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Abstract: The estimator of a parameter of interest can be affected significantly by

missing values, which introduce bias and cause additional variability. Swiss cheese

nonresponse, also known as nonmonotone nonresponse, is difficult to deal with,

because it occurs when each variable of a survey may contain missing values, but

without any particular pattern. To reduce the effects of nonresponses, missing

values are usually imputed. However, when several variables of a data set need

to be imputed, it can be difficult to preserve the distributions of the variables

and the relationships between them. In this paper, we propose a new donor

imputation method that generalizes the balanced k-nearest neighbor imputation,

and is applicable to any configuration of item nonresponses. This new method

uses random imputations by donors and is constructed to meet the following

requirements. First, all missing values of a unit should be imputed by the same

donor. Next, a unit with missing values should be imputed by a neighboring donor.

Last, the donors are selected to satisfy some balancing constraints that allows us to

decrease the variance of the estimator. The method is divided into two phases. First,

we create a stratification by computing a matrix of imputation probabilities using

linear programming. Then, we select donors using these imputation probabilities

and balanced stratified sampling.

Key words and phrases: Donor imputation, linear programming, nonmonotone

nonresponse, random imputation.

1. Introduction

In large-scale surveys, nonresponses are often inevitable. There are two

types of nonresponse: unit nonresponse, which occurs when all information is

missing for a sampled unit, and item nonresponse, which occurs when some,

but not all information is missing for a sampled unit. Missing values can affect

the estimators of the parameters of interest significantly by introducing bias

and causing additional variability. There are two approaches to reducing such

effects: the imputation model, in which the missing values are imputed, and the

nonresponse model, in which the responding units are reweighted to compensate

for the nonresponding units. Although we focus on donor imputation methods,

we also show (Proposition 2) that the estimators can be presented as a reweighting

method.

*Corresponding author.
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Nonresponses can be univariate or multivariate. In the first case, nonre-

sponses occurs in only one variable, and we can perform imputation using the

other fully observed variables. Although several methods exist for univariate

imputation, fractional hot deck imputations (FDHIs) are popular in practice

(Kim and Fuller (2004); Fuller and Kim (2005)). Recently, Chen and Haziza

(2019) reviewed methods (deterministic and random) for univariate imputation,

including multiple and fractional imputations.

In the multivariate case, nonresponses occur in more than one variable of

the survey. Here, we need to determine whether nonresponses can appear in all

variables, or only in some, and whether or not the nonresponses are monotonic.

Monotone nonresponse occurs when the missing values follows a specific pattern

in the data set, as in longitudinal studies, where there is attrition.

In the first case, the missing values do not appear in all variables of the

data set, and are not monotonic. Several methods have been proposed to deal

with this missing pattern (Murray and Reiter (2014); Sang, Kim and Lee (2022)).

The most general nonresponse pattern is when nonresponses can occur in all

survey variables. Here, the difficulty lies in preserving the distributions of the

variables and the relationships between them when replacing the missing values.

Hasler, Craiu and Rivest (2018) use grapevine copulas to impute monotone

nonresponses, and present an overview of other imputation methods for this

pattern.

This work is devoted to methods that can be applied to the most general

situation, that is, nonmonotone nonresponse, also known as Swiss cheese

nonresponse, which occurs when the survey variables all have missing values, but

without a particular pattern. Most existing imputation methods are iterative,

because of the presence of nonresponses in all variables. van Buuren (2018)

reviewed joint modeling and fully conditional specification (FCS) procedures.

An example of these iterative algorithms is a sequence of regression models

between the variables developed by Raghunathan et al. (2001). However,

Chen (2010) argues that FCS methods may encounter difficulties due to model

incompatibilities. Stekhoven and Bühlmann (2011) developed a widely used and

efficient iterative imputation method based on random forest models.

Donor imputation methods impute the missing values of a unit using values

from other responding units, called donors. The advantage of this method is

that the imputed values are plausible, because they are observed for the donor

units. Moreover, these methods do not require an iterative system. Yang and

Kim (2016) introduced an FHDI for a multivariate nonresponse pattern that

is a donor imputation method implemented in the R package FHDI (Im, Cho and

Kim (2018)). Judkins (1997) and Andridge and Little (2010) present overviews

of donor imputation methods in both univariate and multivariate cases.

Here, we propose a donor imputation method that includes balancing con-

straints for Swiss cheese nonresponses. This idea of using balancing constraints
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for imputing missing values has been considered before. Chauvet, Deville and

Haziza (2011) reduced the imputation variance using balanced sampling. Hasler

and Tillé (2016) developed a balanced k-nearest neighbor imputation to deal

with an univariate nonresponse. This imputation method has the advantage of

satisfying balancing equations on the survey variables. Our method extends the

balanced k-nearest neighbor imputation to include Swiss cheese nonresponses.

This extension is not trivial, because we need to manage missing values for

several variables simultaneously and the model cannot be constructed based on

completely observed variables.

The proposed imputation method meets three essential requirements. First,

in order to preserve the distributions of the variables, it must be a donor

imputation method, which allows us to impute continuous and categorical

variables using realistic values. Futhermore, all the missing values of a unit

should be imputed by the same donor, in order to preserve the relationships

between the variables. Second, a unit with missing values must be imputed

by a similar donor to ensure consistency between imputed and observed values.

Third, we use balancing constraints to reduce the additional variability of the

estimated parameters. Note that the proposed method can also be applied to

simpler nonresponse patterns, such as monotone or univariate nonresponses.

We present the context and the requirements of the method in Section 2,

and the construction of the matrix of imputation probabilities in Section 3. We

discuss selecting the donors and the imputation process in Section 4, and the

FHDI method in Section 5. In Section 6, we examine several properties of the

estimator of the total after imputation using our proposed method. A simulation

study using the R package SwissCheese (Eustache, Vallée and Tillé (2021)) is

presented in Section 7. Section 8 concludes the paper.

2. Motivations

Consider a finite population U of size N with J variables of interest. A

random sample S of size n is selected in U . The first-order inclusion probability

of unit i is πi, the second-order inclusion probability of units i and ℓ is πiℓ,

and πii = πi, for any i, ℓ ∈ U . The vector of J variables of interest, xi =

(xi1, . . . , xij , . . . , xiJ)
⊤, is not necessarily fully observed for all i ∈ S. The vector

of response indicators of a unit i is ri = (ri1, . . . , rij , . . . , riJ)
⊤, where rij is one if

the variable j of unit i is observed, and zero otherwise. Consider Sr ⊂ S, the set of

nr > 0 units for which the J variables are completely observed. That is, rij = 1,

for all j = 1, . . . , J and any i ∈ Sr. Consider Sm = S\Sr, a set of nm = (n− nr)

units, such that some values, but not all, are missing. Throughout this paper,

units in Sr are referred to as respondents, and units in Sm are referred to as

nonrespondents. The nonresponse is nonmonotone, and thus has no particular

pattern. Figure 1 illustrates a data set with Swiss cheese nonresponses. Note that
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Figure 1. Representation of Swiss cheese nonresponse in a data set of n units and J
variables. The first nr rows correspond to the respondents, and the subsequent nm rows
correspond to nonrespondents. The gray rectangles cover the missing values.

the proposed method can also be applied to simpler configurations, for example,

when some variables are not affected by a nonresponse. For example, when

a variable j is fully observed, then rij = 1, for all i ∈ U , and the following

discussion therefore remains valid.

When no vector xi suffers from nonresponse, an unbiased estimator of the

population total of the variable j, Tj =
∑

i∈Uxij , is given by the Horvitz-

Thompson estimator

T̂HT
j =

∑
i∈S

dixij ,

where di = π−1
i is the sampling weight of unit i. If values are missing in the data

set, then they can be imputed, where the imputed value of unit i for a variable

j is denoted by x∗
ij . Then, Tj is estimated by

T̂j =
∑
i∈S

rijdixij +
∑
i∈Sm

(1− rij)dix
∗
ij .

The proposed method ensures coherence and accuracy in the imputed data

set, and is based on the following three requirements:

(i) The imputed values should be selected from the values of the nr fully

observed units: a donor imputation method should be used. Furthermore,

all missing values of a nonrespondent should be imputed using the same

donor.
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(ii) The donors should be as close as possible to the nonrespondents, in terms

of the distance between survey variables.

(iii) If the observed values of the nonrespondents are imputed, the estimator of

the total of each survey variable should remain unchanged.

Requirement (i) ensures that the imputed values are observed, and therefore

realistic, for both categorical and continuous variables. Futhermore, a random

imputation method tends to preserve the distributions of the variables. To

illustrate Requirement (i), consider J = 3 variables and a nonrespondent v ∈ Sm,

such that rv = (1, 0, 0)⊤. The missing values of unit v, xv2 and xv3, are imputed

using observed values selected from the same donor. This means that xv2 and

xv3 are imputed by xu2 and xu3, respectively, of a selected donor u ∈ Sr.

Requirement (i) aims to preserve the relationships between variables.

Requirement (ii) allows the imputation of a nonrespondent using a similar

unit. This ensures coherence between the imputed and the observed values of a

nonrespondent. For instance, if we are recording the sex and height of people,

the missing height of a man should be imputed using the height of another man.

Requirement (ii) also aims to preserve the relationships between variables.

The idea behind Requirement (iii) is that the observed information would

remain unchanged if the units with missing values were completely imputed.

The estimators based on known values would not be affected. This requirement

reduces the variance of the estimators.

To implement a donor imputation method, each fully observed unit receives

a probability of donating its values to each nonrespondent. Next, we select

one donor per nonrespondent, based on these imputation probabilities. The

imputation probabilities satisfying Requirements (i)–(iii) are discussed further

in Section 3. The selection of donors is discussed in Section 4.

3. Imputation Probabilities

3.1. Matrix of imputation probabilities

The first step of a donor imputation method is to assign imputation

probabilities to the units in the set of respondents. Consider ψ = (ψuv), where

(u, v) ∈ Sr × Sm, the matrix of imputation probabilities. The element ψuv is

the probability that respondent u is the donor selected to impute the missing

items of nonrespondent v, with ψuv ∈ [0, 1]. We need to impose some additional

constraints on the imputation probabilities in order to meet Requirements (i)–

(iii).

First, only one donor should be randomly selected for a unit v ∈ Sm; see

Requirement (i). To this end, if the donors are chosen using balanced sampling, as

suggested in Section 4, it is sufficient to ensure that the imputation probabilities
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associated with a nonrespondent sum to one; that is

∑
u∈Sr

ψuv = 1, v ∈ Sm. (3.1)

Requirement (iii) suggests that if the observed values of any v ∈ Sm are

imputed, the estimator of the total of each variable remains equal to the total of

the observed values in Sm. Therefore, the imputation probabilities are chosen so

that if the known values of the units in Sm were imputed by the expectation of

their imputed values, the estimator of the total would correspond to that based

on the observed values. This means that the imputation probabilities must satisfy

∑
v∈Sm

dvrvj
∑
u∈Sr

ψuvxuj =
∑
v∈Sm

dvrvjxvj , j ∈ {1, . . . , J}, (3.2)

see also Figure 2. The right-hand side of Equation (3.2) is the estimated total of

the jth variable based on the observed values in Sm; see Figure 2b. The left-hand

side of Equation (3.2) is the same estimated total, but calculated using imputed

values in Sm. Each observed value xvj , such that v ∈ Sm and rvj = 1, is imputed

by

x∗
vj =

∑
u∈Sr

ψuvxuj .

The hatched region in Figure 2c represents these values. Then, the total of these

imputed values corresponds to the left-hand side of Equation (3.2); see Figure 2c.

Requirement (ii) implies that the donor must be similar to the nonrespondent,

where similarity is defined in terms of the distance between units. Let d(·, ·)
denote a distance function. The closer the distance d(u, v) is to zero, the

more similar the units u and v are. After computing the distance between a

nonrespondent v and all responding units in Sr, those with the smallest distances

to v should have the highest probabilities of being a donor for v.

In other words, for each nonrespondent v ∈ Sm, we want to select the donor

u ∈ Sr that minimizes the product d(u, v)ψuv. For instance, the distance between

a respondent u and a nonrespondent v could be the Euclidean distance where the

variables with missing values do not contribute to the distance, such that

d(u, v) =

{
J∑

j=1

rvj(xuj − xvj)
2

}1/2

.

The variable must be standardized before calculating the distance because of

possible differences in the magnitudes.
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Figure 2. Representation of Swiss cheese nonresponses for the variable j = 1. The gray
rectangles cover the missing values. Figure 2a represents the variable and the sets Sr

and Sm of respondents and nonrespondents, respectively. For unit i with a missing value
at variable one, the corresponding response indicator ri1 is zero. Figure 2b represents
the right-hand side of Equation (3.2) for the variable j = 1. In Figure 2c, the observed
values in Sm are imputed and represented in the hatched region. The left-hand side of
Equation (3.2) is represented, and x∗

v1 is the imputed value for nonrespondent v.

The matrix ψ satisfying equations (3.1) and (3.2) can be found by solving

the linear program




minimize
ψuv∈[0,1]


v∈Sm


u∈Sr

d(u, v)ψuv,

subject to


u∈Sr

ψuv = 1, v ∈ Sm,


v∈Sm

dvrvj


u∈Sr

ψuvxuj =


v∈Sm

dvrvjxvj , j = 1, . . . , J.

(3.3)

A solution to (3.3) can almost always be found when the number of respondents

nr is large, because in this case, the constraints are not too restrictive. If the

sample size n is small, it is preferable to have at least nr/n = 0.5 to satisfy the

balancing constraints and to find similar donors for each nonrespondent.

Consider the bipartite set of Sr and Sm, U∗ = Sr × Sm, of size nr · nm.

The calculation of the final imputation probabilities ψuv can be viewed as a

stratification process. A stratum is assigned to each nonrespondent, such that the

population U∗ is stratified in nm strata U∗
v = {(u, v)|u ∈ Sr}, for v ∈ Sm. Each

stratum corresponds to one nonrespondent and contains the set of nr possible

donors for nonrespondent v. Then, a sample of cells must be selected. Each

element u, or possible donor, of a stratum U∗
v has a probability ψuv of being the
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selected donor for nonrespondent v. Hence, the inclusion probability of the cell

(u, v) is ψuv, for (u, v) ∈ U∗.

After solving (3.3), in most cases, almost all the probabilities ψuv obtained

are equal to either zero or one. This is equivalent to having a stratum of neighbors

consisting of a single respondent. In the next section, we adjust the imputation

probability calculation process to enable us to select the minimum number of

elements in each stratum.

3.2. The number of neighbors k

After solving (3.3), in most cases, almost all the probabilities ψuv obtained

are equal to either zero or one. However, many researchers encourage considering

more than one donor for each non-respondent, for example, as in Jonsson and

Wohlin (2004), which adds randomness to the process. This may help to preserve

the distribution of the variables and reduce the bias. The constraint that the

imputation probabilities need to be smaller than or equal to a quantity k−1 can

be added to (3.3). Thus, at least k respondents will have a probability greater

than zero of being a donor for a nonrespondent v, with 0 < k < nr and v ∈ Sm.

The program becomes




minimize
ψuv∈[0,k−1]


v∈Sm


u∈Sr

d(u, v)ψuv,

subject to


u∈Sr

ψuv = 1, v ∈ Sm,


v∈Sm

dvrvj


u∈Sr

ψuvxuj =


v∈Sm

dvrvjxvj , j = 1, . . . , J.

(3.4)

The number of neighbors k must be chosen well, because it is used to add

randomness to the imputation process. A larger k leads to greater variance due

to randomness in the method. We recommend choosing k not greater than five

although this depends on the size of the data set and the similarities between the

responding units.

4. Imputation

Once we have calculated the matrix of imputation probabilities ψ, we can

randomly select the donors. Consider ϕ = (ϕuv), where (u, v) ∈ Sr × Sm, the

imputation matrix. The element ϕuv is 1 if unit u is selected to donate its values

to unit v, and zero otherwise. Only one donor is selected per nonrespondent;

thus, 
u∈Sr

ϕuv = 1,

for each v ∈ Sm. The matrix ϕ must satisfy, at best,
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∑
v∈Sm

dvrvj
∑
u∈Sr

ϕuvxuj =
∑
v∈Sm

dvrvj
∑
u∈Sr

ψuvxuj , (4.1)

for each variable j = 1, . . . , J . Therefore, a balanced sampling method is used to

select the donors, while satisfying the balancing constraints (4.1). To also ensure

that only one donor is selected per nonrespondent, the matrix ϕ is generated using

stratified balanced sampling (Chauvet (2009); Hasler and Tillé (2014); Jauslin,

Eustache and Tillé (2021)).

As explained in Section 3.1, one cell must be selected in each stratum of

cells U∗
v = {(u, v) | u ∈ Sr}. The sample of cells is selected using stratified

balanced sampling. Jauslin, Eustache and Tillé (2021) propose a method for

selecting a stratified balanced sample when the number of strata is large. If

the sum of the inclusion probabilities in each stratum is an integer, the method

guarantees the selection of a fixed sample size in each stratum. The size of

the sample in a stratum is the sum of the inclusion probabilities of the units

in this stratum. The matrix ψ is such that
∑

u∈Sr
ψuv = 1, for any v ∈ Sm,

thus, exactly one cell is selected per stratum, that is, one donor is selected per

nonrespondent, and Requirement (i) is exactly satisfied. Moreover, by adding

balancing vectors, the method can approximately satisfy (4.1) using the cube

method (Deville and Tillé (2004)). The balancing variable of each cell (u, v) ∈
Sr × Sm is dvrvjψuvxuj . Equation (4.1) might only be approximately satisfied

because of the complexity of the balancing problem. Therefore, Requirement (iii)

is either exactly or approximately fulfilled. Requirement (ii) is also satisfied,

because in the matrix ψ, only the closest units of each nonrespondent have non-

null imputation probabilities.

The imputation of the data set is based on the matrix ϕ. The missing value

of unit v at variable j, such that rvj = 0, is imputed randomly as

x∗
vj =

∑
u∈Sr

ϕuvxuj . (4.2)

It is also possible to use a deterministic version of the proposed imputation

method. The expectation of ϕuv is used for (u, v) ∈ Sr × Sm. Then, the missing

value xvj is imputed as

x∗
vj =

∑
u∈Sr

ψuvxuj . (4.3)

Although this is no longer a donor imputation method, Requirement (iii) is

exactly satisfied. In general, the presence of a random component helps to

preserve the distribution of the variables, for instance, when estimating a

nonlinear estimator as a percentile near or in the tail of the distribution.
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5. Comparison with FHDI

The FHDI method is reviewed in Yang and Kim (2016), and is popular in

practice. Its steps are similar to those of the proposed imputation method, which

is a two-phase stratified sampling. First, a set of imputation cells is formed

using all observed values for each variable containing nonresponses. For each

cell, the imputation weight, called the fractional weight in the FHDI method, is

calculated based on the joint probability of the vector of variables (x1, . . . ,xJ).

The calculation of the fractional weights is described in Section 4.1 of Yang

and Kim (2016). Second, a hot deck imputation is conducted. Similarly to the

proposed imputation method, determining the imputation cells and imputation

weights corresponds to stratification, and the hot deck imputation corresponds

to stratified sampling. However, although the methods have the same structure,

their procedures are different.

FHDI requires discretizing continuous variables to compute the imputation

weights. The discretization of each continuous variable is done by dividing its

range into a small finite number of segments, as quantiles, for example. This

loss of information may become a problem when the number of variables J

increases. In addition, the final imputation is a weighted average of the values of

the responding units. Thus, the imputed values are not true observed values, but

rather a function of several values, and the method is not random. To address this

problem, the imputation process described in Section 4 replaces the weights ψuv

with the fractional weights. The FHDI method is considered in the simulation

study in Section 7.

6. Properties of the Imputed Estimator of the Total

The proposed imputation method provides a reliable estimation in several

different cases. Here, we show that the estimator can be interpreted both as a

prediction imputation method and as a reweighting method. Depending on the

interpretation, the estimator of the total T̂j, with the imputed values given in

Equation (4.2), can be unbiased, under certain assumptions. In the section, we

propose three assumptions that imply unbiasedness. The inference is valid when

only one of them is satisfied. Some are on the prediction model, and some are on

the weights.

Let Ep(.), Eq(.) and Eimp(.) denote the expectation with respect to the

sampling design, nonresponse mechanism, and random imputation, respectively.

The propositions presented in this section hold only when data are missing at

random or completely missing at random, in the sense of Rubin (1976).

Proposition 1. Consider the notation

x
(−j)
i = (xi1, . . . , xi(j−1), xi(j+1), . . . , xiJ)

⊤,
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for i ∈ U and j = 1, . . . , J . Suppose further that the context is that of a prediction

and assume the following model m:

m : xij = β(−j)⊤x
(−j)
i + εi with Em(εi) = 0,

where Em(.) denotes the expectation with respect to the model m. Then, the

imputed estimator of the total of the variable j, T̂j, is unbiased, for j = 1, . . . , J ,

Bias(T̂j) = EmEpEqEimp(T̂j − Tj) = 0.

The proof is given in the Appendix. Proposition 1 suggests that if a variable

xj can be explained by a linear combination of the other variables xg,g ̸=j, the

estimator T̂j will be unbiased.

Proposition 2. The estimator of the total can be viewed as an estimator obtained

using a reweighting method, such that

T̂j =
∑
u∈Sr

du

(
1 + πu

∑
v∈Sm

dvψuv

)
xuj .

When the weight
(
1 + πu

∑
v∈Sm

dvψuv

)
is a reasonable approximation of the

inverse of the probability of the response, that is when

Pr(u ∈ Sr|S) ≈
1

1 + πu

∑
v∈Sm

dvψuv

,

then the estimator is approximately unbiased,

Bias(T̂j) = EpEqEimp(T̂j − Tj) ≈ 0.

The proof is given in the Appendix. The estimator of the total can be

rewritten as a reweighted estimator, such that

T̂j =
∑
u∈Sr

duwuxuj .

If the weight wu is equal to the inverse of the probability of the response to

variable j, the estimator is unbiased. In other words, the weight wu compensates

for the nonresponse bias, in the same way that the weight di compensates for the

sampling bias.

Proposition 3. The proposed imputation method requires that if u ∈ Sr is the

donor for v ∈ Sm, then u ∈ knn(v). When

u ∈ knn(v) =⇒ (1− rvj)(xuj − xvj) = 0,

for all j = 1, . . . , J , then the imputed estimator of the total of the variable j, T̂j,
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is unbiased,

Bias(T̂j) = EpEqEimp(T̂j − Tj) = 0.

The proof is given in the Appendix. Proposition 3 uses the neighborhood

principle. Because each donor is selected in the neighborhood of the recipient,

the values of the recipient may be, by definition, close to the values of its donor.

The closer the values are, the smaller is the bias of the estimator.

7. Simulation Study

We performed a simulation study to analyze the performance of the proposed

imputation methods, using the R package SwissCheese (Eustache, Vallée and

Tillé (2021)). We employ an open-source data set from Johnson (1996) that

contains 15 variables of morphological data of n = 250 men. Only variables

with strong correlations are considered: the waist circumference (x1), the knee

circumference (x2), the chest circumference (x3), all three in centimeters, the

body density in grams per cubic centimeter (x4), and the percentage of body fat

(x5).

Swiss cheese nonresponses are generated randomly in the data set X = (x1,

x2, x3, x4, x5). Nonresponses are generated for the whole data set, such that

no variable is fully observed. For each vector xj in which we generated missing

values, the nonresponse is non-ignorable, because this is the most difficult type

of nonresponse to handle. Define the positive values gij = xij − min(xj) and a

value αj such that

n∑
i=1

min

[
1, αj

(
gij +

∑n
i=1 gij
n2

)]
= n(j)

r ,

where n(j)
r is the “expected number of units with a missing value at variable

j”. The expected value for n(j)
r is 113, which gives a proportion of respondents

nr/n of approximately 45%. The probability pij that unit i responds to item

j ∈ {1, . . . , 5} is

pij = min

[
1, αj

(
gij +

∑n
i=1 gij
n2

)]
.

Missing values are generated randomly using a uniform variable bounded by zero

and one. The response indicator rij is one if unit i responds to item j, and zero

otherwise. When rij = 0, the value xij is missing.

Eight imputation methods were considered to impute the missing values:

- k-nearest neighbor imputation (knn): a missing value for a nonrespondent

is imputed as the mean of this variable for the set of k-nearest neighbors;

- Nearest neighbor (nn): the donor of each nonrespondent is its nearest

neighbor;
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- FHDI: the imputation method proposed by Yang and Kim (2016) and

discussed in Section 5;

- Sequential regression multiple imputation (SReg): an iterative algorithm

that imputes variables one by one using a regression model (Raghunathan

et al. (2001); van Buuren (2018));

- Balanced nearest neighbors (B-nn): the method proposed in Sections 3 and

4, without constraining a minimum number of neighbors, as in System (3.3),

with random imputation as in Equation (4.2);

- Deterministic balanced nearest neighbors (DB-nn): a deterministic version

of the B-nn, as in Equation (4.3);

- Balanced k-nearest neighbors (B-knn): the method proposed in Sections 3

and 4, by constraining the minimum number of neighbors to k, as in

System (3.4), with random imputation as in Equation (4.2);

- Deterministic balanced k-nearest neighbors (DB-knn): a deterministic

version of the B-knn, as in Equation (4.3).

For each method that uses a number of neighbors k (i.e., knn, FHDI, DB-knn,

and B-knn), we use k = 5. The sequential regression multiple imputation method

is a particular case of the fully conditional specification that imputes multivariate

missing data on a variable-by-variable basis (van Buuren et al. (2006)). Although

the sequential regression multiple imputation is not a donor imputation method,

it should work well because of the high correlations between the variables. Based

on each imputed data set, we estimate the total of each variable, along with the

50th and the 75th percentiles.

The nonresponse is generatedMR = 100 times and, each time, the imputation

is repeated MI = 100 times, thus, we create MR data sets with different

nonresponse patterns. For each data set and for each imputation method, we

create MI imputed data sets. Obviously, the MI imputations for the same

nonreponse do not vary for the deterministic methods (i.e., knn, nn, DB-knn,

and DB-nn). For each imputation method and parameter, we calculate the Monte

Carlo bias of an imputed estimator θ̂,

Bias
(
θ̂
)
= EqEimp

(
θ̂ − θ

)
=

1

MRMI

MR∑
r=1

MI∑
i=1

(
θ̂r,i − θ

)
,

where θ̂r,i is the value of the imputed estimator of the parameter θ in the sim-

ulation (r, i), for r = 1, . . . ,MR and i = 1, . . . ,MI . We also calculate the Monte

Carlo mean squared error (MSE) of the imputed estimator,

MSE
(
θ̂
)
= EqEimp

{(
θ̂ − θ

)2
}
=

1

MRMI

MR∑
r=1

MI∑
i=1

(
θ̂r,i − θ

)2

.
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Table 1. Bias and mean squared errors (MSE) with respect to the imputation and the
nonresponse mechanisms, of the estimators of the totals, in the case of knn, nn, FHDI,
SReg, DB-nn, B-nn, DB-knn and B-knn imputations. The dataset contains Swiss cheese
nonresponse, each variable contains approximately 10% of missing values.

x1 x2 x3 x4 x5

True value 9,083.35 9,633.20 25,165.50 263.96 4,757.90

Bias

knn -61.72 -29.88 -106.23 -0.10 -117.36

nn -59.85 -27.61 -109.99 -0.05 -121.14

FHDI -10.25 -13.85 -26.41 -0.02 -11.15

SReg -5.61 -12.39 -16.13 -0.02 -1.59

DB-nn -8.79 -12.30 -24.25 -0.03 -5.58

B-nn -8.45 -11.93 -23.36 -0.02 -5.49

DB-knn -11.62 -12.79 -29.94 -0.02 -6.60

B-knn -11.33 -12.25 -29.13 -0.01 -6.36

MSE

knn 4,327.35 1,070.79 14,137.19 0.03 16,193.98

nn 4,712.63 1,122.08 16,226.03 0.04 17,816.19

FHDI 250.57 302.01 1,417.03 0.00 511.15

SReg 111.90 287.71 920.28 0.00 168.77

DB-nn 197.59 259.34 1,675.01 0.01 262.24

B-nn 176.11 242.32 1,556.93 0.00 263.62

DB-knn 219.00 240.36 1,610.32 0.01 198.89

B-knn 247.59 272.59 1,831.69 0.00 370.77

The results for the totals and the percentiles are shown in Tables 1 and 2,

respectively, for the eight imputation methods.

For the estimation of the totals, the proposed methods (i.e., B-nn, DB-nn,

B-knn, and DB-knn) seem to be equivalent, and outperform the nn and knn

imputations in terms of bias and MSE. For the estimation of the percentiles, the

proposed methods also outperform than the nn and knn methods. The biases

and MSEs of our proposed methods appear to be smaller than those of FHDI

for the estimation of the totals. They are similar when estimating a quantile.

Globally, the balancing constraints and the donor imputation seem to reduce

the bias and MSE of the estimators. The results of our proposed method and

those of the SReg imputation are comparable, although the latter is not a donor

method. The requirement to use donors is restrictive. Thus, it is promising that

our donor methods have almost similar efficiency. Futhermore, the variables are

highly correlated, implying that linear regression models are appropriate. SReg

is then well suited for the data.

In terms of bias and MSE, the B-nn and DB-nn imputations give similar

results, because as expected, almost all the probabilities ψuv are equal to zero or

one, leading to few differences between the two methods. Moreover, they both
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Table 2. Bias and mean squared errors (MSE) multiplied by 100 with respect to the
imputation and the nonresponse mechanisms, of estimated 50th and 75th percentiles, in
the case of knn, nn, FHDI, SReg, DB-nn, B-nn, DB-knn and B-knn imputations. The
dataset contains Swiss cheese nonresponse, each variable contains approximately 10% of
missing values.

P50 P75

x1 x2 x3 x4 x5 x1 x2 x3 x4 x5

True value 33.28 36.92 94.25 1.04 12.42 39.04 39.87 105.30 1.07 25.20

Bias

knn -15.15 -8.80 -19.11 0.05 -75.75 -43.91 -23.10 -80.67 -0.24 -111.23

nn -16.77 -7.30 -26.15 0.00 -65.30 -19.25 -10.10 -37.45 -0.04 -55.85

FHDI 0.45 -0.69 -0.78 0.01 -2.34 -6.94 -5.4 -7.36 -0.04 -13.08

SReg 2.37 -2.54 3.14 0.01 -0.98 -4.72 -3.56 3.85 -0.01 -5.17

DB-nn -0.10 -1.90 -1.55 0.01 -1.20 -1.85 -6.07 -5.88 -0.02 -3.59

B-nn -0.23 -1.89 -1.62 0.01 -1.34 -1.85 -6.07 -5.97 -0.02 -3.54

DB-knn 1.35 -2.15 1.01 0.01 2.16 -8.46 -7.00 -13.60 0.00 -5.78

B-knn -0.94 -2.69 -2.84 0.01 -0.34 -3.89 -5.19 -9.92 -0.01 -4.32

MSE

knn 3.50 1.31 7.90 0.00 67.15 23.07 6.18 76.03 0.00 147.77

nn 3.97 1.12 11.96 0.00 56.67 6.76 1.82 28.27 0.00 42.31

FHDI 0.38 0.41 1.29 0.00 1.89 1.61 0.97 6.12 0.00 5.11

SReg 0.53 0.43 1.37 0.00 0.79 1.04 0.81 5.47 0.00 1.82

DB-nn 0.38 0.46 2.63 0.00 1.21 1.37 0.98 8.32 0.00 2.27

B-nn 0.37 0.48 2.59 0.00 1.23 1.39 0.98 8.43 0.00 2.33

DB-knn 0.36 0.35 1.16 0.00 0.71 1.25 0.88 6.85 0.00 1.57

B-knn 0.53 0.50 2.00 0.00 2.02 1.31 0.91 8.25 0.00 2.62

outperform DB-knn and B-knn. Adding a minimum number k = 5 of potential

donors to add randomness to the imputation process does not appear to reduce

the bias or better preserve the distribution here.

Table 3 shows the bias and MSE of the estimated correlation coefficients

between the variables for the B-nn method. The linear relationships between the

variables are very well preserved after imputation. We show only the results for

the B-nn method, because the other methods yield comparable results.

8. Discussion

In addition to Properties 1–3 on the unbiasedness of the estimated total,

the method has two strengths: the possibility of imputing both categorical and

continuous variables; and the possibility of forcing the probability ψuv to be null,

if needed, for example, if the survey sampler does not want to allow a respondent

u to be the donor of a nonrespondent v.

The variance of estimated parameters is a complex matter when the data

sets are imputed, because it needs to consider the variability caused by the
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sampling design, nonresponses and the imputation method. Determining an

explicit variance estimator requires further investigation, possibly using a pseudo-

population bootstrap variance estimator, as described in Chen et al. (2019).

Eustache, Vallée and Tillé (2021) provide a sparse implementation of the

methods. The imputation methods can be used in large-scale applications in

which both the number of units and the number of variables with missing values

are large. With the sparse implementation, the computation of the matrix of

imputation probabilities is efficient in terms of computation time.

The choice of the minimum number k of possible donors, as proposed

in Section 3.2, depends on the data set. The effect of different values of k on

total estimators is left to future research.
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Appendix

Proof of Property 1. Consider the column vectors of estimated totals

T̂(−j) =
(
T̂1, . . . , T̂(j−1), T̂(j+1), . . . , T̂J

)⊤

and of Horvitz-Thompson estimators

T̂HT
(−j) =

(
T̂HT
1 , . . . , T̂HT

(j−1), T̂
HT
(j+1), . . . , T̂

HT
J

)⊤
,

with T̂HT
j =

∑
i∈S dixij the Horvitz-Thompson estimator of the total of variable

j. We have that

EmEimp

(
T̂j − T̂HT

j

)

= Em

(∑
i∈S

rijdixij +
∑
v∈Sm

(1− rvj)dv
∑
u∈Sr

ψuvxuj −
∑
i∈S

dixij

)

=
∑
i∈S

rijdiβ
(−j)⊤x

(−j)
i +

∑
v∈Sm

(1− rvj)dv
∑
u∈Sr

ψuvβ
(−j)⊤x(−j)

u

−
∑
i∈S

diβ
(−j)⊤x

(−j)
i

= β(−j)⊤
{
Eimp

(
T̂(−j)

)
− T̂HT

(−j)

}
= 0.

The last equality comes from Equation (3.2). Using the requirements that the

data are MAR or CMAR, the different expectations can be reversed to obtain
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Table 3. Bias and mean squared errors (MSE) with respect to the imputation and the
nonresponse mechanisms, of the estimators of the correlation coefficients, in the case of
B-nn imputation. The dataset contains Swiss cheese nonresponse, each variable contains
approximately 10% of missing values.

x1 x2 x3 x4 x5

Bias

x1 - 0.0002 -0.0063 -0.0018 -0.0022

x2 - 0.0001 -0.0058 0.0028

x3 - -0.0050 -0.0006

x4 - 0.0046

x5 -

MSE

x1 - 0.0003 0.0001 0.0001 0.0001

x2 - 0.0003 0.0006 0.0004

x3 - 0.0003 0.0001

x4 - 0.0000

x5 -

the following development:

Bias
(
T̂j

)
= EmEpEqEimp(T̂j − Tj) = EmEpEqEimp(T̂j − T̂HT

j + T̂HT
j − Tj)

= EpEqEmEimp(T̂j − T̂HT
j ) = 0.

The proof remains the same for each variable j ∈ {1, . . . , J}.

Proof of Property 2.

Eimp

(
T̂j

)
=

∑
i∈S

rijdixij +
∑
v∈Sm

(1− rvj)dv
∑
u∈Sr

ψuvxuj

=
∑
i∈Sr

dixij +
∑
ℓ∈Sm

rℓjdℓxℓj +
∑
v∈Sm

(1− rvj)dv
∑
u∈Sr

ψuvxuj

=
∑
i∈Sr

dixij +
∑
v∈Sm

dv
∑
u∈Sr

ψuvxuj

=
∑
i∈Sr

di

{
1 + πi

∑
v∈Sm

dvψiv

}
xij

=
∑
i∈Sr

diwixij ,

where the third equality comes from Equation (3.2). If w−1
i is approximately

equal to the true response probability, we have

Bias(T̂j) = EpEqEimp

(
T̂j − Tj

)
= EpEq

(∑
i∈Sr

diwixij −
∑
i∈S

xij

)
≈ 0.
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Indeed, the quantity ∑
u∈Sr

duxuv

Pr(u ∈ Sr|S)

is an unbiased estimator of Tj if Pr(u ∈ Sr|S) > 0, for all u ∈ Sr. If the true

response probability is exactly w−1
i , T̂j is unbiaised, i.e. Bias(T̂j) = 0.

Proof of Property 3.

Bias
(
T̂j

)
= EpEqEimp

(
T̂j − Tj

)

= EpEqEimp

(∑
i∈S

rijdixij +
∑
v∈Sm

(1− rvj)dv
∑
u∈Sr

ϕuvxuj −
∑
i∈S

xij

)

= EpEqEimp

(∑
i∈S

rijdixij +
∑
v∈Sm

(1− rvj)dvxvj −
∑
i∈S

xij

)
= 0.
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Hasler, C. and Tillé, Y. (2016). Balanced k-nearest neighbor imputation. Statistics 50, 1310–

1331.

Im, J., Cho, I. H. and Kim, J. K. (2018). FHDI: An R package for fractional hot deck imputation.

The R Journal 10, 140–154.
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