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Abstract: In this paper, we propose an outlier detection procedure, based on a

high-breakdown minimum ridge covariance determinant estimator that is especially

useful for the large p/n scenario. The estimator is obtained from the subset of

observations, after excluding potential outliers, by applying the so-called concen-

tration steps. We explore the asymptotic distribution of the modified Mahalanobis

distance related to the proposed estimator under certain moment conditions, and

obtain a theoretical cutoff value for outlier identification. We also improve the

outlier detection power by adding a one-step reweighting procedure. Lastly, we

investigate the performance of the proposed methods using simulations and a real-

data analysis.
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1. Introduction

Data frequently contain one or more atypical observations, known as outliers,

that is, observations that are well separated from the majority of the data, or in

some way deviate from the general pattern of the data (Maronna et al. (2019)).

Outliers cannot be avoided, and may make up between 1% and 10% of the

data in a regular data set, possibly more in specific applications (Hampel et

al. (2005)). The decreasing cost of collecting data means that modern data sets

can be both large and complex, sometimes with a very high number of variables.

The chance of contamination or imperfections in the data increases, both with the

number of observations and their dimension. Thus, detecting potential outliers

is important, either as a preprocessing step to avoid model misspecification and

biased parameter estimation, or for some specific interest in finding anomalous

observations.

Let {x1, . . . ,xn} be a random sample of the p-dimensional random vector X

with mean vector µ = (µ1, . . . , µp)
⊤
and covariance matrix Σp = (σij)p×p

. A com-

mon measure of outlyingness for an individual observation xi = (xi1, . . . , xip)
⊤ is

the Mahalanobis distance

d2i (µ,Σp) = (xi − µ)
⊤
Σ−1

p (xi − µ) . (1.1)
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The well-known minimum covariance determinant algorithm (Rousseeuw and

van Driessen (1999)) searches for a subsequence of {x1, . . . ,xn} of size h, with

n/2 < h < n, that has a sample covariance matrix with the smallest determinant.

Thus, it obtains reliable estimates of µ and Σp in (1.1). To determine the cutoff

value for outlying points, Hardin and Rocke (2005) present a distributional result

of (1.1) under a Gaussian assumption that is superior to the commonly used

chi-square cutoff. The consistency and asymptotic normality of the minimum

covariance determinant (MCD) estimator (Rousseeuw (1985)) are shown by Cator

and Lopuhaä (2012). Based on the small-sample correction factors constructed

by Pison, Van Aelst and Willems (2002), Cerioli (2010) proposes an iterated

reweighted-MCD procedure that performs well for detecting multiple outliers.

However, when p/n increases, conventional outlier detection methods based

on the MCD estimator become infeasible and suffer power loss (Adrover and Yohai

(2002); Alqallaf et al. (2009)). In fact, the MCD approach is often recommended

when n > 5p (Boudt et al. (2019)). For outlier detection, Filzmoser, Maronna and

Werner (2008) developed a computationally fast procedure by using a principal

component analysis to identify outliers in a transformed space when p/n ≥ 1. Ro

et al. (2015) introduce the following alternative for (1.1):

d2i (µ, Dp) = (xi − µ)
⊤
D−1

p (xi − µ) , (1.2)

where Dp = diag (σ11, . . . , σpp). By replacing (1.1) with (1.2), they propose

a computationally efficient refined minimum diagonal product algorithm, and

conduct simulation studies for autoregressive correlation and moving average

models. Li and Jin (2022) consider a different alternative for (1.1):

d2i (µ, DΣ) = (xi − µ)
⊤
D−1

Σ (xi − µ) , (1.3)

whereDΣ is the 2×2 block-diagonal partition of Σp. As such, they develop a high-

breakdown block-diagonal product estimator. Other outlier detection techniques

for high-dimensional data based on (1.2) include those of Yang, Wang and Zi

(2018) and Wang et al. (2021).

Let x̄n = n−1
∑n

i=1 xi and Sn = n−1
∑n

i=1 (xi − x̄n) (xi − x̄n)
⊤
. Denote Ip

as the p × p identity matrix. Motivated by the regularized Hotelling’s T 2 test

statistic used in the high-dimensional mean test (Chen et al. (2011); Ha et al.

(2021)), we modify (1.1) as

d2i (µ, Sn(λ)) = (xi − µ)
⊤
[Sn(λ)]

−1 (xi − µ) , (1.4)

where Sn(λ) = Sn + λIp, and λ > 0 is a scalar tuning parameter. Here, the

product λIp is the perturbation that we add to the covariance estimator Sn, such

that the matrix Sn(λ) is positive definite, and hence invertible. Boudt et al.
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(2019) suggest adding a preprocessing step to standardize each xi as

ui = D−1
X (xi − vX) ,

where DX is a diagonal matrix in which the jth diagonal element is the Qn

estimator (Rousseeuw and Croux (1993)), and vX is a location vector with

elements that consist of the medians of all the variables. Then, they define

the regularized sample covariance matrix by

K = ρT + (1− ρ)cαSU ,

where SU is the sample covariance matrix of U = {u1, . . . ,un}, T is a prede-

termined positive-definite target matrix, ρ is a regularization parameter selected

to bound the condition number of K, and cα is the consistency factor defined

by Croux and Haesbroeck (1999). However, there is no distributional result or

reweighting step in method of Boudt et al. (2019), and it is not easy to obtain

appropriate standardized observations in high-dimensional settings.

Here, we consider outlier detection for the large p/n scenario, where c1 ≤
p/n ≤ c2, with c1 and c2 being some positive constants. By relaxing the Gaussian

assumption, we derive the exact distribution of (1.4). We then propose a high-

breakdown minimum ridge covariance determinant estimator. We explore the

asymptotic distribution of the modified Mahalanobis distance related to the

proposed estimator under certain moment conditions, and obtain a theoretical

cutoff value for outlier identification, which is the basis for the proposed outlier

detection procedure. We improve the outlier detection power by adding a one-

step reweighting procedure. Lastly, we use simulation studies and an analysis of

real data to show that the proposed procedure achieves higher detection power

against sparse signals than that of its main competitors.

The remainder of the paper is organized as follows. In Section 2, we give our

model assumptions, introduce the minimum ridge covariance determinant esti-

mator, and present the main results. In Section 3, we examine the performance

of the proposed methods using simulations and a real-data analysis. We conclude

the paper in Section 4. All theoretical proofs are provided in the Appendix.

2. Methods and Properties

2.1. Model assumptions

Let Xn be a pn-dimensional random vector admitting the independent

components model

Xn = Tpn
Zn + µn, (2.1)

where µn = (µ1,n, . . . , µpn,n)
⊤

is the location vector, Tpn
is a pn × pn full-

rank transformation matrix, and Zn is a pn-dimensional random vector with
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independent and identically distributed (i.i.d.) components. Denote the jth

component of Zn by zj,n. For simplicity, we suppress the subscript n in the

above notation if there is no confusion in the context.

Let FΣp denote the empirical spectral distribution (ESD) of a matrix Σp (Bai

and Silverstein (2010)), that is,

FΣp(u) =
1

p

p∑
j=1

I[λj ,∞)(u),

where λj, for j = 1, . . . , p, are the eigenvalues of Σp, and IA(·) denotes the

indicator function of the set A.

Our main assumptions are as follows:

Condition A1. p, n → ∞ such that cn ≜ p/n → c ∈ (0,∞).

Condition A2. Σp ≜ TpT
⊤
p is a p× p positive-definite matrix.

Condition A3. FΣp converges to a proper probability measure F as p → ∞.

Condition A4. lim supp→∞ ∥Σp∥ < ∞ and lim supp→∞
∥∥Σ−1

p

∥∥ < ∞, where ∥ · ∥
denotes the spectral norm.

Condition A5. The first four moments of z1 match those of the standard normal

distribution N(0, 1).

Conditions A1–A4 are common in research on the ESD of a high-dimensional

sample covariance matrix; see, for example, Chen et al. (2011) and Ha et al.

(2021). The four-moment matching condition in Condition A5 is required to

obtain the limiting distribution of (1.4). Condition A5 is most closely related to

the four-moment theorem for random covariance matrices of Tao and Vu (2012).

The first and second moment conditions of z1 are easy to meet in practice. The

third moment condition is necessary for some of our lemmas, especially Lemma

A.2. The fourth moment is essential for the proof of Lemma A.4, given in the

Appendix. Extending the theoretical results using a relaxed version of Condition

A5 is left to future research.

2.2. The minimum ridge covariance determinant estimate

The classical minimum covariance determinant procedure finds a subset of

observations that have a sample covariance matrix with the smallest determinant

by iteratively computing and sorting the Mahalanobis distances of each obser-

vation. To generalize this procedure to high-dimensional data sets, our method

searches for a subset of h observations that minimizes the determinant of the

ridge sample covariance matrix.

Let X = {x1, . . . ,xn} be a collection of n observations of Xn in (2.1). Define

H = {H ⊂ {1, . . . , n} : |H| = h, h > n/2}, the collection of all subsets of size
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h, where |H| denotes the cardinality of H. We set h > n/2, because potential

outliers account for no more than half of the total observations. For any H ∈ H,

denote x̄H = |H|−1∑
i∈H xi,

SH = |H|−1
∑
i∈H

(xi − x̄H) (xi − x̄H)
⊤
,

and SH(λ) = SH + λIp, with λ ∈ (0,∞), a ridge sample covariance matrix in

terms of {xi, i ∈ H}. It is easy to see that SH(λ) for a given λ is positive

definite.

Definition 1. The minimum ridge covariance determinant (abbreviated as

RICD) estimate of µ, the multivariate location parameter, for a given λ > 0,

is defined as

µ̂RICD = x̄HRICD
with HRICD = argmin

H∈H
det[SH(λ)]. (2.2)

Note that for p > h, the MCD estimate (Rousseeuw (1985)) becomes ill-

defined, because det[SH ] = 0 for such H. Denote the scatter estimate of Σp by

Σ̂RICD = SHRICD
(λ). Note that µ̂RICD and Σ̂RICD can be shown to be location

invariant and orthogonal equivariant, but not affine equivariant. See (Lopuhaä

and Rousseeuw (1991)) for the definitions of location invariance, orthogonal

equivariance, and affine equivariance of a covariance estimate.

When X is contaminated, there exist one or more xi that are not observations

of Xn in (2.1). These xi may be arbitrary values, or go to ∞ as n → ∞. Thus,

x̄n is no longer an appropriate estimate of µ, and ∥x̄n∥F may be arbitrarily large,

such that it “breaks down,” where ∥ · ∥F denotes the Frobenius norm. The finite-

sample breakdown point (Maronna et al. (2019)) εn of an estimate θ̂n of the

parameter θ is the smallest proportion of observations from X that need to be

replaced by arbitrary values to carry θ̂n beyond all bounds:

εn(θ̂n,X ) = min
1≤t≤n

{
t

n
: sup

X̃

∥∥∥θ̂n(X )− θ̂n

(
X̃
)∥∥∥

F
= ∞

}
,

where X̃ = {x̃1, . . . , x̃n} is a data set with at least (n − t) elements in common

with X , that is, |X ∩ X̃ | ≥ n− t. It is easy to see that εn(x̄n,X ) = 1/n. For the

finite-sample breakdown point of the proposed estimates, we have the following

theorem.

Theorem 1. Suppose that n/2 < h < n and λ > 0. Then, we have

εn (µ̂RICD,X ) = εn(Σ̂RICD,X ) = min

{
n− h+ 1

n
, 0.5

}
. (2.3)
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Theorem 1 shows that the proposed estimates can achieve the highest

breakdown value, that is, 50%, when h = [n/2] + 1, where [a] denotes the

integer part of a. To achieve the best performance in practice, while ensuring

εn (µ̂RICD,X ) and εn(Σ̂RICD,X ) are as high as possible, we recommend a default

choice of hdefault = [n/2] + 1.

To find HRICD defined in (2.2), we modify the fast minimum covariance

determinant algorithm (Rousseeuw and van Driessen (1999)) by replacing the

Mahalanobis distance with its high-dimensional counterpart (1.4). However,

when n < p + 1, the original algorithm requires a random initial subset Hini

containing p+ 1 data points sampled from X . To solve this problem, we set the

size of the random initial subset to hini = hdefault, given that εn (µ̂RICD,X ) does

not depend on p.

Similarly to Rousseeuw and van Driessen (1999), we refer to the construction

in the following theorem as a concentration step, consisting of two parts. This

theorem illustrates the function of the second part of the concentration step,

that is, sorting the distances of all xi to the center of the subset obtained in

the first part. By performing this part in the concentration step, we obtain a

more concentrated h-sized subset, with a lower possibility of being contaminated

by atypical points. This guarantees that an iteration process of repeating

concentration steps leads to an optimal H, which, for convenience, is still denoted

as HRICD.

Theorem 2. Let H be a subset of {1, . . . , n}, with |H| = h > n/2. If H̃ ⊂
{1, . . . , n} with |H̃| = h is such that {d2i (x̄H , SH(λ)) : i ∈ H̃} = {d2(1)(x̄H , SH(λ)),

. . . , d2(h)(x̄H , SH(λ))}, where d2(1)(x̄H , SH(λ)) ≤ · · · ≤ d2(n)(x̄H , SH(λ)) denote the

order statistics of {d2i (x̄H , SH(λ)) , for i = 1, . . . , n}, then

det [SH̃(λ)] ≤ det [SH(λ)]

with equality if and only if x̄H = x̄H̃ and SH(λ) = SH̃(λ).

2.3. Asymptotic properties

The following theorem serves as a theoretical background for constructing a

rule for identifying outliers. We first define additional notation:

Θ(1) (λ, c, A) =
1− λm1(−λ)

1− c [1− λm1(−λ)]
,

Θ(2) (λ, c, A) =
1− λm1(−λ)

[1− c+ cλm1(−λ)]
3 − λ

m1(−λ)− λm2(−λ)

[1− c+ cλm1(−λ)]
4 ,

(2.4)

where c is a constant, A is a p×p nonnegative-definite matrix, m1(z) is defined as

the Stieltjes transform of the ESD of A, m1(z) = tr (A− zIp)
−1

/p, and m2(z) =

tr (A− zIp)
−2

/p.
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Algorithm 1. The minimum ridge covariance determinant (RICD) procedure.

Step 1. Randomly sample cs initial subsetsHj,ini from {1, . . . , n}, with |Hj,ini| = [n/2]+
1, for j = 1, . . . , cs. Apply the concentration step to each initial subset three times,
and obtain cs concentrated subsets. Select l subsets from the above cs concentrated
subsets that have the lowest ridge covariance determinants.

Step 2. For each subset in the above l subsets, continue applying the concentration
step until convergence, and obtain l final subsets. Select the best subset, with the
minimum ridge covariance determinant as HRICD.

Step 3. Compute µ̂RICD and Σ̂RICD, and Θ(1) (λ, ch, SHRICD
) and Θ(2) (λ, ch, SHRICD

),
with ch = p/h. For a given significance level of α, the kth observation is declared an
outlier if

d2k

(
µ̂RICD, Σ̂RICD

)
> pΘ(1) (λ, ch, SHRICD

) + zα

{
2pΘ(2) (λ, ch, SHRICD

)
}1/2

. (2.5)

Theorem 3. Assume that Conditions A1–A5 hold. Let X1,n, . . . ,Xn,n be i.i.d.

random vectors that have the same distribution as Xn in (2.1). Then, for any k

and λ > 0, we have

√
p
(
(1/p)d2k(X̄n, Sn(λ))−Θ(1) (λ, cn, Sn)

)√
2Θ(2) (λ, cn, Sn)

D→ N(0, 1), as p → ∞, (2.6)

where X̄n = n−1
∑n

i=1 Xi,n, Sn(λ) = Sn + λIp, with Sn = n−1
∑n

i=1(Xi,n − X̄n)

(Xi,n − X̄n)
⊤, and “

D→ ” denotes convergence in distribution.

Note that we can suppress the second subscript n in X1,n, . . . ,Xn,n if there

is no confusion in the context.

Because the computations of Θ(1) (λ, cn, Sn) and Θ(2) (λ, cn, Sn) do not require

any knowledge of the true covariance matrix Σp beyond its positive definiteness,

Theorem 3 provides a practical and efficient way for determining the cutoff value

for identifying outliers.

2.4. The minimum ridge covariance determinant procedure

We adapt the procedure of the fast minimum covariance determinant ap-

proach (Rousseeuw and van Driessen (1999)) to solve the optimization problem

(2.2) in a high-dimensional setting. We present a procedure to find HRICD and

the raw cutoff. We first explain what we mean by applying the concentration step

described in Theorem 2 to a subset of {1, . . . , n}, ℓ times: apply the concentration

step to this subset, sayH(0), and obtain a new subset of {1, . . . , n}, sayH(1); apply

the concentration step to H(1), and obtain another new subset of {1, . . . , n}, say
H(2); repeat ℓ− 2 times, and obtain the final subset of {1, . . . , n}, say H(ℓ).

Denote zα as the upper α-quantile of the standard normal distribution. Our

procedure is given above.
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2.5. Refined minimum RICD procedure

A one-step reweighting scheme is often an effective way of increasing the

efficiency of an algorithm (Cerioli (2010); Ro et al. (2015)). Therefore, we improve

the power of the proposed outlier test, described in Section 2.4, by adding a

further reweighting step. Following Ro et al. (2015), we first assume that the

parameters µ and Σp are known, and define the weights

Wk =

{
0 if d2k (µ, Sn(λ)) > aδ,

1 otherwise,
(2.7)

where aδ is the upper δ-quantile of the distribution of d2k (µ, Sn(λ)). By (A.1) in

Lemma A.4, given in the Appendix, it follows that

aδ = tr
(
Sn(λ)

−1Σp

)
+ zδ

√
2 tr (Sn(λ)−1Σp)

2
. (2.8)

We have the following proposition.

Proposition 1. Assume that Conditions A1–A4 hold. Let X1, . . . ,Xn be i.i.d.

p-dimensional random vectors from Np(µ,Σp). Then, E (Xkj | Wk = 1) = µj, the

jth element of µ, and

Var (Xkj | Wk = 1) = σjj

1− 2ϕ (zδ) (ΣpSn(λ)
−1Σp)jj

σjj(1− δ)
√
2 tr (Sn(λ)−1Σp)

2
+ o(1)

 ≡ σjjτj,

(2.9)

where (ΣpSn(λ)
−1Σp)jj is the jth diagonal element of ΣpSn(λ)

−1Σp, for j =

1, . . . , p, and ϕ is the standard normal density function.

This proposition reveals that Var (Xkj | Wk = 1) is smaller than the true

scatter parameter σjj. Therefore, if too many observations are identified as

outliers, we have a biased type-I error. Cerioli (2010) shows by simulation

that multiplying the raw MCD scatter estimate by a proportionality constant

kMCD(h, n, v) improves the finite-sample performance of its algorithm. Denote

WRICD = {k1, . . . , knw
} as the set of indices of the observations xk for which

wk = 1, where wk = 0 if (2.5) holds, wk = 1 otherwise, and nw =
∑n

k=1 wk.

Following Cerioli (2010), we refine our estimates as follows:

µ̃ = x̄WRICD
, S̃ = kRICD(h, p)SWRICD

, (2.10)

where kRICD(h, p) is an adjustment coefficient that depends on both h and p.

It is difficult to obtain a consistent estimate of τj in (2.9) in a high-

dimensional setting for j = 1, . . . , p. Nevertheless, it can be shown that



RICD OUTLIER DETECTION 1931

Algorithm 2. Refined minimum RICD procedure.

Step 1. Select the significance level α. Set h = [n/2] + 1. Choose cs, for example,
cs = 100, and l, for example, l = 10. Apply Algorithm 1. Calculate the distance

d2k

(
µ̂RICD, Σ̂RICD

)
, and assign a weight to each observation according to (2.5), based

on an appropriately chosen δ, for example, δ = α/2.
Step 2. Obtain nw and WRICD, and compute the refined location and scatter estimates

µ̃ and S̃, respectively, using (2.10) and (2.12), respectively.
Step 3. Calculate the refined distance d2k(µ̃, S̃(λ)), update Θ(1)(λ, cnw

, S̃) and

Θ(2)(λ, cnw
, S̃) according to (2.4) with cnw

= p/nw and S̃(λ) = S̃ + λIp. For a
given significance level of α, the kth observation is declared an outlier if

d2k

(
µ̃, S̃(λ)

)
> pΘ(1)

(
λ, cnw , S̃

)
+ zα

{
2pΘ(2)

(
λ, cnw , S̃

)}1/2

. (2.11)

median
1≤j≤p

1

τj
≈

1 + 2ϕ (zδ) tr (Sn(λ)
−1Σp)

p(1− δ)
√
2 tr (Sn(λ)−1Σp)

2

 {1 + o(1)}, p → ∞,

where tr (Sn(λ)
−1Σp) and tr (Sn(λ)

−1Σp)
2
can be estimated more easily. By

Lemma A.2 in the Appendix, we can set the scaling factor kRICD(h, p) in (2.10)

as

kRICD(h, p) = 1 +
2ϕ (zδw)Θ

(1) (λ, ch, SHRICD
)

(1− δw)
√
2pΘ(2) (λ, ch, SHRICD

)
, (2.12)

where δw = 1− nw/n is the actual proportion of observations that are effectively

excluded in the reweighting step. Our refined RICD procedure for outlier

detection is summarized in Algorithm 2.

2.6. Choice of λ

Chen et al. (2011) suggest using the asymptotic approximation to choose the

degree of regularization in their RHT test statistic (2). Based on the asymptotic

properties of the modified Mahalanobis distance d2 (x̄n, Sn(λ)), we propose a

data-driven approach for choosing the degree of regularization λ. Specifically,

for each λ, we first calculate Θ(1) (λ, cn, Sn) and Θ(2) (λ, cn, Sn) based on the

observed data X . Then, for a target significance level α, the difference between

d2 (x̄n, Sn(λ)) and its asymptotic approximation is measured by

Dα(λ) = median
1≤k≤n

d2k (x̄n, Sn(λ))− pΘ(1)(λ, cn, Sn)− zα
{
2pΘ(2) (λ, cn, Sn)

}1/2

.

We select λ as

λ̂ = min {λ : λ ∈ Ξ, |Dα(λ)| ≤ ϱ} ,

where Ξ is a prespecified selecting range for λ, and ϱ is a small positive value. We

set α = 0.05, Ξ = [0.05, 200], and ϱ = 1 in our simulation studies. Note that the
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optimal λ̂ remains unchanged in the application of Algorithm 2 after it is chosen.

3. Numerical Studies

3.1. Simulations

In this section, we carry out simulation studies to evaluate the performance

of the proposed procedure (refined RICD). We generate the data set X =

{x1, . . . ,xn} in two scenarios.

Scenario (I).

Here, x1, . . . ,xn are independently distributed observations, where xi is

an observation from an ϵ-contaminated multivariate normal distribution (1 −
ϵ)Np (0,Σp) + (1/2)ϵNp (κηi,Σp) + (1/2)ϵNp (−κηi,Σp), unless stated otherwise.

Two cases of ηi are considered: (i) (dense mean vector case): ηi is the normalized

p-dimensional vector ζi consisting of p i.i.d. random variables from the uniform

distribution U(0, 1), that is, ηi = ζi/ ∥ζi∥F ; and (ii) (sparse mean vector case)

ηi is the normalized p-dimensional vector ζi in which [p0.1] randomly selected

elements are i.i.d. from U(0, 1), and the others are all zeros, that is, ηi = ζi/ ∥ζi∥F .
We fix the sample size n = 100, set the dimension p as 100, 200, and 400, and

let the contamination ratio ϵ be 0.1 or 0.2. The two settings of the covariance

structure and the magnitude of abnormality κ are given below:

Case (a). Autoregressive correlation structure setting. Σp=(0.3|i−j|)p×p;

κ = 8, 9, 10, respectively, for p = 100, 200, 400;

Case (b). Random structure setting. Σp = Q⊤D0Q, with D0 a diagonal

matrix with diagonal elements djj
i.i.d.∼ U(1, 5), for j = 1, . . . , p, and Q an

orthonormal matrix constructed from the spectral decomposition of W⊤W

(W⊤W = Q⊤ΛQ), with W = (wij)p×p
being such that wij

i.i.d.∼ U(0, 1);

κ = 12, 14, 16, respectively, for p = 100, 200, 400.

Scenario (II). Non-Gaussian scenario

Case (c). Let the p-dimensional random vector ξ = 0.7827γ + 0.6224ν, where

γ has i.i.d. elements with the common distribution U(−
√
3,
√
3), and ν,

independent of γ, has i.i.d. elements with the common density function

f(ν) =

{√
2e−

√
2ν/2, if ν ≥ 0,

√
2e

√
2ν/2, if ν < 0.

It can be shown that the distribution of ξ1, the first element of ξ, satisfies

Condition A5. Denote the distribution of ξ by Fξ. Replace the ϵ-

contaminated multivariate normal distribution in Scenatio (I) with (1 −
ϵ)Fξ +(1/2)ϵNp (κηi, Ip)+ (1/2)ϵNp (−κηi, Ip); κ = 8, 9, or 10, respectively,

for p = 100, 200, or 400.
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Table 1. Average type-I error (%) by the proposed procedure for various p, ϵ, and α.

ϵ = 0.1 ϵ = 0.2

ηi Case p α = 0.01 α = 0.05 α = 0.1 α = 0.01 α = 0.05 α = 0.1

(i) (a) 100 1.74 6.97 13.20 1.21 5.56 11.13

200 1.41 6.59 13.15 1.00 5.28 11.16

400 1.38 6.50 12.16 0.97 5.16 9.77

(b) 100 1.62 6.86 12.89 1.22 5.44 10.75

200 1.38 6.48 12.74 0.97 5.15 10.52

400 1.26 6.05 11.02 0.83 4.50 8.03

(c) 100 1.63 6.06 11.49 1.09 4.84 9.55

200 1.33 6.00 11.73 0.92 4.74 9.81

400 1.31 5.99 10.87 0.90 4.66 8.60
(ii) (a) 100 1.75 7.00 13.17 1.24 5.60 11.16

200 1.42 6.63 13.14 1.02 5.30 11.09

400 1.41 6.52 12.19 1.02 5.15 9.54

(b) 100 1.61 6.85 12.87 1.20 5.41 10.75

200 1.39 6.49 12.71 0.98 5.17 10.50

400 1.27 6.05 10.75 0.87 4.56 7.97

(c) 100 1.61 6.08 11.52 1.08 4.84 9.56

200 1.35 6.00 11.73 0.92 4.71 9.76

400 1.29 5.99 10.76 0.92 4.65 8.40

We compare the performance of the proposed procedure (RICD) with that

of several existing methods, namely, the refined minimum diagonal product

procedure (RMDP) of Ro et al. (2015), the block diagonal product procedure

(BDP) of Li and Jin (2022), and the principal component outlier detection

procedure (PCout) of Filzmoser, Maronna and Werner (2008), for each setting.

We evaluate the outlier identification performance using the type-I error rate, that

is, the proportion of good observations that are incorrectly classified as outliers,

and the detection power, that is, the proportion of contaminated observations

that are correctly flagged. The average type-I error rate ᾱ and the detection

power β̄ presented in this section are calculated from 500 replications.

The average type-I error rates (%) of the the proposed RICD procedure for

various p and ϵ are displayed in Table 1, where the nominal significance level α

is set to be 0.01, 0.05, or 0.1. The results show that the empirical type-I error

rates are close to the nominal levels in most settings.

The simulation results for the four methods with α = 0.05, ϵ = 0.1, and 0.2

are summarized in Tables 2–3, showing that (i) the proposed method outperforms

both the RMDP and the BDP procedures in terms of detection power in most

cases, and (ii) the PCout method exhibits similar performance to that of our

method in Case (i) for ϵ = 0.1. However, the former has a conservative type-I

error rate when the contamination ratio increases to 0.2, and suffers from some

power loss in Case (ii).
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Table 2. Average type-I error (%) and detection power (%), where α = 0.05 and ϵ = 0.1.

RICD RMDP BDP PCout

ηi Case p ᾱ β̄ ᾱ β̄ ᾱ β̄ ᾱ β̄

(i) (a) 100 6.97 94.60 6.59 94.22 6.95 91.72 5.33 97.24

200 6.59 92.53 6.19 92.69 7.34 90.92 5.01 97.52

400 6.50 90.09 5.86 87.05 7.94 85.82 5.15 97.19

(b) 100 6.86 88.47 6.10 86.72 6.61 83.31 5.65 92.91

200 6.48 88.21 6.15 87.11 7.32 84.17 5.09 95.33

400 6.05 83.56 5.85 83.92 8.42 83.67 4.71 95.73

(c) 100 6.06 97.80 6.15 97.24 6.41 95.38 4.61 99.33

200 6.00 96.61 6.12 96.29 7.57 94.98 4.15 100.00

400 5.99 93.76 5.96 93.20 8.34 91.70 4.38 98.57
(ii) (a) 100 7.00 97.35 6.33 92.80 6.79 95.07 6.86 30.79

200 6.63 95.12 6.22 90.48 7.34 92.70 7.06 21.11

400 6.52 92.42 6.17 83.68 8.47 84.60 7.62 17.64

(b) 100 6.85 88.28 6.31 81.71 6.80 83.28 7.66 24.76

200 6.49 88.13 6.40 81.72 7.60 83.19 7.20 16.59

400 6.05 84.92 5.99 77.01 8.70 78.98 7.66 14.69

(c) 100 6.08 97.66 6.16 95.18 6.59 95.66 6.98 39.96

200 6.00 96.27 6.11 93.11 7.58 93.40 6.63 27.44

400 5.99 94.27 5.78 86.49 8.57 85.84 7.03 19.46

In Scenario (I), we consider the following radial contamination scheme

(Cerioli (2010)):

Case (d). Scatter outliers. x
(ϵ)
i is an observation from (1 − ϵ)Np(0,Σp) + ϵ

Np(0,Σ(i)), where Σp is set as in Case (a), [p0.5] random diagonal components

of Σ(i) are 7.5, and the other entries are the same as those of Σp.

We fix the significance level α = 0.05 in this case. A comparison of the

results with different contamination ratios are reported in Table 4, which shows

that the proposed method simultaneously maintains the desired type-I error rate

and achieves high detection power. Similarly to the location outlier settings, the

PCout procedure appears to be insensitive to sparse signals. The BDP procedure

does not control the type-I error rate as well as the proposed method does for

p ≥ 200 and ϵ = 0.1.

3.2. Real-data analysis

We illustrate the proposed method on an octane data set consisting of near-

infrared absorbance spectra, with p = 226 wavelengths collected on n = 39 gaso-

line samples. The data set is described in Esbensen, Midtgaard and Schönkopf

(1996), and is available in the R package rrcov. Because this data set has a

large p/n ratio, we cannot compute the original minimum covariance determinant
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Table 3. Average type-I error (ᾱ %) and detection power (β̄ %), where α = 0.05 and
ϵ = 0.2.

RICD RMDP BDP PCout

ηi Case p ᾱ β̄ ᾱ β̄ ᾱ β̄ ᾱ β̄

(i) (a) 100 5.56 93.38 4.89 91.80 5.25 87.92 2.22 98.12

200 5.28 91.42 4.87 89.87 5.78 86.28 1.97 99.62

400 5.19 88.53 4.31 84.26 6.17 81.13 1.69 99.85

(b) 100 5.44 84.88 4.49 83.85 4.81 77.58 2.04 99.42

200 5.15 85.12 4.55 83.43 5.73 78.54 1.71 99.96

400 4.50 79.50 4.24 78.63 6.15 76.34 1.60 99.95

(c) 100 4.84 96.84 4.67 96.76 5.31 93.89 1.55 99.99

200 4.74 95.67 4.57 94.84 5.87 91.59 1.39 100.00

400 4.66 92.22 4.46 90.84 6.62 87.62 1.26 100.00
(ii) (a) 100 5.60 96.28 4.76 90.95 5.20 93.44 5.63 30.88

200 5.30 94.10 4.73 86.91 5.78 89.30 6.57 19.99

400 5.15 90.64 4.88 79.92 7.13 81.51 6.91 15.49

(b) 100 5.41 85.48 4.90 78.20 5.31 79.20 6.24 23.06

200 5.17 85.53 5.06 77.80 6.04 79.57 6.78 16.90

400 4.56 81.06 4.91 72.98 7.28 74.80 7.14 14.66

(c) 100 4.84 96.79 4.78 93.63 5.25 93.96 5.59 35.75

200 4.71 94.92 4.82 90.21 6.23 90.76 5.53 24.93

400 4.65 93.09 4.55 83.70 6.96 82.62 6.37 19.55

Table 4. Average type-I error (ᾱ %) and detection power (β̄ %) in Case (d), where
α = 0.05.

RICD RMDP BDP PCout

Case ϵ p ᾱ β̄ ᾱ β̄ ᾱ β̄ ᾱ β̄

(d) 0.1 100 6.89 89.00 6.27 86.74 6.70 89.25 7.23 33.86

200 6.55 91.25 6.36 89.23 7.48 91.96 7.08 26.64

400 6.46 94.14 5.90 92.15 8.14 94.60 6.90 25.51

0.2 100 5.62 87.30 4.76 83.35 5.21 86.20 5.61 33.02

200 5.28 89.45 4.87 87.13 5.97 90.26 5.82 25.67

400 5.15 93.00 4.30 90.17 6.17 93.12 5.79 23.64

estimate. Furthermore, because the 25th, 26th, 36th, 37th, 38th, and 39th

samples contain added ethanol, they are outliers. We apply the proposed method

to this data set at a significance level of 0.01, and record the distance measures

[d2(µ̃, S̃(λ))− pΘ(1)(λ, cnw
, S̃)]/[2pΘ(2)(λ, cnw

, S̃)]1/2 (2.11). The Q-Q plot of the

distance measures is given in Figure 1, in which the dashed horizontal line

indicates the cutoff value, “good” points are around the black solid line, and

the true outliers are labeled as solid points. This figure clearly demonstrates that

the proposed procedure correctly identifies all six outliers.
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Figure 1. Q-Q plot of the distance measures based on the RICD.

Additional numerical studies are given in the Supplementary Material.

4. Conclusion

We have proposed a new outlier detection procedure based on the ridge

sample covariance matrix. The resulting high-breakdown ridge covariance de-

terminant estimate is well defined for high-dimensional data and contains more

information on the correlations between the variables than the MDP estimate

does (Ro et al. (2015)). We obtain the asymptotic distribution of the modified

Mahalanobis distance by relaxing the commonly used Gaussian assumption.

This novel outlier detection procedure first finds a clean subset by applying

a concentration step, and then identifies outliers with modified distances that

are above the cutoff value. The regularization parameter is selected adaptively

based on the data, thus enhancing the robustness of the proposed method. Using

simulations and a real-data example, we have shown that the proposed method

is robust to the masking and swamping effects of the contaminated data, and

outperforms the existing RMDP, BDP, and PCout methods in certain situations.

Supplementary Material

Supplementary Material available online includes additional simulation re-

sults and a real-data example.
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Appendix

First, we give some lemmas. Then we give the proofs of Theorems 1 and 2,

Lemmas A.4 to A.6, Theorem 3, and Proposition 1.

Lemma A.1. Lemma 4 of Chen et al. (2011). Given random variables

{xn, yn}∞n=1. fn (xn, yn) is a real function of xn and yn. If fn | Fn
D→ G and

distribution G is independent of Fn, here | Fn denotes conditional on Fn and Fn

is the σ-field generated by {y1, . . . , yn}, then we have fn
D→ G.

Lemma A.2. Theorem 2.3 of Ha et al. (2021). Assume that Conditions

A1–A5 hold. Let X1,n, . . . ,Xn,n be i.i.d. random vectors that have the same

distribution as Xn in (2.1). For any λ > 0, we have

√
p

∣∣∣∣1p tr
(
Sn(λ)

−1Σp

)
−Θ(1) (λ, cn, Sn)

∣∣∣∣ p→ 0

and
1

p
tr
(
Sn(λ)

−1Σp

)2 −Θ(2) (λ, cn, Sn)
p→ 0, as p → ∞,

where “
p→ ” denotes convergence in probability, Θ(i), i = 1, 2, are defined in (2.4).

Lemma A.3. Lemmas 4.2–4.4 of Ha et al. (2021). Assume that Condition

A1 holds. Let A be a p × p nonrandom symmetric matrix with bounded spectral

norm, and Z = (zij) a p× n random matrix whose entries are i.i.d., satisfying

E z11 = 0, E z211 = 1, E z411 < ∞, and |z11| ≤ ηn
√
n,

where {ηn} is a deterministic sequence with ηn ↓ 0 whose convergence rate can be

made arbitrarily slow. Then

E
∣∣z̄⊤

k Az̄k

∣∣v ≤ kv, E

∣∣∣∣ 1nz⊤
k Azk

∣∣∣∣v ≤ kv, E
∣∣z̄⊤

k Azk

∣∣v ≤ kv, v = 1, 2, . . .

where z̄k = (1/n)
∑n

j ̸=k zj, k = 1, . . . , n, zj is the jth column of Z, and kv is a

constant depending on v.

When Xk,n ∈ {X1,n, . . . ,Xn,n}, it is difficult to obtain the universality of

the CLT for the proposed estimator directly since Xk,n is not independent of

the sample covariance Sn, and hence the ridge covariance Sn(λ). Thus we divide

the proof into two steps. Let Ωn = {X1,n, . . . ,Xn,n, . . .} denote the complete set

of random vectors generated by model (2.1). At first, Lemma A.4 is derived to

characterize the asymptotic distribution of the modified distance (1.4) when the

objective X̃ /∈ {X1,n, . . . ,Xn,n}. Define d̃2(η, Sn(λ)) = (X̃−η)⊤Sn(λ)
−1(X̃−η).
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Lemma A.4. Assume that Conditions A1–A5 hold. Let X1,n, . . . ,Xn,n, . . . be

i.i.d. random vectors that have the same distribution as Xn in (2.1). If the

random vector X̃ is independent of {X1,n, . . . ,Xn,n} and λ > 0, we have

d̃2(µ, Sn(λ))− tr (Sn(λ)
−1Σp)√

2 tr (Sn(λ)−1Σp)
2

D→ N(0, 1), p → ∞, (A.1)

where d̃2(µ, Sn(λ)) = (X̃ − µ)⊤Sn(λ)
−1(X̃ − µ).

Lemma A.5. Assume that Conditions A1–A4 hold. Let X1,n, . . . ,Xn,n, . . . be

i.i.d. random vectors that have the same distribution as Xn in (2.1) satisfying

that E z11 = 0 and E z211 = 1. If the random vector X̃ is independent of

{X1,n, . . . ,Xn,n} and λ > 0, we have∣∣∣d̃2(X̄n, Sn(λ))− d̃2(µ, Sn(λ))
∣∣∣√

2 tr (Sn(λ)−1Σp)
2

= op(1), p → ∞. (A.2)

The asymptotic bias between d̃2(X̄n, Sn(λ)) and d̃2(µ, Sn(λ)) is formally

given in Lemma A.5, which ensures that we can use the raw location and scatter

estimators to select a cutoff value for outlier identification. Next, instead of

letting X̃ be independent of {X1,n, . . . ,Xn,n}, we consider the modified distance

(1.4) if X̃ ∈ {X1,n, . . . ,Xn,n}.
Let Xk0,n = (X1,n, . . . , Xk−1,n, 0, Xk+1,n, . . . , Xn,n)

⊤
, X̄k0 = (1/n)X⊤

k0,n1n,

Sn,k0 = (1/n)Xk0,nX
⊤
k0,n−X̄k0X̄

⊤
k0 and S0(λ) = Sn,k0+λIp. Here 1n denotes an n-

dimensional vector consisting of 1s. The asymptotic bias between d2k(X̄n, Sn(λ))

and d2k(X̄k0, S0(λ)) is given in the following lemma.

Lemma A.6. Assume that Conditions A1–A4 hold. Let X1,n, . . . ,Xn,n be i.i.d.

random vectors that have the same distribution as Xn in (2.1) satisfying that

E z11 = 0, E z211 = 1 and E z411 < ∞. For any Xk,n ∈ {X1,n, . . . ,Xn,n} and λ > 0,

the following three arguments hold:∣∣d2k (X̄n, Sn(λ)
)
− d2k

(
X̄k0, S0(λ)

)∣∣√
2 tr (S0(λ)−1Σp)

2
= op(1), (A.3)

tr
(
S0(λ)

−1Σp

)2 − tr
(
Sn(λ)

−1Σp

)2
= Op(1), (A.4)

tr
(
S0(λ)

−1Σp

)
− tr

(
Sn(λ)

−1Σp

)
= Op(1), p → ∞. (A.5)

Although (A.1) presupposes that the estimate of µ and Sn(λ) are a sam-

ple without outliers, it is also expected to be roughly valid for the distance

d2k(µ̂RICD, Σ̂RICD), where µ̂RICD and Σ̂RICD are reliable approximations to those

obtained from a clean sample. This lemma, in conjunction with (A.1) and (A.2),

suggests that we could use normal distributions to construct a threshold rule.
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Note that both tr(Sn(λ)
−1Σp) and tr(Sn(λ)

−1Σp)
2 in (A.1) involve the

unknown covariance matrix Σp. Thus, Σp needs to be estimated in order to

obtain the cutoff value for outlier identification. By the Stieltjes transform of

the empirical spectral measure of a random matrix, we can simply adapt the

estimates Θ(1) (λ, c) and Θ(2) (λ, c) from Ha et al. (2021).

The proofs of Theorems 1–2, Lemmas A.4–A.6, Theorem 3, and Proposition

1 are given below. For simplicity, we suppress the subscripts of Σp, Sn, Sn(λ)

and X̄n, and suppress the second subscript n in the subscript {ℓ, n} if there is no

confusion in the context.

Proof of Theorem 1. First we prove that εn (µ̂RICD,X ) ≤ (n − h + 1)/n. If

we replace (n− h+ 1) observations of the original data set X , then the optimal

subset H̃RICD of X̃ would contain at least one outlier, but the least square method

breaks down even with one single outlier. Denote µ̃RICD = x̄H̃RICD
, it then follows

that ∥µ̃RICD∥F is not bounded.

On the other hand, to show εn (µ̂RICD,X ) ≥ (n − h + 1)/n, we prove that

there exists a value M , which only depends on X and λ, such that for every X̃
obtained by replacing at most (n− h) observations in X , the Frobenius norm of

the RICD location estimate µ̃RICD based on X̃ is still bounded by M from above.

If we take any data set X̃ by replacing (n− h) observations in X , there still

exists a subset H1 ∈ H containing indices only corresponding to the data points

of the original dataset X . The determinant of SH1
(λ) is

det [SH1
(λ)] =

p∏
k=1

ηk ≤
(
1

p

p∑
k=1

ηk

)p

=

[
1

hp

p∑
k=1

∑
j∈H1

{xjk − µ̂k (H1)}2 + λ

]p
≤
(
4N2 + λ

)p
,

where (η1, . . . , ηp) are the eigenvalues of the matrix SH1
(λ), µ̂k (H1) denotes the

kth component of x̄H1
, and N is defined as max1≤i≤n,1≤j≤p |xij|.

Let H2 be the optimal subset corresponding to X̃ , then µ̃RICD = x̄H2
. Since

h− (n− h) ≥ 1, the set H2 contains one observation xi0 from X . Thus we have

det [SH2
(λ)] = det[A+B] = det(A) · det

(
Ip +A−1B

)
,

where

A = h−1 (xi0 − x̄H2
) (xi0 − x̄H2

)
⊤
+ 2−1λIp,

and

B = h−1
∑

i∈H2,i̸=i0

(xi − x̄H2
) (xi − x̄H2

)
⊤
+ 2−1λIp.
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It follows that

det [SH2
(λ)] > det(A)

= 2−pλp det

[
Ip +

2

hλ
(xi0 − x̄H2

) (xi0 − x̄H2
)
⊤
]

= 2−pλp +
1

h
21−pλp−1 (xi0 − x̄H2

)
⊤
(xi0 − x̄H2

) .

Let

M = p1/2
[{[(

4N2 + λ
)p − 2−pλp

]
2p−1λ1−ph

}1/2
+N

]
.

If ∥µ̃RICD∥F > M , then there exists j0 such that |µ̂j0 (H2)| > M/p1/2. Thus,

det [SH2
(λ)] > 2−pλp +

1

h
21−pλp−1 [xi0j0 − µ̂j0 (H2)]

2

≥ 2−pλp +
1

h
21−pλp−1 [|xi0j0 | − |µ̂j0 (H2)|]2

≥ 2−pλp +
1

h
21−pλp−1

[
M

p1/2
−N

]2
=
(
4N2 + λ

)p
by the definition ofM . This implies det [SH2

(λ)] > det [SH1
(λ)], which contradicts

the definition of µ̂RICD. So, we conclude that ∥µ̃RICD∥F ≤ M . Since Σ̂RICD is

obtained from µ̂RICD based on the same subset HRICD, we have εn(Σ̂RICD,X ) =

εn(µ̂RICD,X ), which concludes the proof of Theorem 1.

Proof of Theorem 2. The conclusions of Theorem 2 can be derived from

Theorem 1 of Boudt et al. (2019), which is briefly described below:

For a given H, Boudt et al. (2019) regularized the sample covariance matrix

SH as KH = ρT + (1 − ρ)SH , where 0 < ρ < 1 is a scalar weight coefficient and

T is a predetermined positive-definite target matrix. One can thus compute the

distance d2i (x̄H ,KH) = (xi − x̄H)
⊤
K−1

H (xi − x̄H). If we take T = Ip and ρ =

λ/(1 + λ), we have SH(λ) = (λ+ 1)KH , d
2
i (x̄H , SH(λ)) = (λ+ 1)−1d2i (x̄H ,KH).

Thus, Theorem 1 follows from Theorem 1 of Boudt et al. (2019).

Proof of Lemma A.4. First, let V = Σ1/2S(λ)−1Σ1/2. By Condition A2 and

the definition of S(λ), the matrix V can be decomposed as Q⊤ΛQ, where Q is

an orthogonal matrix and Λ is a diagonal matrix with positive diagonal elements

ζn,1 ≤ ζn,2 ≤ · · · ≤ ζn,p. It is obvious that for any n, the largest eigenvalue of

S(λ)−1 is bounded above by 1/λ. On the other hand, Theorem 3.6 in Bai and

Silverstein (2010) implies that F S(x) tends to the M-P law under Condition A1

(Bai and Silverstein (2010, Eq.(3.1.1))), and hence the largest eigenvalue of S is

bounded away from infinity asymptotically. Therefore, we conclude that {ζn,i}
are bounded away from both zero and infinity asymptotically.
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Next, by the definition of V , we have

d̃2(µ, S(λ)) = Ỹ ⊤ΛỸ =
p∑

i=1

ζn,iỹ
2
i =

p∑
i=1

ζn,iwn,i, (A.6)

where Ỹ = QΣ−1/2TpZ̃ = (ỹ1, . . . , ỹp)
⊤
with X̃ = TpZ̃ + µ (2.1), and wn,i = ỹ2

i .

Since X̃ is independent of S thus independent of Q, by Conditions A2 and A5,

Ewn,i = 1, Ew2
n,i = 3.

Let Wn,i = ζn,i (wn,i − 1), ϑp =
√
2
∑p

i=1 ζ
2
n,i. Denote the σ-field generated

by {ζn,1, . . . , ζn,p} by F . It is easy to see that
√
2pζn,1 ≤ ϑp ≤

√
2pζn,p.

Conditional on F , we have E(Wn,i | F) = 0, E(W 2
n,i | F) = 2ζ2n,i, and

∑p
i=1

E((Wn,i/ϑp)
2 | F) = 1. It follows that

p∑
i=1

E

(∣∣∣∣Wn,i

ϑp

∣∣∣∣2 ; ∣∣∣∣Wn,i

ϑp

∣∣∣∣ > ϵ | F
)

=
1

ϑ2
p

p∑
i=1

E

(
ζ2n,i (wn,i − 1)

2
; |wn,i − 1| > ϵ

ϑp

ζn,i
| F
)

≤ 1

ϑ2
p

p∑
i=1

E

(
ζ2n,p (wn,i − 1)

2
; |wn,i − 1| > ϵ

ϑp

ζn,p
| F
)

≤ p

ϑ2
p

E

(
ζ2n,p (wn,i − 1)

2
; |wn,i − 1| > ϵ

√
2pζn,1
ζn,p

| F
)

≤ 1

2ζ2n,1
E
(
W 2

n,p; |Wn,p| > ϵ
√
2pζn,1 | F

)
p→ 0, as p → ∞.

Here E(x; a | b) denotes the expected value of x restricted to a while conditioned

on b. Then, according to the Lindeberg-Feller central limit theorem, we have

(
∑p

i=1 Wp,i/ϑp) | F
D→ N(0, 1). Base on Lemma A.1 we have

d̃2(µ, S(λ))−
∑p

i=1 ζn,i√
2
∑p

i=1 ζ
2
n,i

D→ N(0, 1).

The proof is complete.

Proof of Lemma A.5. By (A.6), we have d̃2(µ, S(λ)) = Ỹ ⊤ΛỸ , where

Ỹ = (ỹ1, . . . , ỹp)
⊤
. Similarly, for each Xi, i = 1, . . . , n, we can also define

Yi = QΣ−1/2TpZi with Xi = TpZi + µ and Ȳ = n−1
∑n

i=1 Yi, where

Yi = (yi1, . . . , yip)
⊤
. Then∣∣∣d̃2 (X̄, S(λ)
)
− d̃2 (µ, S(λ))

∣∣∣ = ∣∣∣∣(Ỹ − Ȳ
)⊤

Λ
(
Ỹ − Ȳ

)
− Ỹ ⊤ΛỸ

∣∣∣∣
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=
∣∣∣Ȳ ⊤ΛȲ − 2Ỹ ⊤ΛȲ

∣∣∣ ≤ ∣∣Ȳ ⊤ΛȲ
∣∣+ 2

∣∣∣Ỹ ⊤ΛȲ
∣∣∣ .

As discussed in the proof of Lemma A.4, by Conditions A1 and A4 and the fact

that the largest eigenvalue of S(λ)−1 is bounded above by 1/λ, the spectral norm

of Λ, ζn,p, is bounded above, say by ϖ. By Conditions A2 and the definition of

Yi, we have

E yij = 0, E y2
ij = 1.

Similar arguments also hold for ỹj, j = 1, . . . , p. Therefore, we have, for large n

and p,

E
(∣∣Ȳ ⊤ΛȲ

∣∣) ≤ ϖE
(
Ȳ ⊤Ȳ

)
≤ ϖE

 p∑
j=1

(
1

n

n∑
i=1

yij

)2
 =

ϖp

n
< 2cϖ,

and

E
(∣∣∣Ỹ ⊤ΛȲ

∣∣∣) ≤ ϖE
(
Ỹ ⊤Ȳ

)
≤ ϖE

[
p∑

j=1

(
1

n

n∑
i=1

yij ỹj

)]
< 2cϖ,

which concludes the lemma.

Proof of Lemma A.6. Following steps of the truncation, centralization, and

rescaling similar to those in Bai and Silverstein (2004), we may assume that the

random variables {xij} satisfy that

Exij = 0, Ex2
ij = 1, Ex4

ij < ∞, and |xij| ≤ ηn
√
n,

where {ηn} is a deterministic sequence such that ηn ↓ 0 whose convergence rate

can be made arbitrarily slow. Under these assumptions, for any α > 4, we have

E |xij|α = O
((

ηn
√
n
)α−4

)
.

Since

X̄ = X̄k0 +
1

n
Xk,

we have
Sn = Sn,k0 + anXkX

⊤
k − n−1XkX̄

⊤
k0 − n−1X̄k0X

⊤
k

= Sn,k+ − n−1
(
XkX̄

⊤
k0 + X̄k0X

⊤
k

)
,

where Sn,k+ = Sn,k0 + anXkX
⊤
k with an = (n− 1)/n2. For simplicity in writing,

denote Rn = Sn(λ), R0 = S0(λ), and R1 = Sn,k+ + λIp. By the inverse matrix

formula,

R−1
n = R−1

1 +R−1
1

(
n−1Xk, X̄k0

)
∆−1

(
X̄⊤

k0

n−1X⊤
k

)
R−1

1 , (A.7)

where
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R−1
1 = R−1

0 − anR
−1
0 XkX

⊤
k R

−1
0

1 + anX⊤
k R

−1
0 Xk

,

and

∆ = I2 −
(
n−1X̄⊤

k0R
−1
1 Xk X̄⊤

k0R
−1
1 X̄k0

n−2X⊤
k R

−1
1 Xk n−1X⊤

k R
−1
1 X̄k0

)
.

Denote

Υk =R−1
1

(
n−1Xk, X̄k0

)
∆−1

(
X̄⊤

k0

n−1X⊤
k

)
R−1

1 .

We have

Υk =
Υ(

1− n−1X⊤
k R

−1
1 X̄k0

)2 − n−2X⊤
k R

−1
1 XkX̄⊤

k0R
−1
1 X̄k0

, (A.8)

where
Υ = n−1R−1

1 Xk

(
1− n−1X⊤

k R
−1
1 X̄k0

)
X̄⊤

k0R
−1
1

+ n−2R−1
1 X̄k0X

⊤
k R

−1
1 XkX̄

⊤
k0R

−1
1

+ n−2R−1
1 XkX̄

⊤
k0R

−1
1 X̄k0X

⊤
k R

−1
1

+ n−1R−1
1 X̄k0

(
1− n−1X̄⊤

k0R
−1
1 Xk

)
X⊤

k R
−1
1 .

(A.9)

Let βk = 1/(1+ anX
⊤
k R

−1
0 Xk

)
. By applying the identity

R−1
1 = R−1

0 − anβkR
−1
0 XkX

⊤
k R

−1
0 , (A.10)

we obtain that

X⊤
k ΥXk := I + II + III + IV,

where

I = n−1βkX
⊤
k R

−1
0 Xk

(
1− n−1βkX

⊤
k R

−1
0 X̄k0

)
×
(
X̄⊤

k0R
−1
0 Xk − anβkX̄

⊤
k0R

−1
0 XkX

⊤
k R

−1
0 Xk

)
,

II = n−2βk

(
X⊤

k R
−1
0 X̄k0 − anβkX

⊤
k R

−1
0 XkX

⊤
k R

−1
0 X̄k0

)
×X⊤

k R
−1
0 Xk

(
X̄⊤

k0R
−1
0 Xk − anβkX̄

⊤
k0R

−1
0 XkX

⊤
k R

−1
0 Xk

)
,

III = n−2β2
kX

⊤
k R

−1
0 Xk

(
X̄⊤

k0R
−1
0 X̄k0

−anβkX̄
⊤
k0R

−1
0 XkX

⊤
k R

−1
0 X̄k0

)
X⊤

k R
−1
0 Xk,

and
IV = n−1βk

(
X⊤

k R
−1
0 X̄k0 − anβkX

⊤
k R

−1
0 XkX

⊤
k R

−1
0 X̄k0

)
×
(
1− n−1βkX̄

⊤
k0R

−1
0 Xk

)
X⊤

k R
−1
0 Xk.

For the first term I, we have

I = n−1βkX
⊤
k R

−1
0 XkX̄

⊤
k0R

−1
0 Xk

−n−2β2
kX

⊤
k R

−1
0 XkX

⊤
k R

−1
0 X̄k0X̄

⊤
k0R

−1
0 Xk
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−n−1anβ
2
kX

⊤
k R

−1
0 XkX̄

⊤
k0R

−1
0 XkX

⊤
k R

−1
0 Xk

+n−2anβ
3
kX

⊤
k R

−1
0 XkX

⊤
k R

−1
0 X̄k0X̄

⊤
k0R

−1
0 XkX

⊤
k R

−1
0 Xk. (A.11)

Note that βk and ∥Ri∥ for i = n, 0, or 1 are all bounded by some constant. It

is easy to show that the order of the difference between 1/
(
1 +X⊤

k R
−1
0 Xk/n

)
and βk = 1/

(
1 + anX

⊤
k R

−1
0 Xk

)
is OL1

(n−1), say ιn = OL1
(n−1), denoting that

E |nιn| is bounded by some constant. Thus, we simplify (A.11) by substituting

βk with 1/
(
1 +X⊤

k R
−1
0 Xk/n

)
. Similarly, we substitute an with 1/n there. By

applying Lemma A.3 and Cauchy-Schwarz inequality, we obtain that

E
∣∣n−1X⊤

k R
−1
0 XkX̄

⊤
k0R

−1
0 Xk

∣∣
≤
√
E
∣∣n−1X⊤

k R
−1
0 Xk

∣∣2 E ∣∣X̄⊤
k0R

−1
0 Xk

∣∣2
= O(1),

E
∣∣n−1X⊤

k R
−1
0 XkX

⊤
k R

−1
0 X̄k0X̄

⊤
k0R

−1
0 Xk

∣∣
≤
√
E
∣∣n−1X⊤

k R
−1
0 Xk

∣∣2 E ∣∣X⊤
k R

−1
0 X̄k0X̄⊤

k0R
−1
0 Xk

∣∣2
≤
√
E
∣∣n−1X⊤

k R
−1
0 Xk

∣∣2√E
∣∣X⊤

k R
−1
0 X̄k0

∣∣4 E ∣∣X̄⊤
k0R

−1
0 Xk

∣∣4
= O(1),

E
∣∣n−2X⊤

k R
−1
0 XkX̄

⊤
k0R

−1
0 XkX

⊤
k R

−1
0 Xk

∣∣
≤
√
E
∣∣n−1X⊤

k R
−1
0 Xk

∣∣2 E ∣∣n−1X̄⊤
k0R

−1
0 XkX⊤

k R
−1
0 Xk

∣∣2
≤
√
E
∣∣n−1X⊤

k R
−1
0 Xk

∣∣2√E
∣∣X̄⊤

k0R
−1
0 Xk

∣∣4 E ∣∣n−1X⊤
k R

−1
0 Xk

∣∣4
= O(1),

and

E
∣∣n−2X⊤

k R
−1
0 XkX

⊤
k R

−1
0 X̄k0X̄

⊤
k0R

−1
0 XkX

⊤
k R

−1
0 Xk

∣∣
≤
√
E
∣∣n−1X⊤

k R
−1
0 XkX⊤

k R
−1
0 X̄k0

∣∣2 E ∣∣n−1X̄⊤
k0R

−1
0 XkX⊤

k R
−1
0 Xk

∣∣2
≤
√
E
∣∣n−1X⊤

k R
−1
0 Xk

∣∣4 E ∣∣X̄⊤
k0R

−1
0 Xk

∣∣4
= O(1),

which imply that I = OL1
(1). The orders of the other three terms, that is, II, III,

and IV, can be derived similarly, from which one can verify that

X⊤
k ΥXk = OL1

(1).

Furthermore, by (4.33) of Ha et al. (2021), the denominator of Υk in (A.8) has
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the order of 1 +OL1
(1), and hence it follows that

X⊤
k ΥkXk = OL1

(1). (A.12)

Similarly, it can be shown that

X⊤
k ΥkX̄k0 = OL1

(1). (A.13)

Returning to the first argument (A.3) of Lemma A.6, we have

d2k
(
X̄, Sn(λ)

)
− d2k

(
X̄k0, S0(λ)

)
= (Xk − X̄)⊤R−1

n (Xk − X̄)− (Xk − X̄k0)
⊤R−1

0 (Xk − X̄k0)

= X⊤
k R

−1
n Xk + (X̄k0 + n−1Xk)

⊤R−1
n (X̄k0 + n−1Xk) + 2X⊤

k R
−1
0 X̄k0

−2X⊤
k R

−1
n (X̄k0 + n−1Xk)−X⊤

k R
−1
0 Xk − X̄⊤

k0R
−1
0 X̄k0,

which, jointly with Lemma A.3, (A.7), (A.8), (A.10), (A.12) and (A.13), implies

that

d2k
(
X̄, Sn(λ)

)
−d2k

(
X̄k0, S0(λ)

)
= −anβkX

⊤
k R

−1
0 XkX

⊤
k R

−1
0 Xk+OL1

(1). (A.14)

By the end of the proof of their Lemma 4.3 on Page 14 of Ha et al. (2021), we

have that for any zi satisfying the conditions of Lemma A.3,

p∑
i=1

E

(
1

n
|zi|2

)v

≤
{
O (n−v+1) if v ≤ 2,

O (η2v−4
n n−1) if v > 2.

By replacing the coefficient 1/n of |zi|2 with n−1/2 in the above inequality, and

taking v = 2, it is obvious that

p∑
i=1

E
(
n−1/2 |zi|2

)2
≤ |O(1)|.

Thus, E(−anβk(X
⊤
k R

−1
0 Xk)

2), the expectation of the first term of (A.14), has

the order of O(1), which concludes the first argument of Lemma A.6.

Next, we consider the third argument of Lemma A.6, that is, (A.5). We have

tr
(
R−1

0 Σ
)
− tr

(
R−1

n Σ
)
= tr

(
R−1

0 −R−1
0 + anβkR

−1
0 XkX

⊤
k R

−1
0 −Υk

)
Σ.

As it has been shown above that

tr
(
anβkR

−1
0 XkX

⊤
k R

−1
0

)
Σ = anβkX

⊤
k R

−1
0 ΣR−1

0 Xk = OL1
(1),

we only need to find the order of tr(ΥkΣ). By the first term of tr(ΥΣ) in (A.9),
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we have

tr
(
n−1R−1

1 Xk

(
1− n−1X⊤

k R
−1
1 X̄k0

)
X̄⊤

k0R
−1
1 Σ

)
= n−1X̄⊤

k0R
−1
1 ΣR−1

1 Xk

(
1− n−1X⊤

k R
−1
1 X̄k0

)
= OL1

(n−1),

and we can also show that the rest terms are also OL1
(n−1). Thus, we obtain

that tr
(
R−1

0 Σ
)
− tr (R−1

n Σ) = OL1
(1).

We now prove the second argument of Lemma A.6, that is, (A.4). By the

fact that

tr
(
R−1

n ΣR−1
n Σ

)
− tr

(
R−1

0 ΣR−1
0 Σ

)
= tr

[
−anβkR

−1
0 ΣR−1

0 XkX
⊤
k R

−1
0 Σ+R−1

0 ΣΥkΣ

−anβkR
−1
0 XkX

⊤
k R

−1
0 ΣR−1

0 Σ+ΥkΣΥkΣ

−anβkR
−1
0 XkX

⊤
k R

−1
0 ΣΥkΣ+ΥkΣR

−1
0 Σ

+a2
nβ

2
kR

−1
0 XkX

⊤
k R

−1
0 ΣR−1

0 XkX
⊤
k R

−1
0 Σ

−anβkΥkΣR
−1
0 XkX

⊤
k R

−1
0 Σ

]
,

it follows that tr (R−1
n ΣR−1

n Σ) − tr
(
R−1

0 ΣR−1
0 Σ

)
= OL1

(1), which completes the

proof of (A.4).

Proof of Theorem 3. In view of Lemma A.2 and Lemmas A.2–A.6, Theorem

3 is a natural extension by applying the Slutsky’s Theorem, as

d2k(X̄, Sn(λ))− tr (Sn(λ)
−1Σ)√

2 tr (Sn(λ)−1Σ)
2

= (C1 + C2 + C3 + C4)× C5,

where

C1 =
d2k
(
X̄, Sn(λ)

)
− d2k

(
X̄k0, S0(λ)

)√
2 tr (S0(λ)−1Σ)

2
, C2 =

d2k
(
X̄k0, S0(λ)

)
− d2k (µ, S0(λ))√

2 tr (S0(λ)−1Σ)
2

,

C3 =
d2k (µ, S0(λ))− tr (S0(λ)

−1Σ)√
2 tr (S0(λ)−1Σ)

2
, C4 =

tr (S0(λ)
−1Σ)− tr (Sn(λ)

−1Σ)√
2 tr (S0(λ)−1Σ)

2
,

C5 =

√
2 tr (S0(λ)−1Σ)

2√
2 tr (Sn(λ)−1Σ)

2
.

Proof of Proposition 1. We first consider the moment generating function,

M(T ) = E
(
eT

⊤X1 | w1 = 1
)
. (A.15)
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Following the discussion about d̃2(µ, S(λ)) in the proof of Lemma A.4, we let

V = Σ1/2S(λ)−1Σ1/2. Assume that V = Q⊤ΛQ, where Q⊤Q = Ip and Λ =

diag (ζ1, . . . , ζp). We have

M(T )

=
1

1− δ
E
{
eT

⊤X1I (w1 = 1)
}

=
1

1− δ

1

(2π)p/2|Σ|1/2∫
{(X1−µ)⊤S(λ)−1(X1−µ)≤aδ}

exp

{
T⊤X1 − (X1 − µ)⊤Σ−1(X1 − µ)

2

}
dX1

=
1

1− δ

1

(2π)p/2
eT

⊤µ+T⊤ΣT 2

∫
{z⊤Λz≤aδ}

exp

{
−
(
z −QΣ1/2T

)⊤ (
z −QΣ1/2T

)
2

}
dz

=
1

1− δ
eT

⊤µ+T⊤ΣT /2FT (aδ) , (A.16)

where z = QΣ−1/2(X1−µ), and FT (a) is the cumulative distribution function of

the non-negative definite quadratic form in non-central normal variables, that is

FT (a) = P
(
Z⊤

v ΛZv ≤ a
)
, Zv ∼ N (v, Ip) , v = QΣ1/2T .

Without loss of generality, we prove the proposition for x11 | w1 = 1, whose

moment generating function is

m1 (t1) = E
(
et1x11 | w1 = 1

)
.

In (A.15), let T = (t1, 0, . . . , 0)
⊤
with p − 1 components of 0s. Then, it follows

from (A.16) that

m1 (t1) =
1

1− δ
et1µ1+σ11t

2
1/2Ft1 (aδ) ,

where

Ft1(aδ) =
1

(2π)p/2

∫
{z⊤Λz≤aδ}

exp

{
− (z − t1v1)

⊤
(z − t1v1)

2

}
dz,

v1 is the first row of QΣ1/2 and v⊤
1 v1 = σ11. Since aδ is the upper δ-quantile of

d2k (µ, S(λ)), by the Berry-Esseen inequality, we have

aδ − tr (S(λ)−1Σ)√
2 tr (S(λ)−1Σ)

2
= zδ + o(1).
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It is straightforward to show that

Ft1 (aδ)|t1=0 =
1

(2π)p/2

∫
{z⊤Λz≤aδ}

exp

(
−z⊤z

2

)
dz = P

{
d2k(µ, S(λ)) ≤ aδ

}
,

∂Ft1 (aδ)

∂t1

∣∣∣∣
t1=0

=
1

(2π)p/2

∫
{z⊤Λz≤aδ}

(
v⊤
1 z − v⊤

1 v1t1
)
exp

{
−(z − t1v1)

⊤
(z − t1v1)

2

}
dz

∣∣∣∣∣
t1=0

=
1

(2π)p/2

∫
{z⊤Λz≤aδ}

(
v⊤
1 z
)
exp

(
−z⊤z

2

)
dz = 0,

and

∂2Ft1 (aδ)

∂t21

∣∣∣∣
t1=0

=
1

(2π)p/2

∫
{z⊤Λz≤aδ}

{(
v⊤
1 z − v⊤

1 v1t1
)2 − v⊤

1 v1

}
exp

{
−(z − t1v1)

⊤
(z − t1v1)

2

}
dz

∣∣∣∣∣
t1=0

=
1

(2π)p/2

∫
{z⊤Λz≤aδ}

(
p∑

j=1

v21jz
2
j

)
exp

(
−z⊤z

2

)
dz − σ11P

(
d2k(µ, S(λ)) ≤ aδ

)
= −σ11P

{
d2k(µ, S(λ)) ≤ aδ

}
+

p∑
j=1

v21j

Φ
aδ − tr (S(λ)−1Σ)√

2 tr (S(λ)−1Σ)
2

− 2ϕ

aδ − tr (S(λ)−1Σ)√
2 tr (S(λ)−1Σ)

2

 ζj√
2 tr (S(λ)−1Σ)

2
+

aδ − tr (S(λ)−1Σ)√
2 tr (S(λ)−1Σ)

2

ζ2j

2 tr (S(λ)−1Σ)
2

+ o(1)

 .
Thus, we have

E (x11 | w1 = 1) =
∂m1 (t1)

∂t1

∣∣∣∣
t1=0

=
1

1− δ

{
µ1Ft1 (aδ)|t1=0 +

∂Ft1 (aδ)

∂t1

∣∣∣∣
t1=0

}
= µ1,

and

Var (x11 | w1 = 1) =
∂2m1 (t1)

∂t21

∣∣∣∣
t1=0

− µ2
1 = σ11 +

1

1− δ

∂2Ft1 (aδ)

∂t21

∣∣∣∣
t1=0

.
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Finally, we have

Var (x11 | w1 = 1) =
1

1− δ
p∑

j=1

v21j

(1− δ)− 2ϕ (zδ)

 ζj√
2 tr (S(λ)−1Σ)

2
+ zδ

ζ2j

2 tr (S(λ)−1Σ)
2

+ o(1)


=

1

1− δ

p∑
j=1

v21j

(1− δ)− 2ϕ (zδ)
ζj√

2 tr (S(λ)−1Σ)
2
+ o(1)


= σ11

1− 2ϕ (zδ)

1− δ

(ΣS(λ)−1Σ)11

σ11

√
2 tr (S(λ)−1Σ)

2
+ o(1)


= σ11τ1,

which completes the proof.
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