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Abstract: In this paper, we propose an outlier detection procedure, based on a
high-breakdown minimum ridge covariance determinant estimator that is especially
useful for the large p/n scenario. The estimator is obtained from the subset of
observations, after excluding potential outliers, by applying the so-called concen-
tration steps. We explore the asymptotic distribution of the modified Mahalanobis
distance related to the proposed estimator under certain moment conditions, and
obtain a theoretical cutoff value for outlier identification. We also improve the
outlier detection power by adding a one-step reweighting procedure. Lastly, we
investigate the performance of the proposed methods using simulations and a real-
data analysis.
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1. Introduction

Data frequently contain one or more atypical observations, known as outliers,
that is, observations that are well separated from the majority of the data, or in
some way deviate from the general pattern of the data (Maronna et al. (2019)).
Outliers cannot be avoided, and may make up between 1% and 10% of the
data in a regular data set, possibly more in specific applications (Hampel et
al.| (2005)). The decreasing cost of collecting data means that modern data sets
can be both large and complex, sometimes with a very high number of variables.
The chance of contamination or imperfections in the data increases, both with the
number of observations and their dimension. Thus, detecting potential outliers
is important, either as a preprocessing step to avoid model misspecification and
biased parameter estimation, or for some specific interest in finding anomalous
observations.

Let {x,...,x,} be a random sample of the p-dimensional random vector X

. T . .
with mean vector p = (1, ..., ftp) and covariance matrix ¥, = (o), - A com-
mon measure of outlyingness for an individual observation ; = (z;1,..., %) " is

the Mahalanobis distance

(1, %) = (@i — )" 5,7 (2 — ) (1.1)

*Corresponding author.


https://doi.org/10.5705/ss.202022.0142

1924 LI, JIN AND WU

The well-known minimum covariance determinant algorithm (Rousseeuw and|
wvan Driessen| (1999))) searches for a subsequence of {1, ...,,} of size h, with
n/2 < h < n, that has a sample covariance matrix with the smallest determinant.
Thus, it obtains reliable estimates of pu and ¥, in . To determine the cutoff
value for outlying points, [Hardin and Rocke| (2005) present a distributional result
of under a Gaussian assumption that is superior to the commonly used
chi-square cutoff. The consistency and asymptotic normality of the minimum
covariance determinant (MCD) estimator (Rousseeuw] (1985))) are shown by [Cator]
and Lopuhaé| (2012). Based on the small-sample correction factors constructed
by [Pison, Van Aelst and Willems| (2002), (Cerioli| (2010) proposes an iterated
reweighted-MCD procedure that performs well for detecting multiple outliers.
However, when p/n increases, conventional outlier detection methods based
on the MCD estimator become infeasible and suffer power loss (Adrover and Yohai|
(2002)); Algallaf et al|(2009)). In fact, the MCD approach is often recommended
when n > 5p (Boudt et al.| (2019))). For outlier detection, |Filzmoser, Maronna and|

(2008) developed a computationally fast procedure by using a principal
component analysis to identify outliers in a transformed space when p/n > 1.

(2015) introduce the following alternative for ([1.1)):
& (p, D) = (xi —p)' D" (i — ), (1.2)

where D, = diag(oi1,...,0,,). By replacing with , they propose
a computationally efficient refined minimum diagonal product algorithm, and
conduct simulation studies for autoregressive correlation and moving average
models. [Li and Jin| (2022)) consider a different alternative for (L.1):

d?(p, Ds) = (x; — p)" D5 (2 — ), (1.3)

where Dy, is the 2x 2 block-diagonal partition of ¥,. As such, they develop a high-
breakdown block-diagonal product estimator. Other outlier detection techniques
for high-dimensional data based on include those of [Yang, Wang and Zi
and Wang et al.| (2021]).

Let &, =n 'Y @, and S, = n~ ' >0 (&, — &) (x; — Z,)". Denote I,
as the p x p identity matrix. Motivated by the regularized Hotelling’s T2 test
statistic used in the high-dimensional mean test (Chen et al. (2011); Ha et al.|

(2021)), we modify (1.1]) as

A2 (p, Su(N) = (i — )" [Sa(N)] 7! (2 — p), (1.4)

where S, (\) = S, + AL,, and A > 0 is a scalar tuning parameter. Here, the
product AI, is the perturbation that we add to the covariance estimator §,,, such
that the matrix S, (\) is positive definite, and hence invertible. Boudt et al.
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(2019) suggest adding a preprocessing step to standardize each x; as
u;, = D;(l (wl — Ux) y

where Dyx is a diagonal matrix in which the jth diagonal element is the @,
estimator (Rousseeuw and Croux (1993))), and vx is a location vector with
elements that consist of the medians of all the variables. Then, they define
the regularized sample covariance matrix by

K =pT + (1 — p)caSy,

where Sy is the sample covariance matrix of U = {uy,...,u,}, T is a prede-
termined positive-definite target matrix, p is a regularization parameter selected
to bound the condition number of K, and ¢, is the consistency factor defined
by (Croux and Haesbroeck (1999). However, there is no distributional result or
reweighting step in method of [Boudt et al. (2019), and it is not easy to obtain
appropriate standardized observations in high-dimensional settings.

Here, we consider outlier detection for the large p/n scenario, where ¢; <
p/n < ¢q, with ¢; and ¢, being some positive constants. By relaxing the Gaussian
assumption, we derive the exact distribution of . We then propose a high-
breakdown minimum ridge covariance determinant estimator. We explore the
asymptotic distribution of the modified Mahalanobis distance related to the
proposed estimator under certain moment conditions, and obtain a theoretical
cutoff value for outlier identification, which is the basis for the proposed outlier
detection procedure. We improve the outlier detection power by adding a one-
step reweighting procedure. Lastly, we use simulation studies and an analysis of
real data to show that the proposed procedure achieves higher detection power
against sparse signals than that of its main competitors.

The remainder of the paper is organized as follows. In Section 2, we give our
model assumptions, introduce the minimum ridge covariance determinant esti-
mator, and present the main results. In Section 3, we examine the performance
of the proposed methods using simulations and a real-data analysis. We conclude
the paper in Section 4. All theoretical proofs are provided in the Appendix.

2. Methods and Properties
2.1. Model assumptions

Let X, be a p,-dimensional random vector admitting the independent
components model
X, =1T,,Z, + pn, (2.1)

where p, = (ul,n,...,,upmn)T is the location vector, T, is a p, X p, full-
rank transformation matrix, and Z, is a p,-dimensional random vector with
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independent and identically distributed (i.i.d.) components. Denote the jth
component of Z, by z;,. For simplicity, we suppress the subscript n in the
above notation if there is no confusion in the context.

Let F*» denote the empirical spectral distribution (ESD) of a matrix 3, (Bai
and Silverstein (2010))), that is,

1 p
Fo (u) = =3 Iy, o0 (),
P =

where \;, for j = 1,...,p, are the eigenvalues of 3,, and I4(-) denotes the
indicator function of the set A.
Our main assumptions are as follows:

Condition Al. p, n — oo such that ¢, £ p/n — ¢ € (0, 00).

Condition A2. ¥, £ TprT is a p X p positive-definite matrix.
Condition A3. F'*» converges to a proper probability measure F as p — oo.

Condition A4. limsup,_, ., ||¥,[| < oo and limsup,_, . [|E, || < oo, where | - ||
denotes the spectral norm.

Condition A5. The first four moments of z; match those of the standard normal
distribution N(0, 1).

Conditions A1-A4 are common in research on the ESD of a high-dimensional
sample covariance matrix; see, for example, (Chen et al. (2011) and |Ha et al.
(2021). The four-moment matching condition in Condition A5 is required to
obtain the limiting distribution of . Condition A5 is most closely related to
the four-moment theorem for random covariance matrices of Tao and Vu| (2012]).
The first and second moment conditions of z; are easy to meet in practice. The
third moment condition is necessary for some of our lemmas, especially Lemma
A.2. The fourth moment is essential for the proof of Lemma A.4, given in the
Appendix. Extending the theoretical results using a relaxed version of Condition
A5 is left to future research.

2.2. The minimum ridge covariance determinant estimate

The classical minimum covariance determinant procedure finds a subset of
observations that have a sample covariance matrix with the smallest determinant
by iteratively computing and sorting the Mahalanobis distances of each obser-
vation. To generalize this procedure to high-dimensional data sets, our method
searches for a subset of h observations that minimizes the determinant of the
ridge sample covariance matrix.

Let X = {@1,...,x,} be a collection of n observations of X,, in (2.1]). Define
H={H C{l,...,n}: |H| = h, h > n/2}, the collection of all subsets of size
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h, where |H| denotes the cardinality of H. We set h > n/2, because potential
outliers account for no more than half of the total observations. For any H € H,
denote &y = |H| ™ Y icn Ti,

Sy =[H|"" Y (@i —@n) (x — 2n)

i€eH

and Sy(\) = Sy + AL, with X € (0,00), a ridge sample covariance matrix in
terms of {x;, ¢ € H}. It is easy to see that Sy(\) for a given A is positive
definite.

Definition 1. The minimum ridge covariance determinant (abbreviated as
RICD) estimate of p, the multivariate location parameter, for a given A > 0,
is defined as

PRICD = EHpyep With Hricp = argg{in det[Sy(A)]. (2.2)

Note that for p > h, the MCD estimate (Rousseeuw| (1985)) becomes ill-
defined, because det[Sy] = 0 for such H. Denote the scatter estimate of ¥, by
SRicD = Stren (A). Note that figicp and Sricp can be shown to be location
invariant and orthogonal equivariant, but not affine equivariant. See (Lopuha&
and Rousseeuw| (1991)) for the definitions of location invariance, orthogonal
equivariance, and affine equivariance of a covariance estimate.

When X is contaminated, there exist one or more x; that are not observations
of X, in . These x; may be arbitrary values, or go to oo as n — oco. Thus,
&, is no longer an appropriate estimate of p, and ||, || may be arbitrarily large,
such that it “breaks down,” where || - || denotes the Frobenius norm. The finite-
sample breakdown point (Maronna et al| (2019)) €, of an estimate 6, of the
parameter 6 is the smallest proportion of observations from X that need to be
replaced by arbitrary values to carry 0., beyond all bounds:

0,00, (2)], = }.

where X = {&,,...,&,} is a data set with at least (n —t) elements in common
with X, that is, |[X N X| > n —t. It is easy to see that €, (Z,, X) = 1/n. For the
finite-sample breakdown point of the proposed estimates, we have the following
theorem.

1<t<n n X

A t
€n(0,, X) = min { : sup

Theorem 1. Suppose that n/2 < h <mn and A\ > 0. Then, we have

. . . [n—h+1
En (HRICD; X) = En(ZRICDv X) = 1min {705} (23)

n
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Theorem 1 shows that the proposed estimates can achieve the highest
breakdown value, that is, 50%, when h = [n/2] + 1, where [a] denotes the
integer part of a. To achieve the best performance in practice, while ensuring
€n (fir1cp, X) and En(ﬁlRICD, X') are as high as possible, we recommend a default
choice of hgeaure = [n/2] + 1.

To find Hpicp defined in , we modify the fast minimum covariance
determinant algorithm (Rousseeuw and van Driessen (1999)) by replacing the
Mahalanobis distance with its high-dimensional counterpart . However,
when n < p + 1, the original algorithm requires a random initial subset Hjy;
containing p 4+ 1 data points sampled from X. To solve this problem, we set the
size of the random initial subset to hini = Adetauts, given that e, (firicp, X) does
not depend on p.

Similarly to Rousseeuw and van Driessen| (1999), we refer to the construction
in the following theorem as a concentration step, consisting of two parts. This
theorem illustrates the function of the second part of the concentration step,
that is, sorting the distances of all x; to the center of the subset obtained in
the first part. By performing this part in the concentration step, we obtain a
more concentrated h-sized subset, with a lower possibility of being contaminated
by atypical points. This guarantees that an iteration process of repeating
concentration steps leads to an optimal H, which, for convenience, is still denoted
as Hgicp-

Theorem 2. Let H be a subset of {1,...,n}, with |H| = h > n/2. If H C
{1,...,n} with |H| = h is such that {d; (Zu,Su(\)) : i € H} = {d},,(Zu, Su(N)),
oy Ay (@, Su(N))}, where dyy(Z5, Su(N) < --- < d7(®w, Su(N)) denote the
order statistics of {d? (Zg, Sg(N)), fori=1,...,n}, then

det [Si(N)] < det [Sg(N)]
with equality if and only if Ty = Tz and Sg(\) = Sz(N).

2.3. Asymptotic properties

The following theorem serves as a theoretical background for constructing a
rule for identifying outliers. We first define additional notation:

) B 1 —2Amy(=A)
@()(A7C7A)_1_c[1—>\m1(—)\)]7 24
O (1., 4) — 1— Ama (=) _AnhGA)—Amx—AL (2.4)

[1—c+cxmi(=N]  [1—c+cxmi(=)N)

where ¢ is a constant, A is a p X p nonnegative-definite matrix, m,(z) is defined as
the Stieltjes transform of the ESD of A, my(z) = tr (A — zI,) "' /p, and my(2) =
tr (A —z2L,)"% /p.
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Algorithm 1. The minimum ridge covariance determinant (RICD) procedure.

Step 1. Randomly sample ¢, initial subsets H in; from {1,...,n}, with |H; ini| = [n/2]+
1, for j =1,...,cs. Apply the concentration step to each initial subset three times,
and obtain c¢g concentrated subsets. Select [ subsets from the above ¢, concentrated
subsets that have the lowest ridge covariance determinants.

Step 2. For each subset in the above [ subsets, continue applying the concentration
step until convergence, and obtain [ final subsets. Select the best subset, with the
minimum ridge covariance determinant as Hricp-

Step 3. Compute firicp and Sricp, and O (X, en, Stnen) and O (X, en, Stren )
with ¢, = p/h. For a given significance level of «, the kth observation is declared an
outlier if

2 (s ¢ (1) (@) 1z
dy, (NRIC&ZRICD) > pO™ (A, ¢hy SHruon) + Za {217@ (AvchaSHRICD)} . (2.5)

Theorem 3. Assume that Conditions A1-A5 hold. Let X ,,..., X, be i.i.d.
random vectors that have the same distribution as X,, in (2.1). Then, for any k
and A > 0, we have

\/13 ((1/p>di(Xm Sﬂ()‘» - oW (/\a Cn, Sn))

D
= N(0,1), asp— oo, 2.6
VIO (X, 5,) O, ey 20

where X, =n 3" Xin, Su(A) = S, + A, with S, = n 7130 (X — X))

= D o
(Xin — X,)", and “ =7 denotes convergence in distribution.

Note that we can suppress the second subscript n in X, ,,,..., X, , if there
is no confusion in the context.

Because the computations of @) (A, ¢,,, S,,) and ©® (X, ¢,,, S,,) do not require
any knowledge of the true covariance matrix ¥, beyond its positive definiteness,
Theorem 3 provides a practical and efficient way for determining the cutoff value
for identifying outliers.

2.4. The minimum ridge covariance determinant procedure

We adapt the procedure of the fast minimum covariance determinant ap-
proach (Rousseeuw and van Driessen| (1999)) to solve the optimization problem
in a high-dimensional setting. We present a procedure to find Hgicp and
the raw cutoff. We first explain what we mean by applying the concentration step
described in Theorem 2 to a subset of {1,...,n}, £ times: apply the concentration
step to this subset, say H(g), and obtain a new subset of {1,...,n}, say H); apply
the concentration step to H(y), and obtain another new subset of {1,...,n}, say
H 5; repeat ¢ — 2 times, and obtain the final subset of {1,...,n}, say H,.

Denote z, as the upper a-quantile of the standard normal distribution. Our
procedure is given above.
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2.5. Refined minimum RICD procedure

A one-step reweighting scheme is often an effective way of increasing the
efficiency of an algorithm (Cerioli (2010)); Ro et al. (2015])). Therefore, we improve
the power of the proposed outlier test, described in Section 2.4, by adding a
further reweighting step. Following Ro et al. (2015), we first assume that the
parameters g and X, are known, and define the weights

W {o if d2 (p, Su(N)) > as, @)

1 otherwise,

where as is the upper d-quantile of the distribution of d; (i, S, (\)). By (A.1)) in
Lemma A.4, given in the Appendix, it follows that

a5 = tr (S, (V) 715,) + 251/2tr (S, (V)1%,)%, (2.8)
We have the following proposition.

Proposition 1. Assume that Conditions A1-A4 hold. Let X4,..., X, be i.i.d.
p-dimensional random vectors from N,(p,3,). Then, E(Xy; | Wy, = 1) = u;, the
jth element of w, and

2¢ (25) (EPSW()\)_lzp)jj
0;;(1—19) \/2 tr (S,(A)~1%,)°

+o(1)| =07,

Var(ij ’szl):U]’j 1-—

(2.9)
where (X,5,(A\)7'%,),, is the jth diagonal element of ¥,S,(N)"'%,, for j =
1,...,p, and ¢ is the standard normal density function.

This proposition reveals that Var (Xj; | W, = 1) is smaller than the true
scatter parameter ;. Therefore, if too many observations are identified as
outliers, we have a biased type-I error. |Cerioli (2010) shows by simulation
that multiplying the raw MCD scatter estimate by a proportionality constant
kmcp(h,n,v) improves the finite-sample performance of its algorithm. Denote
Wrico = {ki,...,kn,,} as the set of indices of the observations x; for which
wy = 1, where w;, = 0 if holds, w, = 1 otherwise, and n, = 22:1 Wy
Following (Cerioli (2010), we refine our estimates as follows:

ll = TWricps S' = kRICD(h7p)SWRICD7 (210)
where kricp(h,p) is an adjustment coefficient that depends on both A and p.

It is difficult to obtain a consistent estimate of 7; in (2.9) in a high-
dimensional setting for j = 1,...,p. Nevertheless, it can be shown that
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Algorithm 2. Refined minimum RICD procedure.

Step 1. Select the significance level a. Set h = [n/2] + 1. Choose cs, for example,
¢s = 100, and [, for example, [ = 10. Apply Algorithm 1. Calculate the distance
d; (ﬂRICD, XA)RICD>, and assign a weight to each observation according to ([2.5]), based

on an appropriately chosen 4, for example, 6 = a/2.
Step 2. Obtain n,, and Wricp, and compute the refined location and scatter estimates

it and S, respectively, using (2.10) and (2.12)), respectively. 3
Step 3. Calculate the refined distance d2(f,S()\)), update ©M(\ ¢,,,S) and

@(2)()\,0%,5') according to (2.4) with ¢,, = p/n, and S\ =85+ Al,. For a
given significance level of o, the kth observation is declared an outlier if

dz (ﬂ, 5‘()\)> > po) ()\, cnw,S) + 24 {2p®(2) ()\, cnw,g) }1/2 . (2.11)

median — ~ |1+ 2¢ (25) tr (S”()‘rlzp)
1<j<p T, p(]. _ 5)\/2 tr (Sn(A)_lzp)Q

{I+o(1)}, p— oo,

where tr(S,(A)7'%,) and tr(S,(A)~'%,)” can be estimated more easily. By
Lemma A.2 in the Appendix, we can set the scaling factor kricp(h,p) in (2.10)
as

2¢ (Z5w) S <)‘7 Ch,) SHRICD)
(1 - 5w)\/2p®(2) ()‘7 Ch, SHRICD) ’
where §,, = 1 — n,,/n is the actual proportion of observations that are effectively

excluded in the reweighting step. Our refined RICD procedure for outlier
detection is summarized in Algorithm 2.

kRICD(hap) =1 + (212)

2.6. Choice of A\

Chen et al.|(2011) suggest using the asymptotic approximation to choose the
degree of regularization in their RHT test statistic (2). Based on the asymptotic
properties of the modified Mahalanobis distance d? (&,,,S,(\)), we propose a
data-driven approach for choosing the degree of regularization A. Specifically,
for each A, we first calculate O (), ¢c,,S,) and ©® (), c,,S,) based on the
observed data X. Then, for a target significance level «, the difference between
d* (Z,,,S,(\)) and its asymptotic approximation is measured by

1/2

Do ()\) = median d3 (£,,, S, ()\)) — p@(l)()\, CnySy) — za{2p@(2) (A, cn, Sn)}
1<k<n
We select )\ as
A=min{\: X €E |D.(\)]| < o},

where = is a prespecified selecting range for A, and g is a small positive value. We
set @ = 0.05, 2 = [0.05,200], and ¢ = 1 in our simulation studies. Note that the



1932 LI, JIN AND WU

optimal \ remains unchanged in the application of Algorithm 2 after it is chosen.

3. Numerical Studies
3.1. Simulations

In this section, we carry out simulation studies to evaluate the performance
of the proposed procedure (refined RICD). We generate the data set X' =
{x1,...,x,} in two scenarios.

Scenario (I).

Here, x,,...,x, are independently distributed observations, where x; is
an observation from an e-contaminated multivariate normal distribution (1 —
€)N, (0,%,) + (1/2)eN, (km;, X,) + (1/2)eN,, (—km;, X,), unless stated otherwise.
Two cases of m; are considered: (i) (dense mean vector case): 7, is the normalized
p-dimensional vector ¢; consisting of p i.i.d. random variables from the uniform
distribution U(0, 1), that is, n; = {;/ ||| »; and (i7) (sparse mean vector case)
7; is the normalized p-dimensional vector ¢; in which [p°!] randomly selected
elements are i.i.d. from U(0, 1), and the others are all zeros, that is, n; = ¢;/ ||| -

We fix the sample size n = 100, set the dimension p as 100, 200, and 400, and
let the contamination ratio € be 0.1 or 0.2. The two settings of the covariance
structure and the magnitude of abnormality « are given below:

Case (a). Autoregressive correlation structure setting. >, = (0.3"770), .
k=38, 9, 10, respectively, for p = 100, 200, 400;

Case (b). Random structure setting. ¥, = Q" DyQ, with D, a diagonal
matrix with diagonal elements d;; eV U(1,5), for 5 =1,...,p, and @ an
orthonormal matrix constructed from the spectral decomposition of W W
(W'W = QTAQ), with W = (wy),, being such that w; U0, 1);

X

k = 12, 14, 16, respectively, for p = 100, 200, 400.
Scenario (IT). Non-Gaussian scenario

Case (c). Let the p-dimensional random vector & = 0.7827+ + 0.6224v, where
~ has ii.d. elements with the common distribution U(—+/3,/3), and v,
independent of ~y, has i.i.d. elements with the common density function

o) V2e V2. if v >0,
V) =
V2eV® /2, if v < 0.

It can be shown that the distribution of &;, the first element of &, satisfies
Condition A5. Denote the distribution of & by F¢. Replace the e-
contaminated multivariate normal distribution in Scenatio (I) with (1 —
€)Fe +(1/2)eN, (kn;, I,) + (1/2)eN, (—km;, I,,); k = 8,9, or 10, respectively,
for p = 100, 200, or 400.
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Table 1. Average type-1 error (%) by the proposed procedure for various p, €, and «.

e=0.1 e=0.2

;i Case P a=001 a=005 a«o=0.1 a=001 a=005 a«o=0.1
(i)  (a) 100 1.74 6.97 13.20 1.21 5.56 11.13
200 1.41 6.59 13.15 1.00 5.28 11.16

400 1.38 6.50 12.16 0.97 5.16 9.77

(b) 100 1.62 6.86 12.89 1.22 5.44 10.75

200 1.38 6.48 12.74 0.97 5.15 10.52

400 1.26 6.05 11.02 0.83 4.50 8.03

(c) 100 1.63 6.06 11.49 1.09 4.84 9.55

200 1.33 6.00 11.73 0.92 4.74 9.81

400 1.31 5.99 10.87 0.90 4.66 8.60

(i)  (a) 100 1.75 7.00 13.17 1.24 5.60 11.16
200 1.42 6.63 13.14 1.02 5.30 11.09

400 1.41 6.52 12.19 1.02 5.15 9.54

(b) 100 1.61 6.85 12.87 1.20 5.41 10.75

200 1.39 6.49 12.71 0.98 5.17 10.50

400 1.27 6.05 10.75 0.87 4.56 7.97

(¢) 100 1.61 6.08 11.52 1.08 4.84 9.56

200 1.35 6.00 11.73 0.92 4.71 9.76

400 1.29 5.99 10.76 0.92 4.65 8.40

We compare the performance of the proposed procedure (RICD) with that
of several existing methods, namely, the refined minimum diagonal product
procedure (RMDP) of Ro et al| (2015), the block diagonal product procedure
(BDP) of Li and Jin| (2022), and the principal component outlier detection
procedure (PCout) of Filzmoser, Maronna and Werner| (2008), for each setting.
We evaluate the outlier identification performance using the type-I error rate, that
is, the proportion of good observations that are incorrectly classified as outliers,
and the detection power, that is, the proportion of contaminated observations
that are correctly flagged. The average type-I error rate & and the detection
power 3 presented in this section are calculated from 500 replications.

The average type-I error rates (%) of the the proposed RICD procedure for
various p and € are displayed in Table 1, where the nominal significance level «
is set to be 0.01, 0.05, or 0.1. The results show that the empirical type-I error
rates are close to the nominal levels in most settings.

The simulation results for the four methods with o« = 0.05, ¢ = 0.1, and 0.2
are summarized in Tables 2-3, showing that (i) the proposed method outperforms
both the RMDP and the BDP procedures in terms of detection power in most
cases, and (ii) the PCout method exhibits similar performance to that of our
method in Case (i) for ¢ = 0.1. However, the former has a conservative type-I
error rate when the contamination ratio increases to 0.2, and suffers from some
power loss in Case (7).
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Table 2. Average type-1 error (%) and detection power (%), where o = 0.05 and € = 0.1.

RICD RMDP BDP PCout

; Case P Q I} a B a B8 a I}
(1) (a) 100 6.97 94.60 6.59 94.22 6.95 91.72 5.33 97.24
200 6.59 9253  6.19 92,69 7.34 90.92 5.01 97.52
400  6.50 90.09 5.86 87.05 794 8582 5.15 97.19
(b) 100 6.86 88.47 6.10 86.72 6.61 8331 5.65 92.91
200 6.48 88.21 6.15 87.11 7.32 84.17 5.09 95.33
400 6.05 83.56 5.85 83.92 842 83.67 4.71 95.73
(c) 100 6.06 9780 6.15 97.24 6.41 95.38 4.61 99.33
200 6.00 96.61 6.12 96.29 7.57 9498 4.15 100.00
400 5.99 93.76 596 93.20 834 91.70 4.38 98.57
(i) (a) 100 7.00 9735 6.33 9280 6.79 95.07 6.86 30.79
200 6.63 95.12 6.22 9048 7.34 9270 7.06 21.11
400  6.52 9242 6.17 83.68 847 84.60 7.62 17.64
(b) 100 6.85 88.28 6.31 81.71 6.80 83.28 7.66 24.76
200 6.49 88.13 6.40 81.72 7.60 83.19 7.20 16.59
400 6.06 84.92 599 7701 870 7898 7.66 14.69
(c) 100 6.08 9766 6.16 95.18 6.59 95.66 6.98 39.96
200 6.00 96.27 6.11 93.11 7.58 93.40 6.63 27.44
400 5.99 94.27 578 86.49 857 8584 7.03 19.46

In Scenario (I), we consider the following radial contamination scheme
(Cerioli| (2010))):

Case (d). Scatter outliers. ' is an observation from (1 — €)N,(0,%,) + €

N,(0,%;)), where ¥, is set as in Case (a), [p°°] random diagonal components
of ¥(;) are 7.5, and the other entries are the same as those of 3J,,.

We fix the significance level a = 0.05 in this case. A comparison of the
results with different contamination ratios are reported in Table 4, which shows
that the proposed method simultaneously maintains the desired type-I error rate
and achieves high detection power. Similarly to the location outlier settings, the
PCout procedure appears to be insensitive to sparse signals. The BDP procedure
does not control the type-I error rate as well as the proposed method does for
p > 200 and € = 0.1.

3.2. Real-data analysis

We illustrate the proposed method on an octane data set consisting of near-
infrared absorbance spectra, with p = 226 wavelengths collected on n = 39 gaso-
line samples. The data set is described in [Esbensen, Midtgaard and Schonkopf
(1996), and is available in the R package rrcov. Because this data set has a
large p/n ratio, we cannot compute the original minimum covariance determinant
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Table 3. Average type-I error (& %) and detection power (3 %), where a = 0.05 and
e=0.2.

RICD RMDP BDP PCout

7 Case P Q@ 8 a B8 a B8 a B
(1) (a) 100 556 93.38 4.89 91.80 5.25 87.92 2.22 98.12
200 5.28 91.42 4.87 89.87 578 86.28 1.97 99.62
400 5.19 88.53 431 84.26 6.17 81.13 1.69 99.85
(b) 100 544 84.88 4.49 8385 481 77.58 2.04 99.42
200 5.15 85.12 4.55 83.43 5.73 7854 1.71 99.96
400 4.50 79.50 4.24 7863 6.15 76.34 1.60 99.95
(c) 100 4.84 96.84 4.67 96.76 531 93.89 1.55 99.99
200 4.74 95.67 4.57 94.84 587 91.59 1.39 100.00
400 4.66 92.22 446 90.84 6.62 87.62 1.26  100.00
(i) (a) 100 5.60 96.28 4.76 90.95 520 9344 5.63 30.88
200 5.30 94.10 4.73 86.91 578 89.30 6.57 19.99
400 5.15 90.64 4.88 7992 7.13 8151 6.91 15.49
(b) 100 541 8548 490 7820 531 79.20 6.24 23.06
200 5.17 85.53 5.06 77.80 6.04 79.57 6.78 16.90
400 4.56 81.06 491 7298 7.28 7480 7.14 14.66
(c) 100 4.84 96.79 4.78 93.63 525 93.96 5.59 35.75
200 471 9492 482 90.21 6.23 90.76  5.53 24.93
400 4.65 93.09 4.55 83.70 6.96 82.62 6.37 19.55

Table 4. Average type-I error (@ %) and detection power (8 %) in Case (d), where
a = 0.05.

RICD RMDP BDP PCout

Case € p a 6 a B a B a B
(d) 0.1 100 6.89 89.00 6.27 86.74 6.70 89.25 7.23 33.86
200 6.55 91.25 6.36 89.23 7.48 91.96 7.08 26.64

400 6.46 94.14 590 9215 814 9460 6.90 25.51

0.2 100 5.62 8730 4.76 8335 521 86.20 5.61 33.02

200 5.28 89.45 487 87.13 597 90.26 5.82  25.67

400 515 93.00 4.30 90.17 6.17 93.12 5.79 23.64

estimate. Furthermore, because the 25th, 26th, 36th, 37th, 38th, and 39th
samples contain added ethanol, they are outliers. We apply the proposed method
to this data set at a significance level of 0.01, and record the distance measures
[d(f1, S(N)) — pOW (N, e,y 9)]/ 1200 (N, €y, S)]H/? ([2-10)). The Q-Q plot of the
distance measures is given in Figure 1, in which the dashed horizontal line
indicates the cutoff value, “good” points are around the black solid line, and
the true outliers are labeled as solid points. This figure clearly demonstrates that
the proposed procedure correctly identifies all six outliers.
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Figure 1. Q-Q plot of the distance measures based on the RICD.

Additional numerical studies are given in the Supplementary Material.

4. Conclusion

We have proposed a new outlier detection procedure based on the ridge
sample covariance matrix. The resulting high-breakdown ridge covariance de-
terminant estimate is well defined for high-dimensional data and contains more
information on the correlations between the variables than the MDP estimate
does (Ro et al. (2015)). We obtain the asymptotic distribution of the modified
Mahalanobis distance by relaxing the commonly used Gaussian assumption.
This novel outlier detection procedure first finds a clean subset by applying
a concentration step, and then identifies outliers with modified distances that
are above the cutoff value. The regularization parameter is selected adaptively
based on the data, thus enhancing the robustness of the proposed method. Using
simulations and a real-data example, we have shown that the proposed method
is robust to the masking and swamping effects of the contaminated data, and
outperforms the existing RMDP, BDP, and PCout methods in certain situations.

Supplementary Material

Supplementary Material available online includes additional simulation re-
sults and a real-data example.
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Appendix

First, we give some lemmas. Then we give the proofs of Theorems 1 and 2,
Lemmas A.4 to A.6, Theorem 3, and Proposition 1.

Lemma A.1. Lemma 4 of Chen et al.| (2011). Given random variables
{Zn,unto 1o fo(Tn,yn) is a real function of z, and y,. If fo | Fa 5 G and
distribution G is independent of F,,, here | F,, denotes conditional on F, and JF,
is the o-field generated by {y1,...,yn}, then we have f, Za.

Lemma A.2. Theorem 2.3 of Ha et al. (2021). Assume that Conditions
A1-A5 hold. Let Xy,,...,X,u, be i.i.d. random vectors that have the same
distribution as X,, in (2.1). For any A > 0, we have

D 1tr S,(ANIE)) —0W (N, ¢n, S)| B0
D P

and
1
];tr (Sn()\)_lZp)2 — 0@ (X cn, S,) 20, asp— oo,

where “ 27 denotes convergence in probability, ©9 i = 1,2, are defined in (2.4).
Lemma A.3. Lemmas 4.2—4.4 of [Ha et al.| (2021). Assume that Condition

Al holds. Let A be a p X p nonrandom symmetric matriz with bounded spectral
norm, and Z = (z;;) a p x n random matriz whose entries are i.i.d., satisfying

Ezy = ()’ Ezfl = 17 Ezill < 00, and ‘2’11| < nn\/ﬁ7

where {n,} is a deterministic sequence with n, | 0 whose convergence rate can be
made arbitrarily slow. Then

v

E|zlAz| <k, E ’:Lz;Azk <k, E|z Azl <k, v=12,...

where z, = (1/n) Z;;k zj, k=1,...,n, z; is the jth column of Z, and k, is a
constant depending on v.

When Xy, € {X1,,...,X,.}, it is difficult to obtain the universality of
the CLT for the proposed estimator directly since X}, is not independent of
the sample covariance S, and hence the ridge covariance S, (). Thus we divide
the proof into two steps. Let Q, = {X1.,..., Xnn,...} denote the complete set
of random vectors generated by model (2.1). At first, Lemma A.4 is derived to
characterize the asymptotic distribution of the modified distance when the
objective X ¢ {X1,.,..., X,.}. Define d*(n, S,(\) = (X —1)7S,(\) (X —n).
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Lemma A.4. Assume that Conditions A1-A5 hold. Let X, ,,...,X,.,... be
i.i.d. random wvectors that have the same distribution as X, in (2.1). If the
random vector X is independent of {X1 n,..., Xnn} and X > 0, we have

&*(p, S (/\))*tr(S AN7'%)

’ = N(0,1), p— o0, (A1)
\/Qtr 2,)°

where & (4, $u(N) = (X — 1) 7S, (\) (X — ).

Lemma A.5. Assume that Conditions A1-A4 hold. Let X ,,...,X,n,... be
i.i.d. random wvectors that have the same distribution as X, in satisfying
that Bz = 0 and E22, = 1. If the random vector X is independent of
{X1ns., Xont and XA > 0, we have

=o0,(1), p— 0. (A.2)

V2t (S.(0)18,)?

The asymptotic bias between d2(X,,S,(\)) and d?(p,S,()\)) is formally
given in Lemma A.5, which ensures that we can use the raw location and scatter
estimators to select a cutoff value for outlier identification. Next, instead of
letting X be independent of {X1n,---, Xun}, we consider the modified distance
[T4) if X € {X10,..., Xnn}

Let Xpon = (Xims s Ximt0 0y Xt - o2 Xonn) s Ko = (1/0) X} 10,
Snko = (1/n) X o, nXkTO " XkOX and So(A) = S, ro+AL,. Here 1, denotes an n-
dimensional vector consisting of 1s. The asymptotic bias between d2(X,,, S,()\))
and d?(Xyo, So(A)) is given in the following lemma.

Lemma A.6. Assume that Conditions A1-A4 hold. Let X, ,, ..., X, , be i.i.d.
random vectors that have the same distribution as X, in satisfying that
Ez1=0,Ez}, =1 andEz}, <oo. For any Xi, € {X1my.-, Xnn} and X > 0,
the following three arguments hold:

|4 (Xn, S0 (V) — di (Xk0750<k))|

= 0,(1), (A.3)

\/2 i1 (So(N)-15,)?
tr (So(A)7'%,)" —t ( N7'%,) = 0,(1), (A.4)
tr (So(\)7'E,) — tr (Su(N)7'E,) = 0,(1), p— oo (A.5)

Although presupposes that the estimate of g and S,(\) are a sam-
ple without outliers, it is also expected to be roughly valid for the distance
d2 (firicp, fJRICD), where figicp and XA)RICD are reliable approximations to those
obtained from a clean sample. This lemma, in conjunction with and ,
suggests that we could use normal distributions to construct a threshold rule.
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Note that both tr(S,(A)~'%,) and tr(S,(A\)~'%,)? in involve the
unknown covariance matrix X,. Thus, X, needs to be estimated in order to
obtain the cutoff value for outlier identification. By the Stieltjes transform of
the empirical spectral measure of a random matrix, we can simply adapt the
estimates O (), ¢) and ©@ (), ¢) from [Ha et al. (2021).

The proofs of Theorems 1-2, Lemmas A.4-A.6, Theorem 3, and Proposition
1 are given below. For simplicity, we suppress the subscripts of ¥,, S,, S,(}\)
and X,,, and suppress the second subscript n in the subscript {£,n} if there is no
confusion in the context.

Proof of Theorem 1. First we prove that ¢, (ftricp, X) < (n —h +1)/n. If
we replace (n — h + 1) observations of the original data set X', then the optimal
subset H. ricp of X would contain at least one outlier, but the least square method
breaks down even with one single outlier. Denote firicp = Z g, , it then follows
that ||ftricpl|» is not bounded.

On the other hand, to show &, (firicp, X) > (n — h + 1)/n, we prove that
there exists a value M, which only depends on X and A, such that for every X
obtained by replacing at most (n — h) observations in X, the Frobenius norm of
the RICD location estimate firicp based on X is still bounded by M from above.

If we take any data set X by replacing (n — h) observations in X', there still
exists a subset H; € H containing indices only corresponding to the data points
of the original dataset X'. The determinant of Sy, () is

det [Si, (N)] = [ e < (1 Zm)

k=1 p k=1
p

= [0S (o — e (H)Y 2

P = jem

< (4N*+N)",

where (71, ...,n,) are the eigenvalues of the matrix Sy, (\), fix (H1) denotes the

N, 1) >

Let H, be the optimal subset corresponding to X, then firicp = €g,. Since
h — (n —h) > 1, the set H, contains one observation x;, from X. Thus we have

det [Sy, (\)] = det[A + B] = det(A) - det (I, + A'B),,

where
A=h""(w — g, (@i, — Tgp,) | + 27 AL,

and
B=ht! Z (iBi—sz)(wi —iiHZ)T+271)\Ip.

i€ Ha ,iio
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It follows that
det [Su,(A)] > det(A)

2
= 27P) P det [Ip + /5y (Tiy — ) (4 — $H2)T]

1
=27P)P + E21*;D)\p*1 (.’L'io — SE'H2)T (CL'iO — 9_3H2) .

Let
M = p1/2 {{ [(4]\72 + )\)P o 2—1))\11] 2p—1)\1_ph}1/2 n N} .

If || iricp || p > M, then there exists jo such that |, (Hs)| > M/p*/?. Thus,
1
det [ Sy, (V)] > 277N + 2 21PN (a5, — g, (H2))”

1
> 27PN 2PN (| — |, (Ho)|)?
1 M 2
—p\p ~o9l-pyp—1| 77
> 27PN+ 21 {pl/z ]
= (4N* + )"

by the definition of M. This implies det [Sg, (A)] > det [Sk, (A)], which contradicts
the definition of firicp. So, we conclude that | firicp||, < M. Since Sricp IS
obtained from firicp based on the same subset Hgricp, we have En(i}RICDu X) =
en(ftricp, X), which concludes the proof of Theorem 1.

Proof of Theorem 2. The conclusions of Theorem 2 can be derived from
Theorem 1 of Boudt et al.| (2019), which is briefly described below:

For a given H, Boudt et al.| (2019) regularized the sample covariance matrix
Sy as Ky = pT' + (1 — p)Sy, where 0 < p < 1 is a scalar weight coefficient and
T is a predetermined positive-definite target matrix. One can thus compute the
distance d2 (Zy, Ky) = (x; — &y)' Kj' (@; — Zy). If we take T = I, and p =
A1+ ), we have Sy(\) = A+ 1)Ky, & (g, Su(N) = A+ 1)7'd? (Zy, Ky).
Thus, Theorem 1 follows from Theorem 1 of Boudt et al. (2019).

Proof of Lemma A.4. First, let V = %Y/25(\)7!%Y2. By Condition A2 and
the definition of S()), the matrix V can be decomposed as Q" AQ, where Q is
an orthogonal matrix and A is a diagonal matrix with positive diagonal elements
Cnt < Guao < -+ < (p- It is obvious that for any n, the largest eigenvalue of
S(A)~* is bounded above by 1/\. On the other hand, Theorem 3.6 in [Bai and
Silverstein| (2010) implies that F¥(z) tends to the M-P law under Condition A1
(Bai and Silverstein| (2010, Eq.(3.1.1))), and hence the largest eigenvalue of S is
bounded away from infinity asymptotically. Therefore, we conclude that {(,,;}
are bounded away from both zero and infinity asymptotically.
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Next, by the definition of V', we have

p p
P (p, SA) =Y TAY = Coilii = Y Cuitnsi, (A.6)
=1 1=1
where Y = QX"V?T,Z = (4, .. .,g]p)T with X = T,Z + p ([2.1), and w,; = 72.
Since X is independent of S thus independent of (), by Conditions A2 and A5,
Ew,; =1, Ew,, = 3.
Let W,,; = Cui (wns — 1), 9, = /237 ¢2,. Denote the o-field generated

n,s

by {Cui1y---yCupt by F. Tt is easy to see that /2p(,1 < 9, < /2pC,.
Conditional on F, we have E(W,.; | F) = 0, E(W?, | F) = 2¢},, and Y7,
E((W,../9,)?* | F) = 1. It follows that
p AN W, .
ZE < 7y = >€|F

p

1 ¢ 2 9
:22E<<72Lz(wnz_ ) ;|wn,i—1|>6p|f>

1917 i=1 Cnl

1 & 9

72 ( (wn; — )2;’wn,i_1‘>6p|f>

191) =1 C’I’L,p

2

Sp2E< ; (wnz_1)2§‘wn,i—1’>6ﬁ€n’1 ‘]—")

U Cop

1

§22 ( np7‘Wnp|>€\/>Cn1|J—")

n,1

20, asp— oo.

Here E(x;a | b) denotes the expected value of z restricted to a while conditioned
on b. Then, according to the Lindeberg-Feller central limit theorem, we have
(3P, W,./9,) | F 5 N(0,1). Base on Lemma A.1 we have

(1, S(N) = 3201 Gni

\/ 2 Zi:l n,s

2 N(0, 1).

The proof is complete.

Proof of Lemma A.5. By ( (A.6), we have d( ,S(\)) = YTAY, where
= (yl,...,yp) . Similarly, for each X;, i = 1,...,n, we can also define
= Q¥V?T,Z; with X, = T,Z; + p and Y = n 'Y Y, where
= (yil,...,yip)—r. Then

i

)CP (X,S(\) — & (p, S(A))) - ‘(Y - Y)T A (if - Y) - YTAY‘
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= [YTAY -2V TAY | < [VTAY| 42|V TAY].

As discussed in the proof of Lemma A.4, by Conditions A1 and A4 and the fact
that the largest eigenvalue of S(A)~' is bounded above by 1/, the spectral norm
of A, ¢, ,, is bounded above, say by w. By Conditions A2 and the definition of
Y;, we have

Ey,; =0, Eyfj = 1.

Similar arguments also hold for y;, 7 = 1,...,p. Therefore, we have, for large n
and p,
P n 2
o e 1 wp
E(Y'AY)<@EXY'Y)<@E > (=D v, | =— <2w,
n
=1
and

E (’?TAY‘) < wE (?TY) < wE

which concludes the lemma.

Proof of Lemma A.6. Following steps of the truncation, centralization, and
rescaling similar to those in |Bai and Silverstein| (2004), we may assume that the
random variables {z;;} satisfy that

Ez; =0, Ea =1, Ez}, <oco, and |zg] <n.vn,

where {7, } is a deterministic sequence such that 7, | 0 whose convergence rate
can be made arbitrarily slow. Under these assumptions, for any o > 4, we have

le' a—4
Bzl = O ((nv/n)"").
Since )
X = X+ — X,
n
we have _ _
Sn = Smko + (lnXkaT - TLileX];rO - nileoXl;r
= Onk+ — n_l (XkXIJZJ =+ Xk()X/;r) s
where S, xy = Spro + @, X X, with a,, = (n — 1)/n?. For simplicity in writing,

denote R, = S, (\), Ry = So(A), and Ry = S, x+ + A,. By the inverse matrix
formula,

_ v T
R;' =R+ R (n1 Xy, Xpo) A ( Xro > R, (A7)

n 1 X,

where
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Rl_l = Rgl — anRaleer];l_—lRal’
14+ a,X, Ry Xy
and - - -
A=T — nle,;%Rl_le XI;E]Rl_leO
2 n X RT'X, n X R'X )
Denote -
Tk :R71 (nile XkO) Ail XI;% Ril.
1 ’ nle];F 1
We have
T
Ti = Tp-1w 2 T p-1 T p-1y ' (A-8)
(1 —n"t X, R; Xko) —n72 X, Ry X X, Ry Xko
where

T — nilRlile (1 — ’I’ZilX]leilxko) X;%R;l
+n 2R X0 X, Ry XX R

L - - (A.9)
+n 2RI X X Ry X X R
+n 'Ry X0 (1 —n ' X0Ry X)) X, Ry
Let 8, = 1/(14 a, X, Ry'X}.). By applying the identity
Ri'=Ry' — a,.BrRy ' X X, Ry, (A.10)

we obtain that
X, YX, =T+ + 1T +1V,

where
I=n"6 X, Ry'Xi (1 —n'8.X, Ry Xio0)
X (X,;FOR(]le — aanX;)RaleXJRJIXk) ,
II=n"2B (X, Ry' Xro — anBe X,y Ry X X\ Ry ' Xo)
x X Ry X, (X0 Ro ' X — anBe X 1o Ry ' X0 X\ Ry ' X)
I = n"?B; X, Ry' X, (X0 Ry ' Xro
—a,Be X Ry ' X X, Ry ' Xwo) X)) Ry X,
and

IV = n"' 8 (X Ry ' Xno — anBe X, Ry ' X0 X, Ry ' Xno)
X (1 — nilﬁkX];BRgl.Xk) X;Rngk
For the first term I, we have
I=n"'6. X, Ry X, X,[,Ry* X,
—n72ﬁ,3X,;nglXkaTRngkOXkTORngk



1944 LI, JIN AND WU

—nilanﬁszTRngkX;)Rg1XkXJR51X;€
+n"2a, B X, Ry X X, Ry* X0 X o Ry ' X X, Ry* X, (A.11)

Note that 8, and ||R;|| for @ = n, 0, or 1 are all bounded by some constant. It
is easy to show that the order of the difference between 1/ (1 + X, R;'X,,/n)
and B, =1/ (1 +a, X, Ry' X}) is Oy, (n71), say ¢, = Oy, (n™'), denoting that
E |nt,| is bounded by some constant. Thus, we simplify by substituting
B, with 1/ (1 + X,] Ry' X./n) . Similarly, we substitute a, with 1/n there. By
applying Lemma A.3 and Cauchy-Schwarz inequality, we obtain that

E|n"' X, Ry X X [ Ry X |

< VB X Ry X E X R X
=0(1),
E }n_lX];rRaleXkTRo_lkuX];rORale|

| 2

< B0 XT Ry X, B X7 Ry X0 X1 Ry ' X, |

< \/E 01 X7 Ry X, [* /B | XT Ry Xl B | X, Ry X,
=0(),
E|n 72X, Ry X X 0 Ry ' X X, Ry " X |

| 4

< \/E In—1 X Ry X, E [n—1 X, Ry X, X, Ry X,

| 2

s \/E [ X R X VE X Ry X[ E [ X Ry X
=0(1),

and

E|n>X,R;' X, X, Ry ' X0 X, Ry ' X X, Ry X

< \/E =1 X Ry X0, X[ Ry X ol B [n X Ry X X, Ry X[

< \E[n X7 Ry X, B X Ry X,
=0(1),

‘ 4

which imply that I = O, (1). The orders of the other three terms, that is, II, III,
and IV, can be derived similarly, from which one can verify that

‘X,;F,I.\‘X}C == OLl(l)

Furthermore, by (4.33) of Ha et al. (2021)), the denominator of Y in (A.8) has
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the order of 1 + Oy, (1), and hence it follows that
X,/ Ve X =0, (1). (A.12)
Similarly, it can be shown that
X, T X = Op,(1). (A.13)
Returning to the first argument of Lemma A.6, we have

di (X, 8, (X)) = di. (X0, So(N))

= (X, — X)'RMX), — X) — (X5 — Xo) "Ry H( X — Xio)

=X R' X+ (Xpo +n 7' X5) " RN (X + 071 X)) +2X, Ry ' Xo
—2X, RN (Xpo + ' X)) — X Ry X — X0 Ryt Xro,

which, jointly with Lemma A.3, (A.7)), (A.8), (A.10)), (A.12) and (A.13]), implies
that

& (X,59,(N)—d2 (Xio, So(N)) = —anBe X Ry ' Xu X Ry X, +0p, (1). (A.14)

By the end of the proof of their Lemma 4.3 on Page 14 of Ha et al. (2021)), we
have that for any z; satisfying the conditions of Lemma A.3,

—v+1 : <
ZE( ‘Zz> < O (n=v*th if v <2
O (my~'n=t) i

n~t) ifv>2.

By replacing the coefficient 1/n of |z]|* with n=/2

taking v = 2, it is obvious that

ZE( 22151 < o).

Thus, E(—a,B,(X,] Ry' X:)?), the expectation of the first term of (A.14)), has
the order of O(1), which concludes the first argument of Lemma A.6.
Next, we consider the third argument of Lemma A.6, that is, (A.5)). We have

in the above inequality, and

tr (Ry'Y) —tr (R,'S) = tr (Ry' — Ry + an Bk Ry ' X X, Ryt — Yi) T
As it has been shown above that
tr (an,BkRaleX,;ngl) Y= anﬁkX,;nglERngk = OL1(1)7

we only need to find the order of tr(Y;X). By the first term of tr(YY) in (A.9),
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we have

tr (n 'R Xy (1—n 7' X, Ry X)) XoRy'Y)
=n ' X ORISR X, (1—n ' X Ry X)
= OLI (n_1)7

and we can also show that the rest terms are also Or,(n™'). Thus, we obtain
that tr (R;'Y) — tr (R,'E) = O, (1).
We now prove the second argument of Lemma A.6, that is, (A.4). By the
fact that
tr (R,'SR,'S) —tr (Ry 'SR, 'S)
=tr [—a,B: Ry 'SRy X0 X Ry 'S + Ry ST, X
—a, B Ry ' X X Ry 'SR 4 T XY, 8
—a, B8Ry ' X0 X Ry ' ST + TSRy 'S
+a2 BRI X X, Ry'SR X X, R'E
~a, 8. Tk SRy X X Ry 'Y
it follows that tr (R, 'SR, 'Y) — tr (Ry 'SRy 'E) = O, (1), which completes the

proof of (A.4).

Proof of Theorem 3. In view of Lemma A.2 and Lemmas A.2-A.6, Theorem
3 is a natural extension by applying the Slutsky’s Theorem, as

A3 (X, 8,(N) — tr (S, (M) "'%)

= (C1+CQ+C3+C4) X C5,
V2t (5,0 18)?

where

B (X, 5(0) — d (X0, S(V)

\/2tr (So(N)~1%)?
_ i (1, S0(N)) — tr (So(A) ') o, = (So(A)'E) —tr (Sn(A)”E)’

J2u s m? V2t (So(n) 1)’

i, (Xx0, S0 (M) — @i (1, So(N))
\/2tr (So(N)-1%)?

Cl ) CQ =

Cs

Proof of Proposition 1. We first consider the moment generating function,

M(T)=E (eTTxl | w, = 1) . (A.15)
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Following the discussion about d?(p, S(A)) in the proof of Lemma A.4, we let
V = XY28(\)71EY2 Assume that V = QTAQ, where QTQ = I, and A =
diag (C1,...,(,). We have

M(T)
_ ﬁE {eTTXll(wl = 1)}
1 1

1— 0 (2m)/2 5|1/

T'X, — (X, — ) 21X, —
/ exp{ 1 — (X1 — ) (X, 'u)}Xm
{(X1—) TSN~ (X1 —p)<as} 2
_ 1 ; T pu+T " ST2
16 (2n)e
— Q=T (2 - Q=\ T
/ exp (z-Q ) (2-@Q ).
{27 Az<as} 2
1 T T
=1 6€T wHT T2 00 (ag) (A.16)

where z = QX ~Y2(X, — ), and Fr(a) is the cumulative distribution function of
the non-negative definite quadratic form in non-central normal variables, that is

Fr(a)=P(ZJAZ,<a), Z,~N(v,I,), v=QX'/’T.

Without loss of generality, we prove the proposition for x;; | w; = 1, whose
moment generating function is

mq (tl) =E (etlxll ’ wyp = 1) .

In 1) let T = (t,0,... ,O)T with p — 1 components of 0s. Then, it follows

from (A.16) that
1 2
my (tl) = 6tllul_&_a’lltl/2-F1t1 (CL5) )

1-6

where

1 —(z—tiv) (2~ tv)
F = o /2 d
t1 (aé) (27T)p/2 /{zTAzéaa} P { ? )

v, is the first row of QX'/? and v, v; = 01;. Since a; is the upper d-quantile of
di (pm, S(N)), by the Berry-Esseen inequality, we have

as — tr (S(\)7'Y)
2tr (S(A)-1%)°

= zs + o(1).
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It is straightforward to show that

1 2"z )
B @0 = s o O (557 d= = P fatan 500 < ).
3Ftl (a&)
ot1 |y, —o
—tiv) (2 —t
p/2 / vlT’U1t1) exp {— (= 101) 5 (z 101) } dz
{ZTAz<a5} o

.
= v, z) ex (_zz) dz =0,
(zﬂ)m /{ZTAK%}( 12)exp (==

and

0°F,, (as)
o2

t1=0
1 2
= G /{ e {(vsz — v vity) — 'vlTvl}
zTAz<ags

exp {_ (z — tivy) . (z — tyvy) } iz

t1=0

1

= ey (5755) o0 (57 - up s <

= -0, P {dk- M, (>\) < (15}

+iv% {q) {% —tr(S(A)‘lz)} B w{% —tr (S()\)‘lz)}

2tr (S(A)-1%)° 2tr (S(A)-1%)°

¢ a5 —tr (S()\) ') C72 + o(1)
\/Ztr (SN~ \/Qtr -1y)? 2tr (S(A) %)’
Thus, we have
(97711 (751)
E =1)=
(:Cll | w1 ) oty t1=0
1 O, (as)
=13 {M1Ft1 (a(S)‘tl:O + oty t1=0}
= M1,
and
B B 8 ml (tl) 2 1 82Ft1 (CL(S)
Var (211 |wy = 1) = ot? t1=0 = ot 1-46 ot t1=0
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Finally, we have

1
Var (z1; | wy = 1) = 15

G 2
2tr (S 2tr(S()TIE)
G
2tr (S(A)-1%)°

Dok 4 (1= 8) ~ 26 (20)

= > (=) - 20 (20)

20(z)  (ES()'E),

L=0 , [2tr (S()-1%)?

which completes the proof.

=011

+0o(1)

= 01171,
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