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Abstract: The mean residual life model is vital for its ability to investigate the

association between covariates and patient life expectancy. In certain circumstances,

a patient’s lifespan may change when a covariate exceeds a particular threshold

value, which is critical to predicting the patient’s life expectancy and preventing

diseases. This study considers a threshold regression analysis of a proportional

mean residual life model with a continuous thresholding variable. We construct

martingale-based smoothed estimating equations to obtain parameter estimators,

and establish the large-sample properties of the proposed estimators. Furthermore,

we propose a supremum test to examine the existence of the threshold. Finally,

we assess the finite-sample performance of the proposed method using simulation

studies, and then apply the methodology to data from colorectal and breast cancer

studies.

Key words and phrases: Proportional mean residual model, smoothed estimation

equation, subgroup identification, threshold test.

1. Introduction

The mean residual life (MRL) function measures the remaining life ex-

pectancy of a subject who has survived up to a specific time point. As a valuable

alternative to the hazard-based approach, the MRL model directly examines how

potential covariates affect the MRL function, and is widely applied in biomedical

sciences, industrial reliability research, and actuarial studies. For a nonnegative

survival time T̃ with finite expectation, the MRL function at time t ≥ 0 is defined

as

m(t) = E(T̃ − t|T̃ > t) = S−1(t)

∫ ∞
t

S(u)du,

where S(t) represents the survival function of T̃ . The MRL function reveals

how long a subject can survive, given his/her current life status. Using a simple

calculation, S(t) can be derived from m(t) by the inversion formula as

S(t) =
m(0)

m(t)
exp

{
−
∫
m−1(u)du

}
,
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and the corresponding hazard function is

λ(t) =

{
m′(t) + 1

m(t)

}
,

where m′(t) denotes the first derivative of m(t). Notably, λ(t) is always

nonnegative. Therefore, m′(t) + 1 ≥ 0, and m(t) + t is nondecreasing, which

is an important property of the MRL function. For other properties of the MRL

function, refer to Balkema and de Haan (1974), Hollander and Proschan (1975),

Kotz and Shanbhag (1980), and Arnold and Zahedi (1988).

Assessing the effects of covariates on the MRL function is of considerable

interest in clinical studies. As a result, numerous works have investigated

regression analyses of the MRL function. Oakes and Dasu (1990) and Maguluri

and Zhang (1994) proposed proportional MRL (PMRL) models with dichotomous

and continuous covariates, respectively, in the absence of censoring. Chen

and Cheng (2005) and Chen et al. (2005) developed semiparametric estimation

procedures for PMRL models with censoring. Chen and Cheng (2006) and

Chen (2007) considered additive MRL models and discussed various estimation

procedures, with and without censoring. Sun and Zhang (2009) studied a

class of transformed MRL models, and Sun, Song and Zhang (2011) extended

the transformation models to incorporate time-dependent covariates. However,

the aforementioned studies assume linear covariate effects, thus disregarding

the situation in which a covariate effect on the MRL function may change

substantially when the covariate exceeds a particular threshold.

The present study fills this gap by considering a threshold PMRL model

in the presence of censoring. This kind of threshold regression can be used

as a parsimonious strategy for nonparametric function estimation (Guallar

and Pastor (1998); Hansen (2000); Fong et al. (2017)), and can be used to

identify critical subgroups of a population who may require highly personalized

treatment recommendations (Goldberg and Kosorok (2012); Zhao et al. (2014b)).

Threshold regression models have been widely applied to substantive studies

in economics. Deidda and Fattouh (2002) used a threshold model to specify

the nonlinear relationship between financial and economic development. Baum,

Checherita-Westphal and Rother (2013) proposed a dynamic threshold panel

model to analyze the nonlinear impact of public debt on GDP growth, against

the background of the euro area sovereign debt crisis. Interested readers can

refer to Hansen (2000), Gonzalo and Wolf (2005), Andrews, Kitagawa and

McCloskey (2021), and the references therein. Threshold covariate effects have

also received considerable attention in clinical studies, including the fasting

plasma glucose effect in the Australian Diabetes Obesity and Lifestyle Study

(Tapp et al. (2006)), midthigh muscle cross-sectional area effect in the COPD

Study (Marquis et al. (2002)), and leukocyte telomere length effect in the Strong

Heart Family Study (Zhao et al. (2014a)). One type of threshold model assumes
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a threshold at an unknown time in order to detect the lag effects of covariates

(Liang, Self and Liu (1990); Luo (1996); Pons (2002)). Some of these models

examines a continuous change in the regression coefficient when a covariate

crosses a threshold (Gandy and Jensen (2005); Gandy, Jensen and Lütkebohmert

(2005); Jensen and Lütkebohmert (2008)). Another class of models investigates

discontinuous changes in covariate effects (Pons (2003); Kosorok and Song (2007);

Deng et al. (2017); Wang, Li and Wang (2021)). The present study aims to

examine threshold covariate effects in the context of the PMRL model, assuming

that the covariate effects change discontinuously, and that the threshold lies in

the range of a continuous covariate.

Estimating threshold regression models is complicated, because the models

are not smooth in the threshold parameter. Two common approaches for

estimating the threshold are the grid-search method (Hansen (2000); Pons

(2003); Kosorok and Song (2007)) and the smoothing method (Seo and Linton

(2007); He, Lin and Tu (2018)). The grid-search method selects a grid of

candidate thresholds on the thresholding covariate. Given a candidate threshold,

a threshold model reduces to a regular regression model. The threshold estimate

can then be obtained by maximizing the likelihood of the reduced regression

model. However, the threshold estimator obtained by the grid-search method

has a nonstandard limiting distribution, making statistical inference highly

complicated. In addition, the likelihood-based grid-search procedure has difficulty

estimating the semiparametric PMRL model. In contrast, the smooth method

approximates the step function using a smooth function with a bandwidth. Thus,

we propose using martingale-based smoothed estimating equations to estimate

the threshold. We prove that the resulting threshold and regression parameter

estimators are asymptotically independent and normally distributed. We also

show that the convergence rate of the smoothed estimator of the threshold is

h/
√
n, where h→ 0 is the bandwidth in the smoothing of the indicator function.

Furthermore, we propose a supremum test that relies on Wald test statistics to

examine the existence of the threshold effect.

The remainder of the paper is organized as follows. Section 2 outlines the

threshold estimation of the PMRL model. Section 3 establishes the asymptotic

theory for the estimators of the threshold, regression parameters, and the baseline

MRL function. Section 4 describes a test procedure for testing the existence of

the threshold. In Section 5, we use simulation studies to assess the finite-sample

performance of the proposed method. In Section 6, we apply the proposed

method to colorectal cancer data from the United States National Cancer

Institute Surveillance Epidemiology and End Results (SEER) database, and to

breast cancer data from The Cancer Genome Atlas Program (TCGA). Section

7 concludes the paper. All technical proofs are relegated to the Supplementary

Material.
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2. Method

2.1. PMRL model with structure breaks

Let T̃ be the failure time, X be a continuous covariate with an effect on the

response that may have a threshold, and Z denote other p-dimensional covariates.

The PMRL model for T̃ given (Z, X) takes the form

m(t|Z, X) = m0(t) exp{r∗θ(Z, X)}, (2.1)

and

r∗θ(Z, X) = βTZ + (α+ ηTZ)I(X > ζ) = ξT Z̃∗,

where m0(t) is an unknown baseline MRL function, Z̃∗ = (ZT , I(X > ζ), I(X >

ζ)ZT )T , ζ is an unknown threshold, ξ = (βT , α,ηT )T is a (2p + 1)-dimensional

vector of unknown parameters, I(U) is the indicator of the set U , and θ =

(ζ, ξT )T ∈ Θ ⊂ R2p+2. We assume that the parameter space Θ is compact, and

that the true parameter θ∗ = (ζ∗,β
T
∗ , α∗,η

T
∗ )T is an interior point of Θ. Denote

the true value of m0(t) by m∗(t). Model (2.1) indicates that the effect of Z is β

when X ≤ ζ, but changes to β + η when X > ζ. Additionally, given Z, there is

a difference of exp(α+ ηTZ) for the MRL function between X ≤ ζ and X > ζ.

2.2. Estimation

Let C be the potential censoring time, and let T = min(T̃ , C). Conditional

on Z and X, T̃ and C are assumed to be independent. To guarantee that the

PMRL function is estimable, we assume that the support of C is longer than that

of the survival time T̃ and 0 < τ = inf{t : P (T̃ > t) = 0} < ∞, which avoids

a lengthy technical discussion on the tail behavior of the limiting distributions.

Let {Ti, δi,Zi, Xi; i = 1, . . . , n} be the observed data set, where δi = I(T̃i ≤ Ci).

In addition, let Ni(t) = I(Ti ≤ t)δi, Yi(t) = I(Ti ≥ t), and Λi(t;θ∗,m∗) be the

cumulative hazard function of Ti. The survival function of T given Z and X is

S(t|Z, X) =
m(0|Z, X)

m(t|Z, X)
exp

{
−
∫ t

0

1

m(u|Z, X)du

}
,

and the density function is

f(t|Z, X) = S(tZ, X)

[
m′(t|Z, X) + 1

m(t|Z, X)

]
,

where m′(t|Z, X) is the first derivative of m(t|Z, X) with respect to t. From

above, we have m0(t)dΛi(t;θ∗,m∗) = exp{−r∗θ(Z, X)}dt + dm0(t). Given that

m0(t) is unknown, it is difficult to estimate the parameter θ using the likelihood

method. Thus, we consider a martingale-based smoothed estimating equation

procedure for the threshold estimation.
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Let

Mi(t;θ,m0) = Ni(t)−
∫ t

0

Yi(s)dΛi(s;θ,m0), for i = 1, . . . , n.

Then, {Mi(t;θ∗,m∗)} are zero-mean stochastic processes, which we can use to

construct the estimating equations. The threshold ζ is involved in the indicator

function, making it difficult to estimate ζ. Hence, we construct smoothed

estimating equations

1

n

n∑
i=1

[m0(t)dNi(t)− Yi(t){exp(−rθ(Zi, Xi))dt+ dm0(t)}] = 0, 0 ≤ t ≤ τ, (2.2)

1

n

n∑
i=1

∫ τ

0

Z̃i(m0(t)dNi(t)− Yi(t)[exp{−rθ(Zi, Xi)}dt+ dm0(t)]) = 0, (2.3)

1

nh

n∑
i=1

∫ τ

0

Wi(m0(t)dNi(t)− Yi(t)[exp{−rθ(Zi, Xi)}dt+ dm0(t)]) = 0, (2.4)

where

rθ(Zi, Xi) = βTZi + (α+ ηTZi)Φ

(
Xi − ζ
h

)
,

in which Φ(·) is the cumulative distribution function ofN(0, 1), Z̃i = (ZT
i ,Φ{(X−

ζ)/h},ZiΦ{(X− ζ)/h})T , Wi = (α+ηTZi)φ{(X− ζ)/h}, and φ(·) is the density

function of N(0, 1).

From (2.2), m0(t) can be estimated as

m̂(t;θ) = Ŝ(t)

∫ τ

t

Ŝ(u)Q(u;θ)du,

where Ŝ(t) = exp{−
∫ t
0

∑n
i=1 dNi(u)/

∑n
i=1 Yi(u)}, which is the Nelson–Aalen

estimator of the survival function, and Q(t;θ) =
∑n

i=1 Yi(t) exp{−rθ(Zi, Xi)}/∑n
i=1 Yi(t).

To obtain θ̂, we replace m0(t) with m̂(t;θ) in Equations (2.3) and (2.4). The

resulting equations are

Uξn(ξ) =
1

n

n∑
i=1

∫ τ

0

{Z̃i − ¯̃Z(t)}[m̂(t;θ)dNi(t)− Yi(t) exp{−rθ(Zi, Xi)}dt] = 0,

U ζ
n(ζ) =

1

nh

n∑
i=1

∫ τ

0

{Wi − W̄ (t)}[m̂(t;θ)dNi(t)− Yi(t) exp{−rθ(Zi, Xi)}dt] = 0,

where ¯̃Z(t) =
∑n

i=1 Yi(t)Z̃i/
∑n

i=1 Yi(t), and W̄ (t) =
∑n

i=1 Yi(t)Wi/
∑n

i=1 Yi(t).
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3. Asymptotic Property

This section establishes the consistency and weak convergence of the

estimators of the threshold, regression parameters, and the baseline MRL

function. First, we define some notation.

We define

Um
n (m(t);θ) =

1

n

n∑
i=1

(m(t)dNi(t)− Yi(t)[exp{−rθ(Zi, Xi)}dt+ dm(t)]) = 0,

0 ≤ t ≤ τ,

and

Un(θ) =

(
Uξn(ξ)

U ζ
n(ζ)

)
=

1

n

n∑
i=1

Uni.

Note that

∂Un(θ)

∂θT
=

1

n

n∑
i=1

∫ τ

0

(
Z̃i − ¯̃Z(t)

{Wi − W̄ (t)}/h

)

×
[
∂m̂(t;θ)

∂θT
dNi(t)− Yi(t)

(
Z̃i
Wi/h

)T
× exp{−rθ(Zi, Xi)}dt

]

− 1

n

n∑
i=1

∫ τ

0


0p×p 0p×1 0p×p 0p×1

0 0 0 Q1

0p×p 0p×1 0p×p Q2

0 Q1 Q2 Q3


× (m̂(t;θ)dNi(t)− Yi[exp{−rθ(Zi, Xi)}dt+ dm̂(t;θ)]),

where

Q1 =
1

h
φ

(
Xi − ζ
h

)
,

Q2 =
1

h
ZT
i φ

(
Xi − ζ
h

)
,

Q3 =
1

h2
(α+ ηTZi)φ

′
(
Xi − ζ
h

)
,

and φ′(·) is the derivative function of φ(·). Denote Â(θ) = D(∂Un(θ)/∂θT )D,

where D is a (2p + 2)-dimensional diagonal matrix, the first 2p + 1 elements of

which are one and the last element is
√
h. For a vector a, |a| and ‖a‖ represent

its L1 and L2 norms, respectively.

To establish the asymptotic properties of the estimators, we require the

following technical conditions.
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C1 The true baseline MRL function m∗(t) is continuously differentiable on [0, τ ].

C2 There exists a constant dz > 0, such that P (‖Z‖ > dz) = 0.

C3 The limiting matrix of Â(θ∗), denoted by A(θ∗), is nonsingular.

C4 For all X in a neighborhood of ζ, and almost every Z, the density function

of X conditional on Z, fX|Z(x|z), and its derivative function f ′X|Z(x|z) have

positive density everywhere with respect to the Lebesgue measure and are

bounded.

C5 As n→∞, h→ 0 and nh3 → 0.

Condition C1 indicates that m∗(t) is bounded on [0, τ ]. Conditions C2 and C3 are

necessary for parameter identifiability. Conditions C4 and C5 ensure the weak

convergence of the estimator ζ̂. These conditions are common in the threshold

detection and survival analysis literature.

Theorem 1. Under Conditions C1–C5, θ̂ uniquely exists and converges con-

sistently to θ∗ as n → ∞; for every t ∈ [0, τ ], m̂(t;θ) uniquely exists, and

m̂(t;θ)→ m∗(t) almost surely uniformly in [0, τ ] as n→∞.

In the proof of Theorem 1, we first show that Um
n (m,θ) converges uniformly

to Um in probability, where Um is defined in the proof of Theorem 1. Next,

we verify the identification of m in Um. The uniform convergence of Um
n to Um

and the implicit function theorem yield that, for any θ in the neighborhood of

θ∗, m̂(.;θ) converges uniformly to the solution of Um(m,θ) = 0, m(.;θ), with

probability one. Then, by the convergence of Un and because A is strictly positive

definite, θ̂ converges to θ∗ in probability.

Theorem 2. Under Conditions C1–C5,
√
nD−1(θ̂−θ∗) is asymptotically normal

with mean zero and a covariance matrix that can be consistently estimated by

Σ̂(θ̂) = Â−1(θ̂)B̂(θ̂)Â−1(θ̂), where

B̂(θ̂) =
1

n

n∑
i=1

∫ τ

0

{(
Z̃i − ¯̃Z(t)

{Wi − W̄ (t)}/
√
h

)
− ê

}⊗2
m̂(t; θ̂)[exp{−rθ̂(Zi, Xi)}dt

+dm̂(t; θ̂)],

and

ê =

(
êZ̃∗

êW

)
=

Ŝ(t)
∫ t
0
Ŝ−1(u)

∑n
j=1

(
Z̃j − ¯̃Z(u)

{Wj − W̄ (u)}/
√
h

)
dNj(u)∑n

j=1 Yj(t)
.

Theorem 2 shows that the asymptotic distribution of ζ̂ is a normal

distribution, thus avoiding a complex statistical inference when using the grid-

search method. The convergence rates of ζ̂ and ξ̂ are h/
√
n and 1/

√
n,
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respectively. Moreover, we obtain the asymptotic covariance of θ̂ = (ζ̂, ξ̂T )T .

In contrast, in the grid-search method, we obtain only the covariance of ξ̂ with

fixed ζ, which can cause bias in the covariance estimation, as discussed in Hansen

(2000).

Theorem 3. Under Conditions C1–C5,
√
n{m̂(t; θ̂) −m∗(t)} converges weakly

on [0, τ ] to a zero-mean Gaussian process, the covariance function of which at

(t, s) can be consistently estimated by Γ̂(t, s) = n−1
∑n

i=1 Ôi(t)Ôi(s), and

Ôi(t) =
∂m̂(t; θ̂)

∂θ
Â(θ̂)DUni

(θ̂)D + Ŝ(t)−1
∫ τ

t

Ŝ(u)m̂(u; θ̂)dMi(u; θ̂, m̂)∑n
j=1 Yj(u)

.

4. Threshold Test

Testing the existence of the threshold is essential in practice. In the proposed

model, the null hypothesis is H0 : α = 0,η = 0. Notably, in the estimating

equation (2.4), the threshold is unidentifiable if both α and η are zero. We adopt

a type of supremum test to tackle this problem. The test statistic relies on Wald

statistics, and is defined as follows:

SUPK = sup
ζ∈{ζ1,...,ζK}

{α̂(ζ), η̂T (ζ)}T Σ̂αη(ζ){α̂(ζ), η̂T (ζ)},

where α̂(ζ) and η̂T (ζ) are obtained from the estimating equations (2.2) and (2.3),

respectively, with fixed ζ, Σ̂αη(ζ) is the element of Σ̂(θ) corresponding to α and

η, {ζ1, ζ2, . . . , ζK} are prespecified values in the range of X, and K is the number

of grids. Theoretically, {ζ1, ζ2, . . . , ζK} can take all distinct observed values of X,

while excluding those below the 0.1th or above the 0.9th quantile to avoid edge

effects. However, having too many grids increases the computational burden,

and may reduce the power of the test, as shown in the simulation study (Table

9). Therefore, we suggest taking equispaced levels between the 0.1th and 0.9th

quantiles of X, such as {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}th quantiles. Alternatively,

one can take equidistant grids in the range of X, as shown in the simulation study,

wherein we consider K = 1, 3, or 13 to assess the impact of small, moderate, and

relatively large K, respectively, on the test performance.

This supremum-type test statistic does not follow a standard chi-squared

distribution, as shown by Davies (1987). Therefore, we adopt a permutation

procedure to obtain the critical value of SUPK under the null hypothesis.

Specifically, we shuffle the covariate X enough times to obtain the permutation

distribution of SUPK . Then, we can generate the critical value at a certain

significance level. The test procedure is as follows:
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Step 1 : Compute the statistic SUPK for the original data.

Step 2: Generate X∗i , i = 1, . . . , n by randomly sampling from {Xi, i = 1, . . . , n}
without replacement, and construct a new sample {Ti,∆i,Zi, X

∗
i , i =

1 . . . , n}.

Step 3: Generate a total of L (e.g., L = 500) simulated trials using Step 2.

Compute the test statistics SUP`
K , for ` = 1, . . . , L.

Step 4: Reject the null hypothesis if SUPK is larger than the 95% percentile of

{SUP`
K , ` = 1, . . . , L}.

Step 2 is similar to the permutation in the two-sample test. The idea behind

it is intuitive; given a test statistic, we compute its distribution under H0 by

permuting the two samples {i : Xi ≤ ζ} and {i : Xi > ζ}. Replacing Xi with

X∗i extracted from {Xj; j = 1, . . . , n} without replacement means the new set

{i : X∗i ≤ ζ} contains observations that are originally in {i : Xi > ζ}. Then,

the samples of {i : Xi ≤ ζ} and {i : Xi > ζ} are mixed, thereby matching the

distribution under H0.

5. Simulation Study

We conduct simulation studies to evaluate the finite-sample performance of

the proposed estimation and test procedures. The first simulation evaluates

the estimation performance using the bias (Bias), sample standard deviation

(SSD), standard error estimate (SEE), and coverage probability (CP) of the 95%

confidence interval. We consider covariates Z = (Z1, Z2), where Z1 is a Bernoulli

random variable with a success probability of 0.5 and Z2 is a uniform random

variable on [0, 1], and a thresholding variable X ∼ Uniform(−1, 1) with a true

threshold at 0 or 0.5. The survival time T̃ is generated according to Model

(2.1). The true population values of the parameters are assigned as follows:

β = (β1, β2) is set to (0.2, 0.2), (α,η) = (α, η1, η2) is set to Case 1: (−0.3, 0.2, 0.2)

and Case 2: (−0.5, 0.5, 0.5) to assess the effect of the jump size on the parameter

estimation, and the baseline MRL function is set tom0(t) = 1 orm0(t) = 1/(1+t).

The censoring time follows Exp(c), and the censoring rate (CR) is controlled at

approximately 15% or 30% by adjusting c. In addition, we consider the sample

size n = 400 or 800 and the bandwidth h = sd(X)n−1/2 log(n), which meets

Condition C5. All results are based on 1,000 replications.

Tables 1–4 summarize the simulation results. We have the following

observations. The proposed method provides approximately unbiased estimates

and similar SSD and SEE. Increasing the jump size (α,η) decreases the SSD and

SEE of the threshold estimator ζ̂, but has little effect on the other parameter

estimators. In contrast, increasing the threshold ζ from 0 to 0.5 reduces the

SSD and SSE of β̂, but increases the SSD and SEE of (α,η), because the jump
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Table 1. Simulation results for the threshold and regression parameters in the simulation
study (ζ = 0, m0(t) = 1).

n = 400 n = 800

CR Case Para Bias SEE SSD CP Bias SEE SSD CP

15% 1

ζ 0.001 0.148 0.139 0.919 −0.010 0.136 0.114 0.917

β1 0.002 0.162 0.151 0.958 0.006 0.116 0.112 0.959

β2 −0.012 0.282 0.273 0.959 0.002 0.202 0.194 0.953

α −0.001 0.085 0.089 0.934 −0.002 0.060 0.060 0.953

η1 −0.007 0.232 0.211 0.966 −0.018 0.166 0.153 0.964

η2 0.005 0.393 0.384 0.955 0.001 0.281 0.258 0.964

15% 2

ζ 0.007 0.085 0.083 0.938 0.001 0.045 0.044 0.951

β1 0.002 0.167 0.156 0.960 0.009 0.117 0.115 0.958

β2 −0.002 0.291 0.285 0.952 0.002 0.204 0.202 0.951

α 0.001 0.089 0.091 0.942 0.002 0.062 0.063 0.949

η1 −0.015 0.238 0.216 0.967 −0.031 0.167 0.157 0.961

η2 −0.006 0.399 0.396 0.941 −0.007 0.281 0.266 0.959

30% 1

ζ 0.004 0.183 0.159 0.911 0.006 0.127 0.114 0.920

β1 −0.001 0.178 0.167 0.957 0.005 0.126 0.120 0.965

β2 −0.017 0.309 0.297 0.957 −0.002 0.219 0.213 0.947

α −0.001 0.092 0.097 0.934 −0.003 0.064 0.066 0.935

η1 −0.005 0.255 0.232 0.958 −0.019 0.178 0.163 0.973

η2 0.006 0.431 0.407 0.956 0.001 0.304 0.284 0.960

30% 2

ζ −0.009 0.091 0.075 0.930 −0.002 0.049 0.046 0.958

β1 0.001 0.176 0.172 0.950 0.006 0.125 0.123 0.951

β2 −0.015 0.307 0.299 0.953 0.002 0.217 0.217 0.948

α 0.001 0.092 0.096 0.940 0.001 0.065 0.066 0.948

η1 −0.013 0.248 0.238 0.957 −0.018 0.176 0.166 0.968

η2 −0.002 0.419 0.412 0.952 −0.008 0.299 0.285 0.961

Note: CR, Para, SSD, SEE, and CP denote the censoring rate, parameter, sample standard deviation,
standard error estimate, and coverage probability of the 95% confidence interval, respectively.

size estimator is related only to the sample with X > ζ. However, increasing n

from 400 to 800 or decreasing CR from 30% to 15% decreases the SSD and SEE

of the estimators. Moreover, the estimators have smaller SSD and SEE when

m0(t) = (1 + t)−1 than when m0(t) = 1. Finally, under different settings, the CP

remains stable and close to the nominal level of 95%.

Moreover, we investigate the effect of a varying bandwidth h on the

estimation. We fix m0(t) = 1, ζ = 0, (β, α,η) = (0.5, 0.5, 0.5, 0.5, 0.5), and

n = 400, and set h as {0.01, 0.05, 0.1, 0.15, 0.164, 0.2, 0.3}, where 0.164 is obtained

from the proposed value of h = sd(X)n−1/2 log(n). Tables 5 and 6 present the

Bias, SSD, and root mean squared error (RMSE) for the parameter estimators

under CR = 15% and CR = 30%, respectively. The estimates of β̂, α, and η̂

are not sensitive to h, but an extremely small h can cause slight instability when

estimating ζ. Furthermore, an h near 0.164 is preferred for ζ̂. Therefore, our

choice of h = sd(X)n−1/2 log(n) is suitable.
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Table 2. Simulation results for the threshold and regression parameters in the simulation
study (ζ = 0.5, m0(t) = 1).

n = 400 n = 800

CR Case Para Bias SEE SSD CP Bias SEE SSD CP

15% 1

ζ −0.015 0.181 0.128 0.906 −0.014 0.135 0.094 0.932

β1 −0.001 0.130 0.124 0.964 0.002 0.092 0.091 0.951

β2 −0.008 0.225 0.221 0.954 −0.001 0.159 0.155 0.959

α −0.002 0.125 0.123 0.937 −0.002 0.085 0.087 0.949

η1 0.001 0.273 0.246 0.956 −0.018 0.189 0.180 0.957

η2 −0.005 0.436 0.446 0.944 0.015 0.308 0.289 0.953

15% 2

ζ −0.012 0.099 0.079 0.923 0.005 0.044 0.066 0.954

β1 −0.001 0.134 0.129 0.966 0.004 0.096 0.094 0.948

β2 −0.005 0.233 0.236 0.950 −0.001 0.167 0.163 0.955

α 0.005 0.124 0.129 0.936 0.005 0.088 0.092 0.941

η1 −0.015 0.273 0.252 0.953 −0.033 0.195 0.186 0.951

η2 −0.013 0.440 0.459 0.937 0.004 0.317 0.299 0.955

30% 1

ζ −0.013 0.202 0.162 0.903 −0.020 0.129 0.112 0.925

β1 −0.003 0.143 0.137 0.953 0.006 0.101 0.098 0.957

β2 −0.014 0.248 0.241 0.957 −0.002 0.175 0.171 0.958

α −0.001 0.131 0.133 0.936 −0.004 0.091 0.093 0.941

η1 0.004 0.294 0.267 0.956 −0.014 0.204 0.192 0.960

η2 −0.001 0.474 0.472 0.943 0.001 0.337 0.320 0.957

30% 2

ζ −0.014 0.089 0.089 0.934 −0.006 0.048 0.047 0.954

β1 −0.002 0.143 0.140 0.960 0.001 0.101 0.100 0.952

β2 −0.009 0.249 0.242 0.953 0.001 0.176 0.174 0.959

α 0.007 0.129 0.135 0.931 0.004 0.092 0.095 0.946

η1 −0.009 0.289 0.268 0.940 −0.031 0.204 0.193 0.960

η2 −0.017 0.468 0.475 0.940 0.003 0.334 0.321 0.954

Note: CR, Para, SSD, SEE, and CP denote the censoring rate, parameter, sample standard deviation,
standard error estimate, and coverage probability of the 95% confidence interval, respectively.

The second simulation assesses the performance of the proposed test statistic

SUPK . We choose K ∈ {1, 3, 13} to examine the effect of the number of grids,

and set the true threshold to 0 or 0.5 and the grids for SUP1, SUP3, and SUP13 to

{0}, {−0.3, 0, 0.3}, and {−0.6,−0.5,−0.4, . . . , 0.5, 0.6}, respectively, to evaluate

the effect of the distance between the threshold and the grids on the performance

of the test procedure. Thus, SUP1 is the optimal test if the true threshold is the

same as the preassigned threshold zero. We compare SUP1, SUP3, and SUP13

in terms of their type-I error and power, with a significance level of 5% when

n = 400 and CR = 30%.

Table 7 summarizes the results obtained based on 500 replications. The

left panel shows that the type-I errors are close to 0.05 when the true model

has no threshold, and the power increases with the jump size. In addition, the

power may be affected by the threshold location, because it decreases when the
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threshold location is close to the boundary. Furthermore, the number of grids

and the distance between the threshold and the grids synergistically affect the

performance of the test. When ζ = 0.5, SUP13 has the highest power, because it

has the shortest distance between the threshold and the grids. When ζ = 0, the

distances between the threshold and the grids are the same for all the tests. In

this case, the optimal test is SUP1, with the highest power, and SUP13 has the

lowest power. Finally, all the tests have higher power when m0(t) = (1 + t)−1

than when m0(t) = 1.

The third simulation checks the performance of the proposed estimation and

test procedures in the case of heavy censoring. We mimic the setting of the second

real data set by considering the covariates Z = (Z1, Z2), where Z1 and Z2 are as

in Simulation 1, and the thresholding variable X ∼ Uniform(−1, 1) with the true

threshold at zero. The survival time T̃ is generated from the following model:

m(t|Z, X) = m0(t) exp{βZ2 + (α+ ηZ1)I(X > ζ)}.

We set β = 0.3, α = 0.3, η = −0.3, andm0(t) = 1. The censoring time follows

Exp(3), and CR is approximately 80%. In addition, we consider the sample size

n = 900, and implement the estimation procedure similarly as before. Table

8 shows the results summarized based on 1,000 replications. The estimation

performance is not as good as that obtained in the case of light censoring, but is

still acceptable.

We also examine the performance of the test statistic with heavy censoring,

and compare SUP13 and SUP7. We recommend using SUP7 with grids at

{0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}th quantiles of X for substantive studies; see Section

6. Table 9 reports the results obtained based on 500 replications. Here, the

proposed test statistic still performs acceptably in the case of heavy censoring.

Moreover, SUP7 has a significantly lower computational burden and a slightly

higher power than SUP13.

6. Real-data Analysis

6.1. Colorectal cancer data

We first apply the proposed procedure to colorectal cancer data collected

from SEER. Colorectal cancer is a disease in which malignant cells form in the

tissues of the colon or rectum, and is the third leading cause of cancer in both

men and women in the United States. Established risk factors of colorectal

cancer do not include the sex variable. However, the report on colorectal cancer

shows differences in deaths between men and women for each race. Therefore,

we investigate sex as a potential risk factor for colorectal cancer.

We extract the 2010–2014 San Francisco colorectal cancer data from SEER.

There are 5,410 patients, and about 77.4% of the observations are subject to right
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Table 3. Simulation results for the threshold and regression parameters in the simulation
study (ζ = 0, m0(t) = (1 + t)−1).

n = 400 n = 800

CR Case Para Bias SEE SSD CP Bias SEE SSD CP

15% 1

ζ −0.004 0.096 0.083 0.946 −0.001 0.050 0.051 0.953

β1 0.002 0.087 0.082 0.962 0.004 0.061 0.060 0.960

β2 −0.004 0.151 0.146 0.957 0.002 0.107 0.104 0.950

α −0.004 0.050 0.049 0.950 0.003 0.036 0.037 0.945

η1 −0.002 0.132 0.122 0.967 −0.013 0.094 0.088 0.960

η2 0.007 0.223 0.219 0.958 −0.001 0.157 0.149 0.962

15% 2

ζ 0.002 0.043 0.041 0.945 −0.003 0.027 0.027 0.958

β1 0.006 0.088 0.084 0.959 0.007 0.062 0.061 0.960

β2 −0.002 0.123 0.122 0.949 0.005 0.108 0.106 0.948

α 0.006 0.055 0.054 0.956 0.008 0.039 0.041 0.930

η1 −0.016 0.138 0.130 0.967 −0.023 0.098 0.093 0.957

η2 −0.009 0.229 0.234 0.945 −0.011 0.162 0.157 0.954

30% 1

ζ −0.005 0.118 0.084 0.941 −0.003 0.052 0.050 0.954

β1 0.002 0.092 0.087 0.965 0.004 0.065 0.064 0.954

β2 −0.005 0.161 0.157 0.955 0.001 0.114 0.111 0.946

α 0.001 0.054 0.052 0.960 0.001 0.038 0.039 0.948

η1 −0.006 0.140 0.131 0.966 −0.013 0.099 0.093 0.966

η2 −0.001 0.238 0.234 0.951 0.001 0.169 0.159 0.962

30% 2

ζ −0.001 0.058 0.042 0.956 0.002 0.029 0.028 0.954

β1 0.005 0.093 0.088 0.962 0.007 0.066 0.065 0.948

β2 −0.002 0.161 0.157 0.951 0.004 0.114 0.111 0.950

α 0.005 0.057 0.055 0.960 0.006 0.040 0.042 0.940

η1 −0.015 0.145 0.136 0.965 −0.022 0.103 0.097 0.958

η2 −0.009 0.241 0.244 0.948 −0.009 0.171 0.164 0.952

Note: CR, Para, SSD, SEE, and CP denote the censoring rate, parameter, sample standard deviation,
standard error estimate, and coverage probability of the 95% confidence interval, respectively.

censoring. Figure 1(a) displays the Kaplan–Meier (KM) curves for males and

females, and their 95% confident bands. Based on the log-rank test, the difference

between the two gender groups is not statistically significant. Therefore, there is

no evidence that sex is a vital risk factor for the survival rate. However, there

might be a subgroup that exhibits a gender difference.

Published medical reports of colorectal cancer show that the death rate varies

among age groups. Hence, we examine whether a specific age subgroup exists in

which sex is a significant factor. For example, suppose we set the cut-point as

the median age of 72. Then, as shown in Figure 1(b), sex becomes a significant

risk factor for individuals older than 72. This motivates us to apply the proposed

method to detect an objective threshold from the age distribution. The covariates

we consider include sex, tumor size, and their interaction with the dichotomized

age at diagnosis with an unknown threshold to be identified. We code females as

one and males as zero, and standardize the tumor size.
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Table 4. Simulation results for the threshold and regression parameters in the simulation
study (ζ = 0.5, m0(t) = (1 + t)−1).

n = 400 n = 800

CR Case Para Bias SEE SSD CP Bias SEE SSD CP

15% 1

ζ −0.001 0.080 0.079 0.950 −0.004 0.050 0.053 0.961

β1 0.001 0.070 0.067 0.959 0.002 0.050 0.049 0.952

β2 −0.002 0.121 0.118 0.950 0.000 0.086 0.084 0.953

α −0.004 0.074 0.072 0.950 0.005 0.051 0.053 0.946

η1 −0.002 0.159 0.146 0.957 −0.023 0.112 0.106 0.957

η2 0.007 0.254 0.264 0.943 0.007 0.189 0.176 0.951

15% 2

ζ −0.003 0.040 0.040 0.945 0.001 0.027 0.027 0.956

β1 0.003 0.071 0.068 0.963 0.004 0.050 0.049 0.953

β2 −0.002 0.123 0.122 0.949 0.002 0.087 0.085 0.961

α 0.012 0.079 0.082 0.939 0.015 0.055 0.061 0.926

η1 −0.017 0.169 0.158 0.957 −0.028 0.119 0.116 0.946

η2 −0.021 0.265 0.290 0.929 −0.007 0.188 0.189 0.947

30% 1

ζ 0.011 0.094 0.082 0.931 −0.007 0.062 0.062 0.954

β1 0.000 0.074 0.070 0.959 0.001 0.053 0.052 0.954

β2 −0.006 0.129 0.125 0.953 0.000 0.091 0.089 0.957

α 0.004 0.078 0.076 0.953 0.003 0.054 0.055 0.946

η1 −0.002 0.169 0.157 0.959 −0.014 0.119 0.113 0.958

η2 −0.003 0.273 0.280 0.943 0.007 0.194 0.190 0.944

30% 2

ζ −0.009 0.091 0.075 0.930 −0.001 0.029 0.028 0.957

β1 0.002 0.074 0.071 0.960 0.004 0.053 0.052 0.951

β2 −0.003 0.129 0.126 0.951 0.003 0.092 0.090 0.954

α 0.013 0.082 0.084 0.947 0.012 0.057 0.062 0.924

η1 −0.014 0.176 0.166 0.966 −0.028 0.124 0.120 0.951

η2 −0.018 0.280 0.301 0.939 −0.005 0.200 0.200 0.947

Note: CR, Para, SSD, SEE, and CP denote the censoring rate, parameter, sample standard deviation,
standard error estimate, and coverage probability of the 95% confidence interval, respectively.
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Figure 1. The KM curves for colorectral cancer and their 95% confidence bands. The
p-value is calculated using the log-rank test.
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Table 5. Simulation results with varying h and CR = 15%.

β̂1 β̂2 α̂

Bias SSD RMSE Bias SSD RMSE Bias SSD RMSE

h = 0.01 0.006 0.147 0.147 −0.016 0.289 0.289 0.000 0.085 0.085

h = 0.05 0.006 0.147 0.147 0.017 0.290 0.290 0.000 0.084 0.084

h = 0.1 0.006 0.147 0.147 0.017 0.290 0.290 −0.002 0.086 0.086

h = 0.15 0.006 0.147 0.147 0.018 0.290 0.290 −0.004 0.084 0.084

h = 0.164 0.006 0.147 0.147 0.018 0.290 0.290 −0.004 0.084 0.084

h = 0.2 0.006 0.147 0.147 0.018 0.290 0.290 −0.004 0.084 0.084

h = 0.3 0.006 0.147 0.147 0.018 0.290 0.290 −0.005 0.081 0.081

η̂1 η̂2 ζ̂

Bias SSD RMSE Bias SSD RMSE Bias SSD RMSE

h = 0.01 −0.037 0.219 0.222 −0.037 0.401 0.403 0.006 0.179 0.178

h = 0.05 −0.033 0.219 0.222 −0.038 0.403 0.405 0.005 0.086 0.086

h = 0.1 −0.033 0.219 0.222 −0.038 0.402 0.404 −0.006 0.067 0.067

h = 0.15 −0.033 0.219 0.222 −0.038 0.402 0.404 −0.009 0.066 0.066

h = 0.164 −0.033 0.219 0.222 −0.038 0.402 0.404 −0.009 0.068 0.068

h = 0.2 −0.033 0.219 0.222 −0.038 0.402 0.404 −0.009 0.073 0.073

h = 0.3 −0.033 0.219 0.222 −0.038 0.402 0.404 −0.010 0.083 0.084

Note: SSD and RMSE denote the sample standard deviation and root mean squared error, respectively.

Table 6. Simulation results with varying h and CR = 30%.

β̂1 β̂2 α̂

Bias SSD RMSE Bias SSD RMSE Bias SSD RMSE

h = 0.01 −0.005 0.157 0.157 0.000 0.343 0.343 0.004 0.100 0.100

h = 0.05 −0.006 0.157 0.157 0.001 0.342 0.342 0.001 0.098 0.098

h = 0.1 −0.004 0.159 0.159 −0.002 0.344 0.344 −0.006 0.097 0.097

h = 0.15 −0.005 0.159 0.159 0.002 0.343 0.343 −0.007 0.096 0.096

h = 0.164 −0.004 0.159 0.159 0.002 0.343 0.343 −0.007 0.095 0.095

h = 0.2 −0.005 0.159 0.159 0.002 0.343 0.343 −0.008 0.094 0.094

h = 0.3 −0.004 0.159 0.159 0.003 0.344 0.344 −0.010 0.088 0.089

η̂1 η̂2 ζ̂

Bias SSD RMSE Bias SSD RMSE Bias SSD RMSE

h = 0.01 −0.031 0.235 0.237 −0.018 0.435 0.435 0.016 0.154 0.154

h = 0.05 −0.030 0.234 0.265 −0.021 0.435 0.435 0.015 0.122 0.123

h = 0.1 −0.031 0.235 0.237 −0.021 0.436 0.437 −0.017 0.075 0.077

h = 0.15 −0.031 0.235 0.237 −0.021 0.435 0.436 −0.015 0.068 0.070

h = 0.164 −0.031 0.235 0.237 −0.021 0.435 0.436 −0.015 0.072 0.074

h = 0.2 −0.031 0.235 0.237 −0.021 0.435 0.436 −0.016 0.076 0.078

h = 0.3 −0.032 0.236 0.238 −0.023 0.433 0.434 −0.022 0.103 0.105

Note: SSD and RMSE denote the sample standard deviation and root mean squared error, respectively.
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Table 7. Size and power with or without change point.

m0(t) = 1 m0(t) = (1 + t)−1

ζ (α, η1, η2) SUP1 SUP3 SUP13 SUP1 SUP3 SUP13

0

(0, 0, 0) 5.2% 5.8% 4.4% 5.4% 5.0% 4.8%

(−0.1, 0.1, 0.1) 14.6% 14.4% 13.4% 43.0% 48.2% 40.6%

(−0.2, 0.2, 0.2) 59.0% 55.4% 49.2% 96.6% 97.4% 98.0%

(−0.3, 0.3, 0.3) 91.2% 90.2% 86.8% 100% 100% 100%

(−0.4, 0.4, 0.4) 99.4% 99% 98.2% 100% 100% 100%

(−0.5, 0.5, 0.5) 100% 100% 100% 100% 100% 100%

0.5

(0, 0, 0) 4.4% 5.8% 4.2% 4.6% 5.0% 4.8%

(−0.1, 0.1, 0.1) 8.2% 10.6% 12.4% 17.8% 26.4% 34.4%

(−0.2, 0.2, 0.2) 18.8% 30.4% 38.6% 60.8% 80.2% 93.4%

(−0.3, 0.3, 0.3) 42.2% 62.4% 71.8% 92% 98.8% 100%

(−0.4, 0.4, 0.4) 65.0% 82.2% 93.4% 98.8% 100% 100%

(−0.5, 0.5, 0.5) 80.8% 94.6% 94.8% 100% 100% 100%

Table 8. Simulation results for the case of heavy censoring

Para Bias SEE SSD CP

ζ −0.007 0.296 0.218 90.6%

β −0.085 0.185 0.195 93.7%

α −0.007 0.178 0.195 92.2%

η 0.014 0.196 0.226 93.7%

Note: Para, SEE, SSD, and CP stand for parameter, standard error estimate, sample standard deviation,
and the coverage probability of the 95% confidence interval, respectively.

Table 9. Size and power with and without change points.

(α, η) SUP7 SUP13

(0, 0) 4.4% 4.2%

(−0.1, 0.1) 13.4% 12.4%

(−0.2, 0.2) 41.2% 40.0%

(−0.3, 0.3) 70.6% 70.0%

(−0.4, 0.4) 77.6% 75.4%

(−0.5, 0.5) 85.8% 84.6%

We use the proposed test procedure to determine the existence of a threshold.

The threshold search set is {52, 57, 61, 64, 69, 73, 78}, corresponding to the

{0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}th quantiles of age. We obtain a p-value much lower

than 0.05, indicating significant evidence to reject the null hypothesis. Therefore,

we conclude that a threshold does exist.

Next, we apply the estimation method described in Section 2 to perform

the parameter estimation. The estimated cut-point location is ζ̂ = 77.9, which
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Table 10. Analysis results for the colorectal cancer data (ζ̂ = 77.9).

Parameter Estimate SSE p-value

Sex −0.038 0.026 0.430

Tumor size −0.064 0.008 <0.001

Age (> 77.9) −0.102 0.033 0.002

Sex×Age (> 77.9) −0.113 0.036 0.002

Tumorsize×Age (> 77.9) 0.003 0.160 0.852

Threshold 77.904 1.411 <0.001

is close to the result of Wang, Li and Wang (2021), who analyzed this data set

using a proportional hazards mixture cure model with a single threshold. Table 10

presents the parameter estimates. Sex is not significant when patients are below

77.9. However, for those older than 77.9, females have a significantly shorter

MRL than males. This finding is in line with the results shown in Figure 1(c),

which shows that the survival probability is higher for males than for females

in the cohort of age at diagnosis greater than 77.9. Moreover, tumor size has a

significant adverse effect on the MRL function, but its effect becomes negligible

when age crosses the threshold.

6.2. Breast cancer data

Breast cancer is cancer that develops from breast tissue. Based on the

2016–2018 data from the National Cancer Institute, around 12.9% of women are

diagnosed with breast cancer at some point during their lifetime. Therefore,

clinicians are interested in improving prognostic prediction. The established

risk factors include obesity, old age, and lack of physical exercise. Moreover,

as suggested by (Borcherding et al. (2018)), protein-level data have particular

advantages in assessing putative prognostic or therapeutic targets in tumors.

We apply the proposed procedure to the breast cancer data extracted from

the TCGA. We consider age at diagnosis and the proteins BLC2A1 and CDK1

obtained from the TCPA as covariates (Li et al. (2013)). After deleting samples

with missing data, the sample size is 874, and the censoring rate is 86%.

We first preprocess the data before analysis. Note that because the data are

encrypted, we can obtain only level 3 or 4 protein data from the TCPA. However,

the order of the numerical values in the data remains unchanged, even though

the encryption conceals the data. By dichotomizing CKD1 into a binary variable,

we can disregard the unknown data transformations. Thus, we consider a model

with only CDK1 as a thresholding variable and obtain the estimated threshold

−0.07, which determines whether CDK1 is highly expressed. Then, we convert

CDK1 to a binary variable, using the value one for high expression (> −0.07) and

zero for low expression (≤ −0.07). As shown by Piao et al. (2019), the expression

of CDK1 is important for the prognosis of breast cancer. However, based on the
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Figure 2. The KM curves for breast cancer and their 95% confidence bands. The p-value
is calculated using the log-rank test.

information provided in the TCPA database, CDK1 in the univariant Cox model

exerts a nonsignificant effect (p-value = 0.64). Even though we convert CDK1 to a

binary variable, its effect on the survival probability is still not apparent, as shown

in Figure 2(a). Therefore, we set the expression of BCL2A1 as the thresholding

covariate to identify a subgroup in which CDK1 may have a significant effect

on the MRL function. The covariates we consider include standardized age at

diagnosis, the converted CDK1, and the interaction between the converted CDK1

and the dichotomized BCL2A1, with an unknown threshold to be identified.

Next, we apply the proposed test procedure to determine the existence of

a threshold. The threshold search set is {0.024, 0.080, 0.142, 0.210, 0.286, 0.382,

0.511}, corresponding to the {0.2, 0.3, 0.4, 0.5, 0.6.0.7, 0.8}th quantiles of the

expression level of BCL2A1. We obtain a p-value much lower than 0.05, providing

strong evidence of the existence of a threshold.

Finally, we use the suggested estimation procedure to obtain the parameter

estimates. The estimated cut-point location is 0.194. Table 11 presents the

parameter estimates. CDK1 is nonsignificant when the expression of BCL2A1

is below 0.194, but becomes significantly negative when it exceeds 0.194. Thus,

for patients with BCL2A1 greater than 0.194, a high CDK1 expression is a poor

prognosis for breast cancer. This finding is consistent with the result shown in

Figure 2(b), which indicates that the survival probability is higher when CDK1

≤ −0.07 than when CDK1 > −0.07 in the cohort of high BCL2A1 expression.

Furthermore, the binary BCL2A1 has a significant positive effect on the MRL

function, aligning with the finding shown in Figure 2(c).

The above subgroup analyses demonstrate the utility of the proposed method

and reveal new insights into potential risk factors for cancer and other diseases.

The computer code is written in R and is available at https://github.com/

caterpillar-star/TEPMRL.

https://github.com/caterpillar-star/TEPMRL
https://github.com/caterpillar-star/TEPMRL
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Table 11. Analysis results for the colorectal cancer data (ζ̂ = 0.194).

Parameter Estimate SSE p-value

Age −0.202 0.036 <0.001

CDK1 (> −0.07) 0.003 0.113 0.976

BCL2A1 (> 0.194) 0.291 0.073 <0.001

CDK1 (> −0.07)×BCL2A1 (> 0.194) −0.311 0.131 0.018

Threshold 0.194 0.068 <0.001

7. Conclusion

Threshold models are common in many fields, and identifying a meaningful

threshold usually leads to discovering essential subgroups in the population.

This study considers a semiparametric PMRL model, and develops a smoothed

estimating equation approach to estimate the threshold, regression coefficients,

and baseline MRL function. We also develop a test procedure to examine the

existence of the threshold. The proposed method is guaranteed theoretically

using large-sample theory and is supported empirically by means of simulation

studies and two real-life applications. Notably, if there is an interaction between

Z and continuous X, the problem can be regarded as sample splitting based on

a continuous variable (Hansen (2000)). Deciding on an appropriate cut-off at

which to split the sample is often of great interest and practical value. It enables

informative comparisons between two subgroups and facilitates group-specific

recommendations. Alternatively, one may consider using a varying coefficient

model to capture fine and smooth details of local effect changes. However,

estimating infinite “parameters” for an unknown function typically requires a

large sample size and more sophisticated methods. Thus, threshold models are a

parsimonious strategy for nonparametric function estimation or can be used as a

preliminary step for investigating complicated data structures.

Although we consider only the PMRL model, our approach can be extended

to additive and transformation MRL models without much difficulty. Moreover,

we focus only on a single threshold in the present study. Algorithms such as

the binary segmentation method in the Gaussian framework and `1 penalization

methods have been developed to reduce a multiple threshold problems to several

single threshold problems. Therefore, we can adapt these methods under our

framework. Nevertheless, when dividing a finite sample into many subgroups,

each subgroup may contain a limited number of observations. Consequently,

we may introduce high-level heterogeneity into the estimated results. Such

multigroup results may also be over-trained, and thus difficult to generalize to

external samples. Therefore, a single-threshold or two-subgroup analysis is still

valuable in many scientific applications. In addition, it would be interesting

to consider multiple comparisons for detecting multiple thresholds. Finally,

existing studies (e.g., Lee and Lam (2020)) combine the detection and estimation
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of the threshold. Two necessary conditions must be satisfied to achieve this

purpose. First, the test must be based on the likelihood function. Second,

{ζ1, ζ2, . . . , ζK} must include all distinct observed values of X. Then, if the

threshold effect is detected, we can estimate the threshold as ζ` that maximizes

the test statistic. However, such a combination is difficult in the proposed model

framework, because the likelihood function-based method cannot be applied to

the current semiparametric PMRL model. The feasibility of such an extension

requires further investigation.

Supplementary Material

The supplementary materials contain proofs of the theoretical results.
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