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Abstract: Functional data often possess nonlinear structures, for example, phase

variation, for which linear dimension-reduction techniques can be ineffective. We

study nonlinear dimension reduction for functional data based on the assumption

that the data lie on an unknown manifold contaminated with noise. We generalize

a recently developed manifold learning method designed for high-dimensional data

into our context, and derive asymptotic convergence results, taking noise into

account. The results based on synthetic examples often produce more accurate

geodesic distance estimations than those of the traditional functional Isomap

method. We further develop a clustering strategy based on the manifold learning

outcomes, and demonstrate that our method outperforms others if the data lie on

a curved manifold. Two real-data examples are presented for illustration.
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1. Introduction

Popular methods of dealing with high-/infinite-dimensional data reduce the

dimension of the data, for example, using a principal component analysis or a

linear discriminant analysis. More recently, nonlinear methods such as manifold

learning have been developed to handle complex data patterns, particularly

for high-dimensional data. Well-known methods include Isomap (Tenenbaum,

De Silva and Langford. (2000)), local linear embedding (Roweis and Saul (2000)),

Laplacian eigenmaps (Belkin and Niyogi (2003)), tangent space alignment (Zhang

and Zha (2004)), and vector diffusion maps (Singer and Wu (2012)). These

methods and their variants have been used successfully in many fields, for

example, in imaging data analysis (Pless and Souvenir (2009)) when the pixels

lie in a high-dimensional vector space, but are concentrated on a low-dimensional

manifold.

Functional data are usually collected sequentially over time. Unlike high-

dimensional data, functional data are intrinsically infinite dimensional, and thus

the demand for dimension reduction is more pressing. Classical functional

principal component analysis (FPCA) is a core technique of linear dimension
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reduction in functional data analysis. However, it may need a large number of

components to explain an intrinsically low-dimensional data set (Lin and Yao

(2020)), and the nonlinear structures might still not be explained adequately.

For example, an FPCA often produces “horseshoe”-shape plots of principal

components in the presence of phase variation, which is ubiquitous in functional

data (Chen and Müller (2012)). Phase variation is a major cause of nonlinearity

in functional data. It can be summarized as a common shape feature presented

in different parts of the domain across individuals; for example, see the various

peaks of the Berkeley growth velocity data in Figure 1. The sample mean

curve possesses less significant shape features and the variance is enlarged by

the phase variation. These nonlinear features make an FPCA an ineffective

approach. To “unwrap” this nonlinearity of phase variation, manifold techniques

have been proposed (Kneip and Gasser (1992); Srivastava et al. (2011); Chen and

Müller (2012)). However, few studies assume an unknown manifold structure

for functional data: Chen and Müller (2012) propose nonlinear variants of the

FPCA, and Lin and Yao (2020) examine functional regression. In contrast to

manifold-domain or manifold-valued problems, in which the manifold is known

a priori (e.g., Lila, Aston and Sangalli (2016); Dai and Müller (2018); Lin and

Yao (2019); Dai, Lin and Müller (2020); Lin, Shao and Yao (2020); Zhang and

Saparbayeva (2021)), we focus on manifold learning for functional data with an

unknown manifold.

Apart from nonlinear structures, a notable difficulty in a functional data

analysis is that the data are rarely recorded continuously, but only discretely,

with errors. Therefore, a function does not lie exactly on the manifold, even after

smoothing, for any finite sample. Chen and Müller (2012) propose the penalized

functional Isomap to mitigate this problem. Here, we investigate tangent spaces

and parallel transport in functional manifold learning, and propose functional

parallel transport unfolding (FPTU) to produce more robust geodesic distance

estimates. This idea was proposed in Budninskiy et al. (2019) for an error-free

high-dimensional data setting. We further develop the asymptotic consistency of

the geodesic distance estimation of FPTU by taking noise into account. Using

synthetic examples, we show that FPTU often produces more accurate geodesic

distance estimates than those of a functional Isomap.

As an application of the functional manifold learning procedures, we propose

a new clustering strategy for functional data based on the manifold learning

outcomes. Here, we use the geodesic distance instead of the L2 (Euclidean)

distance to quantify the proximity within data. We show using several classical

synthetic examples that our new strategy outperforms other methods that do

not take the manifold structure into account. We further apply our method to

two real-data examples, namely, Berkeley growth data and yeast gene expression

data, and demonstrate that new insights can be gained based on the proposed

functional manifold learning techniques.
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The remainder of this paper is structured as follows. In Section 2, we present

the model and data, followed by the classical functional Isomap and our proposed

FPTU. Here, we also include guidelines on selecting the tuning parameters.

In Section 3, we establish the asymptotic consistency of the geodesic distance

estimation of FPTU. A new clustering strategy based on the manifold learning

outcomes is introduced in Section 4. Sections 5 and 6 show simulations and

real-data examples, respectively. We conclude the paper in Section 7. Technical

proofs are deferred to the Supplementary Material.

2. Nonlinear Dimension Reduction

2.1. Model and data

Let X be a real-valued second-order random process defined on a compact

interval [0, 1], without loss of generality. Although X naturally belongs to the

ambient space L2([0, 1]), we assume that X lies on a low-dimensional unknown

functional manifold M of intrinsic dimension d, where M is assumed to be an

embedded manifold in L2([0, 1]), with the metric induced from the L2 metric.

More precisely, let Mst be a d-dimensional differentiable manifold in the usual

sense, and let ι : Mst → L2([0, 1]) be an embedding, that is, a diffeomorphism

onto its image. Then, ι(Mst) ≡ M ⊂ L2([0, 1]) is the functional manifold that we

are interested in, and X lies on a manifold such that for all ω in the sample space

Ω, X(ω) ∈ M. Note that M is a d-dimensional functional subspace for which we

have little prior information. This differs from functional data valued in a known

submanifold of a vector space, for example, as in Dai and Müller (2018) and Lin

and Yao (2019). Because the manifold M is, in general, curved, the L2 distance

∥ · ∥L2 is not a proper measure to quantify the proximity of the elements on M.

A more appropriate choice is the geodesic distance dg(·, ·), taking the intrinsic

structure of M into account. Similarly to classical manifold learning, our goal

is to estimate geodesic distances so that we can represent functional data using

low-dimensional coordinates based on these distances.

Let {Xi}ni=1 be an independent and identically distributed (i.i.d.) sample of

X. In practice, functional data are rarely recorded continuously. We often only

observe discrete and noisy data (Ti,j, Yi,j), satisfying the model

Yi,j = Xi(Ti,j) + ϵi,j , i = 1, . . . , n; j = 1, . . . , Ji, (2.1)

where Ti,j ∈ [0, 1] are the random time points of observing Yi,j, and ϵi,j are

i.i.d. mean zero random errors with Var(ϵi,j) = σ2 < ∞. Our first task is to

recover the functions Xi from the discrete data (Ti,j, Yi,j). If the sampling is

not too sparse, that is, infi Ji is sufficiently large, we can estimate Xi using

individual smoothing, for example, by applying a local polynomial estimation

(Fan and Gijbels (1996)) on each individual data {(Ti,1, Yi,1), . . . , (Ti,Ji
, Yi,Ji

)},
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for i = 1, . . . , n. If the sampleing is too sparse, so that individual smoothing

cannot produce reasonable estimates, other techniques (e.g., Yao, Müller and

Wang (2005)) may be applied. Assuming that the sampling is not too sparse,

we use the ridged local linear estimator (Lin and Yao (2020)) to obtain the

estimator X̂i of Xi. Specifically, a standard local linear estimator X̃i(t) = ã0 can

be obtained by minimizing a sum of weighted least squares,

(ã0, ã1) = argmin
a0,a1

Ji∑
j=1

{Yi,j − a0 − a1(Ti,j − t)}2Khi
(Ti,j − t) ,

where Kh(·) = K(·/h)/h, K is a kernel function, and hi > 0 is a bandwidth.

In practical computing, K is often a symmetric density function, and h can

be chosen using any standard procedure, such as cross-validation or plug-

in methods (Fan and Gijbels (1996)). The closed-form solution is given by

X̃i(t) = (T0S2 − T1S1)/(S0S2 − S2
1), where

Sr =
1

Ji

Ji∑
j=1

Khi
(Ti,j − t)

(
Ti,j − t

hi

)r

, Tr =
1

Ji

Ji∑
j=1

Khi
(Ti,j − t)

(
Ti,j − t

hi

)r

Yi,j ,

for r = 0, 1, and 2. To obtain more stable estimates when the denominator is

close to zero, we introduce a ridge parameter λ > 0,

X̂i(t) =
T0S2 − T1S1

S0S2 − S2
1 + λ sign(S0S2 − S2

1)1{|S0S2 − S2
1 | < λ}

, (2.2)

where λ can be set to J−2
i , following Lin and Yao (2020). The X̂i are subject

to estimation errors, and so do not lie exactly on the manifold M, which poses

difficulties from both practical and theoretical aspects.

2.2. Functional Isomap

In the classical high-dimensional data space, if two data points are sufficiently

close, then their Euclidean distance is a good approximation of their geodesic

distance. This is also true for functional data if the Euclidean distance is

replaced with the L2 distance, and M is an embedded manifold in L2([0, 1]),

with the metric induced by the L2 metric. Therefore, we use the L2 distance to

approximate the local geodesic distance. Then, the estimated geodesic between

two far-away functions is defined as the shortest path moving along the line

segments (local geodesics), and the geodesic distance is estimated as the sum of

the L2 distances of the line segments along the path.

Specifically, for each X̂i, its local neighborhood can be defined by an ϵ-ball

or K-nearest neighbors (K-NN). To better control the number of individuals in a

neighborhood, we define the neighborhood Ni of X̂i as the K individuals closest

to X̂i, based on the L2 distance. We then construct the proximity graph G, as
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follows. First, the vertices of G include all data points. Second, two points i and

j are linked if i ∈ Nj and j ∈ Ni, and the edge is weighted by the L2 distance

∥X̂i−X̂j∥L2 = [
∫ 1

0
{X̂i(t)−X̂j(t)}2 dt]1/2. Subsequently, the geodesic path between

any two points can be found by applying Dijkstra’s algorithm on G. The geodesic

path from i to j is an ordered sequence of indices representing the shortest path

from i to j on G, which is a discrete approximation of the true geodesic. The

geodesic distance between i and j is estimated using the length of the geodesic

path. It may happen that G is not connected, owing to a small K in K-NN or

the presence of outliers, in which case, we consider each connecting component

separately. To simplify the presentation, we assume throughout Section 2 that

G is connected. The final step is to apply multi-dimensional scaling (MDS; Cox

and Cox (2008)) on G to obtain low-dimensional coordinates of our data.

The Isomap idea is also adopted in the functional data setting by Chen and

Müller (2012). However, estimation errors from discrete and noisy observations

(Ti,j, Yi,j) may make the resulting geodesic distances unstable. Chen and Müller

(2012) proposed penalizing low-density areas in the search of geodesic paths,

while still using the sum of the L2 distances of the resulting path as the

estimated geodesic distance. However, this does not adjust for estimation errors

in functional data. As an alternative, we propose a procedure that produces

more robust estimations of geodesic distances. Our method can be viewed as the

functional version of the method proposed by Budninskiy et al. (2019).

2.3. Functional parallel transport unfolding

We use G defined in Section 2.2 to obtain the geodesic paths. However,

we estimate the geodesic distance using parallel transport unfolding, instead

of the sum of the L2 distances of the line segments as in Isomap. Parallel

transport provides a way of moving tangent vectors between different tangent

spaces without losing geometric information, such as angles and lengths. Because

the manifold M is unknown, we compute a discrete parallel transport using a

functional version of tangent space alignment, developed by Singer and Wu (2012)

in the high-dimensional data setting.

The standard method for estimating the tangent space at Xi, TiM ≡ TXi
M,

is based on a local (functional) principal component analysis (PCA, Singer and

Wu (2012); Lin and Yao (2020)). Recall that d is the intrinsic dimension of M.

We assume d to be known, for the time being. In Section 2.4, we introduce a

method for estimating d when it is unknown. The tangent space TiM is the

best linear approximation of M locally around Xi. To estimate such a linear

space, we use the space spanned by the first d eigenfunctions of the estimated

local covariance function of X, computed from the neighborhood of X̂i (because

the true Xi is not available). Specifically, let Ni,PCA be the neighborhood of

X̂i containing KPCA-NN of X̂i (see Section 2.4 for suggestions on how to choose
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KPCA). We define the local empirical covariance function around X̂i as

Γ̂i(s, t) =
1

KPCA

∑
j∈Ni,PCA

{X̂j(s)− µ̂i(s)}{X̂j(t)− µ̂i(t)} , for s, t ∈ [0, 1] ,

where µ̂i =
∑

j∈Ni,PCA
X̂j/KPCA.

Remark 1. In the neighborhood of X̂i, the data are centered using µ̂i instead

of X̂i. We found that this slightly improves the numerical performance of our

estimator, possibly because µ̂i averages out the estimation errors of functional

data. It is not difficult to show that the two choices have the same asymptotic

properties.

The first d eigenfunctions corresponding to the largest d eigenvalues of Γ̂i

are denoted by Φ̂i = (ϕ̂i1, . . . , ϕ̂id), and we define the estimated tangent space

as T̂iM = span{ϕ̂i1, . . . , ϕ̂id}. The next step is to construct parallel transport

between the tangent spaces. Suppose X̂i ∈ Nj, and we aim to parallel transport

vectors from T̂iM to T̂jM. If T̂iM and T̂jM were the same space, then Φ̂i

and Φ̂j would differ only by an orthogonal transformation; that is, there exists

an orthogonal matrix Rj,i ∈ O(d) such that Φ̂i = Φ̂jRj,i, where O(d) denotes

the group of d × d orthogonal matrices. However, T̂iM and T̂jM are typically

different. Following Singer andWu (2012), we define R̂j,i as the orthogonal matrix

that minimizes the Frobenius norm (also called the Hilbert–Schmidt norm in

functional analysis) of Φ̂i − Φ̂jR, for R ∈ O(d),

R̂j,i = argmin
R∈O(d)

∥Φ̂i − Φ̂jR∥2F = argmin
R∈O(d)

d∑
k=1

∫ 1

0

{
ϕ̂ik(t)−

d∑
s=1

rs,kϕ̂js(t)

}2

dt , (2.3)

where rs,k denotes the (s, k)th entry of R. There is a closed-form solution for

R̂j,i, as indicated by the following result.

Proposition 1. Let [Φ̂T
i , Φ̂j] be a d× d matrix with the (k, s)th entry ⟨ϕ̂ik, ϕ̂js⟩,

where ⟨·, ·⟩ denotes the inner product of L2[0, 1]. Let UΣV T be the singular value

decomposition of [Φ̂T
i , Φ̂j], and then we have

R̂j,i = V UT . (2.4)

The proof is given in Supplement A of the Supplementary Material, and it

can be shown that R̂j,i provides an approximation of the parallel transport from

T̂iM to T̂jM. That is, for a vector u ∈ T̂iM with coordinates (u1, . . . , ud)
T in

terms of the basis Φ̂i, R̂j,i(u1, . . . , ud)
T gives the approximate coordinates of the

parallel transported u ∈ T̂jM under the basis Φ̂j.

Suppose that (i = i0, i1, . . . , im−1, im = j) is a geodesic path in G. We

iteratively parallel transport each of the edges of the path to the last tangent
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space T̂jM and then aggregate them. This results in an “unfolded geodesic”

(straight line) in T̂jM, the norm of which provides a good approximation of the

geodesic distance. Specifically, we first project V̂ik = X̂ik−1
− X̂ik to the tangent

space T̂ikM, for k = 1, . . . ,m. Let vik = (⟨V̂ik , ϕ̂ik1⟩, . . . , ⟨V̂ik , ϕ̂ikd⟩)T be the

coordinates of the projected V̂ik . Next, they are parallel transported to T̂jM

with coordinates

vik,m =

(
m−1∏
s=k

R̂is+1,is

)
vik , for k = 1, . . . ,m− 1 .

For k = m, vik = vj is already in T̂jM, and thus no parallel transport is needed,

and we define vj,m = vj. Finally, we use the aggregated coordinates vi,m =∑m
k=1 vik,m to denote the unfolded geodesic from X̂i to X̂j in T̂jM. The Euclidean

norm of vi,m, or equivalently, the L2 norm of Φ̂jvi,m, is a robust approximation

of the geodesic distance.

Remark 2. As suggested in Budninskiy et al. (2019), projecting V̂ik to T̂ikM
discards the tail information of V̂ik that is possibly caused by noise. This may

be beneficial in the case of large noise. On the other hand, in the case of small

or no noise, the L2 norm of V̂ik is a sufficiently good approximation of the local

geodesic distance. In this case, we may use the L2 norm of V̂ik directly by rescaling

vik : that is, to replace vik with v′ik = vik∥V̂ik∥L2/∥vik∥, where ∥ · ∥ denotes the

Euclidean norm.

The main advantage of FPTU is that it considers the geodesic curvature.

It tries to preserve the intrinsic angles between vik . Thus, the unrolled polyline

is approximately a straight line in Rd, provided that the geodesic path in G is

sufficiently close to the true geodesic on M. However, in general, owing to finite

sampling and estimation errors in functional data, the geodesic path in G is

twisted, and thus the unrolled polyline is not straight. FPTU uses an aggregated

vector (straight line) that ignores the twists and turns of the path to mitigate

such errors from finite samples. In contrast, functional Isomap does not consider

the intrinsic angles and uses only the L2 lengths of the line segments, which is

sensitive to irregular sampling and estimation errors. In particular, as pointed out

by Budninskiy et al. (2019), Isomap introduces distortions if the sampling domain

is not geodesically convex, whereas PTU is able to handle such a situation.

Because the resulting distance from X̂i to X̂j is, in general, different to the

one from X̂j to X̂i, we define our final estimate of the geodesic distance d̂g(X̂i, X̂j)

as the average of these two. Once we have the geodesic distances between any two

points, we apply the classical MDS to obtain the d-dimensional representations,

denoted by Ẑi, of the data.
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2.4. Selection of tuning parameters

One tuning parameter in our procedure is K, which is used to define the

proximity graph G, and another is KPCA, which is used to estimate tangent

spaces. As suggested in Budninskiy et al. (2019), using KPCA = K often yields

good results, as shown in our numerical examples. In theory, KPCA ≍ n2/(d+2)

is a consistent choice (see Condition (B2) in Section 3). Therefore, we suggest

experimenting with several values around n2/(d+2), for both KPCA and K. The

value of KPCA has a smaller effect on the performance of FPTU, once K is fixed.

In the case of very noisy observations, a larger KPCA may be beneficial.

In practice, the intrinsic dimension d is often unknown, especially for

functional data. Facco et al. (2017) developed an estimator of d using minimal

neighborhood information for high-dimensional data. To adapt their method to

the functional data setting, we first use the standard (global) functional PCA to

reduce the X̂i to the PC scores ξi = (ξi1, . . . , ξiℓ), where ℓ can be chosen using any

standard method, say, explaining 95% of the variance (Ramsay and Silverman

(2005)). This step also mitigates the effect of noise. We then compute the pairwise

Euclidean distances between the ξi. For each individual i, let ρi = ri2/ri1, where

ri1 and ri2 are the shortest and the second shortest distances, respectively, to ξi.

Next, we sort the ρi in ascending order {ρ(1), . . . , ρ(n)}, and define the empirical

distribution function F (ρ(i)) = i/n, for i = 1, . . . , n. Facco et al. (2017) showed

that − log{1− F (ρ)}/ log(ρ) = d, for ρ ∈ [1,∞). Therefore, we estimate d using

the integer closest to argmin
∑

i∈Nδ
[− log{1 − F (ρi)} − d log(ρi)]

2, where δ is a

given value in (0, 1) and Nδ is the index set corresponding to {ρ(1), . . . , ρ([nδ])} ([·]
denotes rounding to integer). That is, the largest n − [nδ] values of ρi are not

used, because, as pointed out by Facco et al. (2017), larger values of ρi are often

caused by irregular sampling and can significantly destabilize the final estimate.

Note that at least the largest ρi should be discarded, because F (ρ(n)) = 1, and

thus − log{1− F (ρ(n))} = ∞. We use δ = 0.9 in our numerical study; a slightly

smaller δ often yields the same estimate of d.

3. Theoretical Properties

To establish the asymptotic consistency of the geodesic distance estimation of

FPTU, we generalize the theory in the finite-dimensional setting to the functional

setting, while taking the estimation errors of functional data into account. We

assume that both Ti,j and ϵi,j in (2.1) are i.i.d. and that ϵi,j is independent of

Ti,j. The subscript is omitted for the notation of a generic variable. We focus on

the case in which the sampling on each individual is sufficiently dense, that is,

Ji ≍ J , for all i and J → ∞. Recall that we use the ridged local linear estimator

in (2.2) to estimate X. Let h be the bandwidth used in (2.2) corresponding to

J . The following conditions are needed to ensure the consistency of X̂:
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Condition A.

(A1) X is twice continuously differentiable, with ∥X ′′∥∞ = Op(1).

(A2) The sampling density fT is twice continuously differentiable, with ∥f ′′
T∥∞ <

∞ and inft∈[0,1] fT (t) > 0.

(A3) Compactly supported on [−1, 1], the kernel K is differentiable with a

bounded derivative, and satisfies
∫ 1

−1
K(u) du = 1,

∫ 1

−1
uK(u) du = 0, and∫ 1

−1
u2K(u) du < ∞.

(A4) J → ∞, h ≍ J−1/5, and λ = O(J−2) as the sample size n → ∞.

The above conditions are mild and similar to those used in the literature on local

polynomial smoothing; see Fan and Gijbels (1996) and Lin and Yao (2020). In

Condition (A4), h ≍ J−1/5 is optimal in terms of the mean squared error, and λ

is chosen to be of order O(J−2) so that the ridge term is asymptotically negligible.

To list the conditions for the manifold structure, first recall that M is an

embedded manifold of L2([0, 1]), with the metric induced by the L2 metric. We

introduce hPCA as the maximum radius of KPCA-NNs used to estimate TiM, so

that hPCA = O{(KPCA/n)
1/d}. Note that KPCA/n approximates the probability

that X falls within the region of KPCA-NN, which is approximately proportional

to hd
PCA. Let Pj,i: TiM → TjM be the parallel transport operator from TiM to

TjM, and let Φ̃i = (ϕ̃i1, . . . , ϕ̃id) be the version of Φ̂i = (ϕ̂i1, . . . , ϕ̂id) based on

the true Xi.

Condition B

(B1) The probability density fX of X on M satisfies 0 < c1 < infx∈M fX(x) <

supx∈M fX(x) < c2 < ∞, for some constants c1 and c2.

(B2) hPCA → 0 and hPCA ≳ max{J−2/5+ϵ, n−1/(d+2)}, for a small but fixed ϵ > 0,

as n → ∞.

(B3) For all i and j, there exists ε > 0 such that the smallest singular value of

[ΦT
i ,Φj] is larger than ε.

(B4) For any geodesic path (i = i0, i1, . . . , im−1, im = j) in G, assume that

the polyline (Xi0 , . . . , Xim) is included in an hd-thickening of the true

geodesic between Xi0 and Xim , where hd is a positive constant such that

hdκs ≪ 1, with κs being the maximum absolute value of the intrinsic

sectional curvature of M.

(B5) For any two points Xk and Xℓ on M such that the geodesic distance

between them is O(hg), for some hg > 0, let ukℓ be the tangent vector in
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TℓM that connects the endpoints of the true geodesic curve between Xk

and Xℓ mapped onto TℓM, and assume

(⟨ukℓ, ϕ̃ℓ1⟩, . . . , ⟨ukℓ, ϕ̃ℓd⟩) = (⟨Xk−Xℓ, ϕ̃ℓ1⟩, . . . , ⟨Xk−Xℓ, ϕ̃ℓd⟩)+Op(hPCA+h3
g) .

Condition (B1) is mild and ensures regular sampling. In Condition (B2),

hPCA ≍ n−1/(d+2) is the standard order used in Singer and Wu (2012) and

Budninskiy et al. (2019) to ensure the consistency of tangent space estimations.

Note that hPCA ≳ J−2/5+ϵ is introduced so that the optimal convergence rate of

E(∥X̂−X∥2L2 |X)1/2, J−2/5, decays faster than hPCA. It is introduced following Lin

and Yao (2020) to simplify the exposition of the theoretical results, but it does

not impose any additional restriction. Condition (B3) ensures the uniqueness of

the orthogonal matrix for the discrete parallel transport. Conditions (B4) and

(B5) are adopted from Budninskiy et al. (2019), and are related to the regularity

of the manifold and sampling.

Theorem 1. Under Conditions (A1)–(A4) and (B1)–(B5):

(I) The discrete parallel transport defined in Section 2.3 converges in probability

to the true parallel transport in the sense that, for any two points Xk and Xℓ

on M such that dg(Xk, Xℓ) = O(hg) with some hg > 0, and for uk ∈ T̂kM
and uk0 ∈ TkM such that ∥uk − uk0∥L2 = O(hPCA), we have

R̂ℓ,k(⟨uk, ϕ̂k1⟩, . . . , ⟨uk, ϕ̂kd⟩)T

= (⟨Pℓ,k(uk0), ϕ̃ℓ1⟩, . . . , ⟨Pℓ,k(uk0), ϕ̃ℓd⟩)T +Op(hPCA + h3
g) , (3.1)

after an orthogonal transformation is applied to (ϕ̃k1, . . . , ϕ̃kd), that is, (ϕ̃k1,

. . . , ϕ̃kd)R0 for R0 ∈ O(d), if necessary.

(II) The geodesic distance d̂g estimated by FPTU approximates the true geodesic

distance dg on M in the sense that, for any geodesic path (i = i0, i1, . . . ,

im−1, im = j) in G, assuming that dg(Xis−1
, Xis) = O(hg) for all s =

1, . . . ,m with some hg > 0, we have

d̂g(X̂i, X̂j) = dg(Xi, Xj) +Op{m2(hPCA + h3
g + hgh

2
dκs)} . (3.2)

Theorem 1 includes two parts, and the proofs are given in Supplement B of

the Supplementary Material. The first part shows that for two points that are

sufficiently close, the orthogonal matrix R̂j,i defined in (2.3) approximates the

parallel transport operator Pj,i. The second part establishes the consistency of

the geodesic distance estimation of FPTU. Let {ϕℓ1, . . . , ϕℓd} be an orthonormal

basis of TℓM. On the right-hand side of (3.1), ϕ̃ℓs can be replaced with ϕℓs,

for s = 1, . . . , d; see Supplement B of the Supplementary Material for a proof.

The convergence rates are, in general, slower than those under the error-free
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high-dimensional data setting (Singer and Wu (2012); Budninskiy et al. (2019)),

which depend on whether the points are close to the boundary of M. For points

away from the boundary of M, the convergence rates can be faster. In contrast,

our convergence rates behave as if all the points are near the boundary of M
in the error-free high dimensional case, although we do choose the rate-optimal

bandwidth h ≍ J−1/5 to estimate the functional data X. In the case that M has

no boundary, our convergence rates are strictly slower than those in Budninskiy

et al. (2019). For any two given points Xi and Xj, the number of vertices of the

geodesic path m → ∞ and mhg ≍ dg(Xi, Xj), so mhg does not converge to zero

as n → ∞. Therefore, additional rate requirements on hPCA and hd are needed

for the Op term in (3.2) tending to zero.

Remark 3 (The effects of K and KPCA). Although K and KPCA do not

appear explicitly in Theorem 1, their effects on the asymptotic results are reflected

through hg and hPCA, respectively. Recall that hPCA = O{(KPCA/n)
1/d}, and

that hg and K have the same relationship. This can be seen by noting that hg

is the bound of the geodesic distance of two adjacent points of a geodesic path

in G, whereas G is constructed using K-NN based on the L2 distance, which is

an approximation of the geodesic distance for sufficiently close points. It follows

that hg = O{(K/n)1/d} by the same reasoning for hPCA and KPCA.

4. Clustering

As an application of functional manifold learning, we develop a clustering

strategy based on the manifold learning outcomes. Let G = {1, . . . , g} be a

collection of group labels with a user-specified number of clusters g. The goal of

clustering is to assign each individual to a group in G such that individuals in

the same group are more similar to each other than they are to those in other

groups. Recall from Section 2.2 that we first construct a proximity graph G

based on K-NN neighborhoods. Provided that K is properly chosen, G may

be disconnected, owing to presence of outliers and clusters. Outliers should be

removed prior to the implementation of clustering, which can be achieved by

discarding components that are too small, for example, those containing only

one or two elements. Depending on the practitioner’s preference, the removed

individuals may be assigned to the closest groups based on the L2 distance in the

end. After outliers are removed, each connected component naturally serves as a

first-step cluster. Supposing there are nc connected components of G, we define

the first-step clusters as the connected components. If nc = g, the clustering task

is accomplished; if nc ̸= g, the second step is needed.

If nc > g, we apply hierarchical clustering by successively merging the two

closest connected components of G until the number of clusters reduces to g.

Specifically, let Cj be the index set of a connected component of G, for j =

1, . . . , nc. For all j ̸= j′, we compute the average-linkage distance (ALD), defined
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in Saxena et al. (2017), between Cj and Cj′ ,

ALD(Cj, Cj′) =
1

|Cj| · |Cj′ |
∑
i∈Cj

∑
i′∈Cj′

∥X̂i − X̂i′∥L2 ,

where |{·}| denotes the number of elements in the set {·}. We merge the two

clusters with the smallest ALD, and repeat the above procedure until we have g

clusters.

It is more common to encounter the case of nc < g (nc is often equal to

one, i.e., G is connected). In this case, we perform k-means clustering, with

k = g−nc +1, on the largest component of G using the low-d representations Ẑi

learnt from functional Isomap or FPTU. Specifically, let S = {S1, . . . , Sg−nc+1}
be a partition of the largest component of G. We search for S to minimize

g−nc+1∑
k=1

∑
i∈Sk

∥Ẑi − Z̄k∥2 , (4.1)

where Z̄k =
∑

i∈Sk
Ẑi/|Sk|. The resulting clusters, together with other connected

components of G, form our final clustering result. If some outliers have been

removed, but still need to be clustered, we can simply assign them individually

to the groups that include the individuals closest (based on the L2 distance) to

the removed ones.

When G is connected, that is, nc = 1, our procedure is simply the standard

g-means clustering applied on Ẑi. Because the Euclidean distances between the

Ẑi approximate the geodesic distances of our functional data Xi, the rationale

of our procedure is the same as that of g-means clustering, but with the

Euclidean distance replaced with the geodesic distance. Our method is expected

to outperform classical linear methods if the data indeed lie on a curved manifold.

5. Simulations

We compare the numerical performance of the geodesic distance estimation

of functional Isomap (FIsomap, see Section 2.2) and the FPTU developed in

Section 2.3. We also consider a method that first performs the global functional

PCA, and then implements the PTU proposed by Budninskiy et al. (2019) on

the principal scores. We choose the number of PCs in the first step to be

max{d95, d}, where d95 is the number of PCs explaining at least 95% of the

variance, and d is the intrinsic dimension used in PTU. We refer to the method

as PTUPCA. As in Remark 2, if we rescale vik , our method is denoted by FPTUr;

otherwise, it is a non-rescaled version, denoted by FPTUnr. Similarly, we use

PTUPCA,r and PTUPCA,nr to denote the rescaled and non-rescaled versions of

PTUPCA, respectively. In addition, we compare the clustering strategy based on

functional manifold learning introduced in Section 4 with existing methods. We



FUNCTIONAL NONLINEAR DIMENSION REDUCTION 1403

fix KPCA = K in our numerical study, because different values of KPCA around

K have little effect on the performance of FPTU. To compute the ridged local

linear estimator in (2.2), we use a standard Gaussian density K and a plug-in

bandwidth h (Ruppert, Sheather and Wand (1995)), unless otherwise specified.

5.1. Geodesic distance estimation

We consider a unit sphere S2 ⊂ R3, which is one of the simplest curved

manifolds. Let θ ∈ [0, π] be the latitude and ϕ ∈ [0, 2π] be the longitude. A point

on S2 can be parametrized by (sin(θ) cos(ϕ), sin(θ) sin(ϕ), cos(θ))T . Let z1 and z2
be any two points on S2. The geodesic distance between z1 and z2 is given by

dg(z1, z2) = 2 arcsin(∥z1−z2∥/2). We consider a model of functional data defined

by an isometric embedding of S2 into L2([0, 1]),

X(t; θ, ϕ) =
√
2{sin(θ) cos(ϕ) sin(2πt) + sin(θ) sin(ϕ) cos(2πt) + cos(θ) sin(4πt)} ,

(5.1)

for t ∈ [0, 1]. The geodesic distance of two functions X1 and X2 is equal to the

geodesic distance of the two corresponding points on S2 induced from R3.

We consider both error-free and error-prone cases. Let (0 = t1, . . . , tJ =

1) be J equi-distant points on [0, 1]. We generate the observations (tj, Yi,j)

following (5.1); that is, for i = 1, . . . , n and j = 1, . . . , J , Yi,j = Xi(tj; θi, ϕi)+ϵi,j,

where θi ∼ U [0, π] and ϕi ∼ U [0, 2π]. In the error-free case, we set J = 200,

ϵi,j = 0, and n = 100, 200, and 500, for which no smoothing is needed, and we

take X̂i(tj) = Yi,j, for i = 1, . . . , n and j = 1, . . . , J . In the error-prone case,

we set (J, n) = (30, 100), (60, 200), and (100, 500), and ϵi,j ∼ N(0, V̂X/R), where

V̂X is the sample variance of X integrated on [0, 1], and R = 3 or 10 is the

signal-to-noise ratio. For each i, the ridged local linear estimator is applied to

(tj, Yi,j) to produce a smooth curve, denoted by X̂i.

We evaluate the performance of the geodesic distance estimation using the

mean relative error: MRE =
∑

(i,j)∈N |d̂g(X̂i, X̂j) − dg(Xi, Xj)|/{dg(Xi, Xj)|N|},
where d̂g denotes any estimator of geodesic distance produced by FPTUr,

FPTUnr, PTUPCA,r, PTUPCA,nr, or FIsomap, and N is the set of all pairs of

connected points for a given sample. For FPTU and PTUPCA, the intrinsic

dimension d = 2 is assumed to be known, or is estimated using the method

introduced in Section 2.4. We explore the combinations of (n,K = KPCA) as

(100, 10), (200, 13), and (500, 18). Slightly different choices of K and KPCA give

similar results, and so are not shown here. For each setting, we apply all methods

to 100 random samples. Table 1 summarizes the means and standard deviations

of the MREs ×102 under different configurations.

As shown in Table 1, both FPTUr and FPTUnr significantly outperform

FIsomap in almost all settings, except when d is estimated and the noise level

is moderate (R = 10). PTUPCA performs worse than FPTU in almost all error-
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Table 1. Mean (standard deviation) of MREs ×102 for geodesic distance estimation with
100 random samples.

Methods FPTUr FPTUnr PTUPCA,r PTUPCA,nr FIsomap

n = 100

Error-free
d known 2.94 (2.59) 3.95 (2.12) 2.96 (2.50) 3.96 (2.04)

14.74 (6.85)
d estimated 3.58 (3.70) 4.61 (3.69) 3.59 (3.64) 4.63 (3.66)

R = 10
d known 14.30 (2.55) 18.20 (1.58) 15.65 (1.80) 18.64 (1.52)

19.91 (6.63)
d estimated 19.45 (4.72) 22.45 (3.72) 22.04 (5.33) 23.26 (3.89)

R = 3
d known 22.49 (3.36) 22.74 (1.97) 20.40 (2.65) 23.19 (2.27)

32.79 (7.25)
d estimated 24.94 (3.43) 26.23 (2.85) 27.11 (3.92) 27.78 (2.95)

n = 200

Error-free
d known 0.92 (0.36) 1.99 (0.22) 0.93 (0.36) 2.00 (0.23)

7.67 (1.99)
d estimated 1.03 (1.14) 2.09 (1.00) 1.04 (1.15) 2.09 (1.01)

R = 10
d known 9.08 (1.21) 11.98 (0.75) 9.96 (0.79) 12.39 (0.78)

13.71 (2.56)
d estimated 12.54 (4.64) 15.23 (4.23) 14.39 (5.66) 15.87 (4.48)

R = 3
d known 16.68 (2.00) 15.88 (1.11) 14.05 (0.96) 16.61 (0.91)

25.49 (3.51)
d estimated 18.84 (2.37) 19.83 (2.44) 21.67 (4.24) 22.27 (3.15)

n = 500

Error-free
d known 0.33 (0.04) 1.18 (0.03) 0.33 (0.04) 1.19 (0.03)

3.35 (0.41)
d estimated 0.33 (0.04) 1.18 (0.03) 0.33 (0.04) 1.19 (0.03)

R = 10
d known 7.50 (0.55) 8.71 (0.38) 7.42 (0.32) 9.12 (0.34)

11.29 (0.98)
d estimated 11.85 (2.86) 13.81 (3.26) 15.42 (5.06) 15.90 (4.29)

R = 3
d known 15.15 (0.87) 12.50 (0.59) 11.17 (0.50) 13.29 (0.52)

22.68 (1.46)
d estimated 15.74 (1.07) 16.71 (1.04) 21.02 (1.12) 21.04 (0.95)

prone settings, except for a few cases where d is known and the noise level is high

(R = 3). These results support the effectiveness of FPTU. Note that PTUPCA

and FPTU perform similarly in the error-free settings. This is as expected,

because the global functional PCA used in PTUPCA captures all information of

the functional data in the error-free settings. Furthermore, FPTUr outperforms

FPTUnr, except in the case of large noise (R = 3) and known d. As discussed in

Remark 2, using a non-rescaled vik (i.e., FPTUnr) mitigates the distortion caused

by large noise. However, for small or no noise, using a rescaled vik (i.e., FPTUr)

yields more accurate results.

5.2. Clustering

We compare the clustering strategy using the functional manifold learning

outcomes introduced in Section 4 with several existing methods: k-means, the

standard k-means clustering applied on full curves with the L2 distance; k-

meansPCA, the standard k-means clustering applied on the PC scores of the curves

obtained using a functional PCA with the Euclidean distance, where the number

of PCs is chosen to explain at least 95% of the variance; and the projection method

developed by Delaigle, Hall and Pham (2019), abbreviated as DHP. For DHP, we

use the code from https://researchers.ms.unimelb.edu.au/~aurored/ with

ρ = 0.2, the Haar basis functions, and the number of basis functions equal to four.

A larger number of basis functions does not significantly improve the performance

for our examples, but does increase the computation cost.

We cluster individuals into two groups (the ground truth). Let (0 = t1, . . . , tJ

https://researchers.ms.unimelb.edu.au/~aurored/
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= 1) be J equi-distant points on [0, 1]. The observed data (tj, Yi,j), for i = 1, . . . , n

and j = 1, . . . , J , are generated from the following models, which are variants of

common examples in the manifold learning literature:

(i) Skewed Swiss roll:

Yi,j = Z1i cos(Z1i) sin(2πtj)+{Z1i sin(Z1i)+Z2i} cos(2πtj)+Z2i sin(4πtj)+ϵi,j ,

where Z1i ∼ U [0, 7] if i is in group one, Z1i ∼ U [7, 10] if i is in group two,

and Z2i ∼ U [0, 4].

(ii) S shape:

Yi,j = sin(Z1i) sin(2πtj)+sign(Z1i){cos(Z1i)−1} cos(2πtj)+Z2i sin(4πtj)+ϵi,j ,

where Z1i ∼ U [−3π/2, 0] if i is in group one, Z1i ∼ U [0, 3π/2] if i is in group

two, and Z2i ∼ U [1, 4].

(iii) Time warping:

Yi,j = |Z2i|µ{γi(tj)}+ ϵi,j , with µ(t) = ϕ0.2,0.08(t) + ϕ0.5,0.1(t) + ϕ0.8,0.13(t) ,

where γi(t) = {exp(Z1it) − 1}/{exp(Z1i) − 1} if Z1i ̸= 0, and γi(t) = t if

Z1i = 0. Here, Z1i ∼ U [−1, 0] if i is in group one, Z1i ∼ U [0, 1] if i is in

group two, Z2i ∼ N(1, 0.1), and ϕµ,σ is the probability density function of

N(µ, σ2).

For all of the aforementioned models, ϵi,j ∼ N(0, V̂X/R) with V̂X , the sample

variance of X integrated on [0, 1], and R = 10 to induce a moderate noise level.

Models (i) and (ii) are embeddings from well-known manifold examples used in

high-dimensional data settings (e.g., Tenenbaum, De Silva and Langford. (2000);

Ma and Fu (2012)) into L2([0, 1]). The skewed Swiss roll in model (i) is slightly

different from the standard one to make it more challenging. Model (iii) is a time

warping model showing the significant phase variation ubiquitous in functional

data, which is a classical type of manifold for functional data (Srivastava et al.

(2011); Chen and Müller (2012)). The intrinsic dimension d of these models is

two. For the functional manifold learning methods, we assume d is either known

or we estimate it using the method in Section 2.4.

We set (J, n) = (60, 300) and (100, 500), and use K = KPCA = 13, 15, and

18 for each case. Half of the individuals are assigned to group one, and the other

half forms group two. Before we apply the clustering methods to the generated

data, we use the ridged local linear estimator to obtain the smooth curves X̂i.

Following the strategy in Section 4, if the proximity graph G is not connected,

the connected components of G with size less than three are discarded as outliers.

The remaining individuals are clustered and the assessment metric is the adjusted
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Rand index (ARI, Hubert and Arabie (1985)). The ARI measures the similarity

of two partitions of the data. A larger ARI compared with the ground truth

means a better clustering result, and the maximum value is one. We replicate

100 samples under each model; the results are summarized in Table 2.

Table 2 shows that the clustering strategies using FPTU and FIsomap

outperform the other methods in all settings, especially under model (i). PTUPCA

performs poorly under model (i), but similarly to FPTU under models (ii) and

(iii). Among FPTUr, FPTUnr, and FIsomap, they are quite competitive overall:

FPTUr and FPTUnr perform slightly better than FIsomap under model (i), but

their performance under model (ii) is affected significantly by the estimation of

d. Unlike FIsomap, FPTUr and FPTUnr use d in the step of geodesic distance

estimation, which could be a drawback if d is estimated poorly.

6. Real-Data Examples

6.1. Berkeley growth data

The Berkeley growth data set (Tuddenham and Snyder (1954)) is a classical

functional data example that has been studied extensively in the literature. A

notable feature of growth data is that different individuals often possess significant

phase variation, which hinders a standard linear analysis (e.g., FPCA) if phase

variation is ignored (Ramsay and Silverman (2005)). Chen and Müller (2012)

formalized phase variation using manifold terminology, and investigated part of

this data set in the setting of functional manifold learning.

The data set includes height measurements for 39 boys and 54 girls from

age 1 to 18. Gender can be used as a cluster benchmark for assessing clustering

methods, that is, the clustering ground truth is known. To show distinct phase

variation, we use the ridged local linear estimator to obtain the first derivatives

of the growth data, that is, the growth velocity curves, as shown in the left

panel of Figure 1. We then apply each clustering method to the growth velocity

curves, and assess the results using the ARI for gender clusters. For the manifold

learning methods, we explore the choices of d = 2, 4, and 6 andK = KPCA = 8, 10,

and 12. With such values of K, the proximity graph G includes a few singleton

components, which are first removed, and then later assigned to the closest groups

based on the L2 distance.

Table 3 shows the clustering results assessed using the ARI for all clustering

methods. We can see that DHP performs best in terms of distinguishing gender

clusters, followed by our manifold learning methods. Different choices of d and K

do not affect the results significantly. The linear methods, namely, k-meansPCA

and k-means, perform worst in this example. To visualize the differences between

the functional manifold learning methods and the standard FPCA, we show the

manifold learning outcomes Ẑi obtained by performing MDS on all the geodesic

distance matrices and the principle scores of the first two principle components
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of the FPCA in Figure 2. We see that a few mis-clustered girls (∗) are clearly

within the boy (◦) cluster produced by the manifold learning methods, and that

all of the mis-clustered individuals are near the boundary of the gender clusters

of the point cloud produced by the FPCA. Of the manifold learning methods,

FIsomap yields the largest scale of the points, and PTUPCA,nr yields the smallest

scale. This is as expected, because the length information contained in the higher

(both global and local) principle components, for example, larger distances caused

by noise, is ignored in the procedure of PTUPCA,nr.

6.2. Yeast gene expression data

The second example focus on gene expression data of a yeast cell (Spellman

et al. (1998)), where we conduct an α factor-based synchronization experiment.

A total of 6178 genes were measured every seven minutes, 18 times, among which

612 genes were identified as being periodic and recorded without missing values.

These periodic genes were classified into five groups: G1, G2, M , M/G1, and S.

However, Zhao, Marron and Wells (2004) suggested that a large number of genes

are not periodic, and Leng and Müller (2006a) and Leng and Müller (2006b)

studied only a subset of 89 genes. To illustrate the clustering methods, we focus

on the groups G1, G2 and M ; the components of the proximity graph G (using

K = 10) with sizes less than six are discarded as outliers. This results in a sample

of size 427, among which 195 individuals in group G1 form one cluster, and 232

individuals in groups G2 and M belong to another cluster. They serve as the

ground truth of the clustering for this example.

Because the raw data include significant noise and the number of measure-

ments is moderate, we use a local linear estimator to smooth the data, with a

manually chosen large bandwidth of five (note that the time domain is [0, 119]).

The resulting curves are depicted in the right panel of Figure 1. We apply the

clustering methods to the smoothed data, and evaluate their performance using

the ARI. We choose d = 4, 6, and 8 and K = KPCA = 12, 14, and 16 for the

manifold learning methods, and summarize the clustering results in Table 4.

Table 4 shows that FPTUr and FPTUnr with d = 4 and K = 12 perform

best, and that k-meansPCA and k-means are also quite competitive. PTUPCA

produces a few disconnected components of the proximity graph when d = 4 and

K = 12 and 14, so its performance is poor. In the cases of d = 6 and 8, PTUPCA

selects d PCs of the global functional PCA in the first step, and thus PTU simply

uses the Euclidean distances of the principal scores in the second step. This is

why PTUPCA produces the same value for ARI for all cases of d = 6 and 8. DHP

does not work well in terms of identifying the predefined clusters for this data set.

FIsomap, which perform similarly to FPTUr and FPTUnr in Sections 5.2 and 6.1,

performs much worse than these two for this data set. This is probably because

the large noise makes the geodesic distance estimates poor under FIsomap. Our

proposed FPTU is more robust to large noise.
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Figure 1. Left: Berkeley growth velocity data, where a solid line (−) denotes boy and a
dotted line (· · · ) denotes girl. Right: Yeast gene expression data, where a solid line (−)
denotes group G1 and a dotted line (· · · ) denotes groups G2 and M .

7. Discussion

In manifold learning for functional data, we adapt the well-known Isomap

into our setting, and develop a functional version of parallel transport unfolding

to produce a more robust geodesic distance estimation. We derive the asymptotic

convergence rates of FPTU, showing that they are slower than their high-

dimensional counterparts, in general, owing to the noise. Using functional

manifold learning outcomes, we propose a graph-based clustering strategy, and

show using several synthetic examples that our proposed strategy outperforms

others if the data indeed lie on a curved manifold. When applied to real-data

examples, the functional manifold learning techniques reveal features different

from those of the standard method, as shown by Figure 2.

Note that our setting is quite different from that of manifold-valued functional

data, where the manifold is usually known a priori. It would be interesting to

extend the idea of manifold learning to the case of functional data valued in an

unknown manifold.

Classical manifold learning techniques have had tremendous success in

pattern recognition, and mitigate the curse of dimensionality for high-dimensional

data. The ideas behind such techniques have been used to identify manifold

representations (Chen and Müller (2012)) and nonparametric regression (Lin and

Yao (2020)) in functional data analysis. Here, we use functional manifold learning

to conduct clustering, based on the hypothesis that the clusters lie on different

parts of an unknown manifold. It is of interest to explore other applications of

functional manifold learning, for example, whether the assumption that the data

lie on an unknown manifold is useful in dealing with sparsity, missingness, and

noise in functional data.
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Figure 2. The manifold learning outcomes Ẑi (the two coordinates from MDS) with
d = 2 and K = 8 using FPTUr (top-left), FPTUnr (top-middle), FIsomap (top-right),
PTUPCA,r (bottom-left), and PTUPCA,nr (bottom-middle). The bottom-right panel
shows the scores of the first two principle components (PC1 and PC2) using FPCA.
Boys are denoted by ◦ and girls by ∗. Mis-clustered individuals are highlighted by △.

Supplementary Material

The online Supplementary Material contains technical proofs. The code to

reproduce the simulations is available at https://github.com/ruoxut/Funct

ionalManifoldLearning.
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