positive-definite matrices, Ω0,n is the

true precision matrix, and Eπ(·|Xn) is the expectation under the posterior of Ω

when the prior π and observation Xn are given. The P-risk is defined as

R(Ω0,n, π) = E0nEπ (d(Ω,Ω0,n) | Xn) , (2.9)

where E0n = EΩ0,n
denotes the expectation with respect to X1, . . . , Xn

i.i.d.∼
Np(0,Ω

−1
0,n). Let Πn be the class of all priors on Cp. Then, the Bayesian minimax

rate of the posterior for the class C∗p ⊂ Cp and the space of prior distributions

Π∗n ⊂ Πn is naturally defined as a sequence rn, such that

inf
π∈Π∗n

sup
Ω0,n∈C∗p

E0nL
(
Ω0,n, π(·|Xn)

)
� rn.

If a prior π∗ satisfies
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sup
Ω0,n∈C∗p

E0nL
(
Ω0,n, π(·|Xn)

)
. an,

then π∗ is said to have a P-loss convergence rate an, and if an has the same rate

as the Bayesian minimax rate (i.e., an � rn), π∗ is said to achieve the Bayesian

minimax rate. This new decision-theoretic view of the posterior analysis makes

optimal properties conceptually transparent, even if the class of priors and the

parameter space are constrained. It also makes it possible to study the optimality

properties of pseudo-posteriors, such as the consensus Monte Carlo Scott et al.

(2016). The P-loss convergence rate is a stronger measure than the posterior

convergence rate, and a frequentist minimax lower bound is also a Bayesian

minimax lower bound, in general. See Proposition A.1 and Proposition A.2 in

Lee and Lee (2018).

3. Main Results

3.1. P-loss convergence rate and Bayesian minimax lower bound under

the spectral norm

In this subsection, we establish the Bayesian minimax lower and upper

bounds under the spectral norm. The P-loss convergence rate based on the

k-BC prior (2.4) is one of the main results of this study. The rate obtained in

Theorem 2 is slightly slower than the rate of a frequentist minimax lower bound

given in Theorem 1. The proofs of the theorems are given in the Supplementary

Material.

Theorem 1. Consider model (2.1) with p ≤ exp(cn), for some constant c > 0.

Assume Ω0,n ∈ U(ε0, γ), which is defined at (2.8), for a given ε0 > 0 and a

decreasing function γ.

(i) If there exists a constant k0 > 0 such that γ(k) = 0, for all k ≥ k0, we have

inf
Ω̂n

sup
Ω0,n∈U(ε0,γ)

E0n‖Ω̂n − Ω0,n‖ &
(

log p

n

)1/2

,

where Ω̂n denotes an arbitrary estimator of Ω0,n.

(ii) If γ(k) = Ce−βk for some constants β > 0 and C > 0, then we have

inf
Ω̂n

sup
Ω0,n∈U(ε0,γ)

E0n‖Ω̂n − Ω0,n‖ & min

{(
log(n ∨ p)

n

)1/2

,
( p
n

)1/2
}
.
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(iii) If γ(k) = Ck−α for some constants α > 0 and C > 0, then we have

inf
Ω̂n

sup
Ω0,n∈U(ε0,γ)

E0n‖Ω̂n−Ω0,n‖ & min

{(
log p

n

)1/2

+ n−α/(2α+1),
( p
n

)1/2
}
.

The estimation of a precision matrix using a polynomially banded Cholesky

factor under the spectral norm has been studied by Bickel and Levina (2008b),

although they do not consider a minimax lower bound. Verzelen (2010) obtained

a minimax lower bound, but he considered the sparse Cholesky factor under the

Frobenius norm.

Cai and Yuan (2016) estimated a covariance operator for random variables

on a lattice graph under the spectral norm. They used an exponentially (and

polynomially) bandable assumption for the covariance operator. In the one-

dimensional lattice case, interestingly, the minimax lower bound in Cai and Yuan

(2016) coincides with the minimax lower bound in Theorem 1 (ii). This makes

sense, because the two classes are equivalent, by Proposition 1.

Remark 3. Because a frequentist minimax lower bound is also a P-loss minimax

lower bound, Theorem 1 yields a P-loss minimax lower bound. For the proof of

this argument, see Proposition A.2 in Lee and Lee (2018).

Remark 4. Recently, Liu and Ren (2017) obtained the minimax lower bound

with respect to the spectral norm, concurrently with our work. Their lower bound

is sharper than that in (iii) of Theorem 1, and they show that it is the minimax

rate. However, Liu and Ren (2017) considered only polynomially decreasing

γ(k) = Ck−α, whereas we also provide lower bounds for exponentially decreasing

and exactly banded γ(k). Furthermore, we consider the “small p” case, p = o(n),

whereas Liu and Ren (2017) assumed n = O(p). Specifically, under conditions

log p = O(n) and n = O(p), they proved that

inf
Ω̂n

sup
Ω0,n∈U(ε0,γ)

E0n‖Ω̂n − Ω0,n‖ &
(

log p

n

)1/2

+ n(−2α+1)/4α, (3.1)

where γ(k) = Ck−α, for some constants α > 1/2 and C > 0. Under their

assumptions, the lower bound in (iii) of Theorem 1 is quite close to that in (3.1).

The P-loss convergence rate of the k-BC prior in (2.4) under the spectral

norm is given in the following theorem.

Theorem 2. Consider model (2.1) and the k-BC prior in (2.4) for the precision

matrix Ωn = (Ip − An)TD−1
n (Ip − An), with M ≥ 9ε−1

0 and ν0 = o(n), for a
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Table 1. A summary of the P-loss convergence rates and the minimax lower bounds
under the spectral norm for various γ. The second column shows the P-loss convergence
rate in Theorem 2 with an optimal choice of k.

Type of γ P-loss convergence rate Minimax lower bound

γ(k) = 0 for k > k0

(
log(n∨p)

n

)1/2 (
log p
n

)1/2
γ(k) = Ce−βk, β > 0 (log n)3/4

(
log(n∨p)

n

)1/2 (
log(n∨p)

n

)1/2
if p ≥ log n

γ(k) = Ck−α

(
log p
n

)(4α−3)/8α
+ n−(4α−3)/(8α+4) (

log p
n

)1/2
+ n−(2α−1)/4α, α > 1

2
if p ≥ n1/(2α), α > 1

given constant ε0 > 0. If k3/2(k + log(n ∨ p)) = O(n), k + log p = o(n) and

1 ≤ k ≤ p− 1, and

sup
Ω0,n∈U(ε0,γ)

E0nEπ
(
‖Ωn − Ω0,n‖ | Xn

)
. k3/4

[(
k + log(n ∨ p)

n

)1/2

+ γ(k)

]
,

where U(ε0, γ) is defined in (2.8), and
∑∞

m=1 γ(m) <∞.

Note that because we impose the k-BC prior on the precision matrix Ωn, the

posterior for Ωn is also supported on k-banded positive-definite matrices.

In the proof, we use a divide-and-conquer strategy to deal with the P-loss

convergence rate, where we decompose it into small terms, which are easier to

handle; that is,

E0nEπ
(
‖Ωn − Ω0,n‖ | Xn

)
≤ E0nEπ

(
‖Ωn − Ω̂nk‖ | Xn

)
+ E0n‖Ω̂nk − Ω0,n‖,

where Ω̂nk is a frequentist estimator of Ω0,n that is a k-banded positive-definite

matrix. For the first term, we use concentration inequalities for the posteriors

of the parameters around certain frequentist estimators. For the second term,

techniques for the frequentist convergence rate can be adopted.

Table 1 shows the P-loss convergence rates and minimax lower bounds under

the spectral norm for various types of γ in U(ε0, γ). In the second row, we assume

k0 is fixed. The second column shows the P-loss convergence rates with optimal

choices of k that minimize the convergence rates in Theorem 2. Optimal values of

k are k0, (2β)−1 log n, and min{n1/(2α+1), (n/ log p)1/(2α)} for the second, third,

and fourth rows, respectively. Table 1 shows that the P-loss convergence rate

with optimal k coincides with, or is quite close to, the minimax lower bound for

every setting. Note that the P-loss convergence rate in the fourth row is equal to
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the rate of the minimax lower bound up to min{n(3α−1)/[α(8α+4)], (n/ log p)3/(8α)}.

3.2. P-loss convergence rate and Bayesian minimax lower bound under

the matrix `∞-norm

In this subsection, we establish the upper and lower bounds for the Bayesian

minimax rate under the matrix `∞-norm. The P-loss convergence rate obtained

in Theorem 4 is slightly slower than the rate of the minimax lower bound given in

Theorem 3. However, our convergence rate is the fastest for bandable precision

matrices using existing Bayesian methods. The proofs of the theorems are given

in the Supplementary Material.

Theorem 3. Consider model (2.1), and let p ≤ exp(cn), for some constant

c > 0. Assume Ω0,n ∈ U(ε0, γ), defined in (2.8), for given ε0 > 0 and a decreasing

function γ.

(i) If there exists a constant k0 such that γ(k) = 0, for all k ≥ k0, we have

inf
Ω̂n

sup
Ω0,n∈U(ε0,γ)

E0n‖Ω̂n − Ω0,n‖∞ &

(
log p

n

)1/2

.

(ii) If γ(k) = Ce−βk, for some constants β > 0 and C > 0, then we have

inf
Ω̂n

sup
Ω0,n∈U(ε0,γ)

E0n‖Ω̂n − Ω0,n‖∞ & min

{(
log p log n

n

)1/2

,
p√
n

}
.

(iii) If γ(k) = Ck−α, for some constants α > 0 and C > 0, then we have

inf
Ω̂n

sup
Ω0,n∈U(ε0,γ)

E0n‖Ω̂n − Ω0,n‖∞ & min

{(
log p

n

)α/(2α+1)

+ n−α/(2α+2),
p√
n

}
.

Theorem 4. Consider model (2.1) and the k-BC prior (2.4) for the precision

matrix Ωn = (Ip−An)TD−1
n (Ip−An), with M ≥ 9ε−1

0 and ν0 = o(n), for a given

constant ε0 > 0. If k(k+ log(n∨ p)) = O(n), k+ log p = o(n) and 1 ≤ k ≤ p− 1,

then

sup
Ω0,n∈U(ε0,γ)

E0nEπ
(
‖Ωn − Ω0,n‖∞ | Xn

)
. k

[(
k + log(n ∨ p)

n

)1/2

+ γ(k)

]
,

where U(ε0, γ) is defined in (2.8), and
∑∞

m=1 γ(m) <∞.

Table 2 shows the P-loss convergence rates and minimax lower bounds under
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Table 2. P-loss convergence rates and minimax lower bounds under the matrix `∞-norm
for various γ. The second column shows the P-loss convergence rate in Theorem 4 with
the optimal choice of k.

Type of γ P-loss convergence rate Minimax lower bound

γ(k) = 0 for k > k0

(
log(n∨p)

n

)1/2 (
log p
n

)1/2
γ(k) = Ce−βk log n

(
log(n∨p)

n

)1/2 (
log p logn

n

)1/2
if p ≥ (log n log p)1/2

γ(k) = Ck−α

(
log p
n

)(α−1)/2α
+ n−(α−1)/(2α+1) (

log p
n

)α/(2α+1)

+ n−α/(2α+2), α > 0
if p ≥ n1/(2α+2), α > 1

the matrix `∞-norm for various γ in U(ε0, γ). As in Table 1, we assume k0 is fixed,

and present the P-loss convergence rates with optimal choices of k that minimize

the convergence rates in Theorem 4. The optimal values of k are the same as

those in Section 3.1. From Table 2, we can see that the P-loss convergence rate

with optimal k coincides with, or is quite close to, a minimax lower bound for

every setting.

Remark 5. The P-loss convergence rate in Theorem 4 is sharper than the pos-

terior convergence rate of Banerjee and Ghosal (2014). If we consider an expo-

nentially decreasing or exact banding γ(k), then the parameter spaces of the two

works are equivalent, by Proposition 1. In that case, the convergence rate ob-

tained in Theorem 4 is equal to or faster than that of Banerjee and Ghosal (2014).

When γ(k) = Ck−α, we have U(ε0, γ) ⊆ U∗(ε0, γ′), where γ′(k) = C ′k−(α−1), for

some constant C ′ > 0, by Proposition 1. Thus, the rate obtained in Theorem

4 can be directly compared with that in Banerjee and Ghosal (2014) under the

parameter class U(ε0, γ)∩U∗(ε0, γ′). With the optimal choice of k for each result,

the former is (
log p

n

)(α−1)/2α

+ n−(α−1)/(2α+1),

and the latter is (log p/n)(2α−5)/(4α). The rate obtained in Theorem 4 is faster

than that in Banerjee and Ghosal (2014) by factors n(4α+5)/[4α(2α+1)] and (n/

log p)3/(4α) when n1/(2α+2) ≤ p ≤ exp(n1/(2α+1)) and p ≥ exp(n1/(2α+1)), respec-

tively.

3.3. Frequentist convergence rates and posterior convergence rates

In this subsection, we obtain the frequentist convergence rate and the tra-

ditional posterior convergence rate of the k-BC prior defined in (2.4). For the
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frequentist convergence rate, we propose the following plug-in estimator:

Ω̂LL
nk = (Ip − Eπ(An|Xn))TEπ̃(D−1

n |Xn)(Ip − Eπ(An|Xn)), (3.2)

where Eπ̃(· | Xn) are the posterior means from the nontruncated posteriors,

π̃(dj | Xn) = IG
(
dj |

nj
2
,
n

2
d̂jk

)
, j = 1, . . . , p.

The plug-in estimator Ω̂LL
nk is more convenient than the posterior mean Eπ(Ωn |

Xn) in practice, owing to its simple form. Note that Eπ(a
(k)
j | dj ,Xn) = â

(k)
j

and Eπ̃(d−1
j | Xn) = nj d̂

−1
jk /n. As a justification for the using the nontruncated

posterior mean, in Corollary 1, we show that Ω̂LL
nk achieves the same rate as the

P-loss convergence rate. The proof of Corollary 1 is given in the Supplementary

Material.

From Proposition A.1 of Lee and Lee (2018), a P-loss convergence rate is a

posterior convergence rate. Thus, Corollary 2 follows from Proposition A.1 of

Lee and Lee (2018), which means the rates obtained in Theorem 2 and Theorem

4 in this paper are also posterior convergence rates.

Corollary 1. Consider model (2.1) and U(ε0, γ) defined in (2.8), and assume

k+log p = o(n),
∑∞

m=1 γ(m) <∞, ν0 = o(n), and 1 ≤ k ≤ p. If k3/2(k+log(n∨
p)) = O(n), then

sup
Ω0,n∈U(ε0,γ)

E0n‖Ω̂LL
nk − Ω0,n‖ . k3/4

[(
k + log(n ∨ p)

n

)1/2

+ γ(k)

]
.

If k(k + log(n ∨ p)) = O(n), then

sup
Ω0,n∈U(ε0,γ)

E0n‖Ω̂LL
nk − Ω0,n‖∞ . k

[(
k + log(n ∨ p)

n

)1/2

+ γ(k)

]
.

Corollary 2. Consider model (2.1), U(ε0, γ) defined in (2.8), and the k-BC prior

(2.4), with M ≥ 9ε−1
0 and ν0 = o(n). Assume k+log p = o(n),

∑∞
m=1 γ(m) <∞,

and 1 ≤ k ≤ p. If k3/2(k+log(n∨p)) = O(n) and εn = k3/4[(k+log(n∨p))/n)1/2

+ γ(k)], then for any Mn →∞ as n→∞,

sup
Ω0,n∈U(ε0,γ)

E0n

[
π
(
‖Ωn − Ω0,n‖ ≥Mnεn | Xn

)]
−→ 0.

If k(k+ log(n∨ p)) = O(n) and ε∗n = k
[

((k + log(n ∨ p))/n)1/2 + γ(k)
]
, then for
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any Mn →∞ as n→∞,

sup
Ω0,n∈U(ε0,γ)

E0n

[
π
(
‖Ωn − Ω0,n‖∞ ≥Mnε

∗
n | Xn

)]
−→ 0.

4. Choice of the Bandwidth k

We suggest using the posterior mode of k as a practical choice of the band-

width k. Using Theorem 2 and Theorem 4, we can calculate the optimal rate

of the bandwidth k by minimizing the P-loss convergence rate, when the rate of

γ(k) is given. However, this does not provide a proper choice of k in practice,

because γ(k) is unknown.

Let π(k) be a prior distribution for the bandwidth k, and let f(Xn | An, Dn, k)

be the likelihood function based on the observation Xn. In Section 5, the prior

distribution of k is set as π(k) ∝ exp(−k4), as in Banerjee and Ghosal (2014).

The marginal posterior for k is easily derived as

π(k | Xn)

∝ π(k)

∫ ∫
f(Xn | An, Dn, k)π(An, Dn | k)dAndDn

∝ π(k)

p∏
j=2

det
(
XT
·,(j−k):(j−1)X·,(j−k):(j−1)/(2π)

)−1/2
Γ
(nj

2

)(n
2
d̂jk

)−nj/2

×
p∏
j=1

FIG

(
M
∣∣∣ nj

2
,
nd̂jk

2

)
, (4.1)

by routine calculations, where π(An, Dn | k) denotes the k-BC prior (2.4), det(·)
is the determinant function, Γ(·) is the gamma function, and FIG(M | a, b) is a

cumulative distribution function of IG(a, b). Because the marginal posterior (4.1)

has a simple analytic form, the posterior mode, say k̂, can be easily obtained.

The performance of k̂ is described through comparisons with other approaches

in the next section.

Note that the Cholesky-based Bayes estimator Ω̂LL
nk is similar to the banded

estimator (Bickel and Levina (2008b)), Ω̂BL
nk . The major difference between the

two estimators is the choice of the bandwidth parameter k. Bickel and Levina

(2008b) proposed a resampling scheme to estimate the oracle k that minimizes

R(k) = E0n‖Ω̂BL
nk − Ω0,n‖1. (4.2)
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To approximate the risk in (4.2), they randomly divide n observations into two

groups, with sizes n1 = n/3 and n2 = n − n1, respectively. They calculate the

banded estimator based on the first group, say Ω̂BL
1,nk, and used it for Ω̂BL

nk in (4.2).

The second group is used to approximate Ω0,n in (4.2), but Bickel and Levina

(2008b) do not indicate which estimator to use. Because the sample precision

matrix is computationally unstable for large p, we use the banded estimator with

K = 20 based on the second group, say Ω̂
BL,(t)
2,nK , in the simulation study. In the

same way, a tth random split gives Ω̂
BL,(t)
1,nk and Ω̂

BL,(t)
2,nk , for t = 1, . . . , T . Finally,

the risk (4.2) is approximated by

R̂(k) =
1

T

T∑
t=1

‖Ω̂BL,(t)
1,nk − Ω̂

BL,(t)
2,nK ‖1, (4.3)

and the bandwidth k is selected as k̂BL = argmin0≤k≤K R̂(k), where K = 20.

Note that k̂BL does not need to minimize the `1-norm risk in practice, because

its consistency is not guaranteed.

5. Simulation Study

We investigate the performance of the proposed Bayes estimator Ω̂LL
nk , defined

in (3.2), and the posterior mode k̂. Then, we compare the performance of the

Bayes estimator based on the G-Wishart prior Ω̂BG
nk (Banerjee and Ghosal (2014))

and the banded estimator Ω̂BL
nk (Bickel and Levina (2008b)) in various scenarios.

For the proposed estimator Ω̂LL
nk , we use ν0 = 2 throughout this section.

Banerjee and Ghosal (2014) proposed two Bayes estimators, corresponding

to the Stein loss and the squared-error loss, respectively. We examine the per-

formance of two Bayes estimators, say Ω̂BG1
nk and Ω̂BG2

nk , with δ = 3. For these

estimators, the bandwidth k is chosen using the posterior mode in Banerjee and

Ghosal (2014), k̂BG.

For the banded Cholesky-based estimator proposed by (Bickel and Levina

(2008b)), we tried two different bandwidth estimators, k̂BL and k̂, in order to

compare their relative performance.

The spectral norm, matrix `∞-norm, and Frobenius norm are used as loss

functions. The sample sizes are set to n = 100, 200, and 500, and the dimensions

are set to p = 100, 200, and 500. For each setting, the values of the loss function,

‖Ω̂(s)
nk − Ω0,n‖, s = 1, . . . , 100, (5.1)
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are calculated based on 100 simulated data items, for each method Ω̂nk and loss

function ‖ · ‖, where Ω0,n denotes the true precision matrix. The mean and

standard deviation of (5.1) are used as summary statistics. We consider the

following true precision matrices.

Example 1. (AR(1) process) Assume the true covariance matrix Σ0,n = (σ0,ij)

is given by

σ0,ij = ρ|i−j|, 1 ≤ i, j ≤ p,

with ρ = 0.3. Then, the true precision matrix is a banded matrix with an AR(1)

process structure.

Example 2. (AR(4) process) Assume the true precision matrix Ω0,n = (ω0,ij) is

given by

ω0,ij = I(|i− j| = 0) + 0.4 · I(|i− j| = 1) + 0.2 · I(|i− j| = 2)

+ 0.2 · I(|i− j| = 3) + 0.1 · I(|i− j| = 4).

Thus, the true precision matrix is a banded matrix with an AR(4) process struc-

ture. Furthermore, it is always positive definite because of the diagonally domi-

nant property.

Example 3. (Long-range dependence) In the last example, the true precision

matrix is not a bandable matrix in U(ε0, γ). Consider a fractional Gaussian noise

model, where the true covariance matrix Σ0,n = (σ0,ij) is given by

σ0,ij =
1

2

(
||i− j|+ 1|2H − 2|i− j|2H + ||i− j| − 1|2H

)
, 1 ≤ i, j ≤ p,

with H ∈ [0.5, 1]. The Hurst parameter H indicates the dependency of the

process. Here, H = 0.5 implies white noise, and H near 1 denotes long-range

dependence. We chose H = 0.7. In this case, the true precision matrix does not

belong to the bandable class.

Tables 3–5 show the simulation results for the above three examples, and

Figure 1 shows the performance of each estimator when the true precision matrix

is an AR(4) process and (n, p) = (500, 500). We omit the estimator Ω̂BG2
nk ,

because its performance is similar to that of Ω̂BG1
nk in all scenarios, where BG in

Tables 3–5 and Figure 1 represents Ω̂BG1
nk .

We also report the summary statistics for the estimated bandwidths, k̂, k̂BG,

and k̂BL, for the AR(1) and AR(4) models in Table 6 and Table 7, respectively.
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Table 3. Simulation results for the AR(1) model. For each n and p, the mean and
standard deviation (in parentheses) of three loss functions (the spectral norm, matrix
`∞-norm, and Frobenius norm) are calculated. Columns BL1 and BL2 show the results

for banded estimators with bandwidths k̂BL and k̂, respectively.

LL BG BL1 BL2

n = 100

p = 100

‖ · ‖ 0.720 (0.139) 0.759 (0.141) 1.217 (0.391) 0.786 (0.146)

‖ · ‖∞ 0.913 (0.176) 0.957 (0.177) 1.905 (0.813) 0.989 (0.184)

‖ · ‖F 2.382 (0.171) 2.447 (0.187) 3.837 (1.067) 2.503 (0.196)

p = 200

‖ · ‖ 0.802 (0.140) 0.842 (0.140) 1.294 (0.353) 0.873 (0.145)

‖ · ‖∞ 1.025 (0.180) 1.071 (0.180) 2.044 (0.716) 1.108 (0.186)

‖ · ‖F 3.395 (0.165) 3.487 (0.179) 5.471 (0.322) 3.567 (0.188)

p = 500

‖ · ‖ 0.910 (0.147) 0.951 (0.146) 1.504 (0.417) 0.985 (0.152)

‖ · ‖∞ 1.151 (0.181) 1.196 (0.181) 2.412 (0.928) 1.239 (0.188)

‖ · ‖F 5.377 (0.172) 5.521 (0.186) 9.070 (2.353) 5.647 (0.353)

n = 200

p = 100

‖ · ‖ 0.482 (0.090) 0.498 (0.094) 0.585 (0.165) 0.507 (0.096)

‖ · ‖∞ 0.619 (0.117) 0.636 (0.121) 0.815 (0.315) 0.646 (0.124)

‖ · ‖F 1.673 (0.110) 1.696 (0.116) 1.991 (0.442) 1.714 (0.119)

p = 200

‖ · ‖ 0.537 (0.098) 0.556 (0.100) 0.644 (0.154) 0.567 (0.102)

‖ · ‖∞ 0.685 (0.127) 0.706 (0.130) 0.896 (0.277) 0.718 (0.133)

‖ · ‖F 2.374 (0.113) 2.406 (0.121) 2.851 (0.544) 2.432 (0.124)

p = 500

‖ · ‖ 0.594 (0.124) 0.615 (0.080) 0.747 (0.156) 0.626 (0.082)

‖ · ‖∞ 0.755 (0.108) 0.777 (0.109) 1.054 (0.326) 0.792 (0.111)

‖ · ‖F 3.762 (0.104) 3.813 (0.111) 4.692 (0.866) 3.855 (0.114)

n = 500

p = 100

‖ · ‖ 0.287 (0.045) 0.292 (0.046) 0.309 (0.055) 0.295 (0.047)

‖ · ‖∞ 0.368 (0.060) 0.373 (0.063) 0.404 (0.084) 0.376 (0.064)

‖ · ‖F 1.053 (0.065) 1.060 (0.067) 1.110 (0.110) 1.064 (0.067)

p = 200

‖ · ‖ 0.314 (0.045) 0.321 (0.046) 0.340 (0.065) 0.324 (0.047)

‖ · ‖∞ 0.405 (0.059) 0.412 (0.061) 0.445 (0.101) 0.415 (0.062)

‖ · ‖F 1.489 (0.073) 1.497 (0.074) 1.565 (0.172) 1.503 (0.074)

p = 500

‖ · ‖ 0.340 (0.042) 0.347 (0.042) 0.359 (0.051) 0.350 (0.043)

‖ · ‖∞ 0.436 (0.053) 0.444 (0.053) 0.465 (0.078) 0.448 (0.053)

‖ · ‖F 2.352 (0.069) 2.365 (0.070) 2.433 (0.188) 2.375 (0.071)

Two remarks related to the simulation results are in order. First, it seems

that the proposed Bayes estimator k̂ is practically comparable with or better

than the method of Banerjee and Ghosal (2014). Because our theoretical results

and those of Banerjee and Ghosal (2014) are based on an optimal choice of k,

which depends on unknown parameters, the practical performance when using

the posterior mode k̂ is of independent interest. Based on our simulation, the

performance of Ω̂LL
nk is better, in general, than that of Ω̂BG1

nk . Furthermore, based

on Tables 6 and 7, k̂BG tended to underestimate the true bandwidth, and k̂



ESTIMATING LARGE PRECISION MATRICES 191

Table 4. Simulation results for the AR(4) model. For each n and p, the mean and
standard deviation (in parentheses) of three loss functions (the spectral norm, matrix
`∞-norm, and Frobenius norm) are calculated. Columns BL1 and BL2 show the results

for banded estimators with bandwidths k̂BL and k̂, respectively.

LL BG BL1 BL2

n = 100

p = 100

‖ · ‖ 1.510 (0.040) 1.475 (0.041) 1.481 (0.340) 1.473 (0.041)

‖ · ‖∞ 1.854 (0.058) 1.826 (0.061) 2.446 (0.607) 1.827 (0.063)

‖ · ‖F 5.130 (0.070) 5.050 (0.065) 4.189 (0.620) 5.046 (0.065)

p = 200

‖ · ‖ 1.541 (0.034) 1.506 (0.035) 1.668 (0.395) 1.504 (0.035)

‖ · ‖∞ 1.899 (0.065) 1.873 (0.069) 2.873 (0.678) 1.874 (0.071)

‖ · ‖F 7.312 (0.072) 7.196 (0.068) 6.015 (0.840) 7.191 (0.068)

p = 500

‖ · ‖ 1.564 (0.029) 1.530 (0.030) 1.884 (0.368) 1.528 (0.030)

‖ · ‖∞ 1.938 (0.052) 1.913 (0.056) 3.061 (0.654) 1.915 (0.057)

‖ · ‖F 11.610 (0.076) 11.426 (0.072) 9.620 (1.288) 11.417 (0.072)

n = 200

p = 100

‖ · ‖ 1.313 (0.314) 1.461 (0.027) 0.843 (0.168) 1.288 (0.325)

‖ · ‖∞ 1.616 (0.273) 1.734 (0.050) 1.366 (0.284) 1.596 (0.280)

‖ · ‖F 4.477 (0.980) 4.949 (0.049) 2.513 (0.260) 4.431 (0.972)

p = 200

‖ · ‖ 0.972 (0.289) 1.482 (0.027) 0.482 (0.171) 0.934 (0.299)

‖ · ‖∞ 1.343 (0.245) 1.759 (0.043) 1.457 (0.280) 1.319 (0.249)

‖ · ‖F 4.574 (1.357) 7.047 (0.054) 3.528 (0.336) 4.502 (1.356)

p = 500

‖ · ‖ 0.871 (0.052) 1.499 (0.023) 1.015 (0.169) 0.840 (0.059)

‖ · ‖∞ 1.300 (0.097) 1.800 (0.041) 1.643 (0.303) 1.291 (0.117)

‖ · ‖F 6.083 (0.345) 11.200 (0.058) 5.686 (0.554) 6.001 (0.226)

n = 500

p = 100

‖ · ‖ 0.501 (0.139) 1.052 (0.395) 0.450 (0.084) 0.513 (0.122)

‖ · ‖∞ 0.767 (0.151) 1.281 (0.355) 0.733 (0.144) 0.784 (0.137)

‖ · ‖F 1.663 (0.444) 3.573 (1.324) 1.439 (0.118) 1.676 (0.411)

p = 200

‖ · ‖ 0.447 (0.063) 0.807 (0.255) 0.481 (0.067) 0.473 (0.067)

‖ · ‖∞ 0.722 (0.080) 1.083 (0.229) 0.768 (0.094) 0.754 (0.088)

‖ · ‖F 1.939 (0.068) 3.764 (1.245) 2.010 (0.107) 1.985 (0.075)

p = 500

‖ · ‖ 0.493 (0.081) 0.737 (0.044) 0.530 (0.084) 0.522 (0.085)

‖ · ‖∞ 0.784 (0.111) 1.036 (0.056) 0.835 (0.117) 0.820 (0.116)

‖ · ‖F 3.069 (0.067) 5.151 (0.456) 3.189 (0.141) 3.139 (0.076)

outperforms k̂BG. Second, our selection scheme for k is comparable with that

of Bickel and Levina (2008b); however, a comparison of the two is not straight-

forward. The BL1 and BL2 columns in Tables 3–5 show the results for the

banded estimators of Bickel and Levina (2008b), with k chosen using k̂BL and k̂,

respectively. Based on Tables 3 and 5, BL2 outperforms BL1; however, in the

second scenario (Table 4), it is difficult to determine which of the two performs

best. From Tables 6 and 7, we can see that k̂BL seems to overestimate the true

bandwidth, whereas k̂ underestimates the true bandwidth. However, when the

sample size n is large (n = 500), k̂ estimates the true bandwidth quite well,
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Table 5. Simulation results for the fractional Gaussian noise model. For each n and p,
the mean and standard deviation (in parentheses) of three loss functions (the spectral
norm, matrix `∞-norm, and Frobenius norm) are calculated. Columns BL1 and BL2

show the resultSs for banded estimators with bandwidths k̂BL and k̂, respectively.

LL BG BL1 BL2

n = 100

p = 100

‖ · ‖ 0.837 (0.149) 0.880 (0.149) 1.232 (0.357) 0.911 (0.154)

‖ · ‖∞ 1.588 (0.194) 1.636 (0.193) 2.284 (0.698) 1.676 (0.200)

‖ · ‖F 2.879 (0.194) 2.955 (0.211) 3.980 (0.908) 3.030 (0.222)

p = 200

‖ · ‖ 0.931 (0.147) 0.973 (0.146) 1.326 (0.335) 1.008 (0.152)

‖ · ‖∞ 1.752 (0.188) 1.800 (0.187) 2.495 (0.654) 1.843 (0.194)

‖ · ‖F 4.100 (0.178) 4.208 (0.194) 5.806 (1.236) 4.315 (0.204)

p = 500

‖ · ‖ 1.043 (0.156) 1.085 (0.155) 1.493 (0.348) 1.124 (0.161)

‖ · ‖∞ 1.929 (0.196) 1.976 (0.194) 2.800 (0.740) 2.025 (0.202)

‖ · ‖F 6.478 (0.185) 6.648 (0.202) 9.321 (0.945) 6.817 (0.212)

n = 200

p = 100

‖ · ‖ 0.601 (0.096) 0.622 (0.096) 0.659 (0.126) 0.634 (0.098)

‖ · ‖∞ 1.269 (0.137) 1.293 (0.138) 1.360 (0.217) 1.307 (0.140)

‖ · ‖F 2.287 (0.123) 2.318 (0.131) 2.435 (0.278) 2.347 (0.134)

p = 200

‖ · ‖ 0.665 (0.111) 0.687 (0.111) 0.719 (0.116) 0.699 (0.113)

‖ · ‖∞ 1.400 (0.148) 1.424 (0.148) 1.484 (0.175) 1.440 (0.150)

‖ · ‖F 3.244 (0.131) 3.289 (0.139) 3.465 (0.289) 3.330 (0.143)

p = 500

‖ · ‖ 0.733 (0.092) 0.755 (0.092) 0.801 (0.104) 0.769 (0.094)

‖ · ‖∞ 1.526 (0.127) 1.551 (0.127) 1.646 (0.181) 1.568 (0.129)

‖ · ‖F 5.141 (0.117) 5.212 (0.124) 5.547 (0.464) 5.277 (0.128)

n = 500

p = 100

‖ · ‖ 0.406 (0.047) 0.434 (0.043) 0.436 (0.046) 0.420 (0.049)

‖ · ‖∞ 1.004 (0.076) 1.004 (0.073) 1.046 (0.074) 1.020 (0.077)

‖ · ‖F 1.722 (0.064) 1.875 (0.066) 1.869 (0.084) 1.742 (0.066)

p = 200

‖ · ‖ 0.433 (0.045) 0.467 (0.044) 0.468 (0.046) 0.448 (0.046)

‖ · ‖∞ 1.086 (0.073) 1.128 (0.073) 1.130 (0.074) 1.105 (0.074)

‖ · ‖F 2.433 (0.063) 2.649 (0.065) 2.647 (0.085) 2.460 (0.065)

p = 500

‖ · ‖ 0.461 (0.043) 0.495 (0.039) 0.498 (0.040) 0.476 (0.044)

‖ · ‖∞ 1.164 (0.073) 1.203 (0.062) 1.209 (0.061) 1.183 (0.074)

‖ · ‖F 3.856 (0.062) 4.189 (0.071) 4.202 (0.085) 3.900 (0.064)

whereas k̂BL still overestimates, with a relatively larger variance than that of k̂.

6. Discussion

We have proposed a k-BC prior (2.4) for bandable precision matrices based

on an MCD. The P-loss convergence rates for precision matrices under the spec-

tral norm and matrix `∞-norm were established. Although the P-loss convergence

rates are slightly slower than that of the Bayesian minimax lower bounds, the

proposed approach attains a faster posterior convergence rate than those of other

Bayesian methods. Simulation results indicate that its practical performance is
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Spectral norm Matrix norm Frobenius norm
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Figure 1. The average errors for an AR(4) process structure precision matrix under
the spectral norm, matrix `∞-norm, and Frobenius norm. The sample size n and the
dimensionality p are both set as 500.

Table 6. The mean and standard deviation (in parentheses) of the estimated bandwidths
for the AR(1) model (k0 = 1) in Example 1.

k̂ k̂BG k̂BL

n = 100

p = 100 1.000 (0.000) 1.000 (0.000) 3.060 (1.638)

p = 200 1.000 (0.000) 1.000 (0.000) 3.080 (1.454)

p = 500 1.000 (0.000) 1.000 (0.000) 3.360 (1.667)

n = 200

p = 100 1.000 (0.000) 1.000 (0.000) 1.650 (0.999)

p = 200 1.000 (0.000) 1.000 (0.000) 1.700 (0.882)

p = 500 1.000 (0.000) 1.000 (0.000) 1.890 (0.952)

n = 500

p = 100 1.000 (0.000) 1.000 (0.000) 1.170 (0.377)

p = 200 1.000 (0.000) 1.000 (0.000) 1.170 (0.403)

p = 500 1.000 (0.000) 1.000 (0.000) 1.100 (0.333)

comparable to or better than that of competitive approaches.

Several extensions to this work are possible, related to the bandwidth k.

First, our theoretical results depend on the unknown parameter of γ(k). To

choose an optimal k, we need to know the rate of γ(k). Thus, developing an

adaptive procedure that simultaneously attains a reasonable convergence rate,

regardless of γ(k), is one possible extension. Second, the theoretical property of
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Table 7. The mean and standard deviation (in parenthesis) of estimated values of band-
width for AR(4) model (k0 = 4) in Example 2.

k̂ k̂BG k̂BL

n = 100

p = 100 1.000 (0.000) 1.000 (0.000) 5.130 (1.060)

p = 200 1.000 (0.000) 1.000 (0.000) 5.170 (1.074)

p = 500 1.000 (0.000) 1.000 (0.000) 5.240 (1.074)

n = 200

p = 100 1.440 (0.833) 1.000 (0.000) 4.570 (0.686)

p = 200 2.560 (0.833) 1.000 (0.676) 4.530 (0.717)

p = 500 3.090 (0.288) 1.000 (0.000) 4.660 (0.794)

n = 500

p = 100 3.700 (0.461) 2.000 (1.005) 4.240 (0.571)

p = 200 4.000 (0.000) 2.740 (0.676) 4.110 (0.314)

p = 500 4.000 (0.000) 3.050 (0.219) 4.140 (0.377)

the posterior mode k̂ is unexplored. Here, a theoretical result similar to Theorem

4 in Bickel and Levina (2008a) can be investigated.

Supplementary Material

The online Supplementary Material provides proofs for the main and other

auxiliary results.
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