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Abstract: In this paper, we propose a new clustering approach for multivariate re-

sponses in a longitudinal analysis. Clustering analyses for multiple outcomes can

be challenging, owing to multiple sources of correlation from multiple outcomes of

the same subject and longitudinal measurements. The proposed method enhances

clustering analyses by integrating multiple sources of correlations. Specifically,

we incorporate random effects to capture correlations from multivariate responses,

and group individuals by penalizing the pairwise distances between the B-spline

coefficient vectors. We implement an alternating directions and method of multi-

pliers (ADMM) algorithm for optimization in clustering. Furthermore, we study

the asymptotic convergence rate of the proposed nonparametric estimator in the

presence of longitudinal correlations for the random-effects model. The results of

simulations and a real-data analysis show that the proposed method outperforms

existing clustering methods.
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spline, random effects.

1. Introduction

Clustering analyses of longitudinal data play an important role in many

fields, such as public health, economics, and marketing research, where multi-

ple outcomes are obtained from a subject repeatedly over time. Consequently,

repeated measurements from the same response variable are correlated with ad-

ditional correlations from multiple outcomes on the same subject. Identifying

potential longitudinal trajectory patterns in order to fully utilize joint multiple

outcomes is of great interest in practice. In general, multiple measurements of

symptoms on the same subject are more powerful for identifying the severity of

diseases than single measurements are, if multiple outcomes are available.

Existing clustering analyses of longtitudinal data include multivariate clus-

tering methods, such as k-means clustering (MacQueen (1967); Hartigan and

Wong (1979)) and finite-mixture models (Fraley and Raftery (2002)), which are
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useful for identifying groups of longitudinal patterns. These methods assume

that repeated measurements from the same subject form a vector at distinct time

points, and that information on time ordering is ignored. Thus, the clustering re-

sults could be invariant to arbitrary permutations of a sequence of measuremetns

for each subject. However, the trajectory patterns in time-ordering data are of-

ten of primary interest in many applications. In addition, these methods usually

require prior knowledge on the number of subgroups, and cannot handle missing

values, which can be a limitation in practice.

Other clustering methods are based on regression curves. Vogt and Linton

(2017) developed a two-step classification algorithm to estimate the parameters

of group memberships and the number of subgroups simultaneously by compar-

ing the L2-distances between the kernel estimates of nonparametric functions.

However, the number of subgroups is estimated by the number of iterations

in the first-step thresholding procedure, which could perform poorly when the

noise level in the data is high. In addition, their method cannot be applied to

unbalanced longitudinal data. Ma et al. (2006) and Coffey, Hinde and Holian

(2014) analyze time-course gene expression data by applying smoothing spline

and penalized spline approximations, respectively, under the mixed-effects model

framework. However, neither of these methods takes correlations from the same

individual into account, and both require prior knowledge of the true number of

subgroups.

The penalized model selection methods, for example, the Lq-norm (Tibshi-

rani (1996)), smoothly clipped absolute deviation (SCAD) (Fan and Li (2001)),

minimax concave penalty (MCP) (Zhang (2010)), and truncated Lasso penalty

(TLP) (Shen, Pan and Zhu (2012)), allow automatic detection of the clusters,

and model the subgroup mean centers simultaneously. Ma and Huang (2017)

apply nonconvex fusion penalties to pairwise differences of unobserved subject-

specific intercepts, based on a linear regression model. Shen and Huang (2010)

group covariate effects using fused concave penalties. Chi and Lange (2015) for-

mulate the clustering problem as a convex optimization problem. Pan, Shen and

Liu (2013) adopt a fused-lasso-type penalty to compare the pairwise differences

between the centroids of each subject. However, none of these methods focus on

longitudinal data analyses with multivariate responses.

The aim of this study is to develop a new clustering method to detect the

unknown group structure of individuals, without pre-assuming the number of

subgroups, for multiple outcomes of longitudinal data, which are correlated for

repeated measurements and multivariate outcomes with possibly missing obser-
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vations. The potential challenges of dealing with inherent correlations between

multiple outcomes from the same subject and longitudinal correlation arise from

repeated measures on the same outcome. In this work, we propose a penalized

regression-based clustering approach that incorporates within-outcome serial cor-

relation and uses random effects to account for the correlations between multiple

outcomes from the same subject. These allow us to integrate multiple sources of

information when partitioning individuals into homogeneous groups with similar

joint-trajectory patterns.

One way to identify longitudinal trajectory patterns is to estimate the func-

tional curve of each subject using a nonparametric penalized spline approach.

We group individuals by penalizing the pairwise distances between the B-spline

coefficient vectors. In order to minimize the clustering objective function, we

implement an alternating directions and method of multipliers (ADMM) algo-

rithm (Boyd et al. (2011)). The proposed method has several advantages. First,

combining multiple outcomes for each subject by modeling the subject-specific

random effects enables us to merge individuals with similar joint-trajectory pat-

terns into homogeneous groups. Second, formulating clustering as a regression

problem enables us to use well-established model selection methods and crite-

ria for a clustering analysis. In addition, we apply a Bayesian information-type

criterion to select the number of clusters automatically, and achieve parameter

estimations simultaneously. The proposed method is capable of dealing with

unbalanced longitudinal data.

The remainder of the paper proceeds is as follows. In Section 2, we introduce

the model formulation and framework. In Section 3, we present the new cluster-

ing method for longitudinal multiple outcome data. In Section 4, we establish

the convergence rate of the proposed estimator in the presence of correlation.

Simulation comparisons with several competing methods are conducted in Sec-

tion 5. In Section 6, we illustrate the proposed method for IRI data and compare

its performance with that of other methods. We provide a brief conclusion and

discussion in Section 7. The proofs of the theorems are provided in the online

Supplementary Material.

2. Model Framework

2.1. The individualized model with multiple outcomes

We consider data from n individuals, with M outcomes from each subject.

Instead of modeling on each individual outcome separately, we utilize multiple
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outcomes from the same subject simultaneously by introducing random effects

to link the multiple outcomes for subgroup identification. For example, in our

real-data analysis, each product has two attributes: sales unit and sales vol-

ume. We are interested in modeling the joint contribution of two attributes

to the clustering of products. Combining the information of the two attributes

by incorporating their correlations provides us with better power to distinguish

potential subgroups among these products.

We consider the following subject-wise model under the nonparametric model

framework:

yijm = fim(xijm) + bi + εijm, (2.1)

where yijm is the mth outcome, measured at the jth (j = 1, . . . , nim) time for

subject i, and xijm is the corresponding covariate for the mth outcome of the

ith subject at time j. Without loss of generality, we assume that xijm can be

rescaled to a compact interval X = [0, 1], fim(·) ∈ Cr(X ) is an unknown rth-

order continuously differentiable smoothing function, and bi is the random effect

that links different outcomes together, under the assumption that different out-

comes for each subject share the same random effect; here, the random effects

are treated as nuisance parameters, as in Wang, Tsai and Qu (2012) and Ma and

Huang (2017). The traditional random-effects model assumes that the random

effects follow a certain distribution, for example, a normal distribution, and fo-

cuses on the variance component estimation of the random effects. However, we

do not impose any distribution assumption on bi, but instead assume that the

random effects have mean zero and variance σ2b > 0. In addition, εijm is the ran-

dom error with zero mean and variance σ2ε > 0. Let εim = (εi1m, . . . , εinimm)T ,

εi = (εTi1, . . . , ε
T
iM )T , and yim = (yi1m, . . . , yinimm)T . We also allow serial corre-

lation within each outcome, that is, cov(εim) = Aim
1/2R0

imAim
1/2, where Aim

is the diagonal matrix of the marginal variance of yim, R0
im is the correlation

matrix from the longitudinal measurements for each outcome, and εim is inde-

pendent across m and εi is independent across i.

In addition, we assume that the subjects have the group structure G =

{G1, . . . ,GG}, which is a partition of {1, . . . , n}, where G(G ≤ n) is the number

of subgroups. We suppose that fim(x) = fjm(x) (m = 1, . . . ,M) if subjects

are in the same subgroup; that is, i, j ∈ Gg and g ∈ {1, . . . , G}. Denote fim =

(fim(xi1m), . . . , fim(xinimm))T , fi = (fi1
T , . . . , fiM

T )T , and f = (f1
T , . . . , fn

T )T ,

and let ni =
∑M

m=1 nim and N =
∑n

i=1 ni. We define the nonparametric function
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subspace Mf
G corresponding to the group partition as

Mf
G = {f ∈ RN : fim(·) = fjm(·), 1 ≤ m ≤M, for any i, j ∈ Gg, 1 ≤ g ≤ G}.

That is, the members in class Gg all have the same regression function. The aim

of this study is to estimate the regression function for each group and subgroup

of subjects simultaneously.

The smoothing function fim(·) can be estimated using a linear combination of

spline basis functions. Typically, B-spline bases for different outcomes may vary

in terms of their numbers of knots km or the degree of the B-spline rm−1. We con-

sider rmth-order B-splines, with km equally spaced internal knots κ = {η0 = 0 <

η1 < · · · < ηkm < 1 = ηkm+1}. Specifically, there are pm = km+rm normalized B-

spline basis functions of order rm for each outcome. The B-spline basis functions

are N r
l (x) = ((x− ηl)/(ηl+r−1 − ηl))N r−1

l (x) + (ηl+r − x/(ηl+r − ηl+1))N
r−1
l+1 (x),

where N1
l (x) = 1 when ηl ≤ x < ηl+1, and N1

l (x) = 0 otherwise. Thus,

fim(x) ≈ sim(x) =
∑

lm
N rm
lm

(x)βimlm = πm(x)Tβim, where βim is a pm-

dimensional coefficient vector. Consequently, fim ≈ Bimβim with Bim =

(πm(xi1m), . . . ,πm(xinimm))T , fi ≈ Biβi with Bi = diag(Bi1, . . . ,BiM ),

βi = (βTi1, . . . ,β
T
iM )T , and βi is a p-dimensional coefficient vector, where p =∑M

m=1 pm.

Equivalently, we can write

yi ≈ Biβi + 1nibi + εi, i = 1, . . . , n, (2.2)

where yi = (yTi1, . . . ,y
T
iM )T , yim = (yi1m, . . . , yinimm)T , and 1ni is a ni×1 vector

with entries equal to one. Let β = (βT1 , . . . ,β
T
n)T . Thus, the group partition

Mf
G is equivalent to Mβ

G = {β ∈ Rnp : βi = βj , for any i, j ∈ Gg, 1 ≤ g ≤ G}.
To identify subgroups by distinguishing the group patterns of the smoothing

functions is equivalent to distinguishing the B-spline coefficients for each group.

2.2. Clustering with a single outcome

In this section, we illustrate a special case with only one outcome (i.e., M =

1). That is, the nonparametric panel regression model is

yij = fi(xij) + bi + εij . (2.3)

Ma et al. (2006) cluster time-course gene expression data under the frame-

work of (2.3). They apply smoothing splines to estimate the unknown mean
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expression curve fi(x), and assume random effects bi ∼ N(0, σ2b ) and errors

εij ∼ N(0, σ2ε), which are independent across i. They cluster the time-course

data under the Gaussian mixture model framework using a rejection-controlled

EM algorithm.

A drawback of smoothing spline regressions is that they incur a high com-

putational cost. To address this problem, Coffey, Hinde and Holian (2014) im-

plement a penalized spline (P-spline) smoothing to estimate the unknown mean

expression function fi(x), which reduces the computation cost, while maintaining

comparable performance in terms of estimating and clustering. However, both

Ma et al. (2006) and Coffey, Hinde and Holian (2014) require prior knowledge

of the number of subgroups, and neither take correlation within individuals into

account when the errors are correlated within subjects.

Recently, Vogt and Linton (2017) developed a two-step classification algo-

rithm to estimate the parameters of group memberships and the number of

subgroups simultaneously. Their method compares L2-distances of the form

δ̂ij =
∫
{f̂i(x)−f̂j(x)}2π(x)dx, where π is a weight function, and f̂i and f̂j are the

kernel smoothers of the nonparametric function. In the first step, they sort the

estimated distances {δ̂ij : j ∈ S} in increasing order as δ̂i[1] ≤ δ̂i[2] ≤ · · · ≤ δ̂i[ns],

where S ⊆ {1, . . . , n} is an index set and ns = |S| is the cardinality of S. Un-

der appropriate regularity conditions, they show that maxj∈G̃ δ̂ij ≤ τn,T , where

G̃ = {[1], . . . , [p]} and τn,T is a threshold parameter. Furthermore, p can be esti-

mated as p̂ = p̂i,S = max{j ∈ {1, . . . , ns} : δ̂i[j] ≤ τn,T }. Thus, using an iterative

procedure, they partition individuals into the class structure {Ĝg : 1 ≤ g ≤ Ĝ},
where Ĝ can be estimated by the number of iterations. In the second step, they

use a k-means clustering method, using the threshold estimators Ĝ1, . . . , ĜĜ as

the starting values. However, calculating the distances between different sub-

jects requires equally observed time points. Therefore, their method cannot be

applied to unbalanced longitudinal data. On the other hand, the performance

of the first-step can be poor when the noise level in the data is high, which can

further affect the second step in terms of the k-means clustering.

3. Methodology

In this section, we propose a new method for clustering longitudinal multiple

outcome data.
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3.1. The pairwise-grouping method with MCP Penalty

We rewrite (2.2) in matrix form, as follows:

Y ≈ Bβ + Zb+ ε, (3.1)

where Y = (yT1 , . . . ,y
T
n)T , B = diag(B1, . . . ,Bn), β = (βT1 , . . . ,β

T
n)T , Z =

diag(1n1
, . . . ,1nn), b = (b1, . . . , bn)T , and ε = (εT1 , . . . , ε

T
n)T .

In order to cluster subjects with similar functional forms into one group,

we impose a penalty on the pairwise distances of the B-spline coefficients. In

addition, we incorporate longitudinal correlation using a weighting matrix Σ =

diag(Σ1, . . . ,Σn) to improve the estimation efficiency, where Σi = Ai
1/2RiAi

1/2 =

diag(Σi1, . . . ,ΣiM), Σim = Aim
1/2RimAim

1/2, Aim is a diagonal matrix of the

marginal variance of yim, and Rim is a working correlation matrix within each

outcome.

We obtain the following weighted penalized pairwise fusion objective func-

tion:

H(β, b) =
1

2
(Y −Bβ − Zb)TΣ−1(Y −Bβ − Zb) +

1

2
λ1β

TDdβ

+
1

2
λ2||b||22 +

∑
i,j∈L

ρ(|βi − βj |, λ3), (3.2)

where Dd = diag(D1, . . . ,Dn); Di = diag(Di1, . . . ,DiM); Dim = ∆m
T∆m,

where ∆m is a (pm − d)× pm difference penalty matrix, defined as in Eilers and

Marx (1996); || · ||2 is the Euclidean norm; ρ(·, λ3) is a penalty function with a

tuning parameter λ3, used to encourage the pairwise spline coefficients to cluster

together if they are close to each other; and L = {l = (i, j) : 1 ≤ i < j ≤ n} is an

index set containing the total number of possible pairs |L| = n(n− 1)/2. Thus,

we obtain β̂ and b̂ by minimizing (3.2), and the estimated smoothing function is

f̂ = Bβ̂.

The formulation in (3.2) takes both model flexibility and complexity into

consideration. Specifically, λ1 is a smoothing parameter that controls the trade-

off between model-fitting and smoothness from the data. The tuning parameter

λ2 plays an important role in controlling the variability and ensuring the identi-

fiability of the random effects, such that
∑
bi = 0 (Wang, Tsai and Qu (2012)),

because the inequality n
∑
b2i ≥ (

∑
bi)

2 holds. In addition, λ3 is a tuning param-

eter that determines the number of subgroups. The choice of these parameters

can be based on a data-driven procedure, such as the BIC; we discuss this in fur-
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ther detail in Section 3.3. To incorporate correlation information from repeated

measurements, we use an empirical estimation of the correlations based on the

residuals. By minimizing the objective function (3.2), we can obtain B-spline

coefficients and subgroups simutaneously.

It is crucial to choose the fusion penalty function ρ(·, λ3) to ensure nearly

unbiased estimators, while satisfying the sparsity and oracle properties. This

leads to similar B-spline coefficients being grouped together, and results in better

estimations and predictions. Here, we adopt the minimax concave penalty (MCP)

(Zhang (2010)) to achieve the sparsity, unbiasedness, and oracle properties. The

MCP is defined as ρ(|βi − βj |, λ3) = ργ(‖ βi − βj ‖2, λ3) = λ3
∫ ‖βi−βj‖2
0 (1 −

(x/γλ3))+dx, for λ3 > 0 and γ > 0, where (x)+ = max(x, 0). In addition, γ

controls the concavity of the penalty function in that the MCP serves as the `1
penalty and the `0 penalty, when γ →∞ and γ → +1, respectively.

Note that without the penalty term ρ(|βi−βj |, λ3), minimizing (3.2) leads to

the penalized ordinary least squares (OLS) estimators (β̃, b̃) = arg min(β,b)Q(β, b),

where Q(β, b) = (1/2)(Y −Bβ − Zb)TΣ−1(Y −Bβ − Zb) + (1/2)λ1β
TDdβ +

(1/2)λ2||b||22 = (1/2)
∑n

i=1(yi −Biβi − 1nibi)
TΣi

−1(yi −Biβi − 1nibi) + (1/2)∑n
i=1 λ1β

T
i Diβi + (1/2)

∑n
i=1 λ2b

2
i . This leads to the explicit solutions

β̃ = (BTWB + λ1Dd)−1BTWY , (3.3)

b̃ = (ZTΣ−1Z + λ2In)−1ZTΣ−1(Y −Bβ̃), (3.4)

where W = (Σ+(1/λ2)ZZT )−1. Consequently, the estimated smoothing function

is f̃ = Bβ̃.

When the true group membership is known, we obtain the oracle penalized

spline estimator and the corresponding random-effect estimator as follows:

(β̃or, b̃or) = arg min
(β∈Mβ

G ,b∈Rn)
Q(β, b). (3.5)

Then, the oracle approximation of the spline function is obtained as f̃or = Bβ̃or.

3.2. An ADMM procedure

In this subsection, we derive an ADMM algorithm (Boyd et al. (2011); Ma

and Huang (2017)) to solve the objective function in (3.2). Because the penalty

function in (3.2) is not separable for βi, we introduce a new set of parameters

u = (uT1 , . . . ,u
T
|L|)

T , with ul = βi − βj , for l ∈ L, to reconstruct the original
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optimization problem using an ADMM as follows:

Lθ(β, b,u, τ ) = Q(β, b) +
∑
l∈L

ργ(‖ ul ‖2, λ3) +
θ

2

∑
l∈L
‖ βi − βj − ul ‖22

+
∑
l∈L

τTl (ul − βi + βj), (3.6)

where θ is a tuning parameter and τ = (τT1 , . . . , τ
T
|L|)

T are Lagrangian multipliers

of the constraints βi − βj − ul = 0.

In each iteration of the ADMM algorithm, we perform alternating minimiza-

tion of the augmented Lagrangian over β, b,u, and τ . That is, at the (s+ 1)th

iteration, we carry out the following steps:

bs+1 = arg min
b
Lθ(β

s, b,us, τ s),

βs+1 = arg min
β
Lθ(β, b

s+1,us, τ s),

us+1 = arg min
u
Lθ(β

s+1, bs+1,u, τ s),

τ s+1
l =τ sl + θ(us+1

l − βs+1
i + βs+1

j ), l ∈ L. (3.7)

We define the primal and dual residuals at iteration s+ 1 by

[ep]s+1
l = βs+1

i − βs+1
j − us+1

l ,

[ed]s+1
k = −

∑
i=k

(us+1
l − usl )−

∑
j=k

(us+1
l − usl )

 .

Let ep = (eTp1, . . . , e
T
p|L|)

T and ed = (eTd1, . . . , e
T
dn)T . The algorithm is termi-

nated at step s∗ if the primal and dual residuals satisfy a stopping criterion, such

as the following:

‖ es∗p ‖2≤ εpri, ‖ es∗d ‖2≤ εdual.

Here, the tolerances εpri and εdual are small numbers satisfying

εpri =
√
|L|pεabs + εrel max{‖ Aβs∗ ‖2, ‖ us

∗ ‖2}and
εdual =

√
npεabs + εrelθ ‖ ATτ s∗ ‖2,

where εabs and εrel are predetermined absolute and relative tolerances, respec-

tively.

We summarize the implementation of the ADMM in Algorithm 1.
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Algorithm 1 ADMM algorithm

Step 1. (Initialization) Let τ 0 = 0 and u0 = 0, θ and γ > 1/θ be fixed. Start with

initial estimators β0 = arg minβ Lθ(β, b
0,u0, τ 0) assuming independent correlation

structure, and set the initial b0 = 0.

Step 2. (ADMM) At the (s + 1) th iteration, given (βs, bs,us, τ s), update (βs+1,

bs+1,us+1, τ s+1) as in (3.7).

Step 3. (Stopping Criterion) Iterate Step 2 until the stopping criteria are met.

3.3. The choice of tuning parameters

In this subsection, we discuss how to select the tuning parameters. Note that

there are three tuning parameters, λ1, λ2, and λ3, in our estimation. Specifically,

we apply generalized cross-validation (GCV) (Shao (1997)) to tune the smoothing

parameter λ1 in order to balance the bias and the variance of the model fitting.

Parameter λ2 controls the variability of the random effects, and can be selected

as λ2 = log(n) (Wang, Tsai and Qu (2012)). For tuning parameter λ3, we apply

the BIC (Xue, Qu and Zhou (2010); Wang, Li and Leng (2009)), because λ3
is associated with the number of subgroups and, in practice, the true subgroup

model exists. We search for λ1 and λ3 on a sequence of grid points simultaneously.

However, to consider the computational cost, we implement a two-step procedure

in which we first search for an optimal value of λ1 by fixing λ3 = 0, and then

select λ3, given the optimal λ1. More specifically, we first select λ1 by minimizing

GCVλ1
=

n∑
i=1

1

ni
||yi −Hi(λ)yi||2/

{
1

ni
tr(Ini

−Hi(λ))

}2

,

where Hi(λ) = ΣiWiBi(B
T
i WiBi + λ1D1)

−1BT
i Wi − ΣiWi + Ini

, Wi = (Σi +

(1/λ2)1ni1
T
ni)
−1.

Then, we minimize

BICλ3
= log

(
‖ Y − f̂ − Zb̂ ‖22

N

)
+
log(N) ∗ df

N
,

where df = (Ĝ/n)
∑n

i=1 dfi and dfi = tr(Hi(λ1)), to obtain λ3. This two-step

strategy is quite effective in selecting optimal tuning parameters.

4. Asymptotic Properties

In this section, we establish the asymptotic properties of the proposed esti-

mator in the presence of correlations. For any s × s symmetric matrix A, de-
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note λmin(A) and λmax(A) as its smallest and largest eigenvalues, respectively.

For any arbitrary matrix Bm×n(bij), denote ||B||∞ = max1≤i≤m(
∑n

j=1 |bij |) as

its L∞-norm. For a vector a = (a1, . . . , an)T , let ||a||∞ = max1≤i≤n(|ai|).
Let L2(X ) be the space of all square integrable functions on X = [0, 1], and

||f ||22 =
∫ 1
0 f(x)2dx for any f ∈ L2(X ). Denote ||f ||2 = E[f(X)2] and ||f ||2n =

(1/n)
∑n

i=1 f(Xi)
2 as the theoretical and empirical norms, respectively, where

Xi is a random sample from X . For any set G, |G| represents the cardinal

of G. For unbalanced data, we define n0 = mini{ni} (i = 1, . . . , n) and k =

minm{km} (m = 1, . . . ,M).

We require the following regularity conditions to establish the asymptotic

properties.

A1. The function fim(·) ∈ Cr[0, 1] (i = 1, . . . , n;m = 1, . . . ,M), for some r ≥ 1.

A2. Let hj = ηj − ηj−1 and h = max1≤j≤k hj . Then,

max
1≤j≤k

|hj+1 − hj | = O(k−1) and
h

min1≤j≤k hj
≤ C1,

for some constant C1 > 0.

A3. The design points {xijm} (i = 1, . . . , n; j = 1, . . . , nim;m = 1, . . . ,M) follow

an absolutely continuous density function gX , and there exist constants a1
and a2, such that 0 < a1 ≤ minx∈X gX(x) ≤ maxx∈X gX(x) ≤ a2 <∞.

A4. Assume that Ng = O(N), where Ng =
∑

i∈Gg ni, for g = 1, . . . , G, N0 =

min(N1, . . . , NG), and N =
∑n

i=1 ni.

A5. We assume λmax(Wi(σ
2
b1ni1

T
ni + Σ0

i )) < C2 for any subject i, where C2 is

a constant and Σ0
i = Cov(εi) = Ai

1/2R0
i Ai

1/2 with true correlation matrix

R0
i .

Assumptions A1–A3 are standard conditions for the nonparametric B-spline

smoothing functions. Similar conditions are also presented in Zhu, Fung and He

(2008), Claeskens, Krivobokova and Opsomer (2009), and Zhou, Shen and Wolfe

(1998). In Assumption 4, we require that the cluster size grow as the sample size

increases. Assumption A5 is needed to establish estimation consistency.

We first investigate the convergence property on the penalized B-spline esti-

mators f̃ = Bβ̃, and establish the estimation consistency in the Lemma 1.

Lemma 1. Under Assumptions A1–A3 and A5, as n −→ ∞, and given a suffi-

ciently large n0 such that kd = (λ1h
−2d/n0) = o(1) if k → ∞ and k4 = o(n0),
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then

||f̃ − f ||2N = Op(k
−2r) +Op

(
λ21
n20
k2d
)

+Op

(
k

n0

)
. (4.1)

Remark 1. From Lemma 1, the average mean squared error for the penalized

B-spline estimator is determined by three parts. The first and second parts are

similar to Theorem 1 in Claeskens, Krivobokova and Opsomer (2009), denoting

the average squared shrinkage bias and the average squared approximation bias,

respectively. In addition, note that when λ1 is small, the shrinkage bias can

also be ignored. The third part consists of the average variance and the approx-

imation bias from the random effects. The proof of Lemma 1 is given in the

Supplementary Material.

Next, we consider the case when the true group memberships G1, . . . ,GG are

known; the corresponding estimated oracle functions are f̃or = Bβ̃or.

The convergence rate of the estimated oracle estimators is provided in Lemma

2.

Lemma 2. Under Assumptions A1–A5, and given a sufficiently large N0 such

that k̃d = λ1N
−1
0 h−2d = o(1), we have

||̃for − f ||2N = Op(k
−2r) +Op

(
λ21
N2

0

k2d
)

+Op

(
k

N0

)
. (4.2)

Remark 2. The result of Lemma 2 implies that the convergence rate of the

oracle approximation f̃or is faster than that of the P-spline estimator f̃ , because

N0 > n0. The better convergence rate of the oracle estimator ensures that more

information from each cluster, with a sufficient number of repeated measure-

ments, can be used when prior knowledge on the true group memberships is

available. The proof of Lemma 2 is provided in the Supplementary Material.

In Theorem 1, we study the convergence rate of the proposed approximation

f̂ = Bβ̂. Let df represent the minimum distance between the smoothing func-

tions of each outcome from any two clusters; that is, df = minGi 6=Gj{|fim(x) −
fjm(x)|, for all 1 ≤ m ≤M, i ∈ Gi, j ∈ Gj}.

Theorem 1. Under Assumptions A1–A5, if cdf ≥ γλ3 holds for a constant c >

0, and as n −→∞, we have sufficiently large n0 such that kd = λ1n
−1
0 h−2d = o(1),

then we have

||̂f − f ||2N = Op(k
−2r) +Op

(
λ21
n20
k2d
)

+Op

(
k

n0

)
.
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Remark 3. Theorem 1 holds given a sufficiently large number of repeated mea-

surements and a minimum distance between the smoothing functions of any two

clusters. However, in practice, the minimum number of repeated measurements

does not need to be very large. For example, in our simulations, when the data

are unbalanced, the minimum number of repeated measurements can be eight,

without adversely affecting the simulation performance. We also explore the per-

formance of the proposed estimator when the number of repeated measurements

varies as T = 3, 4, 5, 6. Here, we find that the number of repeated measurements

can be as small as three for a reasonable subgroup result under our simulation

settings. Additional details are presented in Section 5.4. This also shows that the

convergence rate of the proposed approximation f̂ is of the same order as the pe-

nalized spline estimator f̃ . The proof of Theorem 1 is given in the Supplementary

Material.

Corollary 1. If the conditions required in Theorem 1 hold, then we have

P (Ĝ = G)→ 1,

where Ĝ = {G1, . . . ,GĜ} is the estimated subgrouping membership, and G =

{G1, . . . ,GG} is the true subgrouping membership.

Corollary 1 indicates that when we have a sufficient number of repeated

measurements for each individual, the proposed method can identify the true

subgrouping structure with probability tending to one.

5. Simulations

In this section, we provide simulation studies to investigate the numerical

performance of the proposed nonparametric clustering approach.

We conduct simulations using both balanced and unbalanced data, and com-

pare the performance of our method with that of five other clustering approaches:

K-means (bKmeans); the Gaussian mixture methods (bGM); the kernel-based

method (Kernel), proposed by Vogt and Linton (2017); the mixture mixed-effects

method with a P-spline (MixedEffects), proposed by Coffey, Hinde and Holian

(2014); and the mixed-effects method with a smoothing spline (SSClust) (Ma

et al. (2006)). Note that the kernel-based method (Kernel) can be applied to

balanced data only; therefore, their method is included in the balanced data case

only.

The mixed-effects method with a smoothing spline (SSClust) is implemented



1842 LV ET AL.

using the R package MFDA, using the default settings; that is, the threshold

value c = 0.5, and the number of iterations for each RCEM step is set to 10,

with five starting points in K-means. We implement the mixture mixed-effects

method with a P-spline (MixedEffects) using the same threshold and iteration

step value as that of SSClust, but apply 10 different starting points. For the

truncated power basis in MixedEffects, we set the degree = 2 and the number

of knots as maxm{min{nim/4, 40}} (Ruppert (2002)), for each subject i. In

addition, to implement the K-means method, we use the R package cluster to

select the number of clusters based on the Gap statistic (Tibshirani, Walther and

Hastie (2001)), and calculate an average from 10 random picks of initial centers

to mitigate the effect of outliers. We implement the Gaussian mixture method

(bGM) using the R package mclust (Fraley and Raftery (2002)). We choose the

optimal model according to the embedded BIC criterion for the EM, initialized

using hierarchical clustering when parameterizing the Gaussian mixture models,

where the number of clusters is chosen from G = 1, 2, . . . , 15 in each simulation.

However, the K-means and Gaussian mixture methods cannot be implemented

directly in the case of missing data. Instead, we conduct these two methods to

estimate the subject-wise penalized B-spline parameters βi. All results are based

on 100 simulation runs.

To evaluate the performance of these clustering algorithms, we calculate the

estimated number of selected groups Ĝ, as well as their accuracy in identifying

the true implicit cluster structure. Therefore, three frequently used external

validity measures are calculated: the Rand index (Rand) (Rand (1971)), the

adjusted Rand index (aRand) (Hubert and Arabie (1985)), and the Jaccard index

(Jaccard (1912)). These indices are used to measure the concordance between

the estimated cluster memberships and the true memberships. Specifically,

Rand =
TP + TN

TP + TN + FP + FN
, (5.1)

aRand =
Rand− E(Rand)

max(Rand)− E(Rand)
, (5.2)

Jaccard =
TP

TP + FN + FP
, (5.3)

where true positive (TP) represents the number of pairs of subjects from the

same ground truth group that are placed in the same cluster, true negative (TN)

represents the number of pairs of subjects from different clusters that are assigned

to different clusters, false positive (FP) is the number of pairs of subjects from
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different clusters that are assigned to the same class, and false negative (FN)

is the number of pairs of subjects from the same cluster that are assigned to

different clusters. Here, TP and TN can be interpreted as agreements, and FP

and FN as disagreements.

Intuitively, the Rand index represents the frequency of agreements between

the true and selected clusters. However, the expected value of the Rand index

under random partitions is not constant. As a result, the adjusted Rand in-

dex was proposed with a constant expected value. Similarly, the Jaccard index

measures the similarity between the true and selected clusters. The Rand index

and Jaccard index both take values between zero and one, with a higher value

indicating a higher agreement. The adjusted Rand index is bounded above by

one, and can be negative if the Rand index is less than its expected value.

We also calculate the average mean squared error (AMSE) of the predictions

of the responses in order to evaluate the estimation efficiency. That is,

AMSE(f̂) =
1

100

100∑
j=1

1

n

n∑
i=1

1

ni

M∑
m=1

nim∑
t=1

[f̂im(Xitm)− fim(Xitm)]2. (5.4)

5.1. Subgroups with balanced data

In this section, we consider the case when each subject has the same number

of observation points. Here, we generate G = 3 clusters, with two outcomes from

each individual, based on

yijm = fgm(xijm) + bi + εijm, i = 1, . . . , |Gg|; g = 1, 2, 3; m = 1, 2; j = 1, . . . , 10,

(5.5)

where f(11)(x) = −5exp(x) + 15 and f(12)(x) = 2.5cos(2πx) + 6; f(21)(x) =

exp(2x) − 3 and f(22)(x) = −2.5cos(2πx); f(31)(x) = −6x − 6 and f(32)(x) =

2.5x − 6; and xijm are equally spaced points on [0, 1]. The cluster sizes of each

group are |G1| = |G2| = 20 and |G3| = 15. The random effect bi is generated with

mean zero and variance σ2b = 0.72. The error term εijm has a zero mean. Because

no distributional assumption is needed to implement the proposed method, we

perform simulations for both normal and non-normal distributions, such as the

mixture distribution, the exponential distribution, and the t-distribution. Specif-

ically, the random errors εim = (εi1m, . . . , εi10m)T are generated as follows:

Case 1: εim ∼ N(0, R), where the correlation matrix R is either AR(1) or

exchangeable, with a correlation parameter 0.3.
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Case 2: εim ∼ 0.3N(0, 0.25R) + 0.7N(0, R), where the correlation R is either

AR(1) or exchangeable, with a correlation parameter 0.7.

Case 3: εim = exp(ξim) − 1, where ξim ∼ N(0, 0.25R), and the correlation

matrix R is the same as in Case 2.

Case 4: εim ∼ t3(0, 0.25R), where the correlation R is the same as in Case 2.

Case 5: εi1 ∼ N(0, 0.25R) and εi2 ∼ t3(0, 0.04R), where the correlation R is

the same as in Case 2.

To conserve space, the numerical results for Case 3–5 are provided in the

Supplementary Material.

We choose a B-spline with order r = 3, and the number of knots as maxm{
min{nim/4, 40}} for each response of subject i (Ruppert (2002)). Therefore, we

set the number of knots as k = 2 for all subjects. We apply three different types

of working correlation structures, IN (independence), AR(1), and Ex (exchange-

able), in 100 simulation runs, represented as NPGr-IN, NPGr-AR, and NPGr-Ex,

respectively. The working correlation coefficient can be obtained through a mo-

ment estimation using the empirical residuals. We use fixed values for the MCP

parameters θ = 1 and γ = 3 to ensure the convexity of the objective function.

Table 1 and Table 2 show that the proposed method performs better in

terms of the three external criteria and the estimated number of subgroups, for

both normal and non-normal distributions. For example, under Case 1, when

the true serial correlation is AR(1) and the true number of subgroups is three,

the proposed method has the highest Rand value of one, and the estimated

subgroup number is the closest to three among all methods. SSClust performs

worst, tending to overestimate the number of clusters as almost nine groups.

Furthermore, the MFDA package is not stable numerically. In addition, the

number of groups estimated by bKmeans is very close to the truth, but the

three external criteria it produces are not high. This indicates that the K-means

method is not able to distinguish subgroup membership accurately when the

true model contains random effects. This could be because the K-means method

focuses on local similarities, and the presence of random effects may distort the

underlying patterns of the original functions. In general, the bGM and Kernel

tend to overestimate the number of subgroups. When the true correlation is

exchangeable, the results are similar to that of AR(1).

Note that the performance of MixedEffects is comparable with that of the

proposed method under the normal distribution assumption in Case 1. This
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Table 1. Case 1: Comparison results from the proposed nonparametric pairwise-grouping
with three different working correlation structures (NPGr-IN, NPGr-AR(1), NPGr-Ex),
Gaussian Mixtures (bGM), K-means (bKmeans), SSClust, MixedEffects, and Kernel for
balanced data.

NPGr-IN NPGr-AR(1) NPGr-Ex bGM bKmeans SSClust MixedEffects Kernel

AR(1)

K̂ 3.00 3.00 3.00 4.27 3.00 9.14 3.00 5.43

Rand 1.0000 1.0000 1.0000 0.9369 0.9164 0.7971 1.0000 0.9119

aRand 1.0000 1.0000 1.0000 0.8422 0.8337 0.4487 1.0000 0.7819

Jaccard 1.0000 1.0000 1.0000 0.8067 0.8497 0.3788 1.0000 0.7302

AMSE 0.0616 0.0595 0.0613 0.2745 3.1045 0.4741 0.0383 0.6912

NPGr-IN NPGr-AR(1) NPGr-Ex bGM bKmeans SSClust MixedEffects Kernel

Ex

K̂ 3.08 3.00 3.00 4.22 3.00 8.95 3.00 5.61

Rand 0.9992 1.0000 1.0000 0.9389 0.9224 0.8003 1.0000 0.8977

aRand 0.9983 1.0000 1.0000 0.8441 0.8446 0.4595 1.0000 0.7442

Jaccard 0.9977 1.0000 1.0000 0.8129 0.8590 0.3886 1.0000 0.6867

AMSE 0.0816 0.0763 0.0768 0.2618 2.9111 0.5423 0.0377 0.8171

Table 2. Case 2: Comparison results from the proposed nonparametric pairwise-grouping
with three different working correlation structures (NPGr-IN, NPGr-AR(1), NPGr-Ex),
Gaussian Mixtures (bGM), K-means (bKmeans), SSClust, MixedEffects, and Kernel for
balanced data.

NPGr-IN NPGr-AR(1) NPGr-Ex bGM bKmeans SSClust MixedEffects Kernel

AR(1)

K̂ 3.03 3.00 3.00 3.27 3.00 7.98 4.38 4.42

Rand 0.9997 1.0000 1.0000 0.9870 0.9386 0.8148 0.9390 0.9362

aRand 0.9994 1.0000 1.0000 0.9670 0.8757 0.5036 0.8494 0.8444

Jaccard 0.9991 1.0000 1.0000 0.9603 0.8858 0.4329 0.8131 0.8048

AMSE 0.0515 0.0492 0.0494 0.0786 2.3548 0.3651 0.0953 0.5504

NPGr-IN NPGr-AR(1) NPGr-Ex bGM bKmeans SSClust MixedEffects Kernel

Ex

K̂ 3.11 3.00 3.00 3.04 3.00 8.70 3.00 4.60

Rand 0.9990 1.0000 1.0000 0.9982 0.9407 0.7990 1.0000 0.9339

aRand 0.9977 1.0000 1.0000 0.9952 0.8799 0.4556 1.0000 0.8379

Jaccard 0.9969 1.0000 1.0000 0.9944 0.8899 0.3847 1.0000 0.7977

AMSE 0.0548 0.0495 0.0495 0.0492 2.2587 0.4404 0.0438 0.5900

is not surprising, because their method also incorporates random effects, which

assumes a normal distribution. However, when the random errors follow a non-

normal distribution, for example, a mixture distribution as in Case 2, MixedEf-

fects does not perform well when the true correlation is AR(1). In contrast, the

proposed method is still robust under non-normal distributions such as the mix-

ture distribution, exponential distribution, or t-distribution. Additional details

are presented in Tables S1–S3 in the Supplementary Material.
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The proposed method is able to incorporate correlations between different

outcomes and estimate the B-spline coefficients more efficiently; thus, it identifies

the true functions more accurately. Table 1 shows that the estimation efficiency

of the proposed method can be improved by about 3.5% by incorporating se-

rial correlation under the true correlation AR(1), and by about 6.9% under the

exchangeable correlation when the random errors follow a normal distribution.

Table 2 shows that the estimation efficiency of the proposed method can be

improved by about 4.7% by incorporating serial correlation under the true cor-

relation AR(1), and by about 10.7% under the exchangeable correlation when a

non-normal distribution is assumed.

5.2. Subgroups with unbalanced data

In this section, we let each subgroup have 30% of the subjects, with 20%

missing repeated measurements. Because Kernel cannot be applied to unbalanced

data, we do not include this method here.

We let the cluster sizes of each group be |G1| = |G2| = 25, |G3| = 20. The

variance of the random effects σ2b is equal to 0.72, and the error term follows a

multivariate normal distribution with mean zero and variance σ2ε = 0.72. The

correlation coefficient for both AR(1) and Ex is 0.8. In Section 5.1, MixedEf-

fects performs comparably with the proposed method when the true correlation

is exchangeable, but performs less satisfactorily under the AR(1) setting. To fur-

ther evaluate our method and MixedEffects, we also generate the Toeplitz (Tp)

correlation structure. The other settings are the same as those in Section 5.1.

From Table 3, we observe that the proposed approach still outperforms the

other methods in terms of the external indices and the AMSE. When the data

are unbalanced, in the AR(1) and Tp cases, the proposed method outperforms

MixedEffects. Specifically, under AR(1), the bGM, SSClust, and MixedEffects

methods tend to overestimate the number of subgroups, with numbers of sub-

groups of 3.30, 9.44, and 4.60, respectively. In contrast, the proposed method

estimates the number of subgroups as 3.08, 3.00, and 3.00 under the three working

correlation structures. Moreover, our method achieves the highest three external

indices of the various methods.

Furthermore, the estimation efficiency can be improved by incorporating

serial correlation. The improvement under the true AR(1) correlation structure

is around 6%, that under the true exchangeable structure is 24%, and that under

the true Toeplitz structure is nearly 20%. These improvements are even more

significant than those of the balanced data case.
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Table 3. Comparison results from the proposed nonparametric pairwise-grouping with
three different working correlation structures (NPGr-IN, NPGr-AR, NPGr-Ex), Gaus-
sian Mixtures (bGM), K-means (bKmeans), SSClust, MixedEffects, and Kernel for un-
balanced data.

NPGr-IN NPGr-AR(1) NPGr-Ex bGM bKmeans SSClust MixedEffects

AR(1)

K̂ 3.08 3.00 3.00 3.30 3.02 9.44 4.60

Rand 0.9994 1.0000 1.0000 0.9878 0.9301 0.8022 0.9342

aRand 0.9986 1.0000 1.0000 0.9687 0.8605 0.4660 0.8382

Jaccard 0.9981 1.0000 1.0000 0.9627 0.8733 0.3953 0.7989

AMSE 0.0338 0.0317 0.0314 0.0617 2.5971 0.4308 0.0739

NPGr-IN NPGr-AR(1) NPGr-Ex bGM bKmeans SSClust MixedEffects

Ex

K̂ 3.21 3.00 3.00 3.12 3.00 9.10 3.01

Rand 0.9984 1.0000 1.0000 0.9975 0.9284 0.8042 0.9997

aRand 0.9962 1.0000 1.0000 0.9940 0.8570 0.4723 0.9994

Jaccard 0.9950 1.0000 1.0000 0.9924 0.8703 0.4014 0.9992

AMSE 0.0386 0.0318 0.0312 0.0370 2.7026 0.3360 0.0316

NPGr-IN NPGr-AR(1) NPGr-Ex bGM bKmeans SSClust MixedEffects

Tp

K̂ 3.18 3.00 3.00 3.07 3.00 9.31 4.98

Rand 0.9986 1.0000 1.0000 0.9979 0.9542 0.7993 0.9190

aRand 0.9968 1.0000 1.0000 0.9949 0.9074 0.4572 0.8012

Jaccard 0.9957 1.0000 1.0000 0.9935 0.9152 0.3863 0.7524

AMSE 0.0398 0.0334 0.0332 0.0392 1.7574 0.3946 0.0772

Table 4. A comparison of computation times of the methods.

Method NPGr-IN NPGr-AR(1) NPGr-Ex bGM bKmeans SSClust MixedEffects Kernel

time(minutes) 12.86 19.93 17.14 0.33 0.71 0.09 6.89 0.01

standard errors 0.68 2.54 3.42 29.98 8.31 14.20 0.56 0.02

5.3. Computational time comparisons

We also compare the computational time among the methods under the

setting of Case 1 of Section 5.1. We tune the parameters λ1 and λ3 on a grid

of 30 points. The results of the average computational time and standard errors

of the computational time for each method, based on 200 simulation runs, are

provided in Table 4.

Table 4 shows that the proposed method incurs a longer computational time

because the implemented ADMM requires more computation power in its itera-

tions, and the computational time for the ADMM also relies on the initial value.

That is, if the initial value is close to the true value, then the computational time
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Table 5. Performance of the proposed method for different numbers of repeated mea-
surements for Case 1 and Case 3.

T K̂ Rand aRand Jaccard AMSE

Case 1

3 3.00 1.0000 1.0000 1.0000 0.0522

4 3.00 1.0000 1.0000 1.0000 0.0490

5 3.02 0.9998 0.9996 0.9994 0.2291

6 3.02 0.9998 0.9996 0.9994 0.2291

Case 3

3 3.24 0.9973 0.9939 0.9918 0.0944

4 3.16 0.9984 0.9962 0.9950 0.0712

5 3.28 0.9969 0.9929 0.9905 0.2495

6 3.28 0.9969 0.9929 0.9905 0.0987

would be reduced.

5.4. An applicable range of repeated measurements

Longitudinal data are often measured irregularly, and tend to include miss-

ing observations. Therefore, in this section, we investigate the applicable range

of the repeated measurements nim, and explore the lower bound of nim. We use

simulations to empirically investigate the performance of the proposed estima-

tor under the independence working correlation structure when the number of

repeated measurements varies as T = 3, 4, 5, 6. We let the random errors follow

the settings in Case 1 and Case 3; all other settings are the same as those in

Section 5.1.

Table 5 provides the results based on 50 simulation runs under Case 1 and

Case 3. Table 5 indicates that the number of repeated measurements can be as

small as three, and still achieve a reasonable subgroup result. Fewer than three

repeated measurements could lead to an invalid tuning criterion in some cases.

6. Empirical Example for IRI Data

In this section, we investigate the IRI marketing data set assembled by the

SymphonyIRI Group (Bronnenberg, Kruger and Mela (2008)). This data set

contains grocery store sales data, including sales units and sales volumes, on

daily-use products for the period 2001–2011 from 47 geographical markets in

the United States. In total, there are 25 product categories, representing a

broad spectrum of consumer packaged goods, including beer, blades, carbon-

ated beverages, cigarettes, coffee, cold cereal, deodorant, diapers, facial tissue,
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Table 6. Product categories in Los Angeles from IRI marketing data.

First Group

Beer Coffee Soup Yogurt

Cold cereal Frozen dinners/entrees Frozen pizza Salty snacks

Hotdog Mayonnaise Peanut butter Spaghetti/Italian sauce

Sugar substitutes Toothbrush Household cleaner Laundry detergent

Second Group

Blades Cigarettes Deodorant Diapers

Facial tissue Photography supplies Shampoo Toothpaste

Third Group

Carbonated beverages

frozen dinners/entrees, frozen pizza, hotdogs, household cleaner, laundry deter-

gent, mayonnaise, peanut butter, photography supplies, salty snacks, shampoo,

soup, spaghetti/Italian sauce, sugar substitutes, toothbrushes, toothpaste, and

yogurt. Among these products, carbonated beverages and beer have the largest

sales units and sales volume over time, and photography supplies have the small-

est sales units and sales volume over time. We are interested in identifying

the underlying subgroup patterns among these products. Specifically, we try to

partition products into subgroups based on the multiple responses of sales units

and sales volume, which are highly correlated (see Figure 1). In addition, we

can borrow correlation information from the multiple responses to improve the

clustering accuracy. In this application, we are particularly interested in the

“Los Angeles” market, which is the second largest city in the United States. The

responses of interest are “sales units” and “sales volume.” We sum the weekly

data to yearly data for each product, such that there are 11 observations for each

response. Because products have different unit prices, we standardize the sales

units and volumes before applying the clustering algorithms. The patterns of

units and volumes are illustrated in Figure 2. There exist subgroups in the prod-

ucts in terms of the patterns of the two responses. However, we are interested in

clustering the products based on both repetitive responses.

We compare the performance of the proposed method with that of the SS-

Clust, MixedEffects, bKmeans, and bGM approaches. Because the real data are

balanced, we also include the Kernel approach.

We identify three subgroups of products using the pairwise grouping method

with independent correlation. The subgroup results are provided in Table 6.

Whereas the bKmeans and MixedEffects methods group the products into two
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Figure 1. The correlation between sales units and sales volume for each product.
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Figure 2. The patterns of sales units and sales volume for IRI marketing data in Los
Angeles.

subgroups, the bGM is not able to identify reasonable clusters, and instead groups

all products into one group. On the other hand, SSClust detects four subgroups,

and Kernel identifies five subgroups. The cluster patterns of these methods are
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(d) Kernel with k=5

Figure 3. The clustering patterns of sales units and sales volume from the K-means
(bKmeans), SSClust, MixedEffects, Kernel, and the proposed nonparametric pairwise-
grouping with independent working correlation structure (NPGr-IN) for IRI marketing
data.

illustrated in Figure 3.

Comparing (a)–(d) in Figure 3, our method is able to distinguish the product

“Carbonated beverages” from the other two subgroups identified by bKmeans

and MixedEffects, where the patterns of the outcomes on sale units and volume
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Table 7. Clustering results and the Davies–Bouldin index (DBI) from the K-means
(bKmeans), SSClust, MixedEffects, Kernel, and the proposed nonparametric pairwise-
grouping with independent working correlation structure (NPGr-IN) for IRI marketing
data.

bKmeans SSClust MixedEffects Kernel NPGr-IN

k 2 4 2 5 3

DBI 0.592 1.3067 0.592 0.529 0.457

of “Carbonated beverages” clearly differ from those in the other two subgroups.

However, the pattern of each individual outcome of “Carbonated beverages” is

similar to one of the two subgroups; thus, this product belongs to neither of the

two subgroups if both outcomes are considered.

The Kernel method detects five distinctive subgroups, including “Carbon-

ated beverages.” However, because the true underlying cluster structure is un-

known for this real data, we cannot use an external criterion, as we did in the

simulation, to evaluate the performance of different methods. Instead, we follow

Ma and Huang (2017), and use an internal criterion, the Davies–Bouldin index

(DBI), to assess the quality of the clustering algorithms, where a small DBI is

considered best. Let Si = {(1/Ti)
∑Ti

j=1 |Xj −Ai|q}1/q be the measure of scatter

within the cluster, where Xj (j = 1, . . . , Ti) is an n-dimensional vector assigned

to cluster i, Ti is the size of cluster i, and Ai is the centroid of cluster i. Let

Mij = ||Ai −Aj ||p = (
∑n

k=1 |aki − akj |p)
1

p be the measure of separation between

clusters i and j, where aki is the kth element of Ai. Usually, the values of p and

q are set to two (Davies and Bouldin (1979)). Then, the DBI is defined as:

DBI =
1

G

G∑
i=1

max
j 6=i

(
Si + Sj
Mij

)
,

where G is the number of subgroups.

Because the bGM method can only identify one group, we cannot calculate

its DBI. The DBI values for bKmeans, MixedEffects, SSClust, Kernel, and our

method are shown in Table 7, which shows that our method outperforms the

other methods, having the smallest DBI index.

The proposed subgroup analysis of the IRI data yields insights into market

basket analyses (Berry and Linoff (1997)), which examine consumers’ shopping

behavior and the associations between different products. For our analysis of

the IRI data, different subgroups of products can be viewed as different mar-

ket baskets, and knowing the products that consumers purchase together can
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be helpful to retailers. For example, the products in the first subgroup in our

analysis include food and cleaning supplies, whereas personal care (e.g., blades

and shampoo), cigarettes, and photography supplies are clustered into the sec-

ond subgroup. A retailer could stock products belonging to the same subgroup

together, and place products frequently sold together in nearby areas in the store.

In addition, online merchants could use subgrouping information to determine

advertising and promotion strategies aimed at attracting consumers.

7. Conclusion

In this paper, we propose a nonparametric pairwise-grouping approach that

clusters subjects into groups for repeated measurements with multiple outcomes.

The main difference between our method and existing pairwise-grouping meth-

ods is that we take serial correlation from repeated measurements into account,

and we incorporate random effects to capture correlations from multivariate re-

sponses, where random effects do not necessarily follow normality assumptions.

We place individuals into subgroups by penalizing the pairwise distances between

the B-spline coefficient vectors, and then implement an ADMM algorithm for the

clustering. The main advantage of the proposed method is that it is able to detect

subgroups effectively when there are multiple sources of correlation with missing

data. In terms of the penalty function, we apply the MCP, owing to its unbiased-

ness and sparsity properties. Similarly, penalties such as the SCAD (Fan and Li

(2001)) or the TLP (Shen, Pan and Zhu (2012)) can also be implemented.

We have formulated a framework for continuous correlated longitudinal data.

The proposed method can be extended to more general linear models. One po-

tential direction for future work is to extend the proposed framework to binary

longitudinal outcomes when identifying subgroups. Furthermore, here, we con-

sider only the random intercept model; however, the proposed method can be

extended to a q-dimensional random slope bi = (bi1, . . . , biq)
′. This requires an

additional penalty on the mean constraints of the random effects to ensure the

identifiability of the random effects and the convergence of the algorithm (Wang,

Tsai and Qu (2012)).

In addition, it may be computationally burdensome to implement the ADMM,

and the two-step procedure for selecting the tuning parameters may not be opti-

mal, although it can reduce the computational cost. We also explore the upper

limit of the number of observations to implement the method on a PC with a 2.9

GHz Intel Core i5 processor, without parallel computing. Here, we find that the
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processing time increases with the number of observations.

Supplementary Material

The online Supplementary Material provides simulation results under

additional settings, and provides proofs for the lemmas, Theorem 1, and Corol-

lary 1.
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