
Statistica Sinica 34 (2024), 657-677
doi:https://doi.org/10.5705/ss.202022.0070

INFERENCE FOR PROJECTION-BASED WASSERSTEIN

DISTANCES ON FINITE SPACES

Ryo Okano1 and Masaaki Imaizumi∗1,2

1The University of Tokyo and 2RIKEN Center for AIP

Abstract: The Wasserstein distance is the distance between two probability

distributions, and has recently become popular in statistics and machine learning,

owing to its attractive properties. One important approach to extending this

distance is to use low-dimensional projections of the distributions, thus avoiding

a high computational cost and the curse of dimensionality in empirical estimation;

hare, examples include the sliced Wasserstein and max-sliced Wasserstein distances.

Despite their practical success in machine learning tasks, statistical inferences

for projection-based Wasserstein distances are limited, owing to the lack of

distributional limit results. Thus, for probability distributions supported on finite

points, we derive the limit distributions of the empirical versions of the projection-

based Wasserstein distances. We examine the general class of distances defined by

integrating or maximizing the Wasserstein distances between the low-dimesional

projections of two distributions. After deriving the limit distributions, we propose

a bootstrap procedure for estimating the quantiles of these distributions from the

data. This facilitates asymptotically exact interval estimation and hypothesis

testing for these distances. Our theoretical results are based on deriving the

distributional limit of empirical Wasserstein distances on finite spaces and the

theory of sensitivity analysis in nonlinear programming. Finally, we demonstrate

the applicability of our inferential methods using a real-data analysis.

Key words and phrases: Bootstrap, distributional limit, projection-based Wasser-

stein distances, statistical inference.

1. Introduction

The Wasserstein distance is the distance between two probability distr-

ibutions, and has attracted considerable interest in the statistics and machine

learning literature (Villani (2009); Panaretos and Zemel (2019); Peyré and

Cuturi (2019)). This distance is based on the optimal transport problem,

and measures the amount of work required to transform one distribution into

another. Specifically, given two probability distributions P and Q with finite

p ≥ 1 moments and support in X ⊂ Rd, for d ≥ 1, the p-Wasserstein distance

between P and Q is defined as
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Wp(P,Q) =

(
inf

π∈Π(P,Q)

∫

X×X
∥x− y∥pdπ(x, y)

)1/p

, (1.1)

where Π(P,Q) is the set of joint probability distributions with respective

marginals that coincide with P and Q, known as couplings. Compared with

other measures of distribution closeness, such as the Kullback–Leibler divergence

or the total variation distance, the Wasserstein distance has two advantages:

(i) it is sensitive to the underlying geometry of the distribution support, and

(ii) it does not assume absolute continuity of the distributions. As a result, it

has recently become an attractive data analytical tool, particularly in computer

vision (Rubner, Tomasi and Guibas (2000); Solomon et al. (2015); Sandler and

Lindenbaum (2011)) and natural language processing (Kusner et al. (2015);

Zhang et al. (2016)).

Various extensions of the original Wasserstein distance have been proposed

to address its shortcomings, mainly its high computational costs and the curse

of dimensionality in empirical estimation (Peyré and Cuturi (2019); Weed and

Bach (2019)). One important approach is to use low-dimensional projections of

the distributions, that is, we compute the Wasserstein distances between low-

dimensional projections of the distributions P and Q, instead of comparing P

and Q directly. The most representative example of this approach is the sliced

Wasserstein distance (Rabin et al. (2011); Bonneel et al. (2015)), which averages

the Wasserstein distances between random one-dimensional projections. The

sliced Wasserstein distance is an easily computable variant of the Wasserstein

distance , because the Wasserstein distance between univariate distributions

is easily computed. Another example is the max-sliced Wasserstein distance

(Deshpande et al. (2019)), which maximizes the Wasserstein distance between

random one-dimensional projections and also has a computational advantage. By

considering k-dimensional projections (1 ≤ k ≤ d), the max-sliced Wasserstein

distance is generalized to the projection robust Wasserstein (PRW) distance

(Paty and Cuturi (2019); Niles-Weed and Rigollet (2019)). The PRW distance

captures the difference between two distributions effectively if they differ only in

a low-dimensional subspace, and solves the curse of dimensionality in empirical

estimation (Niles-Weed and Rigollet (2019); Lin et al. (2021)). Several recent

studies have shown that these methods are practical for several machine learning

tasks (Lin et al. (2020); Kolouri, Zou and Rohde (2016); Kolouri et al. (2019);

Carriere, Cuturi and Oudot (2017); Liutkus et al. (2019)).

The development of inferential tools (e.g., interval estimation or hypothesis

testing) for the Wasserstein distance and its extensions is an active research area

in statistics. As a basis for inferential procedures, the limit distributions of the

empirical versions of these distances have been derived in several specific settings.

For example, the limit distributions of the empirical Wasserstein distance have

been studied when distributions P and Q are supported in R (Munk and Czado
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(1998); Freitag and Munk (2005); del Barrio et al. (1999); Ramdas, Trillos

and Cuturi (2017)) and when they are supported on finite or countable points

(Sommerfeld and Munk (2018); Tameling, Sommerfeld and Munk (2019)). The

limit distributions of the empirical regularized optimal transport distance on

finite spaces, which is an easily computable extension of the Wasserstein distance,

have been derived by Bigot, Cazelles and Papadakis (2019) and Klatt, Tameling

and Munk (2020). However, for projection-based extensions of the Wasserstein

distance, such distributional limit results are not well established, which hinders

inferences.

We propose inferential procedures for projection-based Wasserstein distances

when the distributions P and Q are supported on finite points. We consider two

general classes of distances : the integral projection robust Wasserstein (IPRW)

distance, which is defined by integrating the Wasserstein distances between k-

dimensional projections of the distributions P , and Q (1 ≤ k ≤ d) and includes

the sliced Wasserstein distance as a special case; and (ii) the PRW distance. As

our first contribution, we derive the limit distributions of the empirical IPRW

distance and PRW distance with entropic regularization. Second, we show the

consistency of the rescaled bootstrap (or m-out-n bootstrap), which enables us to

estimate the quantiles of the limit distributions from the data. Consequently, we

construct asymptotically exact confidence intervals for these two distances, and

obtain new statistics for testing the equality of two distributions. In addition,

we extend part of the results to the case where distributions are supported on a

countable infinite space with a bounded property. Finally, we apply our inferential

methods to a real-data analysis.

As technical contributions, we apply the following two new techniques: (i)

a sensitivity analysis, and (ii) entropic regularization. These techniques are

necessary to extend the delta method approach (Sommerfeld and Munk (2018))

for the Wasserstein distance to our setting with the IPRW and PRW distances.

First, we use sensitivity analysis in nonlinear programming, to investigate how

the optimal value of an optimization problem changes when the objective function

and the constraints change (Fiacco (1983)). Here we regard the PRW distance

as the optimal value of a parametric optimization problem with parameters P

and Q, and apply the result of the sensitivity analysis to show its directional

differentiability. Second, we add an entropic regularization term (Cuturi (2013))

to the PRW distance, which we refer to as the regularized PRW distance, and

then study its distributional limit. The regularization term enables us to specify

an optimal transport map and handle its Hadamard differentiability.

This study makes the following contributions to the literature:

• We derive the limit distributions of the empirical versions of the IPRW and

regularized PRW distances when the distributions P and Q are supported

on finite points.
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• We show the consistency of the rescaled bootstrap for the IPRW and

regularized PRW distances, enabling us to estimate the quantiles of the limit

distributions from the data. This facilitates asymptotically exact interval

estimation and hypothesis testing for these distances.

• We show the applicability of our inferential methods using a data- analysis.

1.1. Related work

In addition to the distances we consider, there are several extensions of

the Wasserstein distance based on low-dimensional projections, such as the

generalized sliced (Kolouri et al. (2019)), tree-sliced (Le et al. (2019)), and distri-

butional sliced (Nguyen et al. (2020)) Wasserstein distances. In addition to the

projection-based approaches, Cuturi (2013) proposed the entropic regularization

of optimal transport, which can be computed efficiently using an iterative method,

called the Sinkhorn algorithm. Goldfeld and Greenewald (2020) proposed the

smooth Wasserstein distance, which avoids the curse of dimensionality in its

estimation by smoothing out local irregularities in the distributions P and Q

using a convolution with a Gaussian kernel.

Statistical inference for the Wasserstein distance and its extensions has been

studied in several specific settings, based on their distributional limit results.

When the distributions P and Q are supported in R, the Wasserstein distance

between them has a closed form, and is described as the Lp norm of the quantile

functions of P and Q. Using this fact, researchers have studied the limit

distributions of the empirical Wasserstein distances in the univariate case and

the validity of the bootstap (Munk and Czado (1998); Freitag and Munk (2005);

Del Barrio, Giné and Utzet (2005); Ramdas, Trillos and Cuturi (2017)). Inference

for the Wasserstein distance over finite spaces is studied by Sommerfeld and

Munk (2018), with their results later extended to the case of countable spaces by

Tameling, Sommerfeld and Munk (2019). Inference for the entropic regularized

optimal transport distance on finite spaces has been studied by Bigot, Cazelles

and Papadakis (2019) and Klatt, Tameling and Munk (2020). In a general setting,

del Barrio and Loubes (2019) establish central limit theorems for the empirical

Wasserstein distance, and Mena and Weed (2019) establish similar results for the

entropic regularized optimal transport distance. However, these results contain

unknown centering constants that hinder their use for statistical inference.

To the best of our knowledge, statistical inference for projection-based

Wasserstein distances has been considered in only one study. Manole, Balakr-

ishnan and Wasserman (2019) propose confidence intervals with finite-sample

validity for the sliced Wasserstein distance, and show their minimax optimality in

length. Owing to the closed-form expression of the one-dimensional Wasserstein

distance, their inference method is valid without imposing strong assumptions,

such as the restriction to finite spaces. However, their approach is not applicable
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when the projection dimension is greater than one, in contrast to the approach

we adopt here.

1.2. Notation

Let ∥ · ∥ and ⟨·⟩ denote the Euclidean norm and inner product, respectively.

Furthermore, R>0 denotes the positive real numbers, R≥0 denotes the nonnegative

real numbers and ⊗ is the Kronecker product. For any a, b ∈ R, a∧ b denotes the

minima of a and b. For 1 ≤ k ≤ d, the set of d × k matrices with orthonormal

columns is denoted as Sd,k = {E ∈ Rd×k : E⊤E = Ik}. Note that when k = 1,

Sd,k coincides with the d-dimensional unit ball, Sd−1 = {x ∈ Rd : ∥x∥ = 1}.
Given a map T : Rd → R and Borel probability measure P supported in Rd,

T#P denotes the pushforward of P under T , defined by T#P (B) = P (T−1(B)),

for all Borel sets B ⊂ Rd. For any set A ⊂ Rd, its diameter is denoted by

diam(A) = sup{∥x − y∥ : x, y ∈ A}. In addition, P(Rn) denotes the set of all

subsets of Rn,
d→ denotes convergence in distribution of the random variables,

and
d
= denotes the distributional equality of the random variables.

2. Background

2.1. Wasserstein distance

In this study, we restrict the support X = {x1, . . . , xN} ⊂ Rd to a finite set

of size N ∈ N. Every probability measure on X is represented as an element

in an (N − 1)-dimensional simplex ∆N = {r ∈ RN
>0 :

∑N
i=1 ri = 1}; hence, we

do not distinguish between a vector r ∈ ∆N and its corresponding probability

distribution. Given a support X = {x1, . . . , xN} and order p ≥ 1, we define

a cost vector cp(X ) ∈ RN2

as cp(X )
(i−1)N+j

= ∥xi − xj∥p, for 1 ≤ i, j ≤ N ,

representing the transport cost from xi to xj. The p-Wasserstein distance between

two distributions r, s ∈ ∆N on X ⊂ Rd is given by

Wp(r, s;X ) =

{
min

π∈Π(r,s)
⟨cp(X ), π⟩

}1/p

, (2.1)

where Π(r, s) is the set of vectors of length N2 that represent the couplings of r

and s. Formally, Π(r, s) is defined as

Π(r, s) =
{
π ∈ RN2

: Aπ = (r s)
⊤
}
, (2.2)

where A is a coefficient matrix:

A =

(
IN×N ⊗ 11×N

11×N ⊗ IN×N

)
∈ R2N×N2

.
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The constraint Aπ = (r, s)⊤ ensures that π satisfies the marginal constraints: a

matrix π̃ ∈ RN×N , generated by π as π̃i,j = π(i−1)N+j, satisfies
∑N

j=1 π̃i,j = ri for

1 ≤ i ≤ N , and
∑N

i=1 π̃i,j = sj for 1 ≤ j ≤ N .

2.2. Entropic regularization

Entropic regularization is an extension of the Wasserstein distance (Cuturi

(2013)). Given p ≥ 1, distributions r, s ∈ ∆N , and a parameter λ > 0, we define

an entropic regularized optimal transport problem as

min
π∈Π(r,s)

⟨cp(X ), π⟩+ λφ(π), (2.3)

where φ : RN2 → R is the negative Boltzmann- Shannon entropy, defined as

φ(π) =

{∑N2

i=1 πi log(πi)− πi + 1 if π ∈ RN2

≥0 ,

+∞ otherwise.
(2.4)

Here, we set 0 log(0) = 0. Because the problem (2.3) is a strictly convex

optimization problem, it has a unique optimal solution, which we refer to as

the regularized optimal transport plan πp,λ(r, s;X ). Using this notion, we can

define the p-regularized optimal transport distance (or the p-Sinkhorn divergence)

between two distributions r, s ∈ ∆N as

Wp,λ(r, s;X ) = ⟨cp(X ), πp,λ(r, s;X )⟩1/p. (2.5)

Several computational advantages and statistical properties of the regularized

optimal transport distance have been studied (e.g., see Cuturi (2013); Peyré and

Cuturi (2019); Klatt, Tameling and Munk (2020); Bigot, Cazelles and Papadakis

(2019)).

2.3. Projection-based Wasserstein distances

Here, we extend the Wasserstein distance based on low-dimensional projec-

tions of the distributions. Fix k ≤ d and let πE : x ∈ Rd → E⊤x, for E ∈ Sd,k.

For a distribution P on Rd, the k-dimensional projection of P in E ∈ Sd,k is

defined by PE = πE#P . That is, PE is the distribution of E⊤X, for X ∼ P .

IPRW distance: We study k-dimensional projections of the distributions

r, s ∈ ∆N on a finite support X = {x1, . . . , xN} ⊂ Rd. The Wasserstein distance

between the projections of r and s in a direction E ∈ Sd,k is represented by

Wp(r, s;XE), where XE = {E⊤x1, . . . , E
⊤xN} ⊂ Rk. The p-IPRW distance (Lin

et al. (2021)) is defined as the integral of the Wasserstein distances over the

directions E, that is,
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IWp(r, s) =

(∫

Sd,k

W p
p (r, s;XE)dµ(E)

)1/p

, (2.6)

where µ is a given measure on Sd,k. This distance is robust against noise if

the distributions have low-dimensional structures, and Lin et al. (2021) shows

that the IPRW distance with the uniform measure on Sd,k solves the curse of

dimensionality in estimation. When the projection dimension is k = 1 and µ

is the uniform measure of Sd,1, which coincides with the uniform measure on

the d-dimensional unit ball Sd−1, the IPRW distance corresponds to the sliced

Wasserstein distance (Rabin et al. (2011); Bonneel et al. (2015)). The sliced

Wasserstein distance has the advantage of being easy to calculate, because the

Wasserstein distance between one-dimensional distributions is easy to compute.

PRW distance: The p-PRW distance (Paty and Cuturi (2019)) is defined as

the maximum of the Wasserstein distances between k-dimensional projections of

r, s ∈ ∆N over directions E ∈ Sd,k, that is,

PWp(r, s) = max
E∈Sd,k

Wp(r, s;XE). (2.7)

When k = 1, the PRW distance corresponds to the max-sliced Wasserstein

distance (Deshpande et al. (2019)). The PRW distance effectively captures

the difference between two distributions r and s if they differ only in a low-

dimensional subspace, and Niles-Weed and Rigollet (2019); Lin et al. (2021) show

that it solves the curse of dimensionality in estimation.

Here, we introduce an entropic regularization for the PRW distance. With

a fixed regularization parameter λ > 0 and projection direction E ∈ Sd,k, we

represent the regularized optimal transport distance between the projections of

r and s as Wp,λ(r, s;XE). Then, the p-regularized PRW distance is defined by

PWp,λ(r, s) = max
E∈Sd,k

Wp,λ(r, s;XE). (2.8)

This method with entropy regularization has the advantage of reducing the

computational cost, owing to the smoothing out of the nonsmoothness by the

maximization (Lin et al. (2020)).

3. Distributional Limits

We study the distributional limits of the empirical version of the IPRW

and regularized PRW distances on a finite space. Specifically, we consider the

following setting. For probability distributions r, s ∈ ∆N on X = {x1, . . . , xN} ⊂
Rd and sample sizes n and m, let X1, . . . , Xn ∼ r, Y1, . . . , Ym ∼ s be independent

and identically distributed (i.i.d.) samples. Then, we define their corresponding

empirical distributions r̂n, ŝm ∈ ∆N , the ith elements of which are given as
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r̂n,i =
#{k : Xk = xi}

n
, ŝm,i =

#{k : Yk = xi}
m

,

for 1 ≤ i ≤ N . Given the order p ≥ 1 and a regularization parameter λ > 0, we

derive the distributions to which
√

nm

n+m
{IWp(r̂n, ŝm)− IWp(r, s)}

and √
nm

n+m
{PWp,λ(r̂n, ŝm)− PWp,λ(r, s)}

converge in law as n,m → ∞. All proofs are deferred to the Supplementary

Material.

3.1. Outline and preparation

We derive distributional limits using the delta method, which is based on

the differentiability of the IPRW and regularized PRW distances. Specifically,

following that
√
nm/(n+m){(r̂n, ŝm)− (r, s)} converges to a Gaussian random

vector by the central limit theorem, we can derive distributional limits by applying

the delta method with the maps (r, s) → IWp(r, s) and (r, s) → PWp,λ(r, s).

To use the delta method in this setting, we consider directional Hadamard

differentiability, which is defined as follows.

Definition 1 (Directional Hadamard differentiability (Römisch (2004);

Sommerfeld and Munk (2018))). A function f : Df ⊂ Rd → R is directionally

Hadamard differentiable at u ∈ Df tangentially to D0 ⊂ Rd if there exists a map

f ′
u : D0 → R, such that

lim
n→∞

f(u+ tnhn)− f(u)

tn
= f ′

u(h), (3.1)

for any h ∈ D0 and arbitrary sequences {tn} ⊂ R and {hn} ⊂ Rd, such that

tn ↘ 0, hn → h, and u + tnhn ∈ Df , for all large n ∈ N. We refer to f ′
u as the

directional Hadamard derivative.

In contrast to the usual (nondirectional) Hadamard differentiability (e.g.,

van der Vaart (2000)), directional Hadamard differentiability does not require

the derivative to be linear, but allows for the delta method.

Theorem 1 (Delta method with a directionally Hadamard differentiable

map: Theorem 1 in Römisch (2004)). Let f : Df ⊂ Rd → R be directionally

Hadamard differentiable at u ∈ Df tangentially to D0 ⊂ Rd with the derivative

f ′
u : D0 → R. Let Tn be Rd-valued random variables, so that ρn(Tn − u)

d→ T

for a sequence of numbers ρn → ∞, and a random variable T taking its values in

D0. Then, ρn(f(Tn)− f(u))
d→ f ′

u(T ).
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Our approach based on the directional Hadamard derivative is important for

dealing with the projection-based Wasserstein distances. These distances are not

differentiable in the sense of (nondirectional) Hadamard differentiation, but do

have a directional Hadamard derivative, which makes it possible to apply the

delta method.

3.2. Distributional limit for IPRW distance

As our first main result, we derive the distributional limit of the empirical

IPRW distance, IWp(rn, sm). To this end, we first show the directional Hadamard

differentiability of the map (r, s) → IWp
p(r, s) and derive its derivative. In

preparation, we define the sets of dual solutions for the optimization problem in

(2.1). Following Sommerfeld and Munk (2018), given two distributions r, s ∈ ∆N

and a ground space X = {x1, . . . , xN}, we define the following sets:

Φ∗
p(X ) ={u ∈ RN : ui − uj ≤ ∥xi − xj∥p, 1 ≤ i, j ≤ N}, (3.2)

Φ∗
p(r, s;X ) ={(u, v) ∈ RN × RN : ⟨u, r⟩+ ⟨v, s⟩ = W p

p (r, s;X ),

ui + vj ≤ ∥xi − xj∥p, 1 ≤ i, j ≤ N}. (3.3)

These sets play a role in describing the limit distributions. In addition, we define

the set of directions in which limits are taken as ΩN = {h ∈ RN :
N

i=1 hi = 0}.
Then, we achieve the following result on differentiability.

Proposition 1 (Directional Hadamard differentiability of IWp
p). The map

IWp
p : ∆N ×∆N → R, (r, s) → IWp

p(r, s) is directional Hadamard differentiable at

all (r, s) ∈ ∆N ×∆N tangentially to ΩN × ΩN , with derivative

(h1, h2) →


Sd,k

max
(u,v)∈Φ∗

p(r,s;XE)
−(⟨u, h1⟩+ ⟨v, h2⟩)dµ(E). (3.4)

We state our main result on the limit distribution of the empirical IPRW

distance. This derivation is based on the differentiability in Proposition 1 and

the delta method in Theorem 1. For r ∈ ∆N , we define

Σ(r) =




r1(1− r1) −r1r2 · · · ‘− r1rN
−r2r1 r2(1− r2) · · · −r2rN

...
...

. . .
...

−rNr1 −rNr2 · · · rN(1− rN)




. (3.5)

Then, we obtain the following result.

Theorem 2 (Distributional limits of IWp(rn, sm)). Let r, s ∈ ∆N be two

probability distributions supported on X ⊂ Rd, X1, . . . , Xn ∼ r, Y1, . . . , Ym ∼ s

be i.i.d. n and m samples, respectively, and rn, sm be the corresponding empirical

distributions. Let G ∼ N(0,Σ(r)) and H ∼ N(0,Σ(s)) be independent Gaussian
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random vectors. Then, we have the following

i. If r = s, n ∧m → ∞, and m/(n+m) → δ ∈ (0, 1), then we have

(
nm

n+m

)1/2p

IWp(r̂n, ŝm)
d→

(∫

Sd,k

max
u∈Φ∗

p(XE)
⟨G, u⟩dµ(E)

)1/p

,

where Φ∗
p(XE) is given by (3.2).

ii. If r ̸= s, n ∧m → ∞, and m/(n+m) → δ ∈ (0, 1), then we have

√
nm

n+m
{IWp(r̂n, ŝm)− IWp(r, s)}

d→ 1

p
IW1−p

p (r, s)

∫

Sd,k

max
(u,v)∈Φ∗

p(r,s;XE)

√
δ⟨G, u⟩+

√
1− δ⟨H, v⟩dµ(E),

where Φ∗
p(r, s;XE) is given by (3.3).

The scaling rate in Theorem 2 is independent of the dimension of the

underlying space X , which is the same as those of other extensions of the

Wasserstein distance on finite spaces (Sommerfeld and Munk (2018); Klatt,

Tameling and Munk (2020); Bigot, Cazelles and Papadakis (2019)). Moreover,

for p > 1, the scaling rate for r = s (i.e., n−1/2p) is slower than that for r ̸= s

(i.e., n−1/2), implying that IWp(r̂n, ŝm) converges more slowly under r = s for

p > 1. Note that the pth power IWp
p(r̂n, ŝm) has the same scaling rate n−1/2,

regardless of whether r = s or r ̸= s.

Although this result focuses on finite spaces, in Section S3 of the Supplemen-

tary Material, we derive the distributional limits of IPRW distances on countable

infinite spaces with a bounded property.

3.3. Distributional limit for regularized PRW distance

As our second main result, we derive the distributional limit of the empirical

regularized PRW distance, PWp,λ(r̂n, ŝm). To study the PRW distance, we

need to introduce entropic regularization to add smoothness to the Wasserstein

distance. For the regularization of the Wasserstein distance on finite spaces, refer

to Klatt, Tameling and Munk (2020).

We derive a distributional limit by showing the directional Hadamard

differentiability of the regularized PRW distance, and applying the delta method.

Our proof relies on the following results of a sensitivity analysis in nonlinear

programming (Fiacco (1983)):

Consider the following general optimization problem with the parameter u ∈
U in the objective function:

max
x∈Rn

f(x, u), subject to x ∈ S.
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Here, f : Rn×U → R is continuous, and ∇uf exists and is continuous on Rn×U .

Moreover, the feasible region S ⊂ Rn is a compact set, and the parameter set

U ⊂ Rp is open and bounded. We define the optimal value function ϕ : U → R
and the optimal set mapping Φ : U → P(Rn) as ϕ(u) = max{f(x, u) : x ∈ S}
and Φ(u) = {x ∈ S : ϕ(u) = f(x, u)}, respectively. Then, we have the following

result.

Theorem 3 (Theorem 2.3.1 in Fiacco (1983)). For all u ∈ U and in any

direction h ∈ Rp, the optimal value function ϕ is directionally differentiable in the

sense of Gâteaux; that is, the limit (3.1) exists for a fixed h and not a sequence

hn → h. In addition, the derivative is given by

h → max
x∈Φ(u)

⟨∇uf(x, u), h⟩.

We employ this result to demonstrate the directional Hadamard differentia-

bility of the regularized PRW distance.

For a technical reason, we reformulate the regularized optimal transport

problem (2.3). The transport condition in (2.2) can be stated in terms of

2N − 1 equality constraints, instead of 2N , which allows for linearly independent

constraints. Following Klatt, Tameling and Munk (2020), we denote by A⋆ and

s⋆ the deletions of the last row of a matrix A in (2.2) and the last entry of a vector

s ∈ ∆N , respectively. We denote the set of such s⋆ as (∆N)⋆. Using the constraint∑N
i=1 si = 1, we identify the vector s ∈ ∆N with s⋆ ∈ (∆N)⋆. To apply Theorem

3 to the regularized PRW distance, we show the continuous differentiability of

the regularized optimal transport plan with projection in the following lemma.

Lemma 1. Let p ≥ 2 and λ > 0. The map (r, s⋆, E) → πp,λ(r, s⋆;XE) is

continuously differentiable on ∆N × (∆N)⋆ × Rdk. In addition, the matrix of

partial derivatives with respect to (r, s⋆) at (r0, (s0)⋆, E0) is given by

∇(r,s⋆)πp,λ(r0, s0⋆;XE0
) = DA⊤

⋆ (A⋆DA⊤
⋆ )

−1 ∈ RN2×(2N−1),

where D ∈ RN2×N2

is a diagonal matrix in which the (j, j)-entry is the jth element

of πp,λ(r0, s0⋆;XE0
).

Now, we show the directionally Hadamard differentiability of the regularized

PRW distance. Given (r, s⋆) ∈ ∆N × (∆N)⋆, we define Ψ∗
p(r, s⋆) as the set of

directions that maximizes the regularized optimal transport distance between

the projections of r and s, that is,

Ψ∗
p(r, s⋆) = {E ∈ Sd,k : Wp,λ(r, s;XE) = PWp,λ(r, s)}.

We denote by h⋆ the deletion of the last entry of a vector h ∈ ΩN , and the set of

such h⋆ as (ΩN)⋆.
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Proposition 2. Let p ≥ 2 and λ > 0. The map (r, s⋆) → PWp,λ(r, s⋆) is

directionally Hadamard differentiable at all (r, s⋆) ∈ ∆N × (∆N)⋆, tangentially to

ΩN × (ΩN)⋆ ,with the following derivative:

(h1, h2⋆) → max
E∈Ψ∗

p(r,s⋆)
⟨γ⊤DA⊤

⋆ (A⋆DA⊤
⋆ )

−1, (h1, h2⋆)⟩, (3.6)

where

γ =
1

p
⟨cp(XE), πp,λ(r, s⋆,XE)⟩1/p−1cp(XE) ∈ RN2

, (3.7)

and D ∈ RN2×N2

is a diagonal matrix in which the (j, j)-entry is the jth element

of πp,λ(r, s⋆,XE), for j = 1, . . . , N2.

The next theorem states our main result on the limit distribution of the

empirical regularized PRW distance.

Theorem 4 (Distributional limit of PWp,λ(r̂n, ŝm)). Let p ≥ 2 and λ > 0.

Under the assumptions of Theorem 2, as n∧m → ∞ and m/(n+m) → δ ∈ (0, 1),

we have
√

nm

n+m
{PWp,λ(r̂n, ŝm)− PWp,λ(r, s)}

d→ max
E∈Ψ∗

p(r,s⋆)
⟨γ⊤DA⊤

⋆ (A⋆DA⊤
⋆ )

−1, (
√
δG,

√
1− δH⋆)⟩,

where γ ∈ RN2

and D ∈ RN2×N2

are defined in Proposition 2, and H⋆ denotes

the deletion of the last entry of a random vector H ∼ N(0,Σ(s)).

4. Bootstrap

We approximate the derived limit distributions using a bootstrap procedure.

Let r, s ∈ ∆N and X1, . . . , Xn ∼ r, Y1, . . . , Ym ∼ s be i.i.d. samples with empirical

distributions r̂n and ŝm, respectively. Furthermore, let r̂∗ℓ and ŝ∗ℓ be the empirical

bootstrap distributions defined by the i.i.d. bootstrap samples X∗
1 , . . . , X

∗
ℓ ∼ r̂n

and Y ∗
1 , . . . , Y

∗
ℓ ∼ ŝm, respectively.

The functionals IWp and PWp,λ are only directionally Hadamard differ-

entiable, that is, they have nonlinear derivatives with respect to (h1, h2). As

mentioned by Dümbgen (1993) and Sommerfeld and Munk (2018), the naive n-

out-n bootstrap is inconsistent for such functionals with a nonlinear Hadamard

derivative, but that re-sampling fewer than n observations leads to a consistent

bootstrap (the rescaled or m-out-n bootstrap). Therefore we obtain the following

results on the bootstrap for the IPRW and regularized PRW distances. In the

following, BL1(R) denotes the set of all bounded functions on R with a Lipschitz

constant of at most one, and
∗→ denotes convergence in outer probability (van der

Vaart (2000), Sec. 18.2).



PROJECTION-BASED WASSERSTEIN DISTANCES 669

Proposition 3. Let p ≥ 1. We assume that ℓ → ∞, ℓ/n → 0, and ℓ/m → 0 as

n,m → ∞. Then, the plug-in bootstrap with r̂∗ℓ and ŝ∗ℓ for the IPRW distance is

consistent:

i. If r = s, n ∧m → ∞, and m/(n+m) → δ ∈ (0, 1), we have

sup
h∈BL1(R)

∣∣∣∣∣E
[
h

((
ℓ

2

)1/2p

IWp(r̂
∗
ℓ , ŝ

∗
ℓ)

)∣∣∣∣∣X1, . . . , Xn, Y1, . . . , Ym

]

− E

[
h

((
nm

n+m

)1/2p

IWp(r̂n, ŝm)

)]∣∣∣∣∣
∗→ 0.

ii. If r ̸= s, n ∧m → ∞, and m/(n+m) → δ ∈ (0, 1), we have

sup
h∈BL1(R)

∣∣∣∣∣E
[
h

(√
ℓ

2
{IWp(r̂

∗
ℓ , ŝ

∗
ℓ)− IWp(r̂n, ŝm)}

)∣∣∣∣∣X1, . . . , Xn, Y1, . . . , Ym

]

− E
[
h

(√
nm

n+m
{IWp(r̂n, ŝm)− IWp(r, s)}

)]∣∣∣∣∣
∗→ 0.

Proposition 4. Let p ≥ 2 and λ > 0. We assume that ℓ → ∞, ℓ/n → 0,

and ℓ/m → 0 as n,m → ∞. Then, the plug-in bootstrap with r̂∗ℓ and ŝ∗ℓ for the

regularized PRW distance is consistent. That is, as n∧m → ∞ and m/(n+m) →
δ ∈ (0, 1), we have

sup
h∈BL1(R)

∣∣∣∣∣E
[
h

(√
ℓ

2
{PWp,λ(r̂

∗
ℓ , ŝ

∗
ℓ)− PWp,λ(r̂n, ŝm)}

)∣∣∣∣∣X1, . . . , Xn, Y1, . . . , Ym

]

− E
[
h

(√
nm

n+m
{PWp,λ(r̂n, ŝm)− PWp,λ(r, s)}

)]∣∣∣∣∣
∗→ 0.

In practice, the performance of our bootstrap procedure depends on the

choice of the replacement number ℓ. In the Supplementary Material, we discuss

how the choice of ℓ affects the finite-sample performance of the bootstrap.

5. Applications

5.1. Two-sample testing with sliced Wasserstein distance

Let r, s ∈ ∆N and take X1, . . . , Xn ∼ r, Y1, . . . , Ym ∼ s as i.i.d. samples. The

nonparametric two-sample test determines whether the sampling distributions

r, s are equal, based on samples. This is described as

H0 : r = s vs. H1 : r ̸= s.
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Table 1. Rejection rates of the proposed test. The significance level is 0.05.

r = s r ̸= s

ℓ = n4/5 0.001 1.000
ℓ = n2/3 0.016 1.000
ℓ = n1/2 0.037 1.000

We propose a test using the sliced Wasserstein distance, that is, the IPRW

distance with a one-dimensional projection and a uniform measure. Specifically,

we denote SWm,n =
√
mn/(m+ n)IWp(r̂n, ŝm) and propose the test

SWm,n > cα ⇒ reject H0,

where cα is a critical value chosen based on the given level of α ∈ (0, 1). The two-

sample test based on the Wasserstein distance was performed by Ramdas, Trillos

and Cuturi (2017). They designed univariate test statistics using the Wasserstein

distance, and analyzed their limit distribution. However, their approach is

available only for d = 1, because it does not extend to higher dimensions. Our

proposed test is not restricted to a one-dimensional setting, and can be applied

to large-scale data sets because of the low computational complexity of the sliced

Wasserstein distance.

We use the bootstrap procedure to choose an appropriate critical value from

the data. Let r̂∗ℓ and ŝ∗ℓ be the empirical bootstrap distributions obtained from

the bootstrap samples X∗
1 , . . . , X

∗
ℓ ∼ r̂n and Y ∗

1 , . . . , Y
∗
ℓ ∼ ŝm, respectively. We

define the bootstrap version of the test statistics as SW∗
m,n =

√
ℓ/2 IWp(r̂

∗
ℓ , ŝ

∗
ℓ),

and denote by ĉα the (1 − α)quantile of SW∗
m,n. Note that ĉα can be computed

numerically. Then, the validity of the rescaled bootstrap for the IPRW distance

(Proposition 3) implies that, under ℓ → ∞, ℓ/n → 0, and ℓ/m → 0 as n,m → ∞,

the test

SWm,n > ĉα ⇒ reject H0

has asymptotic level α. Specifically, lim supm,n→∞ P (SWm,n > ĉα) ≤ α.

Here, we demonstrate the finite- sample performance of this test. We set

the finite ground space X to be an equidistant two-dimensional 7 × 7 grid on

[0, 1] × [0, 1]. For the case r = s, we generate a distribution r ∼ Dir(1) and

set s = r, and for the case r ̸= s, we generate two distributions r, s ∼ Dir(1)

independently. We set the sample size as n = m = 1000, and vary the replacement

number as ℓ ∈ {n4/5, n2/3, n1/2}. We set the significance level to be α = 0.05, and

run 1,000 Monte Carlo iterations.

Table 1 shows the rejection rates of the proposed test in each case. For the

case r = s, the rejection rates should be under the significance level of α = 0.05,

and this is true for all ℓ ∈ {n4/5, n2/3, n1/2}. For the case r ̸= s, the power of the

test is 1.000, which is satisfactory.
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Figure 1. Data sets of images. The first, second, and third columns show the data sets
1, 2, and 3, respectively.

Table 2. Two-sample testing for the color distributions of images.

Dataset Statistic p-value

ℓ = n4/5 ℓ = n2/3 ℓ = n1/2

1 15.55 < 0.001 < 0.001 < 0.001

2 9.07 < 0.001 < 0.001 < 0.001

3 0.25 0.446 0.372 0.352

We now apply the proposed test to examine the equality of color distributions

in images. Given two different images, the aim is to investigate whether they

have significantly different color distributions. Figure 1 shows the data sets of

the images used. Each image has 768 × 576 = 442,368 pixels, and was obtained

from a publicly available data set at http://tabby.vision.mcgill.ca/html/

welcome.html. We transform each image into a color histogram in the RGB color

space with grid size 163 = 4,086. In data set 1 (the first column in Figure 1), the

two images are expected to have different color distributions. In data set 2 (the

second column in Figure 1), the two images are expected to have different, but

similar color distributions. In data set 3 (the third row in Figure 1), the second

image is obtained by flipping the first image around the vertical axis; thus, they

have the same color histograms. In each data set, we randomly select n = 10,000

pixels from each image and construct the empirical color distributions r̂n and ŝn.

Then, we calculate the test statistic SWn,n and the p-values based on B = 500

bootstraps with replacement ℓ ∈ {n4/5, n2/3, n1/2}. Table 2 shows the results.

For data set 1, the proposed test with every replacement ℓ suggests a strong

rejection of the null hypothesis. For the data set 2, we also see a strong rejection

of the null hypothesis, but the test statistic (9.07) is smaller than that for data

set 1 (15.55). For data set 3, the proposed test with any replacement ℓ does not
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report a small p-value, which means there is no strong evidence to reject the null

hypothesis.

5.2. Interval estimation for regularized PRW distance

Given a level α ∈ (0, 1) and i.i.d. samples X1, . . . , Xn ∼ r, Y1, . . . , Ym ∼ s,

we construct an asymptotic confidence interval Cnm for the regularized PRW

distance PWp,λ(r, s), such that

lim inf
n,m→∞

P (PWp,λ(r, s) ∈ Cmn) ≥ 1− α.

The previous distributional results allow us to construct Cnm. Although we focus

on the regularized PRW distance, we can construct such an interval for the IPRW

distance under r ̸= s in the same manner.

Let r̂∗ℓ and ŝ∗ℓ be the empirical bootstrap distributions obtained from the

bootstrap samples X∗
1 , . . . , X

∗
ℓ ∼ r̂n and Y ∗

1 , . . . , Y
∗
ℓ ∼ ŝm, respectively. We

denote the α/2 and (1 − α/2) quantiles of PWp,λ(r̂
∗
ℓ , ŝ

∗
ℓ) as qα/2 and q1−α/2,

respectively, and define

Cnm =

[
PWp,λ(r̂n, ŝm)−

√
n+m

nm
q1−α/2,PWp,λ(r̂n, ŝm)−

√
n+m

nm
qα/2

]
.

Then, the validity of the rescaled bootstrap for the regularized PRW distance

(Proposition 4) implies that under ℓ → ∞, ℓ/n → 0, ℓ/m → 0 as n,m → ∞, and

m/(n + m) → δ ∈ (0, 1), Cnm is an asymptotic (1 − α) confidence interval for

PWp,λ(r, s).

We apply the proposed interval estimation method to handwritten letter

images from the Modified National Institute of Standards and Technology

(MNIST) data set (http://yann.lecun.com/exdb/mnist/). The data set

contains images of 576 pixels for handwritten digits from zero to nine. Because the

distributions generating the images of each digit are likely to have low-dimensional

structures, the PRW distance is expected to capture the differences between them

effectively. Based on the above result, we construct 0.95 confidence intervals

for the regularized PRW distances between pairs of digits. Specifically, we use

n = m = 892 images of the digits zero, one, four, seven ,and nine, and extract 128-

dimensional features of each image using a convolution neural network (CCN),

as outlined in Lin et al. (2020). Then, we estimate the global intrinsic dimension

of the feature data using the maxLikLocalDimEst function in the R package

intrinsicDimension Johnsson (2019), obtaining an estimate of 6.77. Based on

this estimate, we set the projection dimension to 7 and the order to p = 2. We

then construct the 0.95 confidence intervals using B = 1,000 bootstraps with

replacement n4/5 ≈ 230. The regularized PRW distance is calculated using the

Riemannian optimization method proposed by Lin et al. (2020).
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Figure 2. The 0.95 confidence intervals for the regularized PRW distance between
handwritten digits. Intervals for the same digits are calculated by splitting the data
set into two groups. Intervals are normalized by setting the lower bound for zero and
one to one.

Figure 2 shows the results. The distances between digits one and seven and

between digits four and nine are smaller than those between digits zero and one

and between zero and four. Moreover, the distances between the same digits are

quite small. These results are consistent with our intuition.

Furthermore, we add Gaussian noise with a standard deviation of σ =

1, 5, 10 to the feature data, and again construct 0.95 confidence intervals for the

regularized PRW distances. For comparison, we also construct 0.95 confidence

intervals for the original Wasserstein distances (Sommerfeld and Munk (2018)).

The results are shown in Figure 3. The interval estimates of the regularized

PRW distance are less affected by the increase in the variance of the noise than

are those of the Wasserstein distance. This result implies that the PRW distance

is more robust to noise than the original Wasserstein distance is when the data

set has a low-dimensional structure.

6. Conclusion

This study investigates statistical inference for the IPRW and regularized

PRW distances. Although these projection-based Wasserstein distances are

practical for many machine learning tasks, their inferential tools are not well

established. We derive the limit distributions of the empirical versions of these

distances on finite spaces by showing their directional Hadamard differentiability.

We also show that, although the naive bootstrap fails for these distances, the

rescaled bootstrap is consistent.

There are several promising directions for future research. First, our

theoretical results are limited to finitely supported measures, and it would be
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Figure 3. The 0.95 confidence intervals for the regularized PRW and Wasserstein distance
between handwritten digits with Gaussian noise. The intervals for the same digits are
calculated by splitting the data set into two groups. For each distance, the intervals are
normalized by setting the lower bound for zero and one to one.

worthwhile extending them to more general settings. Second, an appropriate

choice of the replacement number of the rescaled bootstrap or projection

dimension of the PRW distance is important in practice. Developing data-driven

methods to choose these values is left to future research.

Supplementary Material

The online Supplementary Material contains the proofs of theorems, propo-

sitions, and lemmas presented in the main paper, as well as additional simulation

results.
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